1
|
Fujita A, Oyama S, Tatebe M, Shimoda S, Tokutake K, Yamamoto M, Hirata H. Eyes and movement differences in unconscious state during microscopic procedures. Sci Rep 2025; 15:6712. [PMID: 40000779 PMCID: PMC11861892 DOI: 10.1038/s41598-025-88647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Microsurgery is one of the techniques that is increasingly being adopted in many surgical fields. However, the acquisition and transfer of microsurgical skills primarily depend on experience. Additionally, opportunities to improve microsurgical skills are limited and a uniform evaluation system is lacking. Therefore, the aim of this study was to understand the physical characteristics of experienced and novice surgeons and to propose efficient training and evaluation methods from an educational perspective. In this study, nine hand surgeons and six orthopedic surgeons were included in expert group E and novice group N, respectively. An eye tracker and surface electromyography were used. They were asked to perform the suturing procedure under the same conditions. The viewpoint distribution area was larger in group N than in group E (p < 0.01). In group E, the pupil diameter increased only in a limited phase. The standard deviation of the distance between gaze and hand movements was smaller in group E, especially for gaze. Group E used the synergy of the same muscles to create movement. This study showed that there are differences in eye movements and unconscious body control during suturing techniques under the microscope between experienced users and novices.
Collapse
Affiliation(s)
- Akiko Fujita
- Department of Orthopaedics, Nagoya memorial hospital, Nagoya, 468-8520, Aichi, Japan
| | - Shintaro Oyama
- Innovative Research Center for Preventive Medical Engineering, Nagoya University, Nagoya, 464-8601, Aichi, Japan.
| | - Masahiro Tatebe
- Department of Orthopaedics, Anjo Kosei Hospital, Anjo, 446-8602, Aichi, Japan
| | - Shingo Shimoda
- Nagoya University Graduate school of Medicine, Nagoya, 466-8560, Aichi, Japan
| | - Katsuhiro Tokutake
- Nagoya University Graduate school of Medicine, Nagoya, 466-8560, Aichi, Japan
| | - Michiro Yamamoto
- Nagoya University Graduate school of Medicine, Nagoya, 466-8560, Aichi, Japan
| | - Hitoshi Hirata
- Nagoya University Graduate school of Medicine, Nagoya, 466-8560, Aichi, Japan
| |
Collapse
|
2
|
Shafer RL, Bartolotti J, Driggers A, Bojanek E, Wang Z, Mosconi MW. Visual feedback and motor memory contributions to sustained motor control deficits in autism spectrum disorder across childhood and into adulthood. RESEARCH SQUARE 2024:rs.3.rs-4831158. [PMID: 39281871 PMCID: PMC11398565 DOI: 10.21203/rs.3.rs-4831158/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Background Autistic individuals show deficits in sustained fine motor control which are associated with an over-reliance on visual feedback. Motor memory deficits also have been reported during sustained fine motor control in autism spectrum disorders (ASD). The development of motor memory and visuomotor feedback processes contributing to sustained motor control issues in ASD are not known. The present study aimed to characterize age-related changes in visual feedback and motor memory processes contributing to sustained fine motor control issues in ASD. Methods Fifty-four autistic participants and 31 neurotypical (NT) controls ages 10-25 years completed visually guided and memory guided sustained precision gripping tests by pressing on force sensors with their dominant hand index finger and thumb. For visually guided trials, participants viewed a stationary target bar and a force bar that moved upwards with increased force for 15s. During memory guided trials, the force bar was visible for 3s, after which participants attempted to maintain their force output without visual feedback for another 12s. To assess visual feedback processing, force accuracy, variability (standard deviation), and regularity (sample entropy) were examined. To assess motor memory, force decay latency, slope, and magnitude were examined during epochs without visual feedback. Results Relative to NT controls, autistic individuals showed a greater magnitude and steeper slope of force decay during memory guided trials. Across conditions, the ASD group showed reduced force accuracy (β = .41, R2 = 0.043, t79.3=2.36, p = 0.021) and greater force variability (β=-2.16, R2 = .143, t77.1=-4.04, p = 0.0001) and regularity (β=-.52, R2 = .021, t77.4=-2.21, p = 0.030) relative to controls at younger ages, but these differences normalized by adolescence (age × group interactions). Lower force accuracy and greater force variability during visually guided trials and steeper decay slope during memory guided trials were associated with overall autism severity. Conclusions Our findings that autistic individuals show a greater rate and magnitude of force decay than NT individuals following the removal of visual feedback indicate that motor memory deficits contribute to fine motor control issues in ASD. Findings that sensorimotor differences in ASD were specific to younger ages suggest delayed development across multiple motor control processes.
Collapse
Affiliation(s)
| | | | | | - Erin Bojanek
- University of Rochester School of Medicine and Dentistry
| | | | | |
Collapse
|
3
|
Pomè A, Zimmermann E. Visuo-motor updating in individuals with heightened autistic traits. eLife 2024; 13:RP94946. [PMID: 38913073 PMCID: PMC11196106 DOI: 10.7554/elife.94946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
Autism spectrum disorder (ASD) presents a range of challenges, including heightened sensory sensitivities. Here, we examine the idea that sensory overload in ASD may be linked to issues with efference copy mechanisms, which predict the sensory outcomes of self-generated actions, such as eye movements. Efference copies play a vital role in maintaining visual and motor stability. Disrupted efference copies hinder precise predictions, leading to increased reliance on actual feedback and potential distortions in perceptions across eye movements. In our first experiment, we tested how well healthy individuals with varying levels of autistic traits updated their mental map after making eye movements. We found that those with more autistic traits had difficulty using information from their eye movements to update the spatial representation of their mental map, resulting in significant errors in object localization. In the second experiment, we looked at how participants perceived an object displacement after making eye movements. Using a trans-saccadic spatial updating task, we found that those with higher autism scores exhibited a greater bias, indicating under-compensation of eye movements and a failure to maintain spatial stability during saccades. Overall, our study underscores efference copy's vital role in visuo-motor stability, aligning with Bayesian theories of autism, potentially informing interventions for improved action-perception integration in autism.
Collapse
Affiliation(s)
- Antonella Pomè
- Institute for Experimental Psychology, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Eckart Zimmermann
- Institute for Experimental Psychology, Heinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
4
|
Tarrit K, Freedman EG, Francisco AA, Horsthuis DJ, Molholm S, Foxe JJ. No evidence for differential saccadic adaptation in children and adults with an autism spectrum diagnosis. Front Integr Neurosci 2023; 17:1232474. [PMID: 37869448 PMCID: PMC10587467 DOI: 10.3389/fnint.2023.1232474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/24/2023] [Indexed: 10/24/2023] Open
Abstract
Background Altered patterns of eye-movements during scene exploration, and atypical gaze preferences in social settings, have long been noted as features of the Autism phenotype. While these are typically attributed to differences in social engagement and interests (e.g., preferences for inanimate objects over face stimuli), there are also reports of differential saccade measures to non-social stimuli, raising the possibility that fundamental differences in visuo-sensorimotor processing may be at play. Here, we tested the plasticity of the eye-movement system using a classic saccade-adaptation paradigm to assess whether individuals with ASD make typical adjustments to their eye-movements in response to experimentally introduced errors. Saccade adaptation can be measured in infants as young as 10 months, raising the possibility that such measures could be useful as early neuro-markers of ASD risk. Methods Saccade amplitudes were measured while children and adults with ASD (N = 41) and age-matched typically developing (TD) individuals (N = 68) made rapid eye-movements to peripherally presented targets. During adaptation trials, the target was relocated from 20-degrees to 15-degrees from fixation once a saccade to the original target location was initiated, a manipulation that leads to systematic reduction in saccade amplitudes in typical observers. Results Neither children nor adults with ASD showed any differences relative to TD peers in their abilities to appropriately adapt saccades in the face of persistently introduced errors. Conclusion Of the three studies to date of saccade adaptation in ASD, none have shown deficits in saccade adaptation that are sufficient to generalize to the whole or a subgroup of the ASD population. Unlike prior studies, we found no evidence for a slower adaptation rate during the early adaptation phase, and no of evidence greater variance of saccade amplitudes in ASD. In post hoc analysis, there was evidence for larger primary saccades to non-adapted targets, a finding requiring replication in future work.
