1
|
Xu Y, Zhang L, Yan Y, Xiao W, Zou W, Luo Z, Xiao B, Long H. MicroRNA-33 regulates the synaptic plasticity-related gene ARC in temporal lobe epilepsy. Neurosci Res 2025; 210:19-27. [PMID: 39214315 DOI: 10.1016/j.neures.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to elucidate the expression patterns of miR-33 and ARC in both a rat model of temporal lobe epilepsy (TLE) and human TLE patients, to explore the role of miR-33 in epilepsy onset through its regulation of ARC expression in the hippocampus. Our findings, supported by a Dual-Luciferase reporter assay, suggest that miR-33 can bind to the 3' UTR region of ARC. We observed that miR-33 levels were reduced at 1 hour and 60 days post-seizure, while ARC expression notably increased at these time points. In the hippocampal CA1 and CA3 regions of post-seizure rats, ARC expression significantly exceeded that of control groups. Following the transfection of HEK cells with a miR-33 mimic, there was a decrease in both ARC mRNA and protein levels, whereas the group treated with a miR-33 inhibitor displayed the opposite effect. RNA sequencing in TLE patients revealed a similar miR-33 and ARC interaction. The regulation of Arc expression by miR-33 suggests that Arc may be a target gene of miR-33 in the context of epilepsy. Our findings indicate that miR-33 downregulation could contribute to the dysregulation of Arc expression observed in TLE, potentially influencing the disease process. Further studies are required to establish the exact role of miR-33-mediated Arc regulation in the development of epilepsy.
Collapse
Affiliation(s)
- Yuchen Xu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China.
| | - Lily Zhang
- Neurology Department, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Yan
- Neurology Department, Loudi Central Hospital, Loudi, Hunan, China
| | - Wenbiao Xiao
- Neurology Department, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Zou
- NHC Key Laboratory of Birth Defects Research, Prevention, and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Zhaohui Luo
- Neurology Department, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiao
- Neurology Department, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongyu Long
- Neurology Department, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Wang Y, Yang C, Sun H, Jiang H, Zhang P, Huang Y, Liu Z, Yu Y, Xu Z, Xiang H, Yi C. The Role of N6-methyladenosine Modification in Gametogenesis and Embryogenesis: Impact on Fertility. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae050. [PMID: 38937660 PMCID: PMC11514847 DOI: 10.1093/gpbjnl/qzae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The most common epigenetic modification of messenger RNAs (mRNAs) is N6-methyladenosine (m6A), which is mainly located near the 3' untranslated region of mRNAs, near the stop codons, and within internal exons. The biological effect of m6A is dynamically modulated by methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers). By controlling post-transcriptional gene expression, m6A has a significant impact on numerous biological functions, including RNA transcription, translation, splicing, transport, and degradation. Hence, m6A influences various physiological and pathological processes, such as spermatogenesis, oogenesis, embryogenesis, placental function, and human reproductive system diseases. During gametogenesis and embryogenesis, genetic material undergoes significant changes, including epigenomic modifications such as m6A. From spermatogenesis and oogenesis to the formation of an oosperm and early embryogenesis, m6A changes occur at every step. m6A abnormalities can lead to gamete abnormalities, developmental delays, impaired fertilization, and maternal-to-zygotic transition blockage. Both mice and humans with abnormal m6A modifications exhibit impaired fertility. In this review, we discuss the dynamic biological effects of m6A and its regulators on gamete and embryonic development and review the possible mechanisms of infertility caused by m6A changes. We also discuss the drugs currently used to manipulate m6A and provide prospects for the prevention and treatment of infertility at the epigenetic level.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Chen Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Hanxiao Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Jiang
- Department of Interventional Therapy, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Pin Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Yue Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Zhenran Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Yaru Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Zuying Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Huifen Xiang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Guarnieri L, Amodio N, Bosco F, Carpi S, Tallarico M, Gallelli L, Rania V, Citraro R, Leo A, De Sarro G. Circulating miRNAs as Novel Clinical Biomarkers in Temporal Lobe Epilepsy. Noncoding RNA 2024; 10:18. [PMID: 38525737 PMCID: PMC10961783 DOI: 10.3390/ncrna10020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024] Open
Abstract
Temporal lobe epilepsy (TLE) represents the most common form of refractory focal epilepsy. The identification of innovative clinical biomarkers capable of categorizing patients with TLE, allowing for improved treatment and outcomes, still represents an unmet need. Circulating microRNAs (c-miRNAs) are short non-coding RNAs detectable in body fluids, which play crucial roles in the regulation of gene expression. Their characteristics, including extracellular stability, detectability through non-invasive methods, and responsiveness to pathological changes and/or therapeutic interventions, make them promising candidate biomarkers in various disease settings. Recent research has investigated c-miRNAs in various bodily fluids, including serum, plasma, and cerebrospinal fluid, of TLE patients. Despite some discrepancies in methodologies, cohort composition, and normalization strategies, a common dysregulated signature of c-miRNAs has emerged across different studies, providing the basis for using c-miRNAs as novel biomarkers for TLE patient management.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Sara Carpi
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Martina Tallarico
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Luca Gallelli
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Rania
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Saleh RO, Majeed AA, Margiana R, Alkadir OKA, Almalki SG, Ghildiyal P, Samusenkov V, Jabber NK, Mustafa YF, Elawady A. Therapeutic gene delivery by mesenchymal stem cell for brain ischemia damage: Focus on molecular mechanisms in ischemic stroke. Cell Biochem Funct 2024; 42:e3957. [PMID: 38468129 DOI: 10.1002/cbf.3957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024]
Abstract
Cerebral ischemic damage is prevalent and the second highest cause of death globally across patient populations; it is as a substantial reason of morbidity and mortality. Mesenchymal stromal cells (MSCs) have garnered significant interest as a potential treatment for cerebral ischemic damage, as shown in ischemic stroke, because of their potent intrinsic features, which include self-regeneration, immunomodulation, and multi-potency. Additionally, MSCs are easily obtained, isolated, and cultured. Despite this, there are a number of obstacles that hinder the effectiveness of MSC-based treatment, such as adverse microenvironmental conditions both in vivo and in vitro. To overcome these obstacles, the naïve MSC has undergone a number of modification processes to enhance its innate therapeutic qualities. Genetic modification and preconditioning modification (with medications, growth factors, and other substances) are the two main categories into which these modification techniques can be separated. This field has advanced significantly and is still attracting attention and innovation. We examine these cutting-edge methods for preserving and even improving the natural biological functions and therapeutic potential of MSCs in relation to adhesion, migration, homing to the target site, survival, and delayed premature senescence. We address the use of genetically altered MSC in stroke-induced damage. Future strategies for improving the therapeutic result and addressing the difficulties associated with MSC modification are also discussed.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Ali A Majeed
- Department of Pathological Analyses, Faculty of Science, University of Kufa, Najaf, Iraq
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ola Kamal A Alkadir
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Vadim Samusenkov
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
5
|
Fan L, Liu L, Rao X, Wang X, Luo H, Gan J. The 100 most-cited manuscripts in epilepsy epigenetics: a bibliometric analysis. Childs Nerv Syst 2023; 39:3111-3122. [PMID: 37340273 PMCID: PMC10643235 DOI: 10.1007/s00381-023-06032-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE The top citation article reflects the developmental milestone of a given field. The purpose of this bibliometric analysis was to identify and assess the 100 most-cited (T100) articles on the epigenetics mechanism of epilepsy. METHODS The Web of Science Core Collection (WoSCC) database was used to investigate, and search terms related to epilepsy epigenetics were compiled. Results were ranked according to citation number. The publication year, citation density, authorship, journal, country, institution, manuscript type, theme, and clinical topics were further evaluated. RESULTS The Web of Science search returned a total of 1231 manuscripts. The number of citations for a manuscript ranges from 739 to 75. The greatest number of manuscripts in the top 100 was published in the Human Molecular Genetics and Neurobiology of Disease (n = 4). The journal with the highest 2021 impact factor was Nature Medicine (IF = 87.244). The most-cited paper by Aid et al. reported a new nomenclature for mouse and rat BDNF gene and its expression profiles. Most manuscripts were original articles (n = 69), of which 52 (75.4%) report findings of basic scientific work. The most prevalent theme was microRNA (n = 29), and the most popular clinical topic was temporal lobe epilepsy (n = 13). CONCLUSIONS The research on the epigenetics mechanism of epilepsy was in its infancy but full of potential. The developmental history and current achievements of hot themes, including microRNA, DNA methylation, and temporal lobe epilepsy, were overviewed. This bibliometric analysis provides useful information and insight for researchers when launching new projects.
Collapse
Affiliation(s)
- Lijuan Fan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Chengdu, Sichuan, China
| | - Lu Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
- West China School of Public Health, Sichuan University, Chengdu, Sichuan Province, China
| | - Xueyi Rao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Chengdu, Sichuan, China
| | - Xiaoqian Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Chengdu, Sichuan, China
| | - Huan Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Chengdu, Sichuan, China
| | - Jing Gan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China.
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Kumar P. miRNA dysregulation in traumatic brain injury and epilepsy: a systematic review to identify putative biomarkers for post-traumatic epilepsy. Metab Brain Dis 2023; 38:749-765. [PMID: 36715879 DOI: 10.1007/s11011-023-01172-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
Traumatic brain injury (TBI) leads to post-traumatic epilepsy (PTE); hence, both TBI and PTE share various similar molecular mechanisms. MicroRNA (miRNA) is a small noncoding RNA that acts as a gene-silencing molecule. Notably, the dysregulation of miRNAs in various neurological diseases, including TBI and epilepsy, has been reported in several studies. However, studies on commonly dysregulated miRNAs and the regulation of shared pathways in both TBI and epilepsy that can identify potential biomarkers of PTE are still lacking. This systematic review covers the peer-review publications of TBI and database studies of epilepsy-dysregulated miRNAs of clinical studies. For TBI, 290 research articles were identified after screening, and 12 provided data for dysregulated miRNAs in humans. The compiled data suggest that 85 and 222 miRNAs are consecutively dysregulated in TBI and epilepsy. In both, 10 miRNAs were found to be commonly dysregulated, implying that they are potentially dysregulated miRNAs for PTE. Furthermore, the targets and involvement of each putative miRNA in different pathways were identified and evaluated. Additionally, clusters of predicted miRNAs were analyzed. Each miRNA's regulatory role was linked with apoptosis, inflammation, and cell cycle regulation pathways. Hence, these findings provide insight for future diagnostic biomarkers.
Collapse
Affiliation(s)
- Prince Kumar
- Department of Central Sophisticated Instrumentation Cell, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
7
|
Gattás D, Neto FSL, Freitas-Lima P, Bonfim-Silva R, de Almeida SM, de Assis Cirino ML, Tiezzi DG, Tirapelli LF, Velasco TR, Sakamoto AC, Matias CM, Jr CGC, Tirapelli DPDC. MicroRNAs miR-629-3p, miR-1202 and miR-1225-5p as potential diagnostic and surgery outcome biomarkers for mesial temporal lobe epilepsy with hippocampal sclerosis. Neurochirurgie 2022; 68:583-588. [PMID: 35700789 DOI: 10.1016/j.neuchi.2022.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/30/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Mesial temporal lobe epilepsy (MTLE) is a symptomatic epilepsy syndrome clinically characterized by high prevalence, pharmacoresistance, good surgical prognosis and hippocampal sclerosis (HS); however, no singular criteria can be considered sufficient for the MTLE-HS diagnosis. MicroRNAs (miRNAs) are small non-coding molecules that act as important gene-expression regulators at post-transcriptional level. Evidences on the involvement of miRNAs in epilepsy pathogenesis as well as their potential to be employed as biomarkers claim for investigations on miRNAs' applicability as epilepsy diagnosis and prognosis biomarkers. Consequently, the present study aimed to evaluate the applicability of three specific miRNAs as biomarkers of diagnosis and surgical outcomes in adult patients with MTLE-HS. METHOD Hippocampus, amygdala and blood samples from 20 patients with MTLE-HS were analyzed, 10 with favorable surgical prognosis (Engel I) and 10 with unfavorable surgical prognosis (Engel III-IV). For the control groups, hippocampus and amygdala from necropsy and blood samples from healthy individuals were adopted. The miRNAs expression analysis was performed using Real-Time Quantitative Polymerase Chain Reaction for miRNAs highlighted from microarray as being involved in GABAergic neurotransmission. RESULTS The miRNAs miR-629-3p, miR-1202 and miR-1225-5p were found to be hyperexpressed in MTLE-HS patients' blood. CONCLUSIONS Our data suggest the existence of three circulating miRNAs (miR-629-3p, miR-1202 and miR-1225-5p) that could possibly act as additional tools in the set of factors that contribute to MTLE-HS diagnose.
