1
|
Choi K, Cho Y, Chae Y, Cheon SY. Cell-cell communications in the brain of hepatic encephalopathy: The neurovascular unit. Life Sci 2025; 363:123413. [PMID: 39863020 DOI: 10.1016/j.lfs.2025.123413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Many patients with liver diseases are exposed to the risk of hepatic encephalopathy (HE). The incidence of HE in liver patients is high, showing various symptoms ranging from mild symptoms to coma. Liver transplantation is one of the ways to overcome HE. However, not all patients can receive liver transplantation. Moreover, patients who have received liver transplantation have limitations in that they are vulnerable to hepatocellular carcinoma, allograft rejection, and infection. To find other therapeutic strategies, it is important to understand pathological factors and mechanisms that lead to HE after liver disease. Oxidative stress, inflammatory response, hyperammonaemia and metabolic disorders seen after liver diseases have been reported as risk factors of HE. These are known to affect the brain and cause HE. These peripheral pathological factors can impair the blood-brain barrier, cause it to collapse and damage the neurovascular unit component of multiple cells, including vascular endothelial cells, astrocytes, microglia, and neurons, leading to HE. Many previous studies on HE have suggested the impairment of neurovascular unit and cell-cell communication in the pathogenesis of HE. This review focuses on pathological factors that appear in HE, cell type-specific pathological mechanisms, miscommunication/incorrect relationships, and therapeutic candidates between brain cells in HE. This review suggests that regulating communications and interactions between cells may be important in overcoming HE.
Collapse
Affiliation(s)
- Kyuwan Choi
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - Yena Cho
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - Yerin Chae
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - So Yeong Cheon
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea; Research Institute for Biomedical & Health Science (RIBHS), Konkuk University, Chungju, Republic of Korea.
| |
Collapse
|
2
|
Avgustinovich DF, Chadaeva IV, Kizimenko AV, Kovner AV, Bazovkina DV, Ponomarev DV, Evseenko VI, Naprimerov VA, Lvova MN. The liver-brain axis under the influence of chronic Opisthorchis felineus infection combined with prolonged alcoholization in mice. Vavilovskii Zhurnal Genet Selektsii 2025; 29:92-107. [PMID: 40144377 PMCID: PMC11933900 DOI: 10.18699/vjgb-25-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/22/2024] [Accepted: 09/02/2024] [Indexed: 03/28/2025] Open
Abstract
Our purpose was to model a combination of a prolonged consumption of ethanol with Opisthorchis felineus infection in mice. Four groups of C57BL/6 mice were compiled: OF, mice infected with O. felineus for 6 months; Eth, mice consuming 20 % ethanol; Eth+OF, mice subjected to both adverse factors; and CON, control mice not exposed to these factors. In the experimental mice, especially in Eth+OF, each treatment caused well-pronounced periductal and cholangiofibrosis, proliferation of bile ducts, and enlargement of areas of inflammatory infiltration in the liver parenchyma. Simultaneously with liver disintegration, the infectious factor caused - in the frontal cerebral cortex - the growth of pericellular edema (OF mice), which was attenuated by the administration of ethanol (Eth+OF mice). Changes in the levels of some proteins (Iba1, IL-1β, IL-6, and TNF) and in mRNA expression of genes Aif1, Il1b, Il6, and Tnf were found in the hippocampus and especially in the frontal cortex, implying region-specific neuroinflammation. Behavioral testing of mice showed that ethanol consumption influenced the behavior of Eth and Eth+OF mice in the forced swimming test and their startle reflex. In the open field test, more pronounced changes were observed in OF mice. In mice of all three experimental groups, especially in OF mice, a disturbance in the sense of smell was detected (fresh peppermint leaves). The results may reflect an abnormality of regulatory mechanisms of the central nervous system as a consequence of systemic inflammation under the combined action of prolonged alcohol consumption and helminth infection.
Collapse
Affiliation(s)
- D F Avgustinovich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I V Chadaeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Kizimenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Kovner
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D V Bazovkina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D V Ponomarev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V I Evseenko
- Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V A Naprimerov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State Agrarian University, Novosibirsk, Russia
| | - M N Lvova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
3
|
Esmail MM, Saeed NM, Hanna DMF, Michel HE, El-Naga RN, Azab SS. Hepatoprotective and neuroprotective effects of quinacrine against bile duct ligation-induced hepatic encephalopathy in rats: Role of bone morphogenetic proteins signaling. Life Sci 2024; 359:123229. [PMID: 39537098 DOI: 10.1016/j.lfs.2024.123229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
AIMS This study aimed to assess the potential protective effect of quinacrine, an FDA approved antimalarial drug with reported anti-inflammatory effects, on hepatic encephalopathy (HE) in a bile duct ligation (BDL) experimental model and to investigate the mechanisms responsible for this effect, namely those associated with the liver-brain axis, particularly, bone morphogenetic protein 2 (BMP2) signaling. MATERIALS AND METHODS Five groups of rats were selected at random: sham, BDL, (BDL+ quinacrine 5), (BDL+ quinacrine 10), and (quinacrine 10 + sham). Daily Intraperitoneal (I.P.) administration of quinacrine was initiated on the surgery day and continued for 28 days. KEY FINDINGS Results showed that rats that underwent BDL exhibited marked elevation of serum liver enzymes, ammonia, total bilirubin, together with oxidative stress, inflammation, dysregulated farnesoid x receptor (FXR), dysregulated BMP2 signaling and escalated fibrotic markers indicating hepatotoxicity, cholestasis and fibrosis. Besides, neurotoxicity was detected as manifested by cognitive deficits and dysregulation of hippocampal FXR, BMP2 signaling, WNT3A signaling, brain derived neurotrophic factor (BDNF), phospholipase A2 (PLA2) and glial fibrillary acidic protein (GFAP). In contrast, co-treatment with quinacrine mitigated BDL-induced hepatotoxicity, cholestasis, fibrosis, and neurotoxicity. Notably, quinacrine improved learning and memory and restored FXR, BMP2 signaling in the liver and hippocampus. In addition, quinacrine restored hippocampal WNT3A signaling, BDNF, whereas it downregulated expression of hippocampal PLA2 and GFAP. SIGNIFICANCE These findings demonstrated implication of BMP2 signaling in the molecular process of BDL-induced HE and proposed that quinacrine has potential hepatoprotective and neuroprotective properties against HE.
Collapse
Affiliation(s)
- Manar M Esmail
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Noha M Saeed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Diana M F Hanna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
4
|
Ntuli Y, Shawcross DL. Infection, inflammation and hepatic encephalopathy from a clinical perspective. Metab Brain Dis 2024; 39:1689-1703. [PMID: 39212845 PMCID: PMC11535002 DOI: 10.1007/s11011-024-01402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Hepatic encephalopathy (HE) is a syndrome that is associated with both acute and chronic liver injury. It manifests as a wide spectrum of neuropsychological abnormalities, ranging from subtle impairments in executive higher functions observed in cirrhosis, through to coma in acute liver failure. In acute liver failure, the central role of ammonia in the development of brain oedema has remained undisputed for 130 years. It latterly became apparent that infection and inflammation were profound determinants for the development of severe hepatic encephalopathy, associated with the development of cerebral oedema and intracranial hypertension. The relationship of the development of hepatic encephalopathy with blood ammonia levels in cirrhosis is less clear cut and the synergistic interplay of inflammation and infection with ammonia has been identified as being fundamental in the development and progression of hepatic encephalopathy. A perturbed gut microbiome and the presence of an impaired gut epithelial barrier that facilitates translocation of bacteria and bacterial degradation products into the systemic circulation, inducing systemic inflammation and innate and adaptive immune dysfunction, has now become the focus of therapies that treat hepatic encephalopathy in cirrhosis, and may explain why the prebiotic lactulose and rifaximin are efficacious. This review summarises the current clinical perspective on the roles of inflammation and infection in hepatic encephalopathy and presents the evidence base for existing therapies and those in development in the setting of acute and chronic liver failure.
Collapse
Affiliation(s)
- Yevedzo Ntuli
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, 125 Coldharbour Lane, London, SE5 9NU, UK
- Institute of Liver Studies, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Debbie L Shawcross
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, 125 Coldharbour Lane, London, SE5 9NU, UK.
- Institute of Liver Studies, King's College Hospital, Denmark Hill, London, SE5 9RS, UK.
| |
Collapse
|
5
|
Kaboutari M, Asle-Rousta M, Mahmazi S. Protective effect of menthol against thioacetamide-induced hepatic encephalopathy by suppressing oxidative stress and inflammation, augmenting expression of BDNF and α7-nACh receptor, and improving spatial memory. Eur J Pharmacol 2024; 981:176916. [PMID: 39154831 DOI: 10.1016/j.ejphar.2024.176916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome that can occur in people with acute or chronic liver disease. Here, we investigated the effects of menthol, a natural monoterpene, on HE induced by thioacetamide (TA) in male Wistar rats. The rats received 200 mg/kg of TA twice a week for four weeks and were administered 10 mg/kg of menthol intraperitoneally daily for the same period. The results showed that menthol treatment reduced oxidative stress and inflammation in the livers and hippocampi of the rats that received TA. It also lowered the levels of ammonium and liver enzymes AST, ALT, ALP, and GGT in the serum of these animals and prevented liver histopathological damage. In addition, the expression and activity of acetylcholinesterase in the hippocampus of HE model rats were decreased by menthol. Likewise, this monoterpene reduced the expression of TLR4, MyD88, and NF-κB in the hippocampus while increasing the expression of BDNF and α7-nACh receptor. Menthol also reduced neuronal death in the hippocampal cornu ammonis-1 and dentate gyrus regions and reduced astrocyte swelling, which led to improved learning and spatial memory in rats with HE. In conclusion, the study suggests that menthol may have strong protective effects on the liver and brain, making it a potential treatment for HE and neurodegenerative diseases.