Collapse
Affiliation(s)
- Katy Tarrit
- Information and Computer Sciences Department, University of Hawai’i at Manoa, Honolulu, HI, United States
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Edward G. Freedman
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Ana A. Francisco
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Douwe J. Horsthuis
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Sophie Molholm
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - John J. Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
5
|
Cundari M, Vestberg S, Gustafsson P, Gorcenco S, Rasmussen A. Neurocognitive and cerebellar function in ADHD, autism and spinocerebellar ataxia. Front Syst Neurosci 2023; 17:1168666. [PMID: 37415926 PMCID: PMC10321758 DOI: 10.3389/fnsys.2023.1168666] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
The cerebellum plays a major role in balance, motor control and sensorimotor integration, but also in cognition, language, and emotional regulation. Several neuropsychiatric disorders such as attention deficit-hyperactivity disorder (ADHD), autism spectrum disorder (ASD), as well as neurological diseases such as spinocerebellar ataxia type 3 (SCA3) are associated with differences in cerebellar function. Morphological abnormalities in different cerebellar subregions produce distinct behavioral symptoms related to the functional disruption of specific cerebro-cerebellar circuits. The specific contribution of the cerebellum to typical development may therefore involve the optimization of the structure and function of cerebro-cerebellar circuits underlying skill acquisition in multiple domains. Here, we review cerebellar structural and functional differences between healthy and patients with ADHD, ASD, and SCA3, and explore how disruption of cerebellar networks affects the neurocognitive functions in these conditions. We discuss how cerebellar computations contribute to performance on cognitive and motor tasks and how cerebellar signals are interfaced with signals from other brain regions during normal and dysfunctional behavior. We conclude that the cerebellum plays a role in many cognitive functions. Still, more clinical studies with the support of neuroimaging are needed to clarify the cerebellum's role in normal and dysfunctional behavior and cognitive functioning.
Collapse
Affiliation(s)
- Maurizio Cundari
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Unit of Neuropsychiatry, Hospital of Helsingborg, Helsingborg, Sweden
- Unit of Neurology, Hospital of Helsingborg, Helsingborg, Sweden
| | - Susanna Vestberg
- Department of Psychology, Faculty of Social Science, Lund University, Lund, Sweden
| | - Peik Gustafsson
- Child and Adolescent Psychiatry, Department of Clinical Sciences Lund, Medical Faculty, Lund University, Lund, Sweden
| | - Sorina Gorcenco
- Department for Clinical Sciences Lund, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anders Rasmussen
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Simmons DH, Busch SE, Titley HK, Grasselli G, Shih J, Du X, Wei C, Gomez CM, Piochon C, Hansel C. Sensory Over-responsivity and Aberrant Plasticity in Cerebellar Cortex in a Mouse Model of Syndromic Autism. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:450-459. [PMID: 36324646 PMCID: PMC9616247 DOI: 10.1016/j.bpsgos.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022] Open
Abstract
Background Patients with autism spectrum disorder often show altered responses to sensory stimuli as well as motor deficits, including an impairment of delay eyeblink conditioning, which involves integration of sensory signals in the cerebellum. Here, we identify abnormalities in parallel fiber (PF) and climbing fiber (CF) signaling in the mouse cerebellar cortex that may contribute to these pathologies. Methods We used a mouse model for the human 15q11-13 duplication (patDp/+) and studied responses to sensory stimuli in Purkinje cells from awake mice using two-photon imaging of GCaMP6f signals. Moreover, we examined synaptic transmission and plasticity using in vitro electrophysiological, immunohistochemical, and confocal microscopic techniques. Results We found that spontaneous and sensory-evoked CF-calcium transients are enhanced in patDp/+ Purkinje cells, and aversive movements are more severe across sensory modalities. We observed increased expression of the synaptic organizer NRXN1 at CF synapses and ectopic spread of these synapses to fine dendrites. CF-excitatory postsynaptic currents recorded from Purkinje cells are enlarged in patDp/+ mice, while responses to PF stimulation are reduced. Confocal measurements show reduced PF+CF-evoked spine calcium transients, a key trigger for PF long-term depression, one of several plasticity types required for eyeblink conditioning learning. Long-term depression is impaired in patDp/+ mice but is rescued on pharmacological enhancement of calcium signaling. Conclusions Our findings suggest that this genetic abnormality causes a pathological inflation of CF signaling, possibly resulting from enhanced NRXN1 expression, with consequences for the representation of sensory stimuli by the CF input and for PF synaptic organization and plasticity.
Collapse
Affiliation(s)
- Dana H Simmons
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Silas E Busch
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Heather K Titley
- Department of Neurobiology, University of Chicago, Chicago, Illinois.,Department of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Giorgio Grasselli
- Department of Neurobiology, University of Chicago, Chicago, Illinois.,Istituto Italiano di Tecnologia, Center for Synaptic Neuroscience and Technology, Genoa, Italy.,IRCC Ospedale Policlinico San Martino, Genoa, Italy
| | - Justine Shih
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Xiaofei Du
- Department of Neurology, University of Chicago, Chicago, Illinois
| | - Cenfu Wei
- Department of Neurology, University of Chicago, Chicago, Illinois
| | | | - Claire Piochon
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| |
Collapse
|
7
|
Amestoy A, Guillaud E, Bucchioni G, Zalla T, Umbricht D, Chatham C, Murtagh L, Houenou J, Delorme R, Moal MLL, Leboyer M, Bouvard M, Cazalets JR. Visual attention and inhibitory control in children, teenagers and adults with autism without intellectual disability: results of oculomotor tasks from a 2-year longitudinal follow-up study (InFoR). Mol Autism 2021; 12:71. [PMID: 34774105 PMCID: PMC8590241 DOI: 10.1186/s13229-021-00474-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inhibitory control and attention processing atypicalities are implicated in various diseases, including autism spectrum disorders (ASD). These cognitive functions can be tested by using visually guided saccade-based paradigms in children, adolescents and adults to determine the time course of such disorders. METHODS In this study, using Gap, Step, Overlap and Antisaccade tasks, we analyzed the oculomotor behavior of 82 children, teenagers and adults with high functioning ASD and their peer typically developing (TD) controls in a two-year follow-up study under the auspices of the InFoR-Autism project. Analysis of correlations between oculomotors task measurements and diagnostic assessment of attentional (ADHD-RS and ADHD comorbidity indices) and executive functioning (BRIEF scales) were conducted in order to evaluate their relationship with the oculomotor performance of participants with ASD. RESULTS As indicated by the presence of a Gap and Overlap effects in all age groups, the oculomotor performances of ASD participants showed a preserved capability in overt attention switching. In contrast, the difference in performances of ASD participants in the Antisaccade task, compared to their TD peers, indicated an atypical development of inhibition and executive functions. From correlation analysis between our oculomotor data and ADHD comorbidity index, and scores of attention and executive function difficulties, our findings support the hypothesis that a specific dysfunction of inhibition skills occurs in ASD participants that is independent of the presence of ADHD comorbidity. LIMITATIONS These include the relatively small sample size of the ASD group over the study's two-year period, the absence of an ADHD-only control group and the evaluation of a TD control group solely at the study's inception. CONCLUSIONS Children and teenagers with ASD have greater difficulty in attention switching and inhibiting prepotent stimuli. Adults with ASD can overcome these difficulties, but, similar to teenagers and children with ASD, they make more erroneous and anticipatory saccades and display a greater trial-to-trial variability in all oculomotor tasks compared to their peers. Our results are indicative of a developmental delay in the maturation of executive and attentional functioning in ASD and of a specific impairment in inhibitory control.