Collapse
Affiliation(s)
- Daniela Gattás
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | - Fermino Sanches Lizarte Neto
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | - Priscila Freitas-Lima
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil; Barão de Maua University Center, Ribeirao Preto-SP, Brazil
| | - Ricardo Bonfim-Silva
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | - Serguey Malaquias de Almeida
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | - Mucio Luiz de Assis Cirino
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | - Daniel Guimarães Tiezzi
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | - Luis Fernando Tirapelli
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | - Tonicarlo Rodrigues Velasco
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | - Americo Ceiki Sakamoto
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | - Caio Marconato Matias
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | - Carlos Gilberto Carlotti Jr
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | | |
Collapse
|
8
|
You J, Huang H, Chan CTY, Li L. Pathological Targets for Treating Temporal Lobe Epilepsy: Discoveries From Microscale to Macroscale. Front Neurol 2022; 12:779558. [PMID: 35069411 PMCID: PMC8777077 DOI: 10.3389/fneur.2021.779558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common and severe types of epilepsy, characterized by intractable, recurrent, and pharmacoresistant seizures. Histopathology of TLE is mostly investigated through observing hippocampal sclerosis (HS) in adults, which provides a robust means to analyze the related histopathological lesions. However, most pathological processes underlying the formation of these lesions remain elusive, as they are difficult to detect and observe. In recent years, significant efforts have been put in elucidating the pathophysiological pathways contributing to TLE epileptogenesis. In this review, we aimed to address the new and unrecognized neuropathological discoveries within the last 5 years, focusing on gene expression (miRNA and DNA methylation), neuronal peptides (neuropeptide Y), cellular metabolism (mitochondria and ion transport), cellular structure (microtubule and extracellular matrix), and tissue-level abnormalities (enlarged amygdala). Herein, we describe a range of biochemical mechanisms and their implication for epileptogenesis. Furthermore, we discuss their potential role as a target for TLE prevention and treatment. This review article summarizes the latest neuropathological discoveries at the molecular, cellular, and tissue levels involving both animal and patient studies, aiming to explore epileptogenesis and highlight new potential targets in the diagnosis and treatment of TLE.
Collapse
Affiliation(s)
- Jing You
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | - Haiyan Huang
- Department of Nutrition and Food Science, Texas Women University, Denton, TX, United States
| | - Clement T Y Chan
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States.,Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
9
|
Expression Profile of miRs in Mesial Temporal Lobe Epilepsy: Systematic Review. Int J Mol Sci 2022; 23:ijms23020951. [PMID: 35055144 PMCID: PMC8781102 DOI: 10.3390/ijms23020951] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common forms of focal epilepsy in children and adults. TLE is characterized by variable onset and seizures. Moreover, this form of epilepsy is often resistant to pharmacotherapy. The search for new mechanisms for the development of TLE may provide us with a key to the development of new diagnostic methods and a personalized approach to the treatment. In recent years, the role of non-coding ribonucleic acids (RNA) has been actively studied, among which microRNA (miR) is of the greatest interest. (1) Background: The purpose of the systematic review is to analyze the studies carried out on the role of miRs in the development of mesial TLE (mTLE) and update the existing knowledge about the biomarkers of this disease. (2) Methods: The search for publications was carried out in the databases PubMed, Springer, Web of Science, Clinicalkeys, Scopus, OxfordPress, Cochrane. The search was carried out using keywords and combinations. We analyzed publications for 2016–2021, including original studies in an animal model of TLE and with the participation of patients with TLE, thematic and systemic reviews, and Cochrane reviews. (3) Results: this thematic review showed that miR‒155, miR‒153, miR‒361‒5p, miR‒4668‒5p, miR‒8071, miR‒197‒5p, miR‒145, miR‒181, miR‒199a, miR‒1183, miR‒129‒2‒3p, miR‒143‒3p (upregulation), miR–134, miR‒0067835, and miR‒153 (downregulation) can be considered as biomarkers of mTLE. However, the roles of miR‒146a, miR‒142, miR‒106b, and miR‒223 are questionable and need further study. (4) Conclusion: In the future, it will be possible to consider previously studied miRs, which have high specificity and sensitivity in mTLE, as prognostic biomarkers (predictors) of the risk of developing this disease in patients with potentially epileptogenic structural damage to the mesial regions of the temporal lobe of the brain (congenital disorders of the neuronal migration and neurogenesis, brain injury, neuro-inflammation, tumor, impaired blood supply, neurodegeneration, etc.).
Collapse
|
10
|
Shen Y, Zhou T, Liu X, Liu Y, Li Y, Zeng D, Zhong W, Zhang M. Sevoflurane-Induced miR-211-5p Promotes Neuronal Apoptosis by Inhibiting Efemp2. ASN Neuro 2021; 13:17590914211035036. [PMID: 34730432 PMCID: PMC8819752 DOI: 10.1177/17590914211035036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Sevoflurane exposure can result in serious neurological side effects including neuronal
apoptosis and cognitive impairment. Although the microRNA miR-211-5p is profoundly
upregulated following sevoflurane exposure in neonatal rodent models, the impact of
miR-211-5p on neuronal apoptosis and cognitive impairment postsevoflurane exposure has not
yet been elucidated. Here, we found that sevoflurane upregulated miR-211-5p and
downregulated EGF-Containing Fibulin Extracellular Matrix Protein 2 (Efemp2, Fibulin-4)
levels in vitro and in vivo. Sevoflurane's effect on miR-211-5p expression was based on
enhancing primary miR-211 transcription. miR-211-5p targets Efemp2's mRNA 3′-untranslated
region, reducing Efemp2 expression. RNA immunoprecipitation revealed significant
enrichment of the miR-211-5p:Efemp2 mRNA dyad in the RNA-induced silencing complex.
miR-211-5p mimics downregulated Efemp2, leading to phosphorylation of Smad2 and Smad3,
upregulation of pro-apoptotic Bim, and mitochondrial release of allograft inflammatory
factor 1 and cytochrome C. In contrast, miR-211-5p hairpin inhibitor (AntimiR-211-5p)
negatively regulated this apoptotic pathway and reduced neuronal apoptosis in an
Efemp2-dependent manner. Sevoflurane-exposed mice administered AntimiR-211-5p displayed
reduced cortical apoptosis levels and near-term cognitive impairment. In conclusion,
sevoflurane-induced miR-211-5p promotes neuronal apoptosis via Efemp2 inhibition. Summary
statement: This study revealed the significance of sevoflurane-induced increases in
miR-211-5p on the promotion of neuronal apoptosis via inhibition of Efemp2 and its
downstream targets.
Collapse
Affiliation(s)
- Yousu Shen
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Tao Zhou
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Xiaobing Liu
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Yanlong Liu
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Yaqi Li
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Dewu Zeng
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Wensheng Zhong
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Mingsheng Zhang
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| |
Collapse
|
11
|
Dong W, Gao W, Yan X, Sun Y, Xu T. microRNA-132 as a negative regulator in NF-κB signaling pathway via targeting IL-1β in miiuy croaker. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104113. [PMID: 33979576 DOI: 10.1016/j.dci.2021.104113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
The innate immune system is the first line of defense against the invasion of pathogens. It can make a rapid immune response to the invading pathogenic microorganisms, thereby eliminating the invading pathogens and protecting the body from harm. microRNAs are a family of small non-coding ribonucleic acid molecules, which are important and multifunctional regulator of immune response. In this study, we studied the role of miR-132 as a key regulatory factor of IL-1β-mediated inflammation. The seed region of miR-132 can regulate gene expression by binding to the 3'UTR of IL-1β, and inhibit the expression of IL-1β at the post-transcriptional level. More importantly, miR-132 inhibits LPS-induced NF-κB signaling pathway by targeting IL-1β, thereby preventing excessive inflammatory response from causing autoimmune diseases. These results will help to better understand the complex regulatory mechanisms of teleost fishes.
Collapse
Affiliation(s)
- Wenjing Dong
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenya Gao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
12
|
Wang GY, Luan ZL, Che NW, Yan DB, Sun XW, Zhang C, Yin J. Inhibition of microRNA-129-2-3p protects against refractory temporal lobe epilepsy by regulating GABRA1. Brain Behav 2021; 11:e02195. [PMID: 34029007 PMCID: PMC8323041 DOI: 10.1002/brb3.2195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/30/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Accumulating evidence demonstrates that certain microRNAs play critical roles in epileptogenesis. Our previous studies found microRNA (miR)-129-2-3p was induced in patients with refractory temporal lobe epilepsy (TLE). In this study, we aimed to explore the role of miR-129-2-3p in TLE pathogenesis. METHOD By bioinformatics, we predicted miR-129-2-3p may target the gene GABRA1 encoding the GABA type A receptor subunit alpha 1. Luciferase assay was used to investigate the regulation of miR-129-2-3p on GABRA1 3'UTR. The dynamic expression of miR-129-2-3p and GABRA1 mRNA and protein levels were measured in primary hippocampal neurons and a rat kainic acid (KA)-induced seizure model by quantitative reverse transcription-polymerase chain reaction (qPCR), Western blotting, and immunostaining. MiR-129-2-3p agomir and antagomir were utilized to explore their role in determining GABRA1 expression. The effects of targeting miR-129-2-3p and GABRA1 on epilepsy were assessed by electroencephalography (EEG) and immunostaining. RESULTS Luciferase assay, qPCR, and Western blot results suggested GABRA1 as a direct target of miR-129-2-3p. MiR-129-2-3p level was significantly upregulated, whereas GABRA1 expression downregulated in KA-treated rat primary hippocampal neurons and KA-induced seizure model. In vivo knockdown of miR-129-2-3p by antagomir alleviated the seizure-like EEG findings in accordance with the upregulation of GABRA1. Furthermore, the seizure-suppressing effect of the antagomir was partly GABRA1 dependent. CONCLUSIONS The results suggested GABRA1 as a target of miR-129-2-3p in rat primary hippocampal neurons and a rat kainic acid (KA) seizure model. Silencing of miR-129-2-3p exerted a seizure-suppressing effect in rats. MiR-129-2-3p/GABRA1 pathway may represent a potential target for the prevention and treatment of refractory epilepsy.
Collapse
Affiliation(s)
- Guan-Yu Wang
- Department of Neurosurgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Epileptic Center of Liaoning, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhi-Lin Luan
- Department of Neurosurgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Ning-Wei Che
- Department of Neurosurgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - De-Bin Yan
- Department of Neurosurgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Epileptic Center of Liaoning, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiao-Wan Sun
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Cong Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Jian Yin
- Department of Neurosurgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Epileptic Center of Liaoning, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
Garbo S, Zwergel C, Battistelli C. m6A RNA methylation and beyond - The epigenetic machinery and potential treatment options. Drug Discov Today 2021; 26:2559-2574. [PMID: 34126238 DOI: 10.1016/j.drudis.2021.06.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/02/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022]
Abstract
m6A is emerging as one of the most important RNA modifications because of its involvement in pathological and physiological events. Here, we provide an overview of this epitranscriptomic modification, beginning with a description of the molecular players involved and continuing with a focus on the role of m6A in the maintenance of stemness, induction of the epithelial to mesenchymal transition (EMT), and tumor progression. Finally, we discuss the state of the art regarding the design and validation of inhibitors of m6A writers or erasers to provide a background for future investigations and for the development of specific therapeutics.