Collapse
Affiliation(s)
- Masoud Kaboutari
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | | - Sanaz Mahmazi
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
6
|
Milewski K, Orzeł-Gajowik K, Zielińska M. Mitochondrial Changes in Rat Brain Endothelial Cells Associated with Hepatic Encephalopathy: Relation to the Blood-Brain Barrier Dysfunction. Neurochem Res 2024; 49:1489-1504. [PMID: 35917006 PMCID: PMC11106209 DOI: 10.1007/s11064-022-03698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/17/2022] [Accepted: 07/14/2022] [Indexed: 12/06/2022]
Abstract
The mechanisms underlying cerebral vascular dysfunction and edema during hepatic encephalopathy (HE) are unclear. Blood-brain barrier (BBB) impairment, resulting from increased vascular permeability, has been reported in acute and chronic HE. Mitochondrial dysfunction is a well-documented result of HE mainly affecting astrocytes, but much less so in the BBB-forming endothelial cells. Here we review literature reports and own experimental data obtained in HE models emphasizing alterations in mitochondrial dynamics and function as a possible contributor to the status of brain endothelial cell mitochondria in HE. Own studies on the expression of the mitochondrial fusion-fission controlling genes rendered HE animal model-dependent effects: increase of mitochondrial fusion controlling genes opa1, mfn1 in cerebral vessels in ammonium acetate-induced hyperammonemia, but a decrease of the two former genes and increase of fis1 in vessels in thioacetamide-induced HE. In endothelial cell line (RBE4) after 24 h ammonia and/or TNFα treatment, conditions mimicking crucial aspects of HE in vivo, we observed altered expression of mitochondrial fission/fusion genes: a decrease of opa1, mfn1, and, increase of the fission related fis1 gene. The effect in vitro was paralleled by the generation of reactive oxygen species, decreased total antioxidant capacity, decreased mitochondrial membrane potential, as well as increased permeability of RBE4 cell monolayer to fluorescein isothiocyanate dextran. Electron microscopy documented enlarged mitochondria in the brain endothelial cells of rats in both in vivo models. Collectively, the here observed alterations of cerebral endothelial mitochondria are indicative of their fission, and decreased potential of endothelial mitochondria are likely to contribute to BBB dysfunction in HE.
Collapse
Affiliation(s)
- Krzysztof Milewski
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland.
| | - Karolina Orzeł-Gajowik
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland.
| |
Collapse
|
7
|
Cellular Pathogenesis of Hepatic Encephalopathy: An Update. Biomolecules 2023; 13:biom13020396. [PMID: 36830765 PMCID: PMC9953810 DOI: 10.3390/biom13020396] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome derived from metabolic disorders due to various liver failures. Clinically, HE is characterized by hyperammonemia, EEG abnormalities, and different degrees of disturbance in sensory, motor, and cognitive functions. The molecular mechanism of HE has not been fully elucidated, although it is generally accepted that HE occurs under the influence of miscellaneous factors, especially the synergistic effect of toxin accumulation and severe metabolism disturbance. This review summarizes the recently discovered cellular mechanisms involved in the pathogenesis of HE. Among the existing hypotheses, ammonia poisoning and the subsequent oxidative/nitrosative stress remain the mainstream theories, and reducing blood ammonia is thus the main strategy for the treatment of HE. Other pathological mechanisms mainly include manganese toxicity, autophagy inhibition, mitochondrial damage, inflammation, and senescence, proposing new avenues for future therapeutic interventions.
Collapse
|
8
|
Tsai CY, Wu JCC, Wu CJ, Chan SHH. Protective role of VEGF/VEGFR2 signaling against high fatality associated with hepatic encephalopathy via sustaining mitochondrial bioenergetics functions. J Biomed Sci 2022; 29:47. [PMID: 35786324 PMCID: PMC9251935 DOI: 10.1186/s12929-022-00831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Background The lack of better understanding of the pathophysiology and cellular mechanisms associated with high mortality seen in hepatic encephalopathy (HE), a neurological complication arising from acute hepatic failure, remains a challenging medical issue. Clinical reports showed that the degree of baroreflex dysregulation is related to the severity of HE. Furthermore, mitochondrial dysfunction in the rostral ventrolateral medulla (RVLM), a key component of the baroreflex loop that maintains blood pressure and sympathetic vasomotor tone, is known to underpin impairment of baroreflex. Realizing that in addition to angiogenic and vasculogenic effects, by acting on its key receptor (VEGFR2), vascular endothelial growth factor (VEGF) elicits neuroprotection via maintenance of mitochondrial function, the guiding hypothesis of the present study is that the VEGF/VEGFR2 signaling plays a protective role against mitochondrial dysfunction in the RVLM to ameliorate baroreflex dysregulation that underpins the high fatality associated with HE. Methods Physiological, pharmacological and biochemical investigations were carried out in proof-of-concept experiments using an in vitro model of HE that involved incubation of cultured mouse hippocampal neurons with ammonium chloride. This was followed by corroboratory experiments employing a mouse model of HE, in which adult male C57BL/6 mice and VEGFR2 wild-type and heterozygous mice received an intraperitoneal injection of azoxymethane, a toxin used to induce acute hepatic failure. Results We demonstrated that VEGFR2 is present in cultured neurons, and observed that whereas recombinant VEGF protein maintained cell viability, gene-knockdown of vegfr2 enhanced the reduction of cell viability in our in vitro model of HE. In our in vivo model of HE, we found that VEGFR2 heterozygous mice exhibited shorter survival rate and time when compared to wild-type mice. In C57BL/6 mice, there was a progressive reduction in VEGFR2 mRNA and protein expression, mitochondrial membrane potential and ATP levels, alongside augmentation of apoptotic cell death in the RVLM, accompanied by a decrease in baroreflex-mediated sympathetic vasomotor tone and hypotension. Immunoneutralization of VEGF exacerbated all those biochemical and physiological events. Conclusions Our results suggest that, acting via VEGFR2, the endogenous VEGF plays a protective role against high fatality associated with HE by amelioration of the dysregulated baroreflex-mediated sympathetic vasomotor tone through sustaining mitochondrial bioenergetics functions and eliciting antiapoptotic action in the RVLM. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00831-0.
Collapse
Affiliation(s)
- Ching-Yi Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Jacqueline C C Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chiung-Ju Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Häussinger D, Dhiman RK, Felipo V, Görg B, Jalan R, Kircheis G, Merli M, Montagnese S, Romero-Gomez M, Schnitzler A, Taylor-Robinson SD, Vilstrup H. Hepatic encephalopathy. Nat Rev Dis Primers 2022; 8:43. [PMID: 35739133 DOI: 10.1038/s41572-022-00366-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 01/18/2023]
Abstract
Hepatic encephalopathy (HE) is a prognostically relevant neuropsychiatric syndrome that occurs in the course of acute or chronic liver disease. Besides ascites and variceal bleeding, it is the most serious complication of decompensated liver cirrhosis. Ammonia and inflammation are major triggers for the appearance of HE, which in patients with liver cirrhosis involves pathophysiologically low-grade cerebral oedema with oxidative/nitrosative stress, inflammation and disturbances of oscillatory networks in the brain. Severity classification and diagnostic approaches regarding mild forms of HE are still a matter of debate. Current medical treatment predominantly involves lactulose and rifaximin following rigorous treatment of so-called known HE precipitating factors. New treatments based on an improved pathophysiological understanding are emerging.
Collapse
Affiliation(s)
- Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Radha K Dhiman
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, (Uttar Pradesh), India
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Boris Görg
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rajiv Jalan
- Liver Failure Group ILDH, Division of Medicine, UCL Medical School, Royal Free Campus, London, UK.,European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Gerald Kircheis
- Department of Gastroenterology, Diabetology and Hepatology, University Hospital Brandenburg an der Havel, Brandenburg Medical School, Brandenburg an der Havel, Germany
| | - Manuela Merli
- Department of Translational and Precision Medicine, Universita' degli Studi di Roma - Sapienza, Roma, Italy
| | | | - Manuel Romero-Gomez
- UCM Digestive Diseases, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville (HUVR/CSIC/US), University of Seville, Seville, Spain
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon D Taylor-Robinson
- Department of Surgery and Cancer, St. Mary's Hospital Campus, Imperial College London, London, UK
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Arjunan A, Sah DK, Jung YD, Song J. Hepatic Encephalopathy and Melatonin. Antioxidants (Basel) 2022; 11:837. [PMID: 35624703 PMCID: PMC9137547 DOI: 10.3390/antiox11050837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/06/2022] [Accepted: 04/24/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatic encephalopathy (HE) is a severe metabolic syndrome linked with acute/chronic hepatic disorders. HE is also a pernicious neuropsychiatric complication associated with cognitive decline, coma, and death. Limited therapies are available to treat HE, which is formidable to oversee in the clinic. Thus, determining a novel therapeutic approach is essential. The pathogenesis of HE has not been well established. According to various scientific reports, neuropathological symptoms arise due to excessive accumulation of ammonia, which is transported to the brain via the blood-brain barrier (BBB), triggering oxidative stress and inflammation, and disturbing neuronal-glial functions. The treatment of HE involves eliminating hyperammonemia by enhancing the ammonia scavenging mechanism in systemic blood circulation. Melatonin is the sole endogenous hormone linked with HE. Melatonin as a neurohormone is a potent antioxidant that is primarily synthesized and released by the brain's pineal gland. Several HE and liver cirrhosis clinical studies have demonstrated impaired synthesis, secretion of melatonin, and circadian patterns. Melatonin can cross the BBB and is involved in various neuroprotective actions on the HE brain. Hence, we aim to elucidate how HE impairs brain functions, and elucidate the precise molecular mechanism of melatonin that reverses the HE effects on the central nervous system.