Collapse
Affiliation(s)
- Anouck Amestoy
- CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Université de Bordeaux, 33000, Bordeaux, France. .,Fondation FondaMental, Créteil, France. .,centre hospitalier Charles-Perrens, Pôle universitaire de psychiatrie de l'enfant et de l'adolescent, 121, rue de la Béchade, CS 81285, 33076, Bordeaux Cedex, France.
| | - Etienne Guillaud
- CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Université de Bordeaux, 33000, Bordeaux, France
| | - Giulia Bucchioni
- CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Université de Bordeaux, 33000, Bordeaux, France.,iBrain, UMR 1253 Inserm, Université de Tours, 2 Boulevard Tonnellé, 37044, Tours Cedex, France
| | | | - Daniel Umbricht
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Christopher Chatham
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Lorraine Murtagh
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Josselin Houenou
- Fondation FondaMental, Créteil, France.,NeuroSpin, UNIACT Lab, Equipe de psychiatrie, Commissariat à l'énergie atomique, Saclay, Gif-sur-Yvette, France
| | - Richard Delorme
- Fondation FondaMental, Créteil, France.,Institut Pasteur, Paris, France.,AP-HP, DMU IMPACT, Psychiatry and Addictology Department, Mondor University Hospital, Université Paris Est Créteil, Créteil, France
| | - Myriam Ly-Le Moal
- Institut Roche, Tour horizons- Bureau 18M3, Roche S.A.S., 30, cours de l'île Seguin, 92650, Boulogne-Billancourt, France
| | - Marion Leboyer
- Laboratoire de NeuroPsychiatrie translationnelle, INSERM, U955, IMRB, Créteil, France.,Fondation FondaMental, Créteil, France.,AP-HP, DMU IMPACT, Psychiatry and Addictology Department, Mondor University Hospital, Université Paris Est Créteil, Créteil, France
| | - Manuel Bouvard
- CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Université de Bordeaux, 33000, Bordeaux, France.,Fondation FondaMental, Créteil, France.,centre hospitalier Charles-Perrens, Pôle universitaire de psychiatrie de l'enfant et de l'adolescent, 121, rue de la Béchade, CS 81285, 33076, Bordeaux Cedex, France
| | - Jean-René Cazalets
- CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Université de Bordeaux, 33000, Bordeaux, France
| |
Collapse
|
8
|
Lepping RJ, McKinney WS, Magnon GC, Keedy SK, Wang Z, Coombes SA, Vaillancourt DE, Sweeney JA, Mosconi MW. Visuomotor brain network activation and functional connectivity among individuals with autism spectrum disorder. Hum Brain Mapp 2021; 43:844-859. [PMID: 34716740 PMCID: PMC8720186 DOI: 10.1002/hbm.25692] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
Sensorimotor abnormalities are common in autism spectrum disorder (ASD) and predictive of functional outcomes, though their neural underpinnings remain poorly understood. Using functional magnetic resonance imaging, we examined both brain activation and functional connectivity during visuomotor behavior in 27 individuals with ASD and 30 typically developing (TD) controls (ages 9–35 years). Participants maintained a constant grip force while receiving visual feedback at three different visual gain levels. Relative to controls, ASD participants showed increased force variability, especially at high gain, and reduced entropy. Brain activation was greater in individuals with ASD than controls in supplementary motor area, bilateral superior parietal lobules, and contralateral middle frontal gyrus at high gain. During motor action, functional connectivity was reduced between parietal‐premotor and parietal‐putamen in individuals with ASD compared to controls. Individuals with ASD also showed greater age‐associated increases in functional connectivity between cerebellum and visual, motor, and prefrontal cortical areas relative to controls. These results indicate that visuomotor deficits in ASD are associated with atypical activation and functional connectivity of posterior parietal, premotor, and striatal circuits involved in translating sensory feedback information into precision motor behaviors, and that functional connectivity of cerebellar–cortical sensorimotor and nonsensorimotor networks show delayed maturation.
Collapse
Affiliation(s)
- Rebecca J Lepping
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Walker S McKinney
- Schiefelbusch Institute for Life Span Studies, Clinical Child Psychology Program, and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, Kansas, USA
| | - Grant C Magnon
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah K Keedy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, USA
| | - Zheng Wang
- Department of Occupational Therapy, University of Florida, Gainesville, Florida, USA.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Stephen A Coombes
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Matthew W Mosconi
- Schiefelbusch Institute for Life Span Studies, Clinical Child Psychology Program, and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
9
|
Arthur T, Harris D, Buckingham G, Brosnan M, Wilson M, Williams G, Vine S. An examination of active inference in autistic adults using immersive virtual reality. Sci Rep 2021; 11:20377. [PMID: 34645899 PMCID: PMC8514518 DOI: 10.1038/s41598-021-99864-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
The integration of prior expectations, sensory information, and environmental volatility is proposed to be atypical in Autism Spectrum Disorder, yet few studies have tested these predictive processes in active movement tasks. To address this gap in the research, we used an immersive virtual-reality racquetball paradigm to explore how visual sampling behaviours and movement kinematics are adjusted in relation to unexpected, uncertain, and volatile changes in environmental statistics. We found that prior expectations concerning ball 'bounciness' affected sensorimotor control in both autistic and neurotypical participants, with all individuals using prediction-driven gaze strategies to track the virtual ball. However, autistic participants showed substantial differences in visuomotor behaviour when environmental conditions were more volatile. Specifically, uncertainty-related performance difficulties in these conditions were accompanied by atypical movement kinematics and visual sampling responses. Results support proposals that autistic people overestimate the volatility of sensory environments, and suggest that context-sensitive differences in active inference could explain a range of movement-related difficulties in autism.
Collapse
Affiliation(s)
- Tom Arthur
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, Devon, UK.
- Centre for Applied Autism Research, Department of Psychology, University of Bath, Bath, BA2 7AY, UK.
| | - David Harris
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, Devon, UK
| | - Gavin Buckingham
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, Devon, UK
| | - Mark Brosnan
- Centre for Applied Autism Research, Department of Psychology, University of Bath, Bath, BA2 7AY, UK
| | - Mark Wilson
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, Devon, UK
| | - Genevieve Williams
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, Devon, UK
| | - Sam Vine
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, Devon, UK.
| |
Collapse
|
10
|
Nadeem MS, Murtaza BN, Al-Ghamdi MA, Ali A, Zamzami MA, Khan JA, Ahmad A, Rehman MU, Kazmi I. Autism - A Comprehensive Array of Prominent Signs and Symptoms. Curr Pharm Des 2021; 27:1418-1433. [PMID: 33494665 DOI: 10.2174/1381612827666210120095829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a multifaceted neurodevelopmental condition characterized by multiple psychological and physiological impairments in young children. According to the recent reports, 1 out of every 58 newly-born children is suffering from autism. The aetiology of the disorder is complex and poorly understood, hindering the adaptation of targeted and effective therapies. There are no well- established diagnostic biomarkers for autism. Hence the analysis of symptoms by the pediatricians plays a critical role in the early intervention. METHODS In the present report, we have emphasized 24 behavioral, psychological and clinical symptoms of autism. RESULTS Impaired social interaction, restrictive and narrow interests, anxiety, depression; aggressive, repetitive, rigid and self-injurious behavior, lack of consistency, short attention span, fear, shyness and phobias, hypersensitivity and rapid mood alterations, high level of food and toy selectivity; inability to establish friendships or follow the instructions; fascination by round spinning objects and eating non-food materials are common psychological characteristics of autism. Speech or hearing impairments, poor cognitive function, gastrointestinal problems, weak immunity, disturbed sleep and circadian rhythms, weak motor neuromuscular interaction, lower level of serotonin and neurotransmitters, headache and body pain are common physiological symptoms. CONCLUSION A variable qualitative and quantitative impact of this wide range of symptoms is perceived in each autistic individual, making him/her distinct, incomparable and exceptional. Selection and application of highly personalized medical and psychological therapies are therefore recommended for the management and treatment of autism.