Collapse
Affiliation(s)
- Sabrina Garbo
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Department of Excellence 2018-2022, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù, Viale di San Paolo 15, 00146 Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Department of Excellence 2018-2022, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Cecilia Battistelli
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Department of Excellence 2018-2022, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
14
|
Asadi-Pooya AA, Tajbakhsh A, Savardashtaki A. MicroRNAs in temporal lobe epilepsy: a systematic review. Neurol Sci 2021; 42:571-578. [PMID: 33389245 DOI: 10.1007/s10072-020-05016-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/18/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE About 30% of patients with epilepsy have drug-resistant seizures. The aim of the current endeavor was to systematically review the existing evidence on the potential applications of microRNAs as biomarkers in people with difficult to treat temporal lobe epilepsy (TLE). METHODS MEDLINE (accessed from PubMed) and Scopus from inception to March 18, 2020 were systematically searched for related published articles. In both electronic databases, the following search strategy was implemented, and these keywords (in the title/abstract) were used: "microRNA" AND "temporal lobe epilepsy." Articles written in English that were human studies in people with epilepsy were all included in this search. RESULTS We could identify 16 articles about different aspects of microRNAs in the serum of patients with TLE. However, only three studies robustly investigated microRNAs as potential biomarkers in the diagnosis of drug-resistant TLE (microRNA-155 (upregulated), microRNA-129-2-3p (upregulated), microRNA-153 (downregulated)). One small study provided class II, and two small studies provided class III evidence. CONCLUSION While this systematic review identified three studies that provided some evidence on the potential applications of circulating serum microRNAs as biomarkers in people with drug-resistant TLE, the evidence is not robust yet. While these findings provide a new horizon, substantial challenges remain before the roles of microRNAs as biomarkers in the diagnosis of drug-resistant TLE can be translated into clinical practice.
Collapse
Affiliation(s)
- Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. .,Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Amir Tajbakhsh
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Xiaoying G, Guo M, Jie L, Yanmei Z, Ying C, Shengjie S, Haiyan G, Feixiang S, Sihua Q, Jiahang S. CircHivep2 contributes to microglia activation and inflammation via miR-181a-5p/SOCS2 signalling in mice with kainic acid-induced epileptic seizures. J Cell Mol Med 2020; 24:12980-12993. [PMID: 33002329 PMCID: PMC7701587 DOI: 10.1111/jcmm.15894] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease characterized by recurrent seizures. Circular RNA (circRNA) is a novel family of endogenous non‐coding RNAs that have been proposed to regulate gene expression. However, there is a lack of data on the role of circRNA in epilepsy. In this study, the circRNA profiles were evaluated by microarray analysis. In total, 627 circRNAs were up‐regulated, whereas 892 were down‐regulated in the hippocampus in mice with kainic acid (KA)‐induced epileptic seizures compared with control. The expression of circHivep2 was significantly down‐regulated in hippocampus tissues of mice with KA‐induced epileptic seizures and BV‐2 microglia cells upon KA treatment. Bioinformatics analysis predicted that circHivep2 interacts with miR‐181a‐5p to regulate SOCS2 expression, which was validated using a dual‐luciferase reporter assay. Moreover, overexpression of circHivep2 significantly inhibited KA‐induced microglial activation and the expression of inflammatory factors in vitro, which was blocked by miR‐181a‐5p, whereas circHivep2 knockdown further induced microglia cell activation and the release of pro‐inflammatory proteins in BV‐2 microglia cells after KA treatment. The application of circHivep2+ exosomes derived from adipose‐derived stem cells (ADSCs) exerted significant beneficial effects on the behavioural seizure scores of mice with KA‐induced epilepsy compared to control exosomes. The circHivep2+ exosomes also inhibited microglial activation, the expression of inflammatory factors, and the miR‐181a‐5p/SOCS2 axis in vivo. Our results suggest that circHivep2 regulates microglia activation in the progression of epilepsy by interfering with miR‐181a‐5p to promote SOCS2 expression, indicating that circHivep2 may serve as a therapeutic tool to prevent the development of epilepsy.
Collapse
Affiliation(s)
- Gao Xiaoying
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mian Guo
- Department of Neurosurgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liu Jie
- Department of Neurosurgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhu Yanmei
- Department of Radiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Cui Ying
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shu Shengjie
- Department of Imageology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gou Haiyan
- Department of Radiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sun Feixiang
- Department of Neurosurgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Sihua
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sun Jiahang
- Department of Neurosurgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Liu Q, Wang L, Yan G, Zhang W, Huan Z, Li J. MiR-125a-5p Alleviates Dysfunction and Inflammation of Pentylenetetrazol- induced Epilepsy Through Targeting Calmodulin-dependent Protein Kinase IV (CAMK4). Curr Neurovasc Res 2020; 16:365-372. [PMID: 31490757 DOI: 10.2174/1567202616666190906125444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND MicroRNAs (miRNA) are known to play a key role in the etiology and treatment of epilepsy through controlling the expression of gene. However, miR-125a-5p in the epilepsy is little known. Epilepsy in rat models was induced by Pentylenetetrazol (PTZ) and miR- 125a-5p profiles in the hippocampus were investigated in our experiment. Also, the relationship between miR-125a-5p and calmodulin-dependent protein kinase IV (CAMK4) was identified and the related mechanism was also illustrated. METHODS The miR-125a-5p mRNA expression levels were evaluated by quantitative real time polymerase chain reaction (qRT-PCR). Western Blot (WB) was used to analyze the CAMK4 protein expression levels. Seizure score, latency and duration were determined based on a Racine scale. The enzyme-linked immunosorbent assay (ELISA) was used to analyze the inflammatory factor expression. The relationship between miR-125a-5p and CAMK4 was detected through dual luciferase assay. RESULTS Downregulation of miR-125a-5p was observed in the hippocampus of PTZ-induced epilepsy rats. The overexpression of miR-125a-5p attenuated seizure and decreased inflammatory factor level in the hippocampus of PTZ-induced rats. The miR-125a-5p alleviated epileptic seizure and inflammation in PTZ-induced rats by suppressing its target gene, CAMK4. CONCLUSION miR-125a-5p may represent a novel therapeutic treatment for PTZ-induced epilepsy by preventing the activation of CAMK4.
Collapse
Affiliation(s)
- Qishuai Liu
- Department of Neurology, The First Hospital of Zibo, Zibo City, Shandong Province, 255200, China
| | - Li Wang
- Department of Nephrology, The First Hospital of Zibo, Zibo City, Shandong Province, 255200, China
| | - Guizhen Yan
- Department of Neurology, People's Hospital of Lixia District of Jinan, Jinan City, Shandong Province, 250014, China
| | - Weifa Zhang
- Department of Neurology, The First Hospital of Zibo, Zibo City, Shandong Province, 255200, China
| | - Zhigang Huan
- Department of Neurology, The First Hospital of Zibo, Zibo City, Shandong Province, 255200, China
| | - Jianyuan Li
- Department of Neursurgery, Rizhao City Hospital of TCM, Rizhao City, Shandong Province, 276800, China
| |
Collapse
|
17
|
Down-Regulation of miR-23a-3p Mediates Irradiation-Induced Neuronal Apoptosis. Int J Mol Sci 2020; 21:ijms21103695. [PMID: 32456284 PMCID: PMC7279507 DOI: 10.3390/ijms21103695] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation-induced central nervous system toxicity is a significant risk factor for patients receiving cancer radiotherapy. Surprisingly, the mechanisms responsible for the DNA damage-triggered neuronal cell death following irradiation have yet to be deciphered. Using primary cortical neuronal cultures in vitro, we demonstrated that X-ray exposure induces the mitochondrial pathway of intrinsic apoptosis and that miR-23a-3p plays a significant role in the regulation of this process. Primary cortical neurons exposed to irradiation show the activation of DNA-damage response pathways, including the sequential phosphorylation of ATM kinase, histone H2AX, and p53. This is followed by the p53-dependent up-regulation of the pro-apoptotic Bcl2 family molecules, including the BH3-only molecules PUMA, Noxa, and Bim, leading to mitochondrial outer membrane permeabilization (MOMP) and the release of cytochrome c, which activates caspase-dependent apoptosis. miR-23a-3p, a negative regulator of specific pro-apoptotic Bcl-2 family molecules, is rapidly decreased after neuronal irradiation. By increasing the degradation of PUMA and Noxa mRNAs in the RNA-induced silencing complex (RISC), the administration of the miR-23a-3p mimic inhibits the irradiation-induced up-regulation of Noxa and Puma. These changes result in an attenuation of apoptotic processes such as MOMP, the release of cytochrome c and caspases activation, and a reduction in neuronal cell death. The neuroprotective effects of miR-23a-3p administration may not only involve the direct inhibition of pro-apoptotic Bcl-2 molecules downstream of p53 but also include the attenuation of secondary DNA damage upstream of p53. Importantly, we demonstrated that brain irradiation in vivo results in the down-regulation of miR-23a-3p and the elevation of pro-apoptotic Bcl2-family molecules PUMA, Noxa, and Bax, not only broadly in the cortex and hippocampus, except for Bax, which was up-regulated only in the hippocampus but also selectively in isolated neuronal populations from the irradiated brain. Overall, our data suggest that miR-23a-3p down-regulation contributes to irradiation-induced intrinsic pathways of neuronal apoptosis. These regulated pathways of neurodegeneration may be the target of effective neuroprotective strategies using miR-23a-3p mimics to block their development and increase neuronal survival after irradiation.
Collapse
|
18
|
Leontariti M, Avgeris M, Katsarou M, Drakoulis N, Siatouni A, Verentzioti A, Alexoudi A, Fytraki A, Patrikelis P, Vassilacopoulou D, Gatzonis S, Sideris DC. Circulating miR‐146a and miR‐134 in predicting drug‐resistant epilepsy in patients with focal impaired awareness seizures. Epilepsia 2020; 61:959-970. [DOI: 10.1111/epi.16502] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Maria Leontariti
- Department of Biochemistry and Molecular Biology Faculty of Biology National and Kapodostrian University of Athens Athens Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology Faculty of Biology National and Kapodostrian University of Athens Athens Greece
| | - Martha‐Spyridoula Katsarou
- Research Group of Clinical Pharmacology and Pharmacogenomics Faculty of Pharmacy School of Health Sciences National and Kapodistrian University of Athens Athens Greece
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics Faculty of Pharmacy School of Health Sciences National and Kapodistrian University of Athens Athens Greece
| | - Anna Siatouni
- First Department of Neurosurgery Evangelismos Hospital School of Medicine National and Kapodistrian University of Athens Athens Greece
| | - Anastasia Verentzioti
- First Department of Neurosurgery Evangelismos Hospital School of Medicine National and Kapodistrian University of Athens Athens Greece
| | - Athanasia Alexoudi
- First Department of Neurosurgery Evangelismos Hospital School of Medicine National and Kapodistrian University of Athens Athens Greece
| | - Aggeliki Fytraki
- First Department of Neurosurgery Evangelismos Hospital School of Medicine National and Kapodistrian University of Athens Athens Greece
| | - Panayiotis Patrikelis
- First Department of Neurosurgery Evangelismos Hospital School of Medicine National and Kapodistrian University of Athens Athens Greece
| | - Dido Vassilacopoulou
- Department of Biochemistry and Molecular Biology Faculty of Biology National and Kapodostrian University of Athens Athens Greece
| | - Stylianos Gatzonis
- First Department of Neurosurgery Evangelismos Hospital School of Medicine National and Kapodistrian University of Athens Athens Greece
| | - Diamantis C. Sideris
- Department of Biochemistry and Molecular Biology Faculty of Biology National and Kapodostrian University of Athens Athens Greece
| |
Collapse
|
19
|
Bauer S, Schütz V, Strzelczyk A, Rosenow F. Is there a role for microRNAs in epilepsy diagnostics? Expert Rev Mol Diagn 2020; 20:693-701. [DOI: 10.1080/14737159.2020.1745065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sebastian Bauer
- Department. Of Neurology, Epilepsy Center Frankfurt Rhine-Main, University Hospital Frankfurt, Goethe-University Frankfurt Am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (Cepter), Germany
| | - Vanessa Schütz
- Department. Of Neurology, Epilepsy Center Frankfurt Rhine-Main, University Hospital Frankfurt, Goethe-University Frankfurt Am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (Cepter), Germany
| | - Adam Strzelczyk
- Department. Of Neurology, Epilepsy Center Frankfurt Rhine-Main, University Hospital Frankfurt, Goethe-University Frankfurt Am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (Cepter), Germany
| | - Felix Rosenow
- Department. Of Neurology, Epilepsy Center Frankfurt Rhine-Main, University Hospital Frankfurt, Goethe-University Frankfurt Am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (Cepter), Germany
| |
Collapse
|
20
|
Yu Q, Zhao MW, Yang P. LncRNA UCA1 Suppresses the Inflammation Via Modulating miR-203-Mediated Regulation of MEF2C/NF-κB Signaling Pathway in Epilepsy. Neurochem Res 2020; 45:783-795. [DOI: 10.1007/s11064-019-02952-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/01/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022]
|
21
|
Wang L, Song L, Chen X, Suo J, Ma Y, Shi J, Liu K, Chen G. microRNA-139-5p confers sensitivity to antiepileptic drugs in refractory epilepsy by inhibition of MRP1. CNS Neurosci Ther 2019; 26:465-474. [PMID: 31750616 PMCID: PMC7080432 DOI: 10.1111/cns.13268] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
Aim Drug resistance is an intractable issue urgently needed to be overcome for improving efficiency of antiepileptic drugs in treating refractory epilepsy. microRNAs (miRNAs) have been proved as key regulators and therapeutic targets in epilepsy. Accordingly, the aim of the present study was to identify a novel differentially expressed miRNA which could improve the efficiency of antiepileptic drugs during the treatment of refractory epilepsy. Methods and Results Serum samples were collected from children with refractory epilepsy. An in vivo refractory epilepsy model was developed in SD rats by electrical amygdala kindling. We identified that miR‐139‐5p was decreased and multidrug resistance‐associated protein 1 (MRP1) was remarkably upregulated in the serum samples from children with refractory epilepsy and the brain tissues from rat models of refractory epilepsy. After phenobarbitone injection in rat models of refractory epilepsy, the after discharging threshold in kindled amygdala was detected to screen out drug‐resistant rats. Dual‐luciferase reporter gene assay demonstrated that MRP1 was a target of miR‐139‐5p. In order to evaluate the effect of miR‐139‐5p/MRP1 axis on drug resistance of refractory epilepsy, we transfected plasmids into the hippocampus of drug‐resistant rats to alter the expression of miR‐139‐5p and MRP1. TUNEL staining and Nissl staining showed that miR‐139‐5p overexpression or MRP1 downregulation could reduce the apoptosis and promote survival of neurons, accompanied by alleviated neuronal damage. Conclusion Collectively, these results suggest an important role of miR‐139‐5p/MRP1 axis in reducing the resistance of refractory epilepsy to antiepileptic drugs.