Collapse
Affiliation(s)
- Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Dhiraj Kumar Sah
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea;
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun 58128, Korea
| |
Collapse
|
11
|
Häussinger D, Butz M, Schnitzler A, Görg B. Pathomechanisms in hepatic encephalopathy. Biol Chem 2021; 402:1087-1102. [PMID: 34049427 DOI: 10.1515/hsz-2021-0168] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Hepatic encephalopathy (HE) is a frequent neuropsychiatric complication in patients with acute or chronic liver failure. Symptoms of HE in particular include disturbances of sensory and motor functions and cognition. HE is triggered by heterogeneous factors such as ammonia being a main toxin, benzodiazepines, proinflammatory cytokines and hyponatremia. HE in patients with liver cirrhosis is triggered by a low-grade cerebral edema and cerebral oxidative/nitrosative stress which bring about a number of functionally relevant alterations including posttranslational protein modifications, oxidation of RNA, gene expression changes and senescence. These alterations are suggested to impair astrocyte/neuronal functions and communication. On the system level, a global slowing of oscillatory brain activity and networks can be observed paralleling behavioral perceptual and motor impairments. Moreover, these changes are related to increased cerebral ammonia, alterations in neurometabolite and neurotransmitter concentrations and cortical excitability in HE patients.
Collapse
Affiliation(s)
- Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Markus Butz
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Alfons Schnitzler
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
12
|
Sepehrinezhad A, Zarifkar A, Namvar G, Shahbazi A, Williams R. Astrocyte swelling in hepatic encephalopathy: molecular perspective of cytotoxic edema. Metab Brain Dis 2020; 35:559-578. [PMID: 32146658 DOI: 10.1007/s11011-020-00549-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Hepatic encephalopathy (HE) may occur in patients with liver failure. The most critical pathophysiologic mechanism of HE is cerebral edema following systemic hyperammonemia. The dysfunctional liver cannot eliminate circulatory ammonia, so its plasma and brain levels rise sharply. Astrocytes, the only cells that are responsible for ammonia detoxification in the brain, are dynamic cells with unique phenotypic properties that enable them to respond to small changes in their environment. Any pathological changes in astrocytes may cause neurological disturbances such as HE. Astrocyte swelling is the leading cause of cerebral edema, which may cause brain herniation and death by increasing intracranial pressure. Various factors may have a role in astrocyte swelling. However, the exact molecular mechanism of astrocyte swelling is not fully understood. This article discusses the possible mechanisms of astrocyte swelling which related to hyperammonia, including the possible roles of molecules like glutamine, lactate, aquaporin-4 water channel, 18 KDa translocator protein, glial fibrillary acidic protein, alanine, glutathione, toll-like receptor 4, epidermal growth factor receptor, glutamate, and manganese, as well as inflammation, oxidative stress, mitochondrial permeability transition, ATP depletion, and astrocyte senescence. All these agents and factors may be targeted in therapeutic approaches to HE.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Asadollah Zarifkar
- Shiraz Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences (SUMS), Shiraz, Iran
| | - Gholamreza Namvar
- Department of Neuroscience and Cognition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Roger Williams
- The Institute of Hepatology London and Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT, UK.
- Faculty of Life Sciences & Medicine, King's College London, London, UK.
| |
Collapse
|
13
|
Liotta EM, Kimberly WT. Cerebral edema and liver disease: Classic perspectives and contemporary hypotheses on mechanism. Neurosci Lett 2020; 721:134818. [PMID: 32035166 DOI: 10.1016/j.neulet.2020.134818] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Liver disease is a growing public health concern. Hepatic encephalopathy, the syndrome of brain dysfunction secondary to liver disease, is a frequent complication of both acute and chronic liver disease and cerebral edema (CE) is a key feature. While altered ammonia metabolism is a key contributor to hepatic encephalopathy and CE in liver disease, there is a growing appreciation that additional mechanisms contribute to CE. In this review we will begin by presenting three classic perspectives that form a foundation for a discussion of CE in liver disease: 1) CE is unique to acute liver failure, 2) CE in liver disease is only cytotoxic, and 3) CE in liver disease is primarily an osmotically mediated consequence of ammonia and glutamine metabolism. We will present each classic perspective along with more recent observations that call in to question that classic perspective. After highlighting these areas of debate, we will explore the leading contemporary mechanisms hypothesized to contribute to CE during liver disease.
Collapse
Affiliation(s)
- Eric M Liotta
- Northwestern University-Feinberg School of Medicine, Department of Neurology, United States; Northwestern University-Feinberg School of Medicine, Department of Surgery, Division of Organ Transplantation, United States; Northwestern University Transplant Outcomes Research Collaboration, United States.
| | | |
Collapse
|
14
|
Bursting at the Seams: Molecular Mechanisms Mediating Astrocyte Swelling. Int J Mol Sci 2019; 20:ijms20020330. [PMID: 30650535 PMCID: PMC6359623 DOI: 10.3390/ijms20020330] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 01/31/2023] Open
Abstract
Brain swelling is one of the most robust predictors of outcome following brain injury, including ischemic, traumatic, hemorrhagic, metabolic or other injury. Depending on the specific type of insult, brain swelling can arise from the combined space-occupying effects of extravasated blood, extracellular edema fluid, cellular swelling, vascular engorgement and hydrocephalus. Of these, arguably the least well appreciated is cellular swelling. Here, we explore current knowledge regarding swelling of astrocytes, the most abundant cell type in the brain, and the one most likely to contribute to pathological brain swelling. We review the major molecular mechanisms identified to date that contribute to or mitigate astrocyte swelling via ion transport, and we touch upon the implications of astrocyte swelling in health and disease.
Collapse
|
15
|
Görg B, Karababa A, Häussinger D. Hepatic Encephalopathy and Astrocyte Senescence. J Clin Exp Hepatol 2018; 8:294-300. [PMID: 30302047 PMCID: PMC6175776 DOI: 10.1016/j.jceh.2018.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatic Encephalopathy (HE) is a severe complication of acute or chronic liver diseases with a broad spectrum of neurological symptoms including motor disturbances and cognitive impairment of different severity. Contrary to former beliefs, a growing number of studies suggest that cognitive impairment may not fully reverse after an acute episode of overt HE in patients with liver cirrhosis. The reasons for persistent cognitive impairment in HE are currently unknown but recent observations raise the possibility that astrocyte senescence may play a role here. Astrocyte senescence is closely related to oxidative stress and correlate with irreversible cognitive decline in aging and neurodegenerative diseases. In line with this, surrogate marker for oxidative stress and senescence were upregulated in ammonia-exposed cultured astrocytes and in post mortem brain tissue from patients with liver cirrhosis with but not without HE. Ammonia-induced senescence in astrocytes involves glutamine synthesis-dependent formation of reactive oxygen species (ROS), p53 activation and upregulation of cell cycle inhibitory factors p21 and GADD45α. More recent studies also suggest a role of ROS-induced downregulation of Heme Oxygenase (HO)1-targeting micro RNAs and upregulation of HO1 for ammonia-induced proliferation inhibition in cultured astrocytes. Further studies are required to identify the precise sequence of events that lead to astrocyte senescence and to elucidate functional implications of senescence for cognitive performance in patients with liver cirrhosis and HE.
Collapse
Key Words
- ARE, Antioxidant Response Elements
- BDNF, Brain-Derived Neurotrophic Factor
- Eph, Ephrine
- EphR, Ephrine Receptor
- GADD45α, Growth Arrest and DNA Damage Inducible 45α
- GS, Glutamine Synthetase
- HE, Hepatic Encephalopathy
- HO1, Heme Oxygenase 1
- LOLA, l-Ornithine-l-Aspartate
- MAP, Mitogen Activated Protein Kinases
- NAPDH, Reduced Form of Nicotinamide Adenine Dinucleotide Phosphate
- Nox, NADPH Oxidase
- Nrf2, Nuclear Factor-Like 2
- PBR, Peripheral-Type Benzodiazepine Receptor
- PTN, Protein Tyrosine Nitration
- RNOS, Reactive Nitrogen and Oxygen Species
- ROS, Reactive Oxygen Species
- SA-β-Gal, Senescence-Associated β-d-Galactosidase
- TSP, Trombospondin
- TrkBT, Truncated Tyrosine Receptor Kinase B
- ZnPP, Zinc Protoporphyrin
- ammonia
- astrocytes
- heme oxygenase 1
- hepatic encephalopathy
- mPT, Mitochondrial Permeability Transition
- miRNAs
- nNOS, Neuronal-Type Nitric-Oxide Synthase
- oxidative stress
Collapse
Affiliation(s)
| | | | - Dieter Häussinger
- Address for correspondence: Dieter Häussinger, Universitätsklinikum Düsseldorf, Klinik für Gastroenterologie, Hepatologie und Infektiologie, Moorenstrasse 5, 40225 Düsseldorf, Germany. Tel.: +49 211 811 7569; fax: +49 211 811 8838.
| |
Collapse
|
16
|
Jayakumar A, Norenberg MD. Hyperammonemia in Hepatic Encephalopathy. J Clin Exp Hepatol 2018; 8:272-280. [PMID: 30302044 PMCID: PMC6175739 DOI: 10.1016/j.jceh.2018.06.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022] Open
Abstract
The precise mechanism underlying the neurotoxicity of Hepatic Encephalopathy (HE) is remains unclear. The dominant view has been that gut-derived nitrogenous toxins are not extracted by the diseased liver and thereby enter the brain. Among the various toxins proposed, the case for ammonia is most compelling. Events that lead to increased levels of blood or brain ammonia have been shown to worsen HE, whereas reducing blood ammonia levels alleviates HE. Clinical, pathological, and biochemical changes observed in HE can be reproduced by increasing blood or brain ammonia levels in experimental animals, while exposure of cultured astrocytes to ammonium salts reproduces the morphological and biochemical findings observed in HE. However, factors other than ammonia have recently been proposed to be involved in the development of HE, including cytokines and other blood and brain immune factors. Moreover, recent studies have questioned the critical role of ammonia in the pathogenesis of HE since blood ammonia levels do not always correlate with the level/severity of encephalopathy. This review summarizes the vital role of ammonia in the pathogenesis of HE in humans, as well as in experimental models of acute and chronic liver failure. It further emphasizes recent advances in the molecular mechanisms involved in the progression of neurological complications that occur in acute and chronic liver failure.