Collapse
Affiliation(s)
- Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad, Pakistan
| | - Maryam A Al-Ghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Akbar Ali
- College of Pharmacy, Northern Border University Rafha 1321, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jalaluddin A Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aftab Ahmad
- College of Pharmacy, Northern Border University Rafha 1321, Saudi Arabia
| | - Mujaddad Ur Rehman
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad, Pakistan
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
11
|
Simmons DH, Titley HK, Hansel C, Mason P. Behavioral Tests for Mouse Models of Autism: An Argument for the Inclusion of Cerebellum-Controlled Motor Behaviors. Neuroscience 2021; 462:303-319. [PMID: 32417339 DOI: 10.1016/j.neuroscience.2020.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022]
Abstract
Mouse models of Autism Spectrum Disorder (ASD) have been interrogated using a variety of behavioral tests in order to understand the symptoms of ASD. However, the hallmark behaviors that are classically affected in ASD - deficits in social interaction and communication as well as the occurrence of repetitive behaviors - do not have direct murine equivalents. Thus, it is critical to identify the caveats that come with modeling a human disorder in mice. The most commonly used behavioral tests represent complex cognitive processes based on largely unknown brain circuitry. Motor impairments provide an alternative, scientifically rigorous approach to understanding ASD symptoms. Difficulties with motor coordination and learning - seen in both patients and mice - point to an involvement of the cerebellum in ASD pathology. This brain area supports types of motor learning that are conserved throughout vertebrate evolution, allowing for direct comparisons of functional abnormalities between humans with autism and ASD mouse models. Studying simple motor behaviors provides researchers with clearly interpretable results. We describe and evaluate methods used on mouse behavioral assays designed to test for social, communicative, perseverative, anxious, nociceptive, and motor learning abnormalities. We comment on the effectiveness and validity of each test based on how much information its results give, as well as its relevance to ASD, and will argue for an inclusion of cerebellum-supported motor behaviors in the phenotypic description of ASD mouse models. LAY SUMMARY: Mouse models of Autism Spectrum Disorder help us gain insight about ASD symptoms in human patients. However, there are many differences between mice and humans, which makes interpreting behaviors challenging. Here, we discuss a battery of behavioral tests for specific mouse behaviors to explore whether each test does indeed evaluate the intended measure, and whether these tests are useful in learning about ASD.
Collapse
Affiliation(s)
- Dana H Simmons
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Heather K Titley
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Christian Hansel
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA.
| | - Peggy Mason
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Caldani S, Steg S, Lefebvre A, Atzori P, Peyre H, Delorme R, Bucci MP. Oculomotor behavior in children with autism spectrum disorders. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2019; 24:670-679. [PMID: 31680545 DOI: 10.1177/1362361319882861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To identify quantitative indicators of social communication dysfunctions, we explored the oculomotor performances in subjects with autism spectrum disorders. Discordant findings in the literature have been reported for oculomotor behavior in subjects with autism spectrum disorders. This study aimed to explore reflexive and voluntary saccadic performance in a group of 32 children with autism spectrum disorders (mean age: 12.1 ± 0.5 years) compared to 32 age-, sex-, and IQ-matched typically developing children (control group). We used different types of reflexive and voluntary saccades: gap, step, overlap, and anti-saccades. Eye movements were recorded using an eye tracker (Mobile EBT®) and we measured latency, percentage of anticipatory and express saccades, errors of anti-saccades and gain. Children with autism spectrum disorders reported similar latency values with respect to typically developing children for reflexive and voluntary saccades; in contrast, they made more express and anticipatory saccades overall, as shown in paradigm testing (gap, step, overlap, and anti-saccades). Our findings support previous evidence of the atypicality of the cortical network, which is involved in saccade triggering and attentional processes in children with autism spectrum disorders.
Collapse
Affiliation(s)
- Simona Caldani
- Paris Diderot University, France.,Robert Debré Hospital, France
| | - Sarah Steg
- Paris Diderot University, France.,Robert Debré Hospital, France
| | - Aline Lefebvre
- Paris Diderot University, France.,Robert Debré Hospital, France
| | - Paola Atzori
- Robert Debré Hospital, France.,FondaMental Foundation, France
| | - Hugo Peyre
- Paris Diderot University, France.,Robert Debré Hospital, France.,FondaMental Foundation, France
| | - Richard Delorme
- Paris Diderot University, France.,Robert Debré Hospital, France.,FondaMental Foundation, France
| | - Maria Pia Bucci
- Paris Diderot University, France.,Robert Debré Hospital, France
| |
Collapse
|
13
|
de Moraes ÍAP, Monteiro CBDM, Silva TDD, Massetti T, Crocetta TB, de Menezes LDC, Andrade GPDR, Ré AHN, Dawes H, Coe S, Magalhães FH. Motor learning and transfer between real and virtual environments in young people with autism spectrum disorder: A prospective randomized cross over controlled trial. Autism Res 2019; 13:307-319. [PMID: 31566888 DOI: 10.1002/aur.2208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/22/2019] [Indexed: 11/11/2022]
Abstract
Autism spectrum disorder (ASD) is associated with persistent deficits in social communication and social interaction, including impaired multisensory integration, which might negatively impact cognitive and motor skill performance, and hence negatively affect learning of tasks. Considering that tasks in virtual environment may provide an engaging tool as adjuncts to conventional therapies, we set out to compare motor performance between young people with ASD and a typically developing (TD) control group that underwent coincident timing tasks based on Kinect (no physical contact) and on Keyboard (with physical contact) environments. Using a randomized repeated cross-over controlled trial design, 50 young people with ASD and 50 with TD, matched by age and sex were divided into subgroups of 25 people that performed the two first phases of the study (acquisition and retention) on the same device-real or virtual-and then switched to the other device to repeat acquisition and retention phases and finally switched on to a touch screen (transfer phase). Results showed that practice in the virtual task was more difficult (producing more errors), but led to a better performance in the subsequent practice in the real task, with more pronounced improvement in the ASD as compared to the TD group. It can be concluded that the ASD group managed to transfer the practice from a virtual to a real environment, indicating that virtual methods may enhance learning of motor and cognitive skills. A need for further exploration of its effect across a number of tasks and activities is warranted. Autism Res 2020, 13: 307-319. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Individuals with autism spectrum disorder are known to have difficulties with learning motor tasks. Considering that performing motor tasks in virtual environment may be an engaging tool as adjuncts to conventional therapies, we aimed to estimate performance in tasks regardless of physical touch. Results showed that participants had more difficulty using the non-touch task; however, virtual training improved performance on the physical (real) task. This result indicates that virtual methods could be a promising therapeutic approach for the ASD population.