Collapse
Affiliation(s)
- Li Wang
- Department of Neurology, Zhengzhou University Affiliated Children's Hospital (Zhengzhou Children's Hospital), Zhengzhou, China
| | - Lifang Song
- Department of Neurology, Zhengzhou University Affiliated Children's Hospital (Zhengzhou Children's Hospital), Zhengzhou, China
| | - Xiaoyi Chen
- Department of Neurology, Zhengzhou University Affiliated Children's Hospital (Zhengzhou Children's Hospital), Zhengzhou, China
| | - Junfang Suo
- Department of Neurology, Zhengzhou University Affiliated Children's Hospital (Zhengzhou Children's Hospital), Zhengzhou, China
| | - Yanli Ma
- Department of Neurology, Zhengzhou University Affiliated Children's Hospital (Zhengzhou Children's Hospital), Zhengzhou, China
| | - Jinghe Shi
- Department of Neurology, Zhengzhou University Affiliated Children's Hospital (Zhengzhou Children's Hospital), Zhengzhou, China
| | - Kai Liu
- Department of Neurology, Zhengzhou University Affiliated Children's Hospital (Zhengzhou Children's Hospital), Zhengzhou, China
| | - Guohong Chen
- Department of Neurology, Zhengzhou University Affiliated Children's Hospital (Zhengzhou Children's Hospital), Zhengzhou, China
| |
Collapse
|
22
|
Alves M, Kenny A, de Leo G, Beamer EH, Engel T. Tau Phosphorylation in a Mouse Model of Temporal Lobe Epilepsy. Front Aging Neurosci 2019; 11:308. [PMID: 31780921 PMCID: PMC6861366 DOI: 10.3389/fnagi.2019.00308] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Hyperphosphorylation of the microtubule-associated protein tau and its resultant aggregation into neurofibrillary tangles (NFT) is a pathological characteristic of neurodegenerative disorders known as tauopathies. Tau is a neuronal protein involved in the stabilization of microtubule structures of the axon and the aberrant phosphorylation of tau is associated with several neurotoxic effects. The discovery of tau pathology and aggregates in the cortex of Temporal lobe epilepsy (TLE) patients has focused interest on hyperphosphorylation of tau as a potential mechanism contributing to increased states of hyperexcitability and cognitive decline. Previous studies using animal models of status epilepticus and tissue from patients with TLE have shown increased tau phosphorylation in the brain following acute seizures and during epilepsy, with tau phosphorylation correlating with cognitive deficits in patients. Suggesting a functional role of tau during epilepsy, studies in tau-deficient and tau-overexpressing mice have demonstrated a causal role of tau during seizure generation. Previous studies, analyzing the impact of seizures on tau hyperphosphorylation, have mainly used animal models of acute seizures. These models, however, do not replicate all aspects of chronic epilepsy. In this study, we investigated the effects of acute seizures (status epilepticus) and chronic epilepsy upon the expression and phosphorylation of tau using the intra-amygdala kainic acid (KA)-induced status epilepticus mouse model. Status epilepticus resulted in an immediate increase in total tau levels in the hippocampus, in particular, the dentate gyrus, and phosphorylation of the AT8 epitope (Ser202, Thr205), with phosphorylated tau mainly localizing to the mossy fibers of the dentate gyrus. During epilepsy, abnormal phosphorylation of tau was detected again at the AT8 epitope with lower total tau levels in the CA3 and CA1 subfields of the hippocampus. Chronic epilepsy in mice also resulted in a strong localization of AT8 phospho-tau to microglia, indicating a distinct pattern of tau hyperphosphorylation during chronic epilepsy compared to status epilepticus. Our results reaffirm previous observations of tau phosphorylation post-status epilepticus, but also elaborate on tau alterations in epileptic mice which more faithfully mimic TLE. Our results confirm seizures affect tau hyperphosphorylation, however, suggest epitope-specific phosphorylation of tau and differences in cell-specific localization according to disease progression.
Collapse
Affiliation(s)
- Marianna Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Aidan Kenny
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gioacchino de Leo
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Edward H Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
23
|
Wang Y, Li Z. Association of UGT2B7 and CaMK4 with response of valproic acid in Chinese children with epilepsy. Therapie 2019; 75:261-270. [PMID: 31474408 DOI: 10.1016/j.therap.2019.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 03/21/2019] [Accepted: 07/22/2019] [Indexed: 11/30/2022]
Abstract
AIM OF THE STUDY Valproic acid (VPA) is a widely used antiepileptic drug for epilepsy. However, approximately 30% of patients with epilepsy do not respond to this therapy even when it was appropriately used. In order to explore the potential genetic factors related to the VPA response, this pharmacogenetics study was conducted. METHODS A total of one hundred and fifty-seven Chinese children with epilepsy who were administered with by VPA for at least one year were enrolled. Thirteen single-nucleotide polymorphisms (SNPs) located in eight genes involving targets and metabolic enzymes of VPA were genotyped. The frequencies of these polymorphisms and the effect of genotypes on the efficacy of VPA were analyzed. RESULTS The frequencies of two SNPs, rs7668258 (uridine diphosphate glucuronosyltransferase-2B7, UGT2B7) and rs306104 (calmodulin-kinase 4, CaMK4) were associated with VPA responses. However, no association was found for the other SNPs. Furthermore, the polymorphism of UGT2B7 influenced the adjusted concentration (AC) in the responders rather than in the non-responders. CONCLUSION Two SNPs (UGT2B7 and CaMK4) were associated with VPA response, which may explain the pharmacological mechanism of VPA resistance to some extent.
Collapse
Affiliation(s)
- Yan Wang
- Department of pharmacy, children's hospital of Fudan university, Shanghai 201102, China; College of pharmacy, Hainan medical university, Haikou 571199, China
| | - Zhiping Li
- Department of pharmacy, children's hospital of Fudan university, Shanghai 201102, China.
| |
Collapse
|
24
|
Differential expression of miR-34a, 451, 1260, 1275 and 1298 in the neocortex of patients with mesial temporal lobe epilepsy. Epilepsy Res 2019; 157:106188. [PMID: 31470144 DOI: 10.1016/j.eplepsyres.2019.106188] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/07/2019] [Accepted: 08/11/2019] [Indexed: 12/26/2022]
Abstract
Mesial temporal lobe epilepsy (mTLE) is the most common epilepsy syndrome which will eventually become pharmacologically intractable partial-onset seizures. Regulation of gene expression is an important process in the development of this pathology where microRNAs (miRs) are involved. The role of miRs has been widely studied in the hippocampus of rodents and patients. However, little is known about its differential expression in other brain regions such as the neocortex. The temporal neocortex plays a major role in the generation and propagation of seizures and in synaptic disruption, impairing the excitatory and inhibitory balance. Therefore, we assessed the expression of miR-146a, 34a, 1260, 1275, 1298, 451, 132 and 142-3p in the neocortex of 12 patients with mTLE and compared them with miRs expression found in 10 control samples. We noted a significant decrease in the expression of miR-34a and 1298 in patients with mTLE and a -1.49 to -7.0 fold change respectively compared with controls. Conversely, we observed a significant increase in the expression of miR-451, 1260 and 1275 in patients with a 25.67, 4.09 and a 7.07 fold change respectively compared to controls. Using Pearson correlation, we explored the association between the clinical features of mTLE patients and controls with miRs expression. In the control group we found a significant correlation only with age and miR-146a expression (r = 0.733). The analysis of mTLE patients showed a negative correlation between expression of miR-1260 (r = -0.666) and miR-1298 (r = -0.651) and age. Furthermore, we found a positive correlation between miR-146a expression with seizure frequency (r = 0.803) and a positive correlation between miR-146a and 451 expression with number of antiepileptic drugs used for presurgical treatment (r = 0.715 and 0.611 respectively), thus suggesting a positive correlation with disease severity. These miRs are associated with biological processes such as apoptosis, drug resistance, inflammation, inhibitory and excitatory synaptic transmission, axonal guidance and signaling of neurotrophins. Therefore, deepening our understanding of the targets involved in these miRs will help to elucidate the role of the neocortex in epilepsy.
Collapse
|
25
|
Altered microRNA 5692b and microRNA let-7d expression levels in children and adolescents with attention deficit hyperactivity disorder. J Psychiatr Res 2019; 115:158-164. [PMID: 31146084 DOI: 10.1016/j.jpsychires.2019.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/19/2019] [Accepted: 05/20/2019] [Indexed: 11/22/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder. Its etiology is not clearly understood yet, but neurobiological, genetic and environmental factors are shown to play a role. The relationship between ADHD and miRNAs has been studied quite recently, and few studies have been conducted up to now. In this study, peripheral blood expression levels of miR-5692b, miR-let-7d, miR-124-3p, miR-4447 and miR-107 of 30 children and adolescents with combined type ADHD were compared to 30 healthy controls to understand the roles of these miRNAs in the ADHD etiopathogenesis. Compared to controls, levels of miR-5692b (p = 0.006) were found higher and levels of miR-let-7d (p = 0.017) were found lower in the ADHD group. There was no significant difference in terms of miR-124-3p, miR-4447, and miR-107 levels between the groups. In conclusion, our findings support other studies suggesting the importance of miRNAs in the pathogenesis of ADHD. Regarding the regulatory role of miRNAs in gene regulation, their contribution to etiopathogenesis and heterogeneity of ADHD should be investigated further.