Collapse
Key Words
- AHE, Acute Hepatic Encephalopathy
- ALF, Acute Liver Failure
- CHE, Chronic Hepatic Encephalopathy
- CNS, Central Nervous System
- CSF, Cerebrospinal Fluid
- ECs, Endothelial Cells
- HE, Hepatic Encephalopathy
- IL, Interleukin
- LPS, Lipopolysaccharide
- MAPKs, Mitogen-Activated Protein Kinases
- NCX, Sodium-Calcium Exchanger
- NF-κB, Nuclear Factor-kappaB
- NHE, Sodium/Hydrogen Exchanger-1 or SLC9A1 (SoLute Carrier Family 9A1)
- SUR1, The Sulfonylurea Receptor 1
- TDP-43 and tau proteinopathies
- TDP-43, TAR DNA-Binding Protein, 43 kDa
- TLR, Toll-like Receptor
- TNF-α, Tumor Necrosis Factor-Alpha
- TSP-1, Thrombospondin-1
- ammonia
- hepatic encephalopathy
- inflammation
- matricellular proteins
Collapse
Affiliation(s)
- A.R. Jayakumar
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL 33125, United States
- South Florida VA Foundation for Research and Education Inc., Veterans Affairs Medical Center, Miami, FL 33125, United States
| | - Michael D. Norenberg
- Department of Pathology, University of Miami School of Medicine, Miami, FL 33125, United States
- Department of Biochemistry & Molecular Biology, University of Miami School of Medicine, Miami, FL 33125, United States
- Department of Neurology and Neurological Surgery, University of Miami School of Medicine, Miami, FL 33125, United States
| |
Collapse
|
17
|
Jayakumar AR, Taherian M, Panickar KS, Shamaladevi N, Rodriguez ME, Price BG, Norenberg MD. Differential Response of Neural Cells to Trauma-Induced Swelling In Vitro. Neurochem Res 2018; 43:397-406. [PMID: 29150743 DOI: 10.1007/s11064-017-2434-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 11/26/2022]
Abstract
Brain edema and the associated increase in intracranial pressure are major consequences of traumatic brain injury (TBI) that accounts for most early deaths after TBI. We recently showed that acute severe trauma to cultured astrocytes results in cell swelling. We further examined whether trauma induces cell swelling in neurons and microglia. We found that severe trauma also caused cell swelling in cultured neurons, whereas no swelling was observed in microglia. While severe trauma caused cell swelling in both astrocytes and neurons, mild trauma to astrocytes, neurons, and microglia failed to cell swelling. Since extracellular levels of glutamate are increased in brain post-TBI and microglia are known to release cytokine, and direct exposure of astrocytes to these molecules are known to stimulate cell swelling, we examined whether glutamate or cytokines have any additive effect on trauma-induced cell swelling. Exposure of cultured astrocytes to trauma caused cell swelling, and such swelling was potentiated by the exposure of traumatized astrocytes to glutamate and cytokines. Conditioned medium (CM) from traumatized astrocytes had no effect on neuronal swelling post-trauma, while CM from traumatized neurons and microglia potentiated the effect of trauma on astrocyte swelling. Further, trauma significantly increased the Na-K-Cl co-transporter (NKCC) activity in neurons, and that inhibition of NKCC activity diminished the trauma-induced neuronal swelling. Our results indicate that a differential sensitivity to trauma-induced cell swelling exists in neural cells and that neurons and microglia are likely to be involved in the potentiation of the astrocyte swelling post-trauma.
Collapse
Affiliation(s)
- A R Jayakumar
- Laboratory of Neuropathology, Veterans Affairs Medical Center, Miami, FL, USA.
- South Florida Foundation for Research and Education Inc., Miami VA Healthcare System, Miami, FL, 33125, USA.
| | - M Taherian
- Laboratory of Neuropathology, Veterans Affairs Medical Center, Miami, FL, USA
- Department of Pathology, University of Miami School of Medicine, Miami, FL, USA
| | - K S Panickar
- Laboratory of Neuropathology, Veterans Affairs Medical Center, Miami, FL, USA
- Department of Pathology, University of Miami School of Medicine, Miami, FL, USA
| | - N Shamaladevi
- Department of Urology, University of Miami School of Medicine, Miami, FL, USA
| | - M E Rodriguez
- Laboratory of Neuropathology, Veterans Affairs Medical Center, Miami, FL, USA
| | - B G Price
- Laboratory of Neuropathology, Veterans Affairs Medical Center, Miami, FL, USA
| | - M D Norenberg
- Laboratory of Neuropathology, Veterans Affairs Medical Center, Miami, FL, USA
- Department of Pathology, University of Miami School of Medicine, Miami, FL, USA
- Department of Biochemistry & Molecular Biology, University of Miami School of Medicine, Miami, FL, USA
- Department of Neurology and Neurological Surgery, University of Miami School of Medicine, Miami, FL, USA
| |
Collapse
|
18
|
Adrenal Oncocytic Neoplasm with Paradoxical Loss of Important Mitochondrial Steroidogenic Protein: The 18 kDA Translocator Protein. Case Rep Endocrinol 2017; 2017:6734695. [PMID: 29318061 PMCID: PMC5727653 DOI: 10.1155/2017/6734695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/20/2017] [Accepted: 10/31/2017] [Indexed: 12/04/2022] Open
Abstract
The adrenal glands produce a variety of hormones that play a key role in the regulation of blood pressure, electrolyte homeostasis, metabolism, immune system suppression, and the body's physiologic response to stress. Adrenal neoplasms can be asymptomatic or can overproduce certain hormones that lead to different clinical manifestations. Oncocytic adrenal neoplasms are infrequent tumors that arise from cells in the adrenal cortex and display a characteristic increase in the number of cytoplasmic mitochondria. Since the rate-limiting step in steroidogenesis includes the transport of cholesterol across the mitochondrial membranes, in part carried out by the 18-kDa translocator protein (TSPO), we assessed the expression of TSPO in a case of adrenal oncocytic neoplasm using residual adrenal gland of the patient as internal control. We observed a significant loss of TSPO immunofluorescence expression in the adrenal oncocytic tumor cells when compared to adjacent normal adrenal tissue. We further confirmed this finding by employing Western blot analysis to semiquantify TSPO expression in tumor and normal adrenal cells. Our findings could suggest a potential role of TSPO in the tumorigenesis of this case of adrenocortical oncocytic neoplasm.
Collapse
|
19
|
Sun L, Li M, Ma X, Feng H, Song J, Lv C, He Y. Inhibition of HMGB1 reduces rat spinal cord astrocytic swelling and AQP4 expression after oxygen-glucose deprivation and reoxygenation via TLR4 and NF-κB signaling in an IL-6-dependent manner. J Neuroinflammation 2017; 14:231. [PMID: 29178911 PMCID: PMC5702193 DOI: 10.1186/s12974-017-1008-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022] Open
Abstract
Background Spinal cord astrocyte swelling is an important component to spinal cord edema and is associated with poor functional recovery as well as therapeutic resistance after spinal cord injury (SCI). High mobility group box-1 (HMGB1) is a mediator of inflammatory responses in the central nervous system and plays a critical role after SCI. Given this, we sought to identify both the role and underlying mechanisms of HMGB1 in cellular swelling and aquaporin 4 (AQP4) expression in cultured rat spinal cord astrocytes after oxygen-glucose deprivation/reoxygenation (OGD/R). Methods The post-natal day 1–2 Sprague-Dawley rat spinal cord astrocytes were cultured in vitro, and the OGD/R model was induced. We first investigated the effects of OGD/R on spinal cord astrocytic swelling and HMGB1 and AQP4 expression, as well as HMGB1 release. We then studied the effects of HMGB1 inhibition on cellular swelling, HMGB1 and AQP4 expression, and HMGB1 release. The roles of both toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway and interleukin-6 (IL-6) in reducing cellular swelling resulting from HMGB1 inhibition in spinal cord astrocytes after OGD/R were studied. Intergroup data were compared using one-way analysis of variance (ANOVA) followed by Dunnett’s test. Results The OGD/R increased spinal cord astrocytic swelling and HMGB1 and AQP4 expression, as well as HMGB1 release. Inhibition of HMGB1 using either HMGB1 shRNA or ethyl pyruvate resulted in reduced cellular volume, mitochondrial and endoplasmic reticulum swelling, and lysosome number and decreased upregulation of both HMGB1 and AQP4 in spinal cord astrocytes, as well as HMGB1 release. The HMGB1 effects on spinal cord astrocytic swelling and AQP4 upregulation after OGD/R were mediated—at least in part—via activation of TLR4, myeloid differentiation primary response gene 88 (MyD88), and NF-κB. These activation effects can be repressed by TLR4 inhibition using CLI-095 or C34, or by NF-κB inhibition using BAY 11-7082. Furthermore, either OGD/R or HMGB1 inhibition resulted in changes in IL-6 release. IL-6 was also shown to mediate AQP4 expression in spinal cord astrocytes. Conclusions HMGB1 upregulates AQP4 expression and promotes cell swelling in cultured spinal cord astrocytes after OGD/R, which is mediated through HMGB1/TLR4/MyD88/NF-κB signaling and in an IL-6-dependent manner.