Collapse
Affiliation(s)
- Íbis Ariana Peña de Moraes
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, SP, Brazil.,Post-Graduate Programme in Rehabilitation Sciences, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Carlos Bandeira de Mello Monteiro
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, SP, Brazil.,Post-Graduate Programme in Rehabilitation Sciences, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Talita Dias da Silva
- Post-Graduate Programme in Rehabilitation Sciences, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Thais Massetti
- Post-Graduate Programme in Rehabilitation Sciences, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Tânia Brusque Crocetta
- Department of Morphology and Physiology, Faculty of Medicine of ABC, Santo André, SP, Brazil
| | - Lilian Del Ciello de Menezes
- Post-Graduate Programme in Rehabilitation Sciences, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Gilda Pena de Rezende Andrade
- Integrated Psycho-pedagogical Support Group (GAPI) Special Education School in São Bernardo do Campo, São Paulo, Brazil
| | | | - Helen Dawes
- Institute of Nursing and Allied Health Research, Oxford Brookes University, Oxford, UK.,Department of Clinical Neurology, University of Oxford, Oxford, UK
| | - Shelly Coe
- Department of Clinical Neurology, University of Oxford, Oxford, UK
| | | |
Collapse
|
14
|
Unruh KE, Martin LE, Magnon G, Vaillancourt DE, Sweeney JA, Mosconi MW. Cortical and subcortical alterations associated with precision visuomotor behavior in individuals with autism spectrum disorder. J Neurophysiol 2019; 122:1330-1341. [PMID: 31314644 DOI: 10.1152/jn.00286.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In addition to core deficits in social-communication abilities and repetitive behaviors and interests, many patients with autism spectrum disorder (ASD) experience developmental comorbidities, including sensorimotor issues. Sensorimotor issues are common in ASD and associated with more severe clinical symptoms. Importantly, sensorimotor behaviors are precisely quantifiable and highly translational, offering promising targets for neurophysiological studies of ASD. We used functional MRI to identify brain regions associated with sensorimotor behavior using a visually guided precision gripping task in individuals with ASD (n = 20) and age-, IQ-, and handedness-matched controls (n = 18). During visuomotor behavior, individuals with ASD showed greater force variability than controls. The blood oxygen level-dependent signal for multiple cortical and subcortical regions was associated with force variability, including motor and premotor cortex, posterior parietal cortex, extrastriate cortex, putamen, and cerebellum. Activation in the right premotor cortex scaled with sensorimotor variability in controls but not in ASD. Individuals with ASD showed greater activation than controls in left putamen and left cerebellar lobule VIIb, and activation in these regions was associated with more severe clinically rated symptoms of ASD. Together, these results suggest that greater sensorimotor variability in ASD is associated with altered cortical-striatal processes supporting action selection and cortical-cerebellar circuits involved in feedback-guided reactive adjustments of motor output. Our findings also indicate that atypical organization of visuomotor cortical circuits may result in heightened reliance on subcortical circuits typically dedicated to motor skill acquisition. Overall, these results provide new evidence that sensorimotor alterations in ASD involve aberrant cortical and subcortical organization that may contribute to key clinical issues in patients.NEW & NOTEWORTHY This is the first known study to examine functional brain activation during precision visuomotor behavior in autism spectrum disorder (ASD). We replicate previous findings of elevated force variability in ASD and find these deficits are associated with atypical function of ventral premotor cortex, putamen, and posterolateral cerebellum, indicating cortical-striatal processes supporting action selection and cortical-cerebellar circuits involved in feedback-guided reactive adjustments of motor output may be key targets for understanding the neurobiology of ASD.
Collapse
Affiliation(s)
- Kathryn E Unruh
- Schiefelbusch Institute for Life Span Studies and Clinical Child Psychology Program, University of Kansas, Lawrence, Kansas.,Kansas Center for Autism Research and Training, University of Kansas Medical School, Kansas City, Kansas
| | - Laura E Martin
- Hoglund Brain Imaging Center and Department of Preventive Medicine and Public Health, University of Kansas Medical Center, Kansas City, Kansas
| | - Grant Magnon
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - John A Sweeney
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio
| | - Matthew W Mosconi
- Schiefelbusch Institute for Life Span Studies and Clinical Child Psychology Program, University of Kansas, Lawrence, Kansas.,Kansas Center for Autism Research and Training, University of Kansas Medical School, Kansas City, Kansas
| |
Collapse
|
15
|
Arthur T, Vine S, Brosnan M, Buckingham G. Exploring how material cues drive sensorimotor prediction across different levels of autistic-like traits. Exp Brain Res 2019; 237:2255-2267. [PMID: 31250036 PMCID: PMC6675774 DOI: 10.1007/s00221-019-05586-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/15/2019] [Indexed: 12/25/2022]
Abstract
Recent research proposes that sensorimotor difficulties, such as those experienced by many autistic people, may arise from atypicalities in prediction. Accordingly, we examined the relationship between non-clinical autistic-like traits and sensorimotor prediction in the material-weight illusion, where prior expectations derived from material cues typically bias one’s perception and action. Specifically, prediction-related tendencies in perception of weight, gaze patterns, and lifting actions were probed using a combination of self-report, eye-tracking, motion-capture, and force-based measures. No prediction-related associations between autistic-like traits and sensorimotor control emerged for any of these variables. Follow-up analyses, however, revealed that greater autistic-like traits were correlated with reduced adaptation of gaze with changes in environmental uncertainty. These findings challenge proposals of gross predictive atypicalities in autistic people, but suggest that the dynamic integration of prior information and environmental statistics may be related to autistic-like traits. Further research into this relationship is warranted in autistic populations, to assist the development of future movement-based coaching methods.
Collapse
Affiliation(s)
- Tom Arthur
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, Devon, UK
| | - Sam Vine
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, Devon, UK
| | - Mark Brosnan
- Department of Psychology, University of Bath, Bath, BA2 7AY, UK
| | - Gavin Buckingham
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, Devon, UK.
| |
Collapse
|
16
|
Lindor ER, van Boxtel JJ, Rinehart NJ, Fielding J. Motor difficulties are associated with impaired perception of interactive human movement in autism spectrum disorder: A pilot study. J Clin Exp Neuropsychol 2019; 41:856-874. [DOI: 10.1080/13803395.2019.1634181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ebony R. Lindor
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Victoria, Australia
- Deakin Child Study Centre, School of Psychology, Faculty of Health, Deakin University Geelong, Victoria, Australia
| | - Jeroen J.A. van Boxtel
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Victoria, Australia
- School of Psychology, Faculty of Health, University of Canberra, Canberra, Australia
| | - Nicole J. Rinehart
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Victoria, Australia
- Deakin Child Study Centre, School of Psychology, Faculty of Health, Deakin University Geelong, Victoria, Australia
| | - Joanne Fielding
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
17
|
Hansel C. Deregulation of synaptic plasticity in autism. Neurosci Lett 2019; 688:58-61. [DOI: 10.1016/j.neulet.2018.02.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/02/2018] [Indexed: 12/17/2022]
|
18
|
Coric D, Nij Bijvank JA, van Rijn LJ, Petzold A, Balk LJ. The role of optical coherence tomography and infrared oculography in assessing the visual pathway and CNS in multiple sclerosis. Neurodegener Dis Manag 2018; 8:323-335. [DOI: 10.2217/nmt-2018-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this review, a current overview is provided of how optical coherence tomography and infrared oculography can aid in assessing the visual system and CNS in multiple sclerosis (MS). Both afferent and efferent visual disorders are common in MS and visual complaints can have a tremendous impact on daily functioning. Optical coherence tomography and infrared oculography can detect and quantify visual disorders with high accuracy, but could also serve as quantitative markers for inflammation, neurodegeneration and network changes including cognitive decline in MS patients. The assessment of the efferent and afferent visual pathways is relevant for monitoring and predicting the disease course, but is also potentially valuable as an outcome measure in therapeutic trials.