Collapse
|
26
|
Zhou Y, Guo X, Chen W, Liu J. Angelica polysaccharide mitigates lipopolysaccharide-evoked inflammatory injury by regulating microRNA-10a in neuronal cell line HT22. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3194-3201. [PMID: 31353963 DOI: 10.1080/21691401.2019.1614595] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yuni Zhou
- Department of Neurology, Jining Psychiatric Hospital, Jining, China
| | - Xiaoqian Guo
- Department of Neurology, Jining No.1 People’s Hospital, Jining, China
| | - Weimei Chen
- Department of Neurology, Jining No.1 People’s Hospital, Jining, China
| | - Jun Liu
- Department of Neurosurgery, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
27
|
Wu Z, Liu Y, Huang J, Huang Y, Fan L. MiR-206 inhibits epilepsy and seizure-induced brain injury by targeting CCL2. Cytotechnology 2019; 71:809-818. [PMID: 31243650 PMCID: PMC6663963 DOI: 10.1007/s10616-019-00324-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
To determine the function of miR-206 in epilepsy. Epileptic rat model was established by intra-amygdala injection of kainic acid (KA). Expression levels of miR-206, C-C Motif Chemokine Ligand 2 (CCL2) and interleukin-1β (Il-1β) in hippocampus tissues was measured by reverse transcription-quantitative PCR (RT-qPCR) and western blot. Dual luciferase reporter assay was performed to determine the binding of miR-206 to 3' untranslated region (UTR) of CCL2. Finally, brain waves were recorded and Hematoxylin and eosin (HE) staining and Nissl's staining were performed on the epileptic rat injected with LPS, miR-206 agomir, adeno-associated virus (AAV) expressed CCL2 alone or in combination. Expression of miR-206 was specially decreased in hippocampus tissues compared to cortex in response to KA induced pathologic brain activity. Enforced expression of miR-206 by injection miR-206 agomir not only decreased seizure activity, but also protected KA-induced neuronal loss. And enforced expression of miR-206 suppressed increase of C-C Motif Chemokine Ligand 2 (CCL2) and interleukin-1β (Il-1β) which were induced by injection of KA or KA combined with lipopolysaccharide (LPS). Further more, results of dual luciferase reporter assay confirmed CCL2 was a target of miR-206. Finally, co-injection adeno-associated virus (AAV) expressed CCL2 with miR-206 agomir abolished the function of miR-206 agomir. Taken together, our results showed that expression of miR-206 could inhibit seizure-induced brain injury by targeting CCL2. Our results showed that expression of miR-206 could inhibit seizure-induced brain injury by targeting CCL2.
Collapse
Affiliation(s)
- Zhenggang Wu
- Department of Neurology, Taizhou People's Hospital, 366 Taihu Road, Taizhou Medicine High-tech Zone, Taizhou City, 225300, Jiangsu Province, China.
| | - Ying Liu
- Department of Neurology, Taizhou People's Hospital, 366 Taihu Road, Taizhou Medicine High-tech Zone, Taizhou City, 225300, Jiangsu Province, China
| | - Jing Huang
- Department of Neurology, Taizhou People's Hospital, 366 Taihu Road, Taizhou Medicine High-tech Zone, Taizhou City, 225300, Jiangsu Province, China
| | - Yujing Huang
- Department of Neurology, Taizhou People's Hospital, 366 Taihu Road, Taizhou Medicine High-tech Zone, Taizhou City, 225300, Jiangsu Province, China
| | - Lin Fan
- Department of Neurology, Taizhou People's Hospital, 366 Taihu Road, Taizhou Medicine High-tech Zone, Taizhou City, 225300, Jiangsu Province, China
| |
Collapse
|
28
|
Antagonizing Increased miR-135a Levels at the Chronic Stage of Experimental TLE Reduces Spontaneous Recurrent Seizures. J Neurosci 2019; 39:5064-5079. [PMID: 31015341 DOI: 10.1523/jneurosci.3014-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/31/2019] [Accepted: 04/16/2019] [Indexed: 01/01/2023] Open
Abstract
Mesial temporal lobe epilepsy (mTLE) is a chronic neurological disease characterized by recurrent seizures. The antiepileptic drugs currently available to treat mTLE are ineffective in one-third of patients and lack disease-modifying effects. miRNAs, a class of small noncoding RNAs which control gene expression at the post-transcriptional level, play a key role in the pathogenesis of mTLE and other epilepsies. Although manipulation of miRNAs at acute stages has been reported to reduce subsequent spontaneous seizures, it is uncertain whether targeting miRNAs at chronic stages of mTLE can also reduce seizures. Furthermore, the functional role and downstream targets of most epilepsy-associated miRNAs remain poorly understood. Here, we show that miR-135a is selectively upregulated within neurons in epileptic brain and report that targeting miR-135a in vivo using antagomirs after onset of spontaneous recurrent seizures can reduce seizure activity at the chronic stage of experimental mTLE in male mice. Further, by using an unbiased approach combining immunoprecipitation and RNA sequencing, we identify several novel neuronal targets of miR-135a, including Mef2a Mef2 proteins are key regulators of excitatory synapse density. Mef2a and miR-135a show reciprocal expression regulation in human (of both sexes) and experimental TLE, and miR-135a regulates dendritic spine number and type through Mef2. Together, our data show that miR-135a is target for reducing seizure activity in chronic epilepsy, and that deregulation of miR-135a in epilepsy may alter Mef2a expression and thereby affect synaptic function and plasticity.SIGNIFICANCE STATEMENT miRNAs are post-transcriptional regulators of gene expression with roles in the pathogenesis of epilepsy. However, the precise mechanism of action and therapeutic potential of most epilepsy-associated miRNAs remain poorly understood. Our study reveals dramatic upregulation of the key neuronal miRNA miR-135a in both experimental and human mesial temporal lobe epilepsy. Silencing miR-135a in experimental temporal lobe epilepsy reduces seizure activity at the spontaneous recurrent seizure stage. These data support the exciting possibility that miRNAs can be targeted to combat seizures after spontaneous seizure activity has been established. Further, by using unbiased approaches novel neuronal targets of miR-135a, including members of the Mef2 protein family, are identified that begin to explain how deregulation of miR-135a may contribute to epilepsy.
Collapse
|
29
|
Yin G, Guan L, Yu L, Huang D. A pilot study on differential expression of microRNAs in the ventromedial prefrontal cortex and serum of sows in activity restricted crates or activity free pens. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1469-1474. [PMID: 31010975 PMCID: PMC6722321 DOI: 10.5713/ajas.18.0910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 11/27/2022]
Abstract
Objective Physical activity restriction in sows may lead to behavioral abnormalities and affective disorders. However, the psychophysiological state of these sows is still unclear. As miRNAs can be used as effective markers of psychopathy, the present study aimed to assess the difference in microRNA expression between the long-term activity restricted sows and activity free sows, thus contributing to the understanding of abnormal sow behaviors.. Methods Four dry sows (sixth parity, Large × White genetic line) were selected from activity restricted crates (RC) or activity free pens (FP) separately. microRNAs in the ventromedial prefrontal cortex (vMPFC) and serum were examined using RT-PCR, and the correlation between the miRNAs expressed in the vMPFC and serum was evaluated. Results miR-134 (1.11 vs 0.84) and miR-1202 (1.09 vs 0.85) levels were higher in the vMPFC of the RC sows than in the FP sows (p < 0.01). Furthermore, miR-132 (1.27 vs 1.08) and miR-335 (1.03 vs 0.84) levels were also higher in the RC sows than in FP sows (p < 0.05); however, miR-135a, miR-135b, miR-16 and miR-124 levels were not different (p > 0.05). The relative expression of serum miR-1202 was higher in the RC sows than in the FP sows (1.04 vs 0.54) (p < 0.05). , and there was a strong correlation (R=0.757, p < 0.05) between vMPFC and Serum levels of miR-1202. However, no significant difference was observed in miR-16 levels in the serum of the RC sows and FP sows (p > 0.05). Conclusion This pilot study demonstrates that long-term activity restriction in sows likely results in autism or other complex psychopathies with depression-like behaviors. These observations may provide new insights for future studies on abnormal behavior in sows and contribute to research on human psychopathy.
Collapse
Affiliation(s)
- Guoan Yin
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Liwei Guan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Langchao Yu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Dapeng Huang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
30
|
Xiao W, Wu Y, Wang J, Luo Z, Long L, Deng N, Ning S, Zeng Y, Long H, Xiao B. Network and Pathway-Based Analysis of Single-Nucleotide Polymorphism of miRNA in Temporal Lobe Epilepsy. Mol Neurobiol 2019; 56:7022-7031. [PMID: 30968344 DOI: 10.1007/s12035-019-1584-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/21/2019] [Indexed: 12/13/2022]
Abstract
Temporal lobe epilepsy (TLE) is a complex disease with its pathogenetic mechanism still unclear. Single-nucleotide polymorphisms (SNPs) of miRNA (miRSNPs) are SNPs located on miRNA genes or target sites of miRNAs, which have been proved to be associated with neuropsychic disease development by interfering with miRNA-mediated regulatory function. In this study, we integrated TLE-related risk genes and risk pathways multi-dimensionally based on public data resources. Furthermore, we systematically screened candidate functional miRSNPs for TLE and constructed a TLE-associated pathway-based miRSNP switching network, which included 92 miRNAs that target 12 TLE risk pathways. Moreover, we dissected thoroughly the correlation between 5 risk genes of 4 risk pathways and TLE development. Additionally, the biological function of several candidate miRSNPs were validated by luciferase reporter assay. In silico approach facilitates to select potential "miRSNP-miRNA-risk gene-pathway" axis for experimental validation, which provided new insights into the mechanism of miRSNPs as potential genetic risk factors of TLE.
Collapse
Affiliation(s)
- Wenbiao Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yanhao Wu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jianjian Wang
- Department of Neurology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Na Deng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yi Zeng
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
31
|
Wang B, Cao X, Lin J, Qian Q, Yu L, Qian Q. Up-regulation of microRNA-223 inhibits brain injury and hippocampal neuron apoptosis of rats after febrile seizure through the NLRP3-Caspase-1 signaling pathway. Biomed Pharmacother 2019; 114:108683. [PMID: 30947016 DOI: 10.1016/j.biopha.2019.108683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE This study is conducted to explore the role of microRNA-223 (miR-223) in brain injury and apoptosis of hippocampal neurons through the NLRP3-Caspase-1 signaling pathway in febrile seizure (FS) rats. METHODS The models of FS were induced in rats by hot water-bath, which were stereotactically injected with miR-223 mimics and mimics negative control (NC) to perturb the expression of miR-223. A series of experiments was conducted to find out the potential mechanisms of miR-223 on convulsion attack, learning and memory ability, pathological injury of hippocampal neurons, inflammatory injury, apoptosis of hippocampal neurons in FS rats. Besides, the targeting relationship between miR-223 and NLRP3 was also verified. RESULTS Low expression of miR-223 was found in hippocampus tissues of FS rats. Up-regulation of miR-223 alleviated convulsion attack and improved learning and memory ability, while inhibiting pathological injury of hippocampal neurons and inflammatory injury in FS rats. Up-regulation of miR-223 promoted the survival of hippocampal neurons and inhibited their apoptosis in FS rats. MiR-223 inhibited the activation of NLRP3-Caspase-1 signaling pathway in hippocampus tissues of FS rats by inhibiting NLRP3. CONCLUSION The inhibited expression of miR-223 after FS may participate in the activation of the NLRP3-Caspase-1 signaling pathway, resulting in brain injury and apoptosis of hippocampal neurons in rat models of FS.
Collapse
Affiliation(s)
- Bin Wang
- Department of Pediatrics, Affiliated Hospital of North China University of Science and Technology, Tangshan 063000, PR China
| | - Xiangke Cao
- Experimental Center, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, PR China
| | - Jie Lin
- Department of Anesthesiology, Tangshan Maternal & Child Health Care Hospital, Tangshan 063000, PR China.
| | - Qingqiang Qian
- Department of Neurology, Tangshan Workers' Hospital, Tangshan 063000, PR China
| | - Ling Yu
- Department of Pediatrics, Affiliated Hospital of North China University of Science and Technology, Tangshan 063000, PR China
| | - Qingzeng Qian
- Experimental Center, School of Public Health, North China University of Science and Technology, Tangshan 063000, PR China
| |
Collapse
|
32
|
Lee WJ, Moon J, Jeon D, Kim TJ, Yoo JS, Park DK, Lee ST, Jung KH, Park KI, Jung KY, Kim M, Lee SK, Chu K. Possible epigenetic regulatory effect of dysregulated circular RNAs in epilepsy. PLoS One 2018; 13:e0209829. [PMID: 30592747 PMCID: PMC6310357 DOI: 10.1371/journal.pone.0209829] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) involve in the epigenetic regulation and its major mechanism is the sequestration of the target micro RNAs (miRNAs). We hypothesized that circRNAs might be related with the pathophysiology of chronic epilepsy and evaluated the altered circRNA expressions and their possible regulatory effects on their target miRNAs and mRNAs in a mouse epilepsy model. The circRNA expression profile in the hippocampus of the pilocarpine mice was analyzed and compared with control. The correlation between the expression of miRNA binding sites (miRNA response elements, MRE) in the dysregulated circRNAs and the expression of their target miRNAs was evaluated. As miRNAs also inhibit their target mRNAs, circRNA–miRNA-mRNA regulatory network, comprised of dysregulated RNAs that targets one another were searched. For the identified networks, bioinformatics analyses were performed. As the result, Forty-three circRNAs were dysregulated in the hippocampus (up-regulated, 26; down-regulated, 17). The change in the expression of MRE in those circRNAs negatively correlated with the change in the relevant target miRNA expression (r = -0.461, P<0.001), supporting that circRNAs inhibit their target miRNA. 333 dysregulated circRNA–miRNA-mRNA networks were identified. Gene ontology and pathway analyses demonstrated that the up-regulated mRNAs in those networks were closely related to the major processes in epilepsy. Among them, STRING analysis identified 37 key mRNAs with abundant (≥4) interactions with other dysregulated target mRNAs. The dysregulation of the circRNAs which had multiple interactions with key mRNAs were validated by PCR. We concluded that dysregulated circRNAs might have a pathophysiologic role in chronic epilepsy by regulating multiple disease relevant mRNAs via circRNA−miRNA−mRNA interactions.