Collapse
Affiliation(s)
- Lin Sun
- Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital affiliated to Shanxi Medical University, Taiyuan, 030032, China.
| | - Man Li
- Department of Neurology, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, China
| | - Xun Ma
- Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital affiliated to Shanxi Medical University, Taiyuan, 030032, China
| | - Haoyu Feng
- Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital affiliated to Shanxi Medical University, Taiyuan, 030032, China
| | - Junlai Song
- Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital affiliated to Shanxi Medical University, Taiyuan, 030032, China
| | - Cong Lv
- Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital affiliated to Shanxi Medical University, Taiyuan, 030032, China
| | - Yajun He
- Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital affiliated to Shanxi Medical University, Taiyuan, 030032, China
| |
Collapse
|
20
|
Liu XM, Peyton KJ, Durante W. Ammonia promotes endothelial cell survival via the heme oxygenase-1-mediated release of carbon monoxide. Free Radic Biol Med 2017; 102:37-46. [PMID: 27867098 PMCID: PMC5209302 DOI: 10.1016/j.freeradbiomed.2016.11.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 01/07/2023]
Abstract
Although endothelial cells produce substantial quantities of ammonia during cell metabolism, the physiologic role of this gas in these cells is not known. In this study, we investigated if ammonia regulates the expression of heme oxygenase-1 (HO-1), and if this enzyme influences the biological actions of ammonia on endothelial cells. Exogenously administered ammonia, given as ammonium chloride or ammonium hydroxide, or endogenously generated ammonia stimulated HO-1 protein expression in cultured human and murine endothelial cells. Dietary supplementation of ammonia also induced HO-1 protein expression in murine arteries. The increase in HO-1 protein by ammonia in endothelial cells was first detected 4h after ammonia exposure and was associated with the induction of HO-1 mRNA, enhanced production of reactive oxygen species (ROS), and increased expression and activity of NF-E2-related factor-2 (Nrf2). Ammonia also activated the HO-1 promoter and this was blocked by mutating the antioxidant responsive element or by overexpressing dominant-negative Nrf2. The induction of HO-1 expression by ammonia was dependent on ROS formation and prevented by N-acetylcysteine or rotenone. Finally, prior treatment of endothelial cells with ammonia inhibited tumor necrosis factor-α-stimulated cell death. However, silencing HO-1 expression abrogated the protective action of ammonia and this was reversed by the administration of carbon monoxide but not bilirubin or iron. In conclusion, this study demonstrates that ammonia stimulates the expression of HO-1 in endothelial cells via the ROS-Nrf2 pathway, and that the induction of HO-1 contributes to the cytoprotective action of ammonia by generating carbon monoxide. Moreover, it identifies ammonia as a potentially important signaling gas in the vasculature that promotes endothelial cell survival.
Collapse
Affiliation(s)
- Xiao-Ming Liu
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO 65212, USA
| | - Kelly J Peyton
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO 65212, USA
| | - William Durante
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO 65212, USA.
| |
Collapse
|
21
|
Multifactorial Effects on Different Types of Brain Cells Contribute to Ammonia Toxicity. Neurochem Res 2016; 42:721-736. [PMID: 27286679 DOI: 10.1007/s11064-016-1966-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022]
Abstract
Effects of ammonia on astrocytes play a major role in hepatic encephalopathy, acute liver failure and other diseases caused by increased arterial ammonia concentrations (e.g., inborn errors of metabolism, drug or mushroom poisoning). There is a direct correlation between arterial ammonia concentration, brain ammonia level and disease severity. However, the pathophysiology of hyperammonemic diseases is disputed. One long recognized factor is that increased brain ammonia triggers its own detoxification by glutamine formation from glutamate. This is an astrocytic process due to the selective expression of the glutamine synthetase in astrocytes. A possible deleterious effect of the resulting increase in glutamine concentration has repeatedly been discussed and is supported by improvement of some pathologic effects by GS inhibition. However, this procedure also inhibits a large part of astrocytic energy metabolism and may prevent astrocytes from responding to pathogenic factors. A decrease of the already low glutamate concentration in astrocytes due to increased synthesis of glutamine inhibits the malate-aspartate shuttle and energy metabolism. A more recently described pathogenic factor is the resemblance between NH4+ and K+ in their effects on the Na+,K+-ATPase and the Na+,K+, 2 Cl- and water transporter NKCC1. Stimulation of the Na+,K+-ATPase driven NKCC1 in both astrocytes and endothelial cells is essential for the development of brain edema. Na+,K+-ATPase stimulation also activates production of endogenous ouabains. This leads to oxidative and nitrosative damage and sensitizes NKCC1. Administration of ouabain antagonists may accordingly have therapeutic potential in hyperammonemic diseases.
Collapse
|
22
|
Zielińska M, Milewski K, Skowrońska M, Gajos A, Ziemińska E, Beręsewicz A, Albrecht J. Induction of inducible nitric oxide synthase expression in ammonia-exposed cultured astrocytes is coupled to increased arginine transport by upregulated y(+)LAT2 transporter. J Neurochem 2015; 135:1272-81. [PMID: 26448619 DOI: 10.1111/jnc.13387] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/10/2015] [Accepted: 09/25/2015] [Indexed: 12/17/2022]
Abstract
One of the aspects of ammonia toxicity to brain cells is increased production of nitric oxide (NO) by NO synthases (NOSs). Previously we showed that ammonia increases arginine (Arg) uptake in cultured rat cortical astrocytes specifically via y(+)L amino acid transport system, by activation of its member, a heteromeric y(+)LAT2 transporter. Here, we tested the hypothesis that up-regulation of y(+)LAT2 underlies ammonia-dependent increase of NO production via inducible NOS (iNOS) induction, and protein nitration. Treatment of rat cortical astrocytes for 48 with 5 mM ammonium chloride ('ammonia') (i) increased the y(+)L-mediated Arg uptake, (ii) raised the expression of iNOS and endothelial NOS (eNOS), (iii) stimulated NO production, as manifested by increased nitrite+nitrate (Griess) and/or nitrite alone (chemiluminescence), and consequently, (iv) evoked nitration of tyrosine residues of proteins in astrocytes. Except for the increase of eNOS, all the above described effects of ammonia were abrogated by pre-treatment of astrocytes with either siRNA silencing of the Slc7a6 gene coding for y(+)LAT2 protein, or antibody to y(+)LAT2, indicating their strict coupling to y(+)LAT2 activity. Moreover, induction of y(+)LAT2 expression by ammonia was sensitive to Nf-κB inhibitor, BAY 11-7085, linking y(+)LAT2 upregulation to the Nf-κB activation in this experimental setting as reported earlier and here confirmed. Importantly, ammonia did not affect y(+)LAT2 expression nor y(+)L-mediated Arg uptake activity in the cultured cerebellar neurons, suggesting astroglia-specificity of the above described mechanism. The described coupling of up-regulation of y(+)LAT2 transporter with iNOS in ammonia-exposed astrocytes may be considered as a mechanism to ensure NO supply for protein nitration. Ammonia (NH4(+)) increases the expression and activity of the L-arginine (Arg) transporter (Arg/neutral amino acids [NAA] exchanger) y(+)LAT2 in cultured rat cortical astrocytes by a mechanism involving activation (nuclear translocation) of the transcription factor nuclear factor-Nuclear factor-κB (Nf-κB-p65). Up-regulation of y(+)LAT2 transporter is coupled with increased inducible nitric oxide synthase (iNOS) expression, which leads to increase nitric oxide (NO) synthesis and protein nitration.
Collapse
Affiliation(s)
- Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Milewski
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Gajos
- Medical Center of Postgraduate Education, Warsaw, Poland
| | - Elżbieta Ziemińska
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
23
|
Kimoloi S, Rashid K. Potential role of Plasmodium falciparum-derived ammonia in the pathogenesis of cerebral malaria. Front Neurosci 2015; 9:234. [PMID: 26190968 PMCID: PMC4490226 DOI: 10.3389/fnins.2015.00234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/18/2015] [Indexed: 12/19/2022] Open
Abstract
Cerebral malaria (CM) is the most severe complication associated with Plasmodium falciparum infection. The exact pathogenic mechanisms leading to the development of CM remains poorly understood while the mortality rates remain high. Several potential mechanisms including mechanical obstruction of brain microvasculature, inflammation, oxidative stress, cerebral energy defects, and hemostatic dysfunction have been suggested to play a role in CM pathogenesis. However, these proposed mechanisms, even when considered together, do not fully explain the pathogenesis and clinicopathological features of human CM. This necessitates consideration of alternative pathogenic mechanisms. P. falciparum generates substantial amounts of ammonia as a catabolic by-product, but lacks detoxification mechanisms. Whether this parasite-derived ammonia plays a pathogenic role in CM is presently unknown, despite its potential to cause localized brain ammonia elevation and subsequent neurotoxic effects. This article therefore, explores and proposes a potential role of parasite-derived ammonia in the pathogenesis and neuropathology of CM. A consideration of parasite-derived ammonia as a factor in CM pathogenesis provides plausible explanations of the various features observed in CM patients including how a largely intravascular parasite can cause neuronal dysfunction. It also provides a framework for rational development and testing of novel drugs targeting the parasite's ammonia handling.
Collapse
Affiliation(s)
- Sammy Kimoloi
- Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology Kakamega, Kenya
| | - Khalid Rashid
- Biochemistry and Molecular Biology Department, Egerton University Nakuru, Kenya
| |
Collapse
|
24
|
Jayakumar AR, Rama Rao KV, Norenberg MD. Neuroinflammation in hepatic encephalopathy: mechanistic aspects. J Clin Exp Hepatol 2015; 5:S21-8. [PMID: 26041953 PMCID: PMC4442850 DOI: 10.1016/j.jceh.2014.07.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/08/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatic encephalopathy (HE) is a major neurological complication of severe liver disease that presents in acute and chronic forms. While elevated brain ammonia level is known to be a major etiological factor in this disorder, recent studies have shown a significant role of neuroinflammation in the pathogenesis of both acute and chronic HE. This review summarizes the involvement of ammonia in the activation of microglia, as well as the means by which ammonia triggers inflammatory responses in these cells. Additionally, the role of ammonia in stimulating inflammatory events in brain endothelial cells (ECs), likely through the activation of the toll-like receptor-4 and the associated production of cytokines, as well as the stimulation of various inflammatory factors in ECs and in astrocytes, are discussed. This review also summarizes the inflammatory mechanisms by which activation of ECs and microglia impact on astrocytes leading to their dysfunction, ultimately contributing to astrocyte swelling/brain edema in acute HE. The role of microglial activation and its contribution to the progression of neurobehavioral abnormalities in chronic HE are also briefly presented. We posit that a better understanding of the inflammatory events associated with acute and chronic HE will uncover novel therapeutic targets useful in the treatment of patients afflicted with HE.