Collapse
Affiliation(s)
- Danko Coric
- Department of Neurology, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, The Netherlands
| | - Jenny A Nij Bijvank
- Department of Neurology, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Ophthalmology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Laurentius J van Rijn
- Department of Ophthalmology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Axel Petzold
- Department of Neurology, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, The Netherlands
- Moorfields Eye Hospital & The National Hospital for Neurology & Neurosurgery, London, UK
| | - Lisanne J Balk
- Department of Neurology, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Distractor Inhibition in Autism Spectrum Disorder: Evidence of a Selective Impairment for Individuals with Co-occurring Motor Difficulties. J Autism Dev Disord 2018; 49:669-682. [DOI: 10.1007/s10803-018-3744-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Superior Visual Search and Crowding Abilities Are Not Characteristic of All Individuals on the Autism Spectrum. J Autism Dev Disord 2018; 48:3499-3512. [DOI: 10.1007/s10803-018-3601-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Takamuku S, Forbes PAG, Hamilton AFDC, Gomi H. Typical use of inverse dynamics in perceiving motion in autistic adults: Exploring computational principles of perception and action. Autism Res 2018; 11:1062-1075. [PMID: 29734504 DOI: 10.1002/aur.1961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/19/2018] [Accepted: 04/11/2018] [Indexed: 11/11/2022]
Abstract
There is increasing evidence for motor difficulties in many people with autism spectrum condition (ASC). These difficulties could be linked to differences in the use of internal models which represent relations between motions and forces/efforts. The use of these internal models may be dependent on the cerebellum which has been shown to be abnormal in autism. Several studies have examined internal computations of forward dynamics (motion from force information) in autism, but few have tested the inverse dynamics computation, that is, the determination of force-related information from motion information. Here, we examined this ability in autistic adults by measuring two perceptual biases which depend on the inverse computation. First, we asked participants whether they experienced a feeling of resistance when moving a delayed cursor, which corresponds to the inertial force of the cursor implied by its motion-both typical and ASC participants reported similar feelings of resistance. Second, participants completed a psychophysical task in which they judged the velocity of a moving hand with or without a visual cue implying inertial force. Both typical and ASC participants perceived the hand moving with the inertial cue to be slower than the hand without it. In both cases, the magnitude of the effects did not differ between the two groups. Our results suggest that the neural systems engaged in the inverse dynamics computation are preserved in ASC, at least in the observed conditions. Autism Res 2018, 11: 1062-1075. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY We tested the ability to estimate force information from motion information, which arises from a specific "inverse dynamics" computation. Autistic adults and a matched control group reported feeling a resistive sensation when moving a delayed cursor and also judged a moving hand to be slower when it was pulling a load. These findings both suggest that the ability to estimate force information from motion information is intact in autism.
Collapse
Affiliation(s)
- Shinya Takamuku
- NTT Communication Science Laboratories, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
| | - Paul A G Forbes
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London, WC1N 3AZ, UK
| | - Antonia F de C Hamilton
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London, WC1N 3AZ, UK
| | - Hiroaki Gomi
- NTT Communication Science Laboratories, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
| |
Collapse
|
22
|
Freedman EG, Foxe JJ. Eye movements, sensorimotor adaptation and cerebellar-dependent learning in autism: toward potential biomarkers and subphenotypes. Eur J Neurosci 2018; 47:549-555. [PMID: 28612953 PMCID: PMC11800192 DOI: 10.1111/ejn.13625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/15/2017] [Accepted: 05/30/2017] [Indexed: 11/30/2022]
Abstract
Because of the wide range of symptoms expressed in individuals with autism spectrum disorder (ASD) and their idiosyncratic severity, it is unlikely that a single remedial approach will be universally effective. Resolution of this dilemma requires identifying subgroups within the autism spectrum, based on symptom set and severity, on an underlying neuro-structural difference, and on specific behavioral dysfunction. This will provide critical insight into the disorder and may lead to better diagnoses, and more targeted remediation in these subphenotypes of people with ASD. In this review, we discuss findings that appear to link the structure of the cerebellar vermis and plasticity of the saccadic eye-movement system in people with an autism spectrum disorder (ASD). Differences in cerebellar vermis structure in ASD could critically impact visuo-sensorimotor development in early infancy, which may in turn manifest as the visual orienting, communication and social interaction differences often seen in this population. It may be possible to distinguish a subpopulation of children with vermal hypoplasia, to establish whether this group manifests more severe deficits in visual orienting and in adaptation to persistent visual errors, and to establish whether this putative subphenotype of ASD is associated with a specific and distinct clinical symptom profile.
Collapse
Affiliation(s)
- Edward G Freedman
- Department of Neuroscience, The Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - John J Foxe
- Department of Neuroscience, The Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| |
Collapse
|
23
|
de Moraes ÍAP, Massetti T, Crocetta TB, da Silva TD, de Menezes LDC, Monteiro CBDM, Magalhães FH. Motor learning characterization in people with autism spectrum disorder: A systematic review. Dement Neuropsychol 2017; 11:276-286. [PMID: 29213525 PMCID: PMC5674672 DOI: 10.1590/1980-57642016dn11-030010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder primarily characterized by deficits in social interaction, communication and implicit skill learning.
Collapse
Affiliation(s)
- Íbis Ariana Peña de Moraes
- Post-graduate Program in Sciences of Physical Activity - School of Arts, Sciences and Humanities - University of São Paulo, São Paulo, SP, Brazil
| | - Thais Massetti
- Post-graduate Program in Rehabilitation Sciences - Faculty of Medicine - University of São Paulo, São Paulo, SP, Brazil
| | - Tânia Brusque Crocetta
- Department of Morphology and Physiology - Faculty of Medicine of ABC - Santo André, SP, Brazil
| | - Talita Dias da Silva
- Post-graduate Program in Cardiology - Federal University of São Paulo - Paulista School of Medicine - São Paulo, SP, Brazil
| | - Lilian Del Ciello de Menezes
- Post-graduate Program in Rehabilitation Sciences - Faculty of Medicine - University of São Paulo, São Paulo, SP, Brazil
| | | | - Fernando Henrique Magalhães
- Post-graduate Program in Sciences of Physical Activity - School of Arts, Sciences and Humanities - University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
24
|
Banda DR, Okungu PA, Griffin-Shirley N, Meeks MK, Landa-Vialard O. Teaching Orientation and Mobility Skills to Students with Autism and Vision Impairment in Public Schools: A Data-Based Study. INTERNATIONAL JOURNAL OF ORIENTATION & MOBILITY 2017. [DOI: 10.21307/ijom-2017-054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
25
|
Zalla T, Seassau M, Cazalis F, Gras D, Leboyer M. Saccadic eye movements in adults with high-functioning autism spectrum disorder. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2016; 22:195-204. [PMID: 29490485 DOI: 10.1177/1362361316667057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this study, we examined the accuracy and dynamics of visually guided saccades in 20 adults with autism spectrum disorder, as compared to 20 typically developed adults using the Step/Overlap/Gap paradigms. Performances in participants with autistic spectrum disorder were characterized by preserved Gap/Overlap effect, but reduced gain and peak velocity, as well as a greater trial-to-trial variability in task performance, as compared to the control group. While visual orienting and attentional engagement were relatively preserved in individuals with autistic spectrum disorder, overall these findings provide evidence that abnormal oculomotor behavior in autistic spectrum disorder reflects an altered sensorimotor control due to cerebellar abnormalities, rather than a deficit in the volitional control of eye movements. This study contributes to a growing body of evidence implicating this structure in the physiopathology of autism.
Collapse
Affiliation(s)
- Tiziana Zalla
- 1 CNRS, UMR 8129, École Normale Supérieure & PSL Research University, Paris, France
| | | | - Fabienne Cazalis
- 1 CNRS, UMR 8129, École Normale Supérieure & PSL Research University, Paris, France.,3 École des Hautes Études en Sciences Sociales (EHESS), France
| | - Doriane Gras
- 1 CNRS, UMR 8129, École Normale Supérieure & PSL Research University, Paris, France.,4 Sorbonne Paris Cité, France
| | - Marion Leboyer
- 5 INSERM U 955, University Paris Est Creteil & Fondation FondaMental, Creteil, France
| |
Collapse
|
26
|
Saccade adaptation in young people diagnosed with Attention Deficit Hyperactivity Disorder Combined Type. Neuroscience 2016; 333:27-34. [DOI: 10.1016/j.neuroscience.2016.06.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 11/24/2022]
|
27
|
Johnson BP, Lum JAG, Rinehart NJ, Fielding J. Ocular motor disturbances in autism spectrum disorders: Systematic review and comprehensive meta-analysis. Neurosci Biobehav Rev 2016; 69:260-79. [PMID: 27527824 DOI: 10.1016/j.neubiorev.2016.08.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/25/2016] [Accepted: 08/05/2016] [Indexed: 01/21/2023]
Abstract
There has been considerable focus placed on how individuals with autism spectrum disorder (ASD) visually perceive and attend to social information, such as facial expressions or social gaze. The role of eye movements is inextricable from visual perception, however this aspect is often overlooked. We performed a series of meta-analyses based on data from 28 studies of eye movements in ASD to determine whether there is evidence for ocular motor dysfunction in ASD. Tasks assessed included visually-guided saccade tasks, gap/overlap, anti-saccade, pursuit tasks and ocular fixation. These analyses revealed evidence for ocular motor dysfunction in ASD, specifically relating to saccade dysmetria, difficulty inhibiting saccades and impaired tracking of moving targets. However there was no evidence for deficits relating to initiating eye movements, or engaging and disengaging from simple visual targets. Characterizing ocular motor abnormalities in ASD may provide insight into the functional integrity of brain networks in ASD across development, and assist our understanding of visual and social attention in ASD.