Collapse
Affiliation(s)
- Woo-Jin Lee
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul, South Korea
| | - Jangsup Moon
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul, South Korea
| | - Daejong Jeon
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Tae-Joon Kim
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul, South Korea
| | - Jung-Suk Yoo
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Dong-Kyu Park
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Soon-Tae Lee
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul, South Korea
| | - Keun-Hwa Jung
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul, South Korea
| | - Kyung-Il Park
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Neurology, Seoul National University Healthcare System Gangnam Center, Seoul, South Korea
| | - Ki-Young Jung
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul, South Korea
| | - Manho Kim
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul, South Korea
| | - Sang Kun Lee
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul, South Korea
- * E-mail: (KC); (SKL)
| | - Kon Chu
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, College of Medicine, Seoul National University, Seoul, South Korea
- * E-mail: (KC); (SKL)
| |
Collapse
|
33
|
Beamer EH, Jurado-Arjona J, Jimenez-Mateos EM, Morgan J, Reschke CR, Kenny A, de Leo G, Olivos-Oré LA, Arribas-Blázquez M, Madden SF, Merchán-Rubira J, Delanty N, Farrell MA, O'Brien DF, Avila J, Diaz-Hernandez M, Miras-Portugal MT, Artalejo AR, Hernandez F, Henshall DC, Engel T. MicroRNA-22 Controls Aberrant Neurogenesis and Changes in Neuronal Morphology After Status Epilepticus. Front Mol Neurosci 2018; 11:442. [PMID: 30618601 PMCID: PMC6298134 DOI: 10.3389/fnmol.2018.00442] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Prolonged seizures (status epilepticus, SE) may drive hippocampal dysfunction and epileptogenesis, at least partly, through an elevation in neurogenesis, dysregulation of migration and aberrant dendritic arborization of newly-formed neurons. MicroRNA-22 was recently found to protect against the development of epileptic foci, but the mechanisms remain incompletely understood. Here, we investigated the contribution of microRNA-22 to SE-induced aberrant adult neurogenesis. SE was induced by intraamygdala microinjection of kainic acid (KA) to model unilateral hippocampal neuropathology in mice. MicroRNA-22 expression was suppressed using specific oligonucleotide inhibitors (antagomir-22) and newly-formed neurons were visualized using the thymidine analog iodo-deoxyuridine (IdU) and a green fluorescent protein (GFP)-expressing retrovirus to visualize the dendritic tree and synaptic spines. Using this approach, we quantified differences in the rate of neurogenesis and migration, the structure of the apical dendritic tree and density and morphology of dendritic spines in newly-formed neurons.SE resulted in an increased rate of hippocampal neurogenesis, including within the undamaged contralateral dentate gyrus (DG). Newly-formed neurons underwent aberrant migration, both within the granule cell layer and into ectopic sites. Inhibition of microRNA-22 exacerbated these changes. The dendritic diameter and the density and average volume of dendritic spines were unaffected by SE, but these parameters were all elevated in mice in which microRNA-22 was suppressed. MicroRNA-22 inhibition also reduced the length and complexity of the dendritic tree, independently of SE. These data indicate that microRNA-22 is an important regulator of morphogenesis of newly-formed neurons in adults and plays a role in supressing aberrant neurogenesis associated with SE.
Collapse
Affiliation(s)
- Edward H Beamer
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jeronimo Jurado-Arjona
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Molecular Biology, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Centro Investigación Biomédica en Red Enfermedades Neurodegenerativa (CIBERNED), Madrid, Spain
| | - Eva M Jimenez-Mateos
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James Morgan
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cristina R Reschke
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, RCSI, Dublin, Ireland
| | - Aidan Kenny
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gioacchino de Leo
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Luis A Olivos-Oré
- Department of Pharmacology and Toxicology, Veterinary Faculty, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain
| | - Marina Arribas-Blázquez
- Department of Pharmacology and Toxicology, Veterinary Faculty, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain
| | - Stephen F Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jesús Merchán-Rubira
- Department of Molecular Biology, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Centro Investigación Biomédica en Red Enfermedades Neurodegenerativa (CIBERNED), Madrid, Spain
| | - Norman Delanty
- FutureNeuro Research Centre, RCSI, Dublin, Ireland.,Beaumont Hospital, Dublin, Ireland
| | | | | | - Jesus Avila
- Department of Molecular Biology, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Centro Investigación Biomédica en Red Enfermedades Neurodegenerativa (CIBERNED), Madrid, Spain
| | - Miguel Diaz-Hernandez
- Department of Biochemistry and Molecular Biology, Veterinary Faculty, Universidad Complutense de Madrid, Madrid, Spain
| | - M Teresa Miras-Portugal
- Department of Biochemistry and Molecular Biology, Veterinary Faculty, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio R Artalejo
- Department of Pharmacology and Toxicology, Veterinary Faculty, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain
| | - Felix Hernandez
- Department of Molecular Biology, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Centro Investigación Biomédica en Red Enfermedades Neurodegenerativa (CIBERNED), Madrid, Spain
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, RCSI, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, RCSI, Dublin, Ireland
| |
Collapse
|
34
|
Lin C, Li Z, Chen P, Quan J, Pan X, Zhao L, Zhou L, Lai Y, He T, Xu W, Xu J, Guan X, Li H, Yang S, Hu Y, Lai Y. Oncogene miR-154-5p regulates cellular function and acts as a molecular marker with poor prognosis in renal cell carcinoma. Life Sci 2018; 209:481-489. [PMID: 30138594 DOI: 10.1016/j.lfs.2018.08.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/11/2018] [Accepted: 08/19/2018] [Indexed: 02/05/2023]
Abstract
AIMS In adult population, the renal cell carcinoma (RCC) is one of the most common urological malignancies. It is meaningful to research for the molecular markers which are involved in the occurrence and development of RCC. Therefore, we concentrate on illuminating the role of microRNA-154-5p in progression of RCC and explore its prognostic values. MAIN METHODS The real-time quantitative polymerase chain reaction (RT-qPCR) was applied to determine expression level of miR-154-5p in tissues. Afterwards, the transfected cell lines ACHN and 786-O were used for the CCK-8 assay, MTT assay, wound healing assay, transwell assay and flow cytometric assay to explore the role of miR-154-5p in regulating cellular function. In addition, formalin-fixed paraffin-embedded (FFPE) renal cancer samples were used for detecting the relationship between expression level of miR-154-5p and clinical information. Furthermore, univariate and multivariate Cox proportional-hazards regression analyses, and the Kaplan-Meier survival curves were performed to evaluate the prognostic value of miR-154-5p in RCC. KEY FINDINGS The RT-qPCR indicated that miR-154-5p is up-regulated in RCC pathologic specimens and cell lines. Results of study also demonstrated that upregulation of miR-154-5p reduced cell apoptosis and promoted cell proliferation, viability, migration as well as invasion in RCC cells. The prognosis analyses indicated that the expression level of miR-154-5p is associated with the prognosis of renal cancer, and the overall survival of patients with low expression is longer. SIGNIFICANCE The present study revealed that the oncogene miR-154-5p regulates cellular function and acts as a molecular marker with poor prognosis in renal cell carcinoma.
Collapse
Affiliation(s)
- Canbin Lin
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; Department of Urology, Shantou University Medical College, Shantou, Guangdong 515041, PR China; Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Zuwei Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; Department of Urology, Shantou University Medical College, Shantou, Guangdong 515041, PR China; Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Peijie Chen
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; Department of Urology, Shantou University Medical College, Shantou, Guangdong 515041, PR China; Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Jing Quan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Xiang Pan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Liwen Zhao
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Liang Zhou
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Yulin Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Tao He
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Weijie Xu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China
| | - Jinling Xu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China
| | - Xin Guan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China
| | - Hang Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China
| | - Shangqi Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China
| | - Yimin Hu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China.
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China.
| |
Collapse
|
35
|
Cava C, Manna I, Gambardella A, Bertoli G, Castiglioni I. Potential Role of miRNAs as Theranostic Biomarkers of Epilepsy. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:275-290. [PMID: 30321815 PMCID: PMC6197620 DOI: 10.1016/j.omtn.2018.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022]
Abstract
Epilepsy includes a group of disorders of the brain characterized by an enduring predisposition to generate epileptic seizures. Although familial epilepsy has a genetic component and heritability, the etiology of the majority of non-familial epilepsies has no known associated genetic mutations. In epilepsy, recent epigenetic profiles have highlighted a possible role of microRNAs in its pathophysiology. In particular, molecular profiling identifies a significant number of microRNAs (miRNAs) altered in epileptic hippocampus of both animal models and human tissues. In this review, analyzing molecular profiles of different animal models of epilepsy, we identified a group of 20 miRNAs commonly altered in different epilepsy-animal models. As emerging evidences highlighted the poor overlap between signatures of animal model tissues and human samples, we focused our analysis on miRNAs, circulating in human biofluids, with a principal role in epilepsy hallmarks, and we identified a group of 8 diagnostic circulating miRNAs. We discussed the functional role of these 8 miRNAs in the epilepsy hallmarks. A few of them have also been proposed as therapeutic molecules for epilepsy treatment, revealing a great potential for miRNAs as theranostic molecules in epilepsy.
Collapse
Affiliation(s)
- Claudia Cava
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| | - Ida Manna
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Section of Germaneto, 88100 Catanzaro, Italy
| | - Antonio Gambardella
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia," Germaneto, 88100 Catanzaro, Italy.
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy.
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| |
Collapse
|
36
|
Wu DM, Zhang YT, Lu J, Zheng YL. Effects of microRNA-129 and its target gene c-Fos on proliferation and apoptosis of hippocampal neurons in rats with epilepsy via the MAPK signaling pathway. J Cell Physiol 2018; 233:6632-6643. [PMID: 29194604 DOI: 10.1002/jcp.26297] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/28/2017] [Indexed: 11/12/2022]
Abstract
This study aims to investigate the effect of microRNA-129 (miR-129) on proliferation and apoptosis of hippocampal neurons in epilepsy rats by targeting c-Fos via the MAPK signaling pathway. Thirty rats were equally classified into a model group (successfully established as chronic epilepsy models) and a normal group. Expression of miR-129, c-Fos, bax, and MAPK was detected by RT-qPCR and Western blotting. Hippocampal neurons were assigned into normal, blank, negative control (NC), miR-129 mimic, miR-129 inhibitor, siRNA-c-Fos, miR-129 inhibitor+siRNA-c-Fos groups. The targeting relationship between miR-129 and c-Fos was predicted and verified by bioinformatics websites and dual-luciferase reporter gene assay. Cell proliferation after transfection was measured by MTT assay, and cell cycle and apoptosis by flow cytometry. c-Fos is a potential target gene of miR-129. Compared with the normal group, the other six groups showed a decreased miR-129 expression; increased expression of expression of c-Fos, Bax, and MAPK; decreased proliferation; accelerated apoptosis; more cells arrested in the G1 phase; and fewer cells arrested in the S phase. Compared with the blank and NC groups, the miR-129 mimic group and the siRNA-c-Fos group showed decreased expression of c-Fos, Bax, and MAPK, increased cells proliferation, and decreased cell apoptosis, fewer cells arrested in the G1 phase and more cells arrested in the S phase. However, the miR-129 inhibitor groups showed reverse consequences. This study suggests that miR-129 could inhibit the occurrence and development of epilepsy by repressing c-Fos expression through inhibiting the MAPK signaling pathway.