Collapse
Key Words
- AHE, acute hepatic encephalopathy
- ALF, acute liver failure
- BBB, blood–brain barrier
- BDL, bile duct ligation
- COX2, cyclooxygenase-2
- ECs, endothelial cells
- FHF, fulminant hepatic failure
- HE, hepatic encephalopathy
- HO, hemoxygenase
- IL, interleukin
- LPS, lipopolysaccharide
- MAPK, mitogen-activated protein kinases
- NF-κB, nuclear factor-kappaB
- NOX, NADPH oxidase
- ONS, oxidative/nitrative stress
- PLA2, phospholipase-A2
- RONS, reactive oxygen and nitrogen species
- TLR, Toll-like receptor
- TNF-α, tumor necrosis factor-alpha
- Tg, transgenic
- WT, wild type
- ammonia
- cNOS, constitutive nitric oxide synthase
- hepatic encephalopathy
- iNOS, inducible nitric oxide synthase
- neuroinflammation
Collapse
Affiliation(s)
| | | | - Michael D. Norenberg
- Laboratory of Neuropathology, Veterans Affairs Medical Center, Miami, FL, USA,Department of Pathology, University of Miami School of Medicine, Miami, FL, USA,Biochemistry & Molecular Biology, University of Miami School of Medicine, Miami, FL, USA,Address for correspondence: Michael D. Norenberg, Department of Pathology (D-33), PO Box 016960, University of Miami School of Medicine, Miami, FL 33101. Tel.: +1 305 575 7000x4018.
| |
Collapse
|
25
|
Rama Rao KV, Jayakumar AR, Norenberg MD. Brain edema in acute liver failure: mechanisms and concepts. Metab Brain Dis 2014; 29:927-36. [PMID: 24567229 DOI: 10.1007/s11011-014-9502-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/05/2014] [Indexed: 12/18/2022]
Abstract
Brain edema and associated increase in intracranial pressure continue to be lethal complications of acute liver failure (ALF). Abundant evidence suggests that the edema in ALF is largely cytotoxic brought about by swelling of astrocytes. Elevated blood and brain ammonia levels have been strongly implicated in the development of the brain edema. Additionally, inflammation and sepsis have been shown to contribute to the astrocyte swelling/brain edema in the setting of ALF. We posit that ammonia initiates a number of signaling events, including oxidative/nitrative stress (ONS), the mitochondrial permeability transition (mPT), activation of the transcription factor (NF-κB) and signaling kinases, all of which have been shown to contribute to the mechanism of astrocyte swelling. All of these factors also impact ion-transporters, including Na(+), K(+), Cl(-) cotransporter and the sulfonylurea receptor 1, as well as the water channel protein aquaporin-4 resulting in a perturbation of cellular ion and water homeostasis, ultimately resulting in astrocyte swelling/brain edema. All of these events are also potentiated by inflammation. This article reviews contemporary knowledge regarding mechanisms of astrocyte swelling/brain edema formation which hopefully will facilitate the identification of therapeutic targets capable of mitigating the brain edema associated with ALF.
Collapse
Affiliation(s)
- Kakulavarapu V Rama Rao
- Department of Pathology, University of Miami Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA,
| | | | | |
Collapse
|
26
|
Brito MA, Palmela I, Cardoso FL, Sá-Pereira I, Brites D. Blood–Brain Barrier and Bilirubin: Clinical Aspects and Experimental Data. Arch Med Res 2014; 45:660-76. [DOI: 10.1016/j.arcmed.2014.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/18/2014] [Indexed: 01/18/2023]
|
27
|
Zhang J, Zhang M, Sun B, Li Y, Xu P, Liu C, Liu L, Liu X. Hyperammonemia enhances the function and expression of P-glycoprotein and Mrp2 at the blood-brain barrier through NF-κB. J Neurochem 2014; 131:791-802. [PMID: 25200138 DOI: 10.1111/jnc.12944] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/08/2014] [Accepted: 09/05/2014] [Indexed: 01/17/2023]
Abstract
Ammonia is considered to be the main neurotoxin responsible for hepatic encephalopathy resulting from liver failure. Liver failure has been reported to alter expression and activity of P-glycoprotein (P-gp) and multidrug resistance-associated protein 2 (Mrp2) at the blood-brain barrier (BBB). The aim of this study was to investigate whether ammonia is involved in abnormalities of expression and activity of P-gp and Mrp2 at the BBB. Hyperammonemic rats were developed by an intraperitoneal injection of ammonium acetate (NH4 Ac, 4.5 mmol/kg). Results showed that Mrp2 function markedly increased in cortex and hippocampus of rats at 6 h following NH4 Ac administration. Significant increase in function of P-gp was observed in hippocampus of rats. Meanwhile, such alterations were in line with the increase in mRNA and protein levels of P-gp and Mrp2. Significant increase in levels of nuclear amount of nuclear factor-κB (NF-κB) p65 was also observed. Primarily cultured rat brain microvessel endothelial cells (rBMECs) were used for in vitro study. Data indicated that 24 h exposure to ammonia significantly increased function and expression of P-gp and Mrp2 in rBMECs, accompanied with activation of NF-κB. Furthermore, such alterations induced by ammonia were reversed by NF-κB inhibitor. In conclusion, this study demonstrates that hyperammonemia increases the function and expression of P-gp and Mrp2 at the BBB via activating NF-κB pathway. Hyperammonemia, a proverbial main factor responsible for neurocognitive disorder and blood-brain barrier (BBB) dysfunction resulting from liver failure, could increase the expression and activity of P-glycoprotein and multidrug resistance-associated protein 2 (Mrp2) at the BBB both in vivo and in vitro. Furthermore, the NF-κB activation stimulated by hyperammonemia may be the potential mechanism underlying such abnormalities induced by hyperammonemia.
Collapse
Affiliation(s)
- Ji Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Faleiros BE, Miranda AS, Campos AC, Gomides LF, Kangussu LM, Guatimosim C, Camargos ERS, Menezes GB, Rachid MA, Teixeira AL. Up-regulation of brain cytokines and chemokines mediates neurotoxicity in early acute liver failure by a mechanism independent of microglial activation. Brain Res 2014; 1578:49-59. [PMID: 25017944 DOI: 10.1016/j.brainres.2014.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 06/07/2014] [Accepted: 07/01/2014] [Indexed: 12/12/2022]
Abstract
The neurological involvement in acute liver failure (ALF) is characterized by arousal impairment with progression to coma. There is a growing body of evidence that neuroinflammatory mechanisms play a role in this process, including production of inflammatory cytokines and microglial activation. However, it is still uncertain whether brain-derived cytokines and glial cells are crucial to the pathophysiology of ALF at the early stage, before coma development. Here, we investigated the influence of cytokines and microglia in ALF-induced encephalopathy in mice as soon as neurological symptoms were identifiable. Behavior was assessed at 12, 24, 36 and 48 h post-injection of thioacetamide, a hepatotoxic drug, through locomotor activity by an open field test. Brain concentration of cytokines (TNF-α and IL-1β) and chemokines (CXCL1, CCL2, CCL3 and CCL5) were assessed by ELISA. Microglial activation in brain sections was investigated through immunohistochemistry, and cellular ultrastructural changes were observed by transmission electron microscopy. We found that ALF-induced animals presented a significant decrease in locomotor activity at 24 h, which was accompanied by an increase in IL-1β, CXCL1, CCL2, CCL3 and CCL5 in the brain. TNF-α level was significantly increased only at 36 h. Despite marked morphological changes in astrocytes and brain endothelial cells, no microglial activation was observed. These findings suggest an involvement of brain-derived chemokines and IL-1β in early pathophysiology of ALF by a mechanism independent of microglial activation.
Collapse
Affiliation(s)
- Bruno E Faleiros
- Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Universidade Federal de Minas Gerais, Avenida Alfredo Balena 190, Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil.
| | - Aline S Miranda
- Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Universidade Federal de Minas Gerais, Avenida Alfredo Balena 190, Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil
| | - Alline C Campos
- Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Universidade Federal de Minas Gerais, Avenida Alfredo Balena 190, Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil
| | - Lindisley F Gomides
- Department of Morphology, Institute of Biological Sciences, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Lucas M Kangussu
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Cristina Guatimosim
- Department of Morphology, Institute of Biological Sciences, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Elizabeth R S Camargos
- Department of Morphology, Institute of Biological Sciences, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Gustavo B Menezes
- Department of Morphology, Institute of Biological Sciences, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Milene A Rachid
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Antônio L Teixeira
- Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Universidade Federal de Minas Gerais, Avenida Alfredo Balena 190, Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil.
| |
Collapse
|
29
|
Cichoż-Lach H, Michalak A. Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol 2014; 20:8082-8091. [PMID: 25009380 PMCID: PMC4081679 DOI: 10.3748/wjg.v20.i25.8082] [Citation(s) in RCA: 782] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/08/2014] [Accepted: 04/21/2014] [Indexed: 02/06/2023] Open
Abstract
Redox state constitutes an important background of numerous liver disorders. The redox state participates in the course of inflammatory, metabolic and proliferative liver diseases. Reactive oxygen species (ROS) are primarily produced in the mitochondria and in the endoplasmic reticulum of hepatocytes via the cytochrome P450 enzymes. Under the proper conditions, cells are equipped with special molecular strategies that control the level of oxidative stress and maintain a balance between oxidant and antioxidant particles. Oxidative stress represents an imbalance between oxidant and antioxidant agents. Hepatocytic proteins, lipids and DNA are among the cellular structures that are primarily affected by ROS and reactive nitrogen species. The process results in structural and functional abnormalities in the liver. Thus, the phenomenon of oxidative stress should be investigated for several reasons. First, it may explain the pathogenesis of various liver disorders. Moreover, monitoring oxidative markers among hepatocytes offers the potential to diagnose the degree of liver damage and ultimately to observe the response to pharmacological therapies. The present report focuses on the role of oxidative stress in selected liver diseases.