Collapse
Affiliation(s)
- Beth P Johnson
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, 18 Innovation Walk, Monash University, VIC 3800, Australia.
| | - Jarrad A G Lum
- Deakin Child Study Centre, School of Psychology, Deakin Unviersity, 221 Burwood Highway, Burwood, VIC 3125, Australia
| | - Nicole J Rinehart
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, 18 Innovation Walk, Monash University, VIC 3800, Australia; Deakin Child Study Centre, School of Psychology, Deakin Unviersity, 221 Burwood Highway, Burwood, VIC 3125, Australia
| | - Joanne Fielding
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, 18 Innovation Walk, Monash University, VIC 3800, Australia
| |
Collapse
|
28
|
Carson TB, Wilkes BJ, Patel K, Pineda JL, Ko JH, Newell KM, Bodfish JW, Schubert MC, Radonovich K, White KD, Lewis MH. Vestibulo-ocular reflex function in children with high-functioning autism spectrum disorders. Autism Res 2016; 10:251-266. [PMID: 27220548 DOI: 10.1002/aur.1642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 04/02/2016] [Accepted: 04/18/2016] [Indexed: 02/02/2023]
Abstract
Sensorimotor processing alterations are a growing focus in the assessment and treatment of Autism Spectrum Disorders (ASD). The rotational vestibulo-ocular reflex (rVOR), which functions to maintain stable vision during head movements, is a sensorimotor system that may be useful in understanding such alterations and their underlying neurobiology. In this study, we assessed post-rotary nystagmus elicited by continuous whole body rotation among children with high-functioning ASD and typically developing children. Children with ASD exhibited increased rVOR gain, the ratio of eye velocity to head velocity, indicating a possible lack of cerebellar inhibitory input to brainstem vestibular nuclei in this population. The ASD group also showed less regular or periodic horizontal eye movements as indexed by greater variance accounted for by multiple higher frequency bandwidths as well as greater entropy scores compared to typically developing children. The decreased regularity or dysrhythmia in the temporal structure of nystagmus beats in children with ASD may be due to alterations in cerebellum and brainstem circuitry. These findings could potentially serve as a model to better understand the functional effects of differences in these brain structures in ASD. Autism Res 2017, 10: 251-266. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tana B Carson
- Department of Occupational Therapy, University of Florida, Gainesville, Florida.,Department of Psychology, University of Florida, Gainesville, Florida
| | - Bradley J Wilkes
- Department of Psychology, University of Florida, Gainesville, Florida
| | - Kunal Patel
- Department of Psychology, University of Florida, Gainesville, Florida
| | - Jill L Pineda
- Department of Psychology, University of Florida, Gainesville, Florida
| | - Ji H Ko
- Department of Health and Human Development, Montana State University, Bozeman, Montana
| | - Karl M Newell
- Department of Kinesiology, University of Georgia, Athens, Georgia
| | - James W Bodfish
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee
| | - Michael C Schubert
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland
| | | | - Keith D White
- Department of Psychology, University of Florida, Gainesville, Florida
| | - Mark H Lewis
- Department of Psychiatry, University of Florida, Gainesville, Florida
| |
Collapse
|
29
|
Fielding J, Clough M, Beh S, Millist L, Sears D, Frohman AN, Lizak N, Lim J, Kolbe S, Rennaker RL, Frohman TC, White OB, Frohman EM. Ocular motor signatures of cognitive dysfunction in multiple sclerosis. Nat Rev Neurol 2015; 11:637-45. [PMID: 26369516 DOI: 10.1038/nrneurol.2015.174] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The anatomical and functional overlap between ocular motor command circuitry and the higher-order networks that form the scaffolding for cognition makes for a compelling hypothesis that measures of ocular motility could provide a means to sensitively interrogate cognitive dysfunction in people with multiple sclerosis (MS). Such an approach may ultimately provide objective and reproducible measures of cognitive dysfunction that offer an innovative capability to refine diagnosis, improve prognostication, and more accurately codify disease burden. A further dividend may be the validation and application of biomarkers that can be used in studies aimed at identifying and monitoring preventative, protective and even restorative properties of novel neurotherapeutics in MS. This Review discusses the utility of ocular motor measures in patients with MS to characterize disruption to wide-ranging networks that support cognitive function.
Collapse
Affiliation(s)
- Joanne Fielding
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia.,Department of Medicine, Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3050, Australia
| | - Meaghan Clough
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Shin Beh
- Departments of Neurology and Neurotherapeutics, University of Texas Southwestern School of Medicine, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Lynette Millist
- Department of Medicine, Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3050, Australia
| | - Derek Sears
- Departments of Neurology and Neurotherapeutics, University of Texas Southwestern School of Medicine, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ashley N Frohman
- Departments of Neurology and Neurotherapeutics, University of Texas Southwestern School of Medicine, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Nathaniel Lizak
- Monash School of Medicine, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Jayne Lim
- Department of Medicine, Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3050, Australia
| | - Scott Kolbe
- Department of Anatomy and Neuroscience, Medical Building, University of Melbourne, Parkville, VIC 3010, Australia
| | - Robert L Rennaker
- Department of Bioengineering and Computer Science, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Teresa C Frohman
- Departments of Neurology and Neurotherapeutics, University of Texas Southwestern School of Medicine, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Owen B White
- Department of Medicine, Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3050, Australia
| | - Elliot M Frohman
- Departments of Neurology and Neurotherapeutics, University of Texas Southwestern School of Medicine, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.,Department of Bioengineering and Computer Science, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| |
Collapse
|
30
|
Mosconi MW, Wang Z, Schmitt LM, Tsai P, Sweeney JA. The role of cerebellar circuitry alterations in the pathophysiology of autism spectrum disorders. Front Neurosci 2015; 9:296. [PMID: 26388713 PMCID: PMC4555040 DOI: 10.3389/fnins.2015.00296] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/06/2015] [Indexed: 01/23/2023] Open
Abstract
The cerebellum has been repeatedly implicated in gene expression, rodent model and post-mortem studies of autism spectrum disorder (ASD). How cellular and molecular anomalies of the cerebellum relate to clinical manifestations of ASD remains unclear. Separate circuits of the cerebellum control different sensorimotor behaviors, such as maintaining balance, walking, making eye movements, reaching, and grasping. Each of these behaviors has been found to be impaired in ASD, suggesting that multiple distinct circuits of the cerebellum may be involved in the pathogenesis of patients' sensorimotor impairments. We will review evidence that the development of these circuits is disrupted in individuals with ASD and that their study may help elucidate the pathophysiology of sensorimotor deficits and core symptoms of the disorder. Preclinical studies of monogenetic conditions associated with ASD also have identified selective defects of the cerebellum and documented behavioral rescues when the cerebellum is targeted. Based on these findings, we propose that cerebellar circuits may prove to be promising targets for therapeutic development aimed at rescuing sensorimotor and other clinical symptoms of different forms of ASD.