Collapse
Affiliation(s)
- Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P. R. China
| | - Yu-Tong Zhang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P. R. China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P. R. China
| |
Collapse
|
37
|
Wen X, Han XR, Wang YJ, Wang S, Shen M, Zhang ZF, Fan SH, Shan Q, Wang L, Li MQ, Hu B, Sun CH, Wu DM, Lu J, Zheng YL. MicroRNA-421 suppresses the apoptosis and autophagy of hippocampal neurons in epilepsy mice model by inhibition of the TLR/MYD88 pathway. J Cell Physiol 2018; 233:7022-7034. [PMID: 29380367 DOI: 10.1002/jcp.26498] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/24/2018] [Indexed: 11/07/2022]
Abstract
Epilepsy is a group of neurological disorders characterized by epileptic seizures. In this study, we aim to explore the role of microRNA-421 (miR-421) in hippocampal neurons of epilepsy mice via the TLR/MYD88 pathway. Forty mice were randomly served as the normal and model (established as epilepsy model) groups. Hippocampal neurons were assigned into seven groups with different transfections. The RT-qPCR and western blotting were conducted to examine the expression of miR-421 TLR2, TLR4, MYD88, Bax, Bcl-2, p53, Beclin-1, and LC3II/LC3I. Cell proliferation and apoptosis were detected by MTT and flow cytometry.MYD88 is a target gene of miR-421. Model mice showed elevated expression of TLR2, TLR4, MYD88, Bax, p53, Beclin-1, and LC3II/LC3I but reduced expression of miR-421 and Bcl-2. In vitro experiments reveals that overexpression of miR-421 inhibited the TLR/MYD88 pathway. Besides, overexpressed miR-421 declined cell apoptosis but increased cell proliferation. It reveals that miR-421 targeting MYD88 could inhibit the apoptosis and autophagy of hippocampal neurons in epilepsy mice by down-regulating the TLR/MYD88 pathway.
Collapse
Affiliation(s)
- Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Xin-Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Yong-Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Min Shen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Shao-Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Liang Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Meng-Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Chun-Hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| |
Collapse
|
38
|
Ma Y. The Challenge of microRNA as a Biomarker of Epilepsy. Curr Neuropharmacol 2018; 16:37-42. [PMID: 28676013 PMCID: PMC5771381 DOI: 10.2174/1570159x15666170703102410] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/28/2017] [Accepted: 04/27/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Epilepsy is one of chronic severe neurological disorders possess to recurring seizures. And now anti-epileptic drugs are only effective in less than one third of epilepsy patients, and biomarkers predicting are not available when the specific antiepileptic drugs treated. Advanced studies have showed that miRNA may be a key in the pathogenesis of epilepsy beginning in the early 2000 years. Several target genes and pathways of miRNA which related to the therapeutic methods to epilepsy. METHOD We searched PubMed from Jan 1,2000 to Jan 1, 2017, using the terms "epilepsy AND microRNA AND biomarker" and "seizure AND microRNA AND biomarker". We selected articles that featured novel miRNAs in vivo epilepsy models and patients. We then selected the most relevant articles based on a subjective appraisal of their quality and mechanistic insight that could be relevant to epilepsy. RESULTS Decrease the expression of has-miR134 could be a potential non-invasive biomarker to use in diagnosis for the epilepsy patients for using hsa-miR-134 also be identified to distinguish patients with and without epilepsy. miR-181a show significant downregulation in the acute stage, but up regulation in the chronic stage and in the latent stage there is no changing and how about this phenomenon appearance in different stage still should be discussed in the future. Besides that, miR- 146a can down-regulated in the patients using genome-wide for serum in circulating miRNAs.miR- 124, miR-199a, and miR-128 etc. could be a candidate for the biomarker in future. miR-15a-5p and -194-5p down-regulated in epilepsy patients, in the future, it may be used as a novel biomarker for improve diagnosis. CONCLUSION These observations give a chance that new development for diagnosis and treatment of epilepsy patients. Advanced technique and miRNA combination may product more effective roles in epilepsy and other disease. These reports will be available to solve the application of miRNAs as biomarkers and novel therapy approaches for epilepsy. In summary, researcher who focus on miRNAs should be understanding of the causes, treatment, and diagnosis of epilepsy. exploration of any of these effects on the efficacy of these drugs is worthwhile.
Collapse
Affiliation(s)
- Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
39
|
Szepetowski P. Genetics of human epilepsies: Continuing progress. Presse Med 2017; 47:218-226. [PMID: 29277263 DOI: 10.1016/j.lpm.2017.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/24/2017] [Indexed: 01/06/2023] Open
Abstract
Numerous epilepsy genes have been identified in the last years, mostly in the (rare) monogenic forms and thanks to the increased availability and the decreased cost of next-generation sequencing approaches. Besides the somehow expected group of epilepsy genes encoding various ion channel subunits (e.g. sodium or potassium channel subunits, or GABA receptors, or glutamate-gated NMDA receptors), more diversity has emerged recently, with novel epilepsy genes encoding proteins playing a wide range of physiological roles at the cellular and molecular levels, such as synaptic proteins, members of the mTOR pathway, or proteins involved in chromatin remodeling. The overall picture is somehow complicated: one given epilepsy gene can be associated with more than one epileptic phenotype, and with variable degrees of severity, from the benign to the severe forms (e.g. epileptic encephalopathies), and with various comorbid conditions such as migraine or autism spectrum of disorders. Conversely, one given epileptic syndrome may be associated with different genes, some of which have obvious links with each other (e.g. encoding different subunits of the same receptor) while other ones have no clear relationships. Also genomic copy number variations have been detected, some of which, albeit rare, may confer high risk to epilepsy. Whereas translation from gene identification to targeted medicine still remains challenging, progress in epilepsy genetics is currently revolutionizing genetic-based diagnosis and genetic counseling. Epilepsy gene identification also represents a key entry point to start in deciphering the underlying pathophysiological mechanisms via the design and the study of the most pertinent cellular and animal models - which may in turn provide proofs-of-principle for future applications in human epilepsies.
Collapse
Affiliation(s)
- Pierre Szepetowski
- Mediterranean Institute of Neurobiology (INMED), Inserm U901, parc scientifique de Luminy, BP 13, 13273 Marseille cedex 09, France.
| |
Collapse
|
40
|
Bielefeld P, Mooney C, Henshall DC, Fitzsimons CP. miRNA-Mediated Regulation of Adult Hippocampal Neurogenesis; Implications for Epilepsy. Brain Plast 2017; 3:43-59. [PMID: 29765859 PMCID: PMC5928558 DOI: 10.3233/bpl-160036] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hippocampal neural stem/progenitor cells (NSPCs) proliferate and differentiate to generate new neurons across the life span of most mammals, including humans. This process takes place within a characteristic local microenvironment where NSPCs interact with a variety of other cell types and encounter systemic regulatory factors. Within this microenvironment, cell intrinsic gene expression programs are modulated by cell extrinsic signals through complex interactions, in many cases involving short non-coding RNA molecules, such as miRNAs. Here we review the regulation of gene expression in NSPCs by miRNAs and its possible implications for epilepsy, which has been linked to alterations in adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Pascal Bielefeld
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, The Netherlands
| | - Catherine Mooney
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David C. Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Carlos P. Fitzsimons
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, The Netherlands
| |
Collapse
|
41
|
Lin WH, Li XF, Lin MX, Zhou Y, Huang HP. Novel insights into the effect of paroxetine administration in pilocarpine‑induced chronic epileptic rats. Mol Med Rep 2017; 16:8245-8252. [PMID: 28983622 DOI: 10.3892/mmr.2017.7659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 05/09/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the role of paroxetine intervention in epilepsy, and its association with the expression of serotonin transporter (SERT) and hippocampal apoptosis. Thirty adult male Sprague Dawley rats were divided into control vehicle (n=6) and epileptic (n=24) groups. Status epilepticus (SE) was induced via systemic injection of pilocarpine, and seizure activity was monitored via video electroencephalogram. The epileptic group was then randomly divided into two groups; Four weeks following SE induction, paroxetine (5 mg/kg/day; SE + paroxetine group) or normal saline (SE group) was intraperitoneally injected for 4 weeks. Brain tissue was collected to evaluate apoptosis via terminal deoxynucleotidyl transferase dUTP nick‑end labeling. SERT, B‑cell lymphoma‑2 (Bcl‑2) and brain derived neurotropic factor (BDNF) expression levels were evaluated by western blotting, and miR‑16 expression was evaluated by reverse transcription‑quantitative polymerase chain reaction. Paroxetine did not affect the mortality of the pilocarpine‑induced chronic epileptic rats. Spontaneous recurrent seizures (SSRs) were observed 7‑28 days following SE induction. The frequency and stage of the SSRs were reduced by paroxetine administration. Apoptotic cells were observed in the epileptic hippocampus. Following paroxetine intervention, the staining intensity and number of apoptotic cells were significantly decreased. Expression levels of BDNF and Bcl‑2 were lower in the SE group compared with the vehicle group. The former was not altered by paroxetine injection; however, the latter was increased. In the SE group, SERT expression was not altered in the raphe nucleus but was decreased in the hippocampus. Following paroxetine administration, SERT expression was decreased in the raphe nucleus and increased in the hippocampus. In the SE group, miR‑16 expression was decreased in the raphe nucleus and increased in the hippocampus. Following paroxetine administration, miR‑16 expression was not altered in the raphe nucleus but was reduced in the hippocampus. In conclusion, the seizures and hippocampal apoptosis observed in chronic epileptic rats were alleviated by paroxetine treatment. This effect may be associated with the reduced Bcl‑2 and BDNF expression and the modulation of SERT expression. The alterations in miR‑16 expression may provide a potential explanation for the modulation of apoptosis; however, further research is required to determine the complete underlying molecular mechanism.
Collapse
Affiliation(s)
- Wan-Hui Lin
- Department of Neurology and Geriatrics, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xiao-Feng Li
- Department of Neurology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Ming-Xing Lin
- Department of Pediatrics, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Ying Zhou
- Neuroscience Research Center of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Hua-Pin Huang
- Department of Neurology and Geriatrics, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
42
|
Systematic review and meta-analysis of differentially expressed miRNAs in experimental and human temporal lobe epilepsy. Sci Rep 2017; 7:11592. [PMID: 28912503 PMCID: PMC5599629 DOI: 10.1038/s41598-017-11510-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/25/2017] [Indexed: 01/08/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is a common chronic neurological disease in humans. A number of studies have demonstrated differential expression of miRNAs in the hippocampus of humans with TLE and in animal models of experimental epilepsy. However, the dissimilarities in experimental design have led to largely discordant results across these studies. Thus, a comprehensive comparison is required in order to better characterize miRNA profiles obtained in various post-status epilepticus (SE) models. We therefore created a database and performed a meta-analysis of differentially expressed miRNAs across 3 post-SE models of epileptogenesis (electrical stimulation, pilocarpine and kainic acid) and human TLE with hippocampal sclerosis (TLE-HS). The database includes data from 11 animal post-SE studies and 3 human TLE-HS studies. A total of 378 differentially expressed miRNAs were collected (274 up-regulated and 198 down-regulated) and analyzed with respect to the post-SE model, time point and animal species. We applied the novel robust rank aggregation method to identify consistently differentially expressed miRNAs across the profiles. It highlighted common and unique miRNAs at different stages of epileptogenesis. The pathway analysis revealed involvement of these miRNAs in key pathogenic pathways underlying epileptogenesis, including inflammation, gliosis and deregulation of the extracellular matrix.
Collapse
|
43
|
Majumdar A, Ahmad F, Sheikh T, Bhagat R, Pathak P, Joshi SD, Seth P, Tandon V, Tripathi M, Saratchandra P, Sarkar C, Sen E. miR-217–casein kinase-2 cross talk regulates ERK activation in ganglioglioma. J Mol Med (Berl) 2017; 95:1215-1226. [DOI: 10.1007/s00109-017-1571-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/19/2017] [Accepted: 07/14/2017] [Indexed: 12/22/2022]
|
44
|
Yawno T, Miller SL, Bennet L, Wong F, Hirst JJ, Fahey M, Walker DW. Ganaxolone: A New Treatment for Neonatal Seizures. Front Cell Neurosci 2017; 11:246. [PMID: 28878622 PMCID: PMC5572234 DOI: 10.3389/fncel.2017.00246] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
Neonatal seizures are amongst the most common neurologic conditions managed by a neonatal care service. Seizures can exacerbate existing brain injury, induce “de novo” injury, and are associated with neurodevelopmental disabilities in post-neonatal life. In this mini-review, we present evidence in support of the use of ganaxolone, a GABAA agonist neurosteroid, as a novel neonatal therapy. We discuss evidence that ganaxolone can provide both seizure control and neuroprotection with a high safety profile when administered early following birth-related hypoxia, and show evidence that it is likely to prevent or reduce the incidence of the enduring disabilities associated with preterm birth, cerebral palsy, and epilepsy. We suggest that ganaxolone is an ideal anti-seizure treatment because it can be safely used prospectively, with minimal or no adverse effects on the neonatal brain.