Collapse
|
30
|
Lemoinne S, Thabut D, Housset C, Moreau R, Valla D, Boulanger CM, Rautou PE. The emerging roles of microvesicles in liver diseases. Nat Rev Gastroenterol Hepatol 2014; 11:350-61. [PMID: 24492276 DOI: 10.1038/nrgastro.2014.7] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microvesicles (MVs) are extracellular vesicles released by virtually all cells, under both physiological and pathological conditions. They contain lipids, proteins, RNAs and microRNAs and act as vectors of information that regulate the function of target cells. This Review provides an overview of the studies assessing circulating MV levels in patients with liver diseases, together with an insight into the mechanisms that could account for these changes. We also present a detailed analysis of the implication of MVs in key processes of liver diseases. MVs have a dual role in fibrosis as certain types of MVs promote fibrolysis by increasing expression of matrix metalloproteinases, whereas others promote fibrosis by stimulating processes such as angiogenesis. MVs probably enhance portal hypertension by contributing to intrahepatic vasoconstriction, splanchnic vasodilation and angiogenesis. As MVs can modulate vascular permeability, vascular tone and angiogenesis, they might contribute to several complications of cirrhosis including hepatic encephalopathy, hepatopulmonary syndrome and hepatorenal syndrome. Several results also suggest that MVs have a role in hepatocellular carcinoma. Although MVs represent promising biomarkers in patients with liver disease, methods of isolation and subsequent analysis must be standardized.
Collapse
Affiliation(s)
- Sara Lemoinne
- INSERM, UMRS 938, Centre de Recherche Saint-Antoine, Sorbonne Universités, Université Pierre et Marie Curie Paris 6, 27 Rue Chaligny, 75571 Paris, France
| | - Dominique Thabut
- INSERM, UMRS 938, Centre de Recherche Saint-Antoine, Sorbonne Universités, Université Pierre et Marie Curie Paris 6, 27 Rue Chaligny, 75571 Paris, France
| | - Chantal Housset
- INSERM, UMRS 938, Centre de Recherche Saint-Antoine, Sorbonne Universités, Université Pierre et Marie Curie Paris 6, 27 Rue Chaligny, 75571 Paris, France
| | - Richard Moreau
- INSERM, U773, Centre de Recherche Biomédicale Bichat-Beaujon CRB3, Université Paris-Diderot-Paris 7, Hôpital Bichat, 46 Rue Henri Huchard, 75018 Paris, France
| | - Dominique Valla
- Service d'hépatologie, Hôpital Beaujon, 100 Boulevard du Général Leclerc, 92100 Clichy, France
| | - Chantal M Boulanger
- INSERM, U970, Paris Cardiovascular Research Center, Paris, Université Paris Descartes, Sorbonne Paris Cité, 56 Rue Leblanc, 75015 Paris, France
| | - Pierre-Emmanuel Rautou
- INSERM, U970, Paris Cardiovascular Research Center, Paris, Université Paris Descartes, Sorbonne Paris Cité, 56 Rue Leblanc, 75015 Paris, France
| |
Collapse
|
31
|
Jayakumar AR, Tong XY, Ruiz-Cordero R, Bregy A, Bethea JR, Bramlett HM, Norenberg MD. Activation of NF-κB mediates astrocyte swelling and brain edema in traumatic brain injury. J Neurotrauma 2014; 31:1249-57. [PMID: 24471369 DOI: 10.1089/neu.2013.3169] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Brain edema and associated increased intracranial pressure are major consequences of traumatic brain injury (TBI). While astrocyte swelling (cytotoxic edema) represents a major component of the brain edema in the early phase of TBI, its mechanisms are unclear. One factor known to be activated by trauma is nuclear factor-κB (NF-κB). Because this factor has been implicated in the mechanism of cell swelling/brain edema in other neurological conditions, we examined whether NF-κB might also be involved in the mediation of post-traumatic astrocyte swelling/brain edema. Here we show an increase in NF-κB activation in cultured astrocytes at 1 and 3 h after trauma (fluid percussion injury, FPI), and that BAY 11-7082, an inhibitor of NF-κB, significantly blocked the trauma-induced astrocyte swelling. Increased activities of nicotinamide adenine dinucleotide phosphate-oxidase and the Na(+), K(+), 2Cl(-) cotransporter were also observed in cultured astrocytes after trauma, and BAY 11-7082 reduced these effects. We also examined the role of NF-κB in the mechanism of cell swelling by using astrocyte cultures derived from transgenic (Tg) mice with a functional inactivation of astrocytic NF-κB. Exposure of cultured astrocytes from wild-type mice to in vitro trauma (3 h) caused a significant increase in cell swelling. By contrast, traumatized astrocyte cultures derived from NF-κB Tg mice showed no swelling. We also found increased astrocytic NF-κB activation and brain water content in rats after FPI, while BAY 11-7082 significantly reduced such effects. Our findings strongly suggest that activation of astrocytic NF-κB represents a key element in the process by which cytotoxic brain edema occurs after TBI.
Collapse
Affiliation(s)
- Arumugam R Jayakumar
- 1 Department of Pathology, University of Miami School of Medicine and Veterans Affairs Medical Center , Miami, Florida
| | | | | | | | | | | | | |
Collapse
|
32
|
Jayakumar AR, Tong XY, Curtis KM, Ruiz-Cordero R, Abreu MT, Norenberg MD. Increased toll-like receptor 4 in cerebral endothelial cells contributes to the astrocyte swelling and brain edema in acute hepatic encephalopathy. J Neurochem 2014; 128:890-903. [PMID: 24261962 PMCID: PMC3951576 DOI: 10.1111/jnc.12516] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/10/2013] [Accepted: 10/17/2013] [Indexed: 12/14/2022]
Abstract
Astrocyte swelling and the subsequent increase in intracranial pressure and brain herniation are major clinical consequences in patients with acute hepatic encephalopathy. We recently reported that conditioned media from brain endothelial cells (ECs) exposed to ammonia, a mixture of cytokines (CKs) or lipopolysaccharide (LPS), when added to astrocytes caused cell swelling. In this study, we investigated the possibility that ammonia and inflammatory agents activate the toll-like receptor 4 (TLR4) in ECs, resulting in the release of factors that ultimately cause astrocyte swelling. We found a significant increase in TLR4 protein expression when ECs were exposed to ammonia, CKs or LPS alone, while exposure of ECs to a combination of these agents potentiate such effects. In addition, astrocytes exposed to conditioned media from TLR4-silenced ECs that were treated with ammonia, CKs or LPS, resulted in a significant reduction in astrocyte swelling. TLR4 protein up-regulation was also detected in rat brain ECs after treatment with the liver toxin thioacetamide, and that thioacetamide-treated TLR4 knock-out mice exhibited a reduction in brain edema. These studies strongly suggest that ECs significantly contribute to the astrocyte swelling/brain edema in acute hepatic encephalopathy, likely as a consequence of increased TLR4 protein expression by blood-borne noxious agents.
Collapse
Affiliation(s)
- Arumugam R Jayakumar
- Laboratory of Neuropathology, Veterans Affairs Medical Center, Miami, Florida, USA; Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | | | | | | |
Collapse
|
33
|
Jayakumar AR, Ruiz-Cordero R, Tong XY, Norenberg MD. Brain edema in acute liver failure: role of neurosteroids. Arch Biochem Biophys 2013; 536:171-5. [PMID: 23567839 PMCID: PMC4737089 DOI: 10.1016/j.abb.2013.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/07/2013] [Accepted: 03/18/2013] [Indexed: 12/12/2022]
Abstract
Brain edema is a major neurological complication of acute liver failure (ALF) and swelling of astrocytes (cytotoxic brain edema) is the most prominent neuropathological abnormality in this condition. Elevated brain ammonia level has been strongly implicated as an important factor in the mechanism of astrocyte swelling/brain edema in ALF. Recent studies, however, have suggested the possibility of a vasogenic component in the mechanism in ALF. We therefore examined the effect of ammonia on blood-brain barrier (BBB) integrity in an in vitro co-culture model of the BBB (consisting of primary cultures of rat brain endothelial cells and astrocytes). We found a minor degree of endothelial permeability to dextran fluorescein (16.2%) when the co-culture BBB model was exposed to a pathophysiological concentration of ammonia (5mM). By contrast, lipopolysaccharide (LPS), a molecule well-known to disrupt the BBB, resulted in an 87% increase in permeability. Since increased neurosteroid biosynthesis has been reported to occur in brain in ALF, and since neurosteroids are known to protect against BBB breakdown, we examined whether neurosteroids exerted any protective effect on the slight permeability of the BBB after exposure to ammonia. We found that a nanomolar concentration (10nM) of the neurosteroids allopregnanolone (THP) and tetrahydrodeoxycorticosterone (THDOC) significantly reduced the ammonia-induced increase in BBB permeability (69.13 and 58.64%, respectively). On the other hand, we found a marked disruption of the BBB when the co-culture model was exposed to the hepatotoxin azoxymethane (218.4%), but not with other liver toxins commonly used as models of ALF (thioacetamide and galactosamine, showed a 29.3 and 30.67% increase in permeability, respectively). Additionally, THP and THDOC reduced the effect of TAA and galactosamine on BBB permeability, while no BBB protective effect was observed following treatment with azoxymethane. These findings suggest that ammonia does not cause a significant BBB disruption, and that the BBB is intact in the TAA or galactosamine-induced animal models of ALF, likely due to the protective effect of neurosteroids that are synthesized in brain in the setting of ALF. However, caution should be exercised when using azoxymethane as an experimental model of ALF as it caused a severe breakdown of the BBB, and neurosteriods failed to protect against this breakdown.
Collapse
|
34
|
Braissant O, McLin VA, Cudalbu C. Ammonia toxicity to the brain. J Inherit Metab Dis 2013; 36:595-612. [PMID: 23109059 DOI: 10.1007/s10545-012-9546-2] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/19/2012] [Accepted: 09/25/2012] [Indexed: 12/21/2022]
Abstract
Hyperammonemia can be caused by various acquired or inherited disorders such as urea cycle defects. The brain is much more susceptible to the deleterious effects of ammonium in childhood than in adulthood. Hyperammonemia provokes irreversible damage to the developing central nervous system: cortical atrophy, ventricular enlargement and demyelination lead to cognitive impairment, seizures and cerebral palsy. The mechanisms leading to these severe brain lesions are still not well understood, but recent studies show that ammonium exposure alters several amino acid pathways and neurotransmitter systems, cerebral energy metabolism, nitric oxide synthesis, oxidative stress and signal transduction pathways. All in all, at the cellular level, these are associated with alterations in neuronal differentiation and patterns of cell death. Recent advances in imaging techniques are increasing our understanding of these processes through detailed in vivo longitudinal analysis of neurobiochemical changes associated with hyperammonemia. Further, several potential neuroprotective strategies have been put forward recently, including the use of NMDA receptor antagonists, nitric oxide inhibitors, creatine, acetyl-L-carnitine, CNTF or inhibitors of MAPKs and glutamine synthetase. Magnetic resonance imaging and spectroscopy will ultimately be a powerful tool to measure the effects of these neuroprotective approaches.
Collapse
Affiliation(s)
- Olivier Braissant
- Service of Biomedicine, Lausanne University Hospital, Avenue Pierre-Decker 2, CI 02/33, CH-1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
35
|
Jayakumar AR, Norenberg MD. Endothelial-astrocytic interactions in acute liver failure. Metab Brain Dis 2013; 28:183-6. [PMID: 23099995 DOI: 10.1007/s11011-012-9344-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
Abstract
Brain edema and the subsequent increase in intracranial pressure are major neurological complications of acute liver failure (ALF), and swelling of astrocytes (cytotoxic brain edema) is the most prominent neuropathological abnormality in ALF. Recent studies, however, have suggested the co-existence of cytotoxic and vasogenic mechanisms in the brain edema associated with ALF. This review 1) summarizes the nature of the brain edema in humans and experimental animals with ALF; 2) reviews in vitro studies supporting the presence of cytotoxic brain edema (cell swelling in cultured astrocytes); and 3) documents the role of brain endothelial cells in the development of astrocyte swelling/brain edema in ALF.
Collapse
|
36
|
Rao KVR, Brahmbhatt M, Norenberg MD. Microglia contribute to ammonia-induced astrocyte swelling in culture. Metab Brain Dis 2013; 28:139-43. [PMID: 23065046 DOI: 10.1007/s11011-012-9339-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 09/27/2012] [Indexed: 12/22/2022]
Abstract
Brain edema, a lethal complication of acute liver failure (ALF), is believed to be largely cytotoxic due to the swelling of astrocytes. Ammonia, a principal neurotoxin in ALF, has been strongly implicated in the development of the brain edema. It was previously shown that treatment of cultured astrocytes with ammonia (5 mM NH₄Cl) results in cell swelling. While ammonia continues to exert a direct effect on astrocytes, it is possible that ammonia can affect other neural cells, particularly microglia. Microglia are capable of evoking an inflammatory response, a process known to contribute to the brain edema. We therefore examined the potential role of microglia in the mechanism of ammonia-induced astrocyte swelling. Conditioned media (CM) derived from ammonia-treated cultured microglia when added to cultured astrocytes resulted in significant cell swelling. Such swelling was synergistically increased when astrocytes were additionally treated with 5 mM ammonia. CM from ammonia-treated microglia also showed significant release of oxy-radicals and nitric oxide into the CM. CM from ammonia-treated microglia containing Tempol (a superoxide scavenger) or uric acid (a peroxynitrite scavenger) when added to astrocytes resulted in marked reduction in the cell swelling. Together, these studies indicate that microglia contribute to the ammonia-induced astrocyte swelling by a mechanism involving oxidative/nitrosative stress.
Collapse
Affiliation(s)
- Kakulavarapu V Rama Rao
- Departments of Pathology, University of Miami Miller School of Medicine, PO Box 016960, Miami, FL 33101, USA.
| | | | | |
Collapse
|
37
|
Görg B, Schliess F, Häussinger D. Osmotic and oxidative/nitrosative stress in ammonia toxicity and hepatic encephalopathy. Arch Biochem Biophys 2013; 536:158-63. [PMID: 23567841 DOI: 10.1016/j.abb.2013.03.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/14/2013] [Accepted: 03/16/2013] [Indexed: 02/06/2023]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric complication of acute or chronic liver failure. Currently, HE in cirrhotic patients is seen as a clinical manifestation of a low grade cerebral edema which exacerbates in response to a variety of precipitating factors after an ammonia-induced exhaustion of the volume-regulatory capacity of the astrocyte. Astrocyte swelling triggers a complex signaling cascade which relies on NMDA receptor activation, elevation of intracellular Ca(2+) concentration and prostanoid-driven glutamate exocytosis, which result in increased formation of reactive nitrogen and oxygen species (RNOS) through activation of NADPH oxidase and nitric oxide synthase. Since RNOS in turn promote astrocyte swelling, a self-amplifying signaling loop between osmotic- and oxidative stress ensues, which triggers a variety of downstream consequences. These include protein tyrosine nitration (PTN), oxidation of RNA, mobilization of zinc, alterations in intra- and intercellular signaling and multiple effects on gene transcription. Whereas PTN can affect the function of a variety of proteins, such as glutamine synthetase, oxidized RNA may affect local protein synthesis at synapses, thereby potentially interfering with protein synthesis-dependent memory formation. PTN and RNA oxidation are also found in post mortem human cerebral cortex of cirrhotic patients with HE but not in those without HE, thereby confirming a role for oxidative stress in the pathophysiology of HE. Evidence derived from animal experiments and human post mortem brain tissue also indicates an up-regulation of microglia activation markers in the absence of increased synthesis of pro-inflammatory cytokines. However, the role of activated microglia in the pathophysiology of HE needs to be worked out in more detail. Most recent observations made in whole genome micro-array analyses of post mortem human brain tissue point to a hitherto unrecognized activation of multiple anti-inflammatory signaling pathways.
Collapse
Affiliation(s)
- Boris Görg
- Heinrich-Heine-University Düsseldorf, Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Germany
| | | | | |
Collapse
|
38
|
Bosoi CR, Rose CF. Brain edema in acute liver failure and chronic liver disease: similarities and differences. Neurochem Int 2013; 62:446-57. [PMID: 23376027 DOI: 10.1016/j.neuint.2013.01.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 12/12/2022]
Abstract
Hepatic encephalopathy (HE) is a complex neuropsychiatric syndrome that typically develops as a result of acute liver failure or chronic liver disease. Brain edema is a common feature associated with HE. In acute liver failure, brain edema contributes to an increase in intracranial pressure, which can fatally lead to brain stem herniation. In chronic liver disease, intracranial hypertension is rarely observed, even though brain edema may be present. This discrepancy in the development of intracranial hypertension in acute liver failure versus chronic liver disease suggests that brain edema plays a different role in relation to the onset of HE. Furthermore, the pathophysiological mechanisms involved in the development of brain edema in acute liver failure and chronic liver disease are dissimilar. This review explores the types of brain edema, the cells, and pathogenic factors involved in its development, while emphasizing the differences in acute liver failure versus chronic liver disease. The implications of brain edema developing as a neuropathological consequence of HE, or as a cause of HE, are also discussed.
Collapse
Affiliation(s)
- Cristina R Bosoi
- Neuroscience Research Unit, Hôpital Saint-Luc (CRCHUM), Université de Montréal, Québec, Canada
| | | |
Collapse
|
39
|
Skowrońska M, Albrecht J. Oxidative and nitrosative stress in ammonia neurotoxicity. Neurochem Int 2012; 62:731-7. [PMID: 23142151 DOI: 10.1016/j.neuint.2012.10.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/18/2012] [Accepted: 10/28/2012] [Indexed: 12/16/2022]
Abstract
Increased ammonia accumulation in the brain due to liver dysfunction is a major contributor to the pathogenesis of hepatic encephalopathy (HE). Fatal outcome of rapidly progressing (acute) HE is mainly related to cytotoxic brain edema associated with astrocytic swelling. An increase of brain ammonia in experimental animals or treatment of cultured astrocytes with ammonia generates reactive oxygen and nitrogen species in the target tissues, leading to oxidative/nitrosative stress (ONS). In cultured astrocytes, ammonia-induced ONS is invariably associated with the increase of the astrocytic cell volume. Interrelated mechanisms underlying this response include increased nitric oxide (NO) synthesis which is partly coupled to the activation of NMDA receptors and increased generation of reactive oxygen species by NADPH oxidase. ONS and astrocytic swelling are further augmented by excessive synthesis of glutamine (Gln) which impairs mitochondrial function following its accumulation in there and degradation back to ammonia ("the Trojan horse" hypothesis). Ammonia also induces ONS in other cell types of the CNS: neurons, microglia and the brain capillary endothelial cells (BCEC). ONS in microglia contributes to the central inflammatory response, while its metabolic and pathophysiological consequences in the BCEC evolve to the vasogenic brain edema associated with HE. Ammonia-induced ONS results in the oxidation of mRNA and nitration/nitrosylation of proteins which impact intracellular metabolism and potentiate the neurotoxic effects. Simultaneously, ammonia facilitates the antioxidant response of the brain, by activating astrocytic transport and export of glutathione, in this way increasing the availability of precursors of neuronal glutathione synthesis.
Collapse
Affiliation(s)
- Marta Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Center, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland.
| | | |
Collapse
|