Collapse
Affiliation(s)
- Tamara Yawno
- Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash UniversityClayton, VIC, Australia
| | - Suzie L Miller
- Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash UniversityClayton, VIC, Australia
| | - Laura Bennet
- Department of Physiology, The University of AucklandAuckland, New Zealand
| | - Flora Wong
- Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,Department of Paediatrics, Monash UniversityClayton, VIC, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of NewcastleCallaghan, NSW, Australia
| | - Michael Fahey
- Department of Paediatrics, Monash UniversityClayton, VIC, Australia
| | - David W Walker
- Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,School of Health and Biomedical Sciences, RMIT UniversityBundoora, VIC, Australia
| |
Collapse
|
45
|
Bencurova P, Baloun J, Musilova K, Radova L, Tichy B, Pail M, Zeman M, Brichtova E, Hermanova M, Pospisilova S, Mraz M, Brazdil M. MicroRNA and mesial temporal lobe epilepsy with hippocampal sclerosis: Whole miRNome profiling of human hippocampus. Epilepsia 2017; 58:1782-1793. [PMID: 28815576 DOI: 10.1111/epi.13870] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Mesial temporal lobe epilepsy (mTLE) is a severe neurological disorder characterized by recurrent seizures. mTLE is frequently accompanied by neurodegeneration in the hippocampus resulting in hippocampal sclerosis (HS), the most common morphological correlate of drug resistance in mTLE patients. Incomplete knowledge of pathological changes in mTLE+HS complicates its therapy. The pathological mechanism underlying mTLE+HS may involve abnormal gene expression regulation, including posttranscriptional networks involving microRNAs (miRNAs). miRNA expression deregulation has been reported in various disorders, including epilepsy. However, the miRNA profile of mTLE+HS is not completely known and needs to be addressed. METHODS Here, we have focused on hippocampal miRNA profiling in 33 mTLE+HS patients and nine postmortem controls to reveal abnormally expressed miRNAs. In this study, we significantly reduced technology-related bias (the most common source of false positivity in miRNA profiling data) by combining two different miRNA profiling methods, namely next generation sequencing and miRNA-specific quantitative real-time polymerase chain reaction. RESULTS These methods combined have identified and validated 20 miRNAs with altered expression in the human epileptic hippocampus; 19 miRNAs were up-regulated and one down-regulated in mTLE+HS patients. Nine of these miRNAs have not been previously associated with epilepsy, and 19 aberrantly expressed miRNAs potentially regulate the targets and pathways linked with epilepsy (such as potassium channels, γ-aminobutyric acid, neurotrophin signaling, and axon guidance). SIGNIFICANCE This study extends current knowledge of miRNA-mediated gene expression regulation in mTLE+HS by identifying miRNAs with altered expression in mTLE+HS, including nine novel abnormally expressed miRNAs and their putative targets. These observations further encourage the potential of microRNA-based biomarkers or therapies.
Collapse
Affiliation(s)
- Petra Bencurova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Neurology, Brno Epilepsy Center, St. Anne's University Hospital, Brno, Czech Republic.,Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Jiri Baloun
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Neurology, Brno Epilepsy Center, St. Anne's University Hospital, Brno, Czech Republic.,Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Katerina Musilova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Lenka Radova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Boris Tichy
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martin Pail
- Department of Neurology, Brno Epilepsy Center, St. Anne's University Hospital, Brno, Czech Republic.,Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Martin Zeman
- Medical Faculty of Masaryk University, Brno, Czech Republic.,Department of Forensic Medicine, St. Anne's University Hospital, Brno, Czech Republic
| | - Eva Brichtova
- Medical Faculty of Masaryk University, Brno, Czech Republic.,Department of Neurosurgery, St. Anne's University Hospital, Brno, Czech Republic
| | - Marketa Hermanova
- Medical Faculty of Masaryk University, Brno, Czech Republic.,First Department of Pathological Anatomy, St. Anne's University Hospital, Brno, Czech Republic
| | - Sarka Pospisilova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Milan Brazdil
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Neurology, Brno Epilepsy Center, St. Anne's University Hospital, Brno, Czech Republic.,Medical Faculty of Masaryk University, Brno, Czech Republic
| |
Collapse
|
46
|
Jozwiak S, Becker A, Cepeda C, Engel J, Gnatkovsky V, Huberfeld G, Kaya M, Kobow K, Simonato M, Loeb JA. WONOEP appraisal: Development of epilepsy biomarkers-What we can learn from our patients? Epilepsia 2017; 58:951-961. [PMID: 28387933 PMCID: PMC5806696 DOI: 10.1111/epi.13728] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Current medications for patients with epilepsy work in only two of three patients. For those medications that do work, they only suppress seizures. They treat the symptoms, but do not modify the underlying disease, forcing patients to take these drugs with significant side effects, often for the rest of their lives. A major limitation in our ability to advance new therapeutics that permanently prevent, reduce the frequency of, or cure epilepsy comes from a lack of understanding of the disease coupled with a lack of reliable biomarkers that can predict who has or who will get epilepsy. METHODS The main goal of this report is to present a number of approaches for identifying reliable biomarkers from observing patients with brain disorders that have a high probability of producing epilepsy. RESULTS A given biomarker, or more likely a profile of biomarkers, will have both a quantity and a time course during epileptogenesis that can be used to predict who will get the disease, to confirm epilepsy as a diagnosis, to identify coexisting pathologies, and to monitor the course of treatments. SIGNIFICANCE Additional studies in patients and animal models could identify common and clinically valuable biomarkers to successfully translate animal studies into new and effective clinical trials.
Collapse
Affiliation(s)
- Sergiusz Jozwiak
- Department of Child Neurology, Medical University of Warsaw, Poland
- Department of Child Neurology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Albert Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Carlos Cepeda
- IDDRC, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Jerome Engel
- Departments of Neurology, Neurobiology, and Psychiatry & Biobehavioral Sciences and the Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Vadym Gnatkovsky
- Unit of Epilepsy and Experimental Neurophysiology, Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gilles Huberfeld
- Sorbonne and UPMC University, AP-HP, Department of Neurophysiology, UPMC and La Pitié-Salpêtrière Hospital, Paris, France
- INSERM U1129, Paris Descartes University, PRES Sorbonne Paris, Cité, Paris, CEA, France
| | - Mehmet Kaya
- Department of Physiology, Koc University School of Medicine, Rumelifeneri Yolu, Sariver, Istanbul, Turkey
| | - Katja Kobow
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Michele Simonato
- Department of Medical Sciences, University of Ferrara and Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Jeffrey A. Loeb
- Department of Neurology and Rehabilitation, The University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
47
|
Pitkänen A, Löscher W, Vezzani A, Becker AJ, Simonato M, Lukasiuk K, Gröhn O, Bankstahl JP, Friedman A, Aronica E, Gorter JA, Ravizza T, Sisodiya SM, Kokaia M, Beck H. Advances in the development of biomarkers for epilepsy. Lancet Neurol 2017; 15:843-856. [PMID: 27302363 DOI: 10.1016/s1474-4422(16)00112-5] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/16/2016] [Accepted: 03/02/2016] [Indexed: 12/13/2022]
Abstract
Over 50 million people worldwide have epilepsy. In nearly 30% of these cases, epilepsy remains unsatisfactorily controlled despite the availability of over 20 antiepileptic drugs. Moreover, no treatments exist to prevent the development of epilepsy in those at risk, despite an increasing understanding of the underlying molecular and cellular pathways. One of the major factors that have impeded rapid progress in these areas is the complex and multifactorial nature of epilepsy, and its heterogeneity. Therefore, the vision of developing targeted treatments for epilepsy relies upon the development of biomarkers that allow individually tailored treatment. Biomarkers for epilepsy typically fall into two broad categories: diagnostic biomarkers, which provide information on the clinical status of, and potentially the sensitivity to, specific treatments, and prognostic biomarkers, which allow prediction of future clinical features, such as the speed of progression, severity of epilepsy, development of comorbidities, or prediction of remission or cure. Prognostic biomarkers are of particular importance because they could be used to identify which patients will develop epilepsy and which might benefit from preventive treatments. Biomarker research faces several challenges; however, biomarkers could substantially improve the management of people with epilepsy and could lead to prevention in the right person at the right time, rather than just symptomatic treatment.
Collapse
Affiliation(s)
- Asla Pitkänen
- Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Annamaria Vezzani
- Department of Neuroscience, Experimental Neurology, IRCCS-Istituto di Recerche Farmacologiche "Mario Negri", Milan, Italy
| | - Albert J Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, University of Bonn, Bonn, Germany
| | - Michele Simonato
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy; Unit of Gene Therapy of Neurodegenerative Diseases, Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Katarzyna Lukasiuk
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Olli Gröhn
- Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jens P Bankstahl
- Preclinical Molecular Imaging, Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Alon Friedman
- Department of Brain and Cognitive Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Israel; Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Eleonora Aronica
- Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Teresa Ravizza
- Department of Neuroscience, Experimental Neurology, IRCCS-Istituto di Recerche Farmacologiche "Mario Negri", Milan, Italy
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK; Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | - Merab Kokaia
- Epilepsy Center, Experimental Epilepsy Group, Division of Neurology, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Heinz Beck
- Laboratory for Experimental Epileptology and Cognition Research, Department of Epileptology, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
48
|
Progranulin and Its Related MicroRNAs after Status Epilepticus: Possible Mechanisms of Neuroprotection. Int J Mol Sci 2017; 18:ijms18030490. [PMID: 28245590 PMCID: PMC5372506 DOI: 10.3390/ijms18030490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 12/31/2022] Open
Abstract
The current knowledge about neuroprotective mechanisms in humans after status epilepticus is scarce. One reason is the difficulty to measure possible mediators of these neuroprotective mechanisms. The dawn of microRNA detection in the cerebrospinal fluid (CSF) and the recent advancements in measuring proteins in the CSF such as progranulin, which is, e.g., responsible for neurite outgrowth and limiting exceeding neuroinflammatory responses, have given us new insights into putative neuroprotective mechanisms following status epilepticus. This should complement the animal data. In this review, we cover what is known about the role of progranulin as well as the links between microRNA changes and the progranulin pathway following status epilepticus in humans and animals hypothesizing neuroprotective and neurorehabilitative effects. Progranulin has also been found to feature prominently in the neuroprotective processes under hypoxic conditions and initiating neurorehabilitative processes. These properties may be used therapeutically, e.g., through drugs that raise the progranulin levels and therefore the cerebral progranulin levels as well with the goal of improving the outcome after status epilepticus.
Collapse
|
49
|
miR-146a negatively regulates the induction of proinflammatory cytokines in response to Japanese encephalitis virus infection in microglial cells. Arch Virol 2017; 162:1495-1505. [DOI: 10.1007/s00705-017-3226-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
|
50
|
Genome-Wide DNA Methylation Patterns Analysis of Noncoding RNAs in Temporal Lobe Epilepsy Patients. Mol Neurobiol 2017; 55:793-803. [PMID: 28058582 DOI: 10.1007/s12035-016-0353-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy and frequently evolving drug resistance. Although there is growing consensus that noncoding ribonucleic acids (ncRNAs) are modulators of TLE, the knowledge about the deoxyribonucleic acid (DNA) methylation patterns of ncRNAs in TLE remains limited. In the current study, we constructed DNA methylation profiles from 30 TLE patients and 30 healthy controls for ncRNAs, primarily focusing on long ncRNAs (lncRNAs) and microRNAs (miRNAs), by reannotating data of DNA methylation BeadChip. Statistics analyses have revealed a global hypermethylation pattern in miRNA and lncRNA gene in TLE patients. Bioinformatic analyses have found aberrantly methylated miRNAs and lncRNAs are related to ion channel activity, drug metabolism, mitogen-activated protein kinase (MAPK) signaling pathway, and neurotrophin signaling pathway. Aberrantly methylated ncRNA and pathway target might be involved in TLE development and progression. The methylated and demethylated ncRNAs identified in this study provide novel insights for developing TLE biomarkers and potential therapeutic targets.
Collapse
|