Collapse
Affiliation(s)
- Matthew W Mosconi
- Clinical Child Psychology Program and Schiefelbusch Institute for Life Span Studies, University of Kansas Lawrence, KS, USA ; Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA ; Department of Pediatrics, University of Texas Southwestern Dallas, TX, USA
| | - Zheng Wang
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA
| | - Lauren M Schmitt
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA
| | - Peter Tsai
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA ; Department of Pediatrics, University of Texas Southwestern Dallas, TX, USA ; Department of Neurology and Neurotherapeutics, University of Texas Southwestern Dallas, TX, USA ; Department of Neuroscience, University of Texas Southwestern Dallas, TX, USA
| | - John A Sweeney
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA ; Department of Pediatrics, University of Texas Southwestern Dallas, TX, USA
| |
Collapse
|
31
|
Feedforward and feedback motor control abnormalities implicate cerebellar dysfunctions in autism spectrum disorder. J Neurosci 2015; 35:2015-25. [PMID: 25653359 DOI: 10.1523/jneurosci.2731-14.2015] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sensorimotor abnormalities are common in autism spectrum disorder (ASD) and among the earliest manifestations of the disorder. They have been studied far less than the social-communication and cognitive deficits that define ASD, but a mechanistic understanding of sensorimotor abnormalities in ASD may provide key insights into the neural underpinnings of the disorder. In this human study, we examined rapid, precision grip force contractions to determine whether feedforward mechanisms supporting initial motor output before sensory feedback can be processed are disrupted in ASD. Sustained force contractions also were examined to determine whether reactive adjustments to ongoing motor behavior based on visual feedback are altered. Sustained force was studied across multiple force levels and visual gains to assess motor and visuomotor mechanisms, respectively. Primary force contractions of individuals with ASD showed greater peak rate of force increases and large transient overshoots. Individuals with ASD also showed increased sustained force variability that scaled with force level and was more severe when visual gain was highly amplified or highly degraded. When sustaining a constant force level, their reactive adjustments were more periodic than controls, and they showed increased reliance on slower feedback mechanisms. Feedforward and feedback mechanism alterations each were associated with more severe social-communication impairments in ASD. These findings implicate anterior cerebellar circuits involved in feedforward motor control and posterior cerebellar circuits involved in transforming visual feedback into precise motor adjustments in ASD.
Collapse
|
32
|
Wang Z, Magnon GC, White SP, Greene RK, Vaillancourt DE, Mosconi MW. Individuals with autism spectrum disorder show abnormalities during initial and subsequent phases of precision gripping. J Neurophysiol 2015; 113:1989-2001. [PMID: 25552638 PMCID: PMC4416549 DOI: 10.1152/jn.00661.2014] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/26/2014] [Indexed: 01/08/2023] Open
Abstract
Sensorimotor impairments are common in autism spectrum disorder (ASD), but they are not well understood. Here we examined force control during initial pulses and the subsequent rise, sustained, and relaxation phases of precision gripping in 34 individuals with ASD and 25 healthy control subjects. Participants pressed on opposing load cells with their thumb and index finger while receiving visual feedback regarding their performance. They completed 2- and 8-s trials during which they pressed at 15%, 45%, or 85% of their maximum force. Initial pulses guided by feedforward control mechanisms, sustained force output controlled by visual feedback processes, and force relaxation rates all were examined. Control subjects favored an initial pulse strategy characterized by a rapid increase in and then relaxation of force when the target force was low (Type 1). When the target force level or duration of trials was increased, control subjects transitioned to a strategy in which they more gradually increased their force, paused, and then increased their force again. Individuals with ASD showed a more persistent bias toward the Type 1 strategy at higher force levels and during longer trials, and their initial force output was less accurate than that of control subjects. Patients showed increased force variability compared with control subjects when attempting to sustain a constant force level. During the relaxation phase, they showed reduced rates of force decrease. These findings suggest that both feedforward and feedback motor control mechanisms are compromised in ASD and these deficits may contribute to the dyspraxia and sensorimotor abnormalities often seen in this disorder.
Collapse
Affiliation(s)
- Zheng Wang
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Grant C Magnon
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stormi P White
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rachel K Greene
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, Texas
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; Department of Neurology, University of Florida, Gainesville, Florida; Department of Biomedical Engineering, University of Florida, Gainesville, Florida; and
| | - Matthew W Mosconi
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, Texas; Departments of Psychiatry and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
33
|
Barbeau EB, Meilleur AS, Zeffiro TA, Mottron L. Comparing Motor Skills in Autism Spectrum Individuals With and Without Speech Delay. Autism Res 2015; 8:682-93. [PMID: 25820662 PMCID: PMC5008150 DOI: 10.1002/aur.1483] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/28/2015] [Indexed: 11/22/2022]
Abstract
Movement atypicalities in speed, coordination, posture, and gait have been observed across the autism spectrum (AS) and atypicalities in coordination are more commonly observed in AS individuals without delayed speech (DSM‐IV Asperger) than in those with atypical or delayed speech onset. However, few studies have provided quantitative data to support these mostly clinical observations. Here, we compared perceptual and motor performance between 30 typically developing and AS individuals (21 with speech delay and 18 without speech delay) to examine the associations between limb movement control and atypical speech development. Groups were matched for age, intelligence, and sex. The experimental design included: an inspection time task, which measures visual processing speed; the Purdue Pegboard, which measures finger dexterity, bimanual performance, and hand‐eye coordination; the Annett Peg Moving Task, which measures unimanual goal‐directed arm movement; and a simple reaction time task. We used analysis of covariance to investigate group differences in task performance and linear regression models to explore potential associations between intelligence, language skills, simple reaction time, and visually guided movement performance. AS participants without speech delay performed slower than typical participants in the Purdue Pegboard subtests. AS participants without speech delay showed poorer bimanual coordination than those with speech delay. Visual processing speed was slightly faster in both AS groups than in the typical group. Altogether, these results suggest that AS individuals with and without speech delay differ in visually guided and visually triggered behavior and show that early language skills are associated with slower movement in simple and complex motor tasks. Autism Res2015, 8: 682–693. © 2015 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research
Collapse
Affiliation(s)
- Elise B. Barbeau
- Centre d'excellence en troubles envahissants du développement de l'Université de Montréal (CETEDUM), Hôpital Rivière‐des‐Prairies, 7070 boulPerras, MontréalQCH1E 1A4Canada
- Centre de Recherche Fernand‐Seguin, Department of PsychiatryUniversity of MontrealMontréalQCCanada
| | - Andrée‐Anne S. Meilleur
- Centre d'excellence en troubles envahissants du développement de l'Université de Montréal (CETEDUM), Hôpital Rivière‐des‐Prairies, 7070 boulPerras, MontréalQCH1E 1A4Canada
| | - Thomas A. Zeffiro
- Neural Systems Group, Massachusetts General Hospital149 13th StCharlestownMassachusetts02129
| | - Laurent Mottron
- Centre d'excellence en troubles envahissants du développement de l'Université de Montréal (CETEDUM), Hôpital Rivière‐des‐Prairies, 7070 boulPerras, MontréalQCH1E 1A4Canada
- Centre de Recherche Fernand‐Seguin, Department of PsychiatryUniversity of MontrealMontréalQCCanada
| |
Collapse
|
34
|
Marko MK, Crocetti D, Hulst T, Donchin O, Shadmehr R, Mostofsky SH. Behavioural and neural basis of anomalous motor learning in children with autism. ACTA ACUST UNITED AC 2015; 138:784-97. [PMID: 25609685 DOI: 10.1093/brain/awu394] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Autism spectrum disorder is a developmental disorder characterized by deficits in social and communication skills and repetitive and stereotyped interests and behaviours. Although not part of the diagnostic criteria, individuals with autism experience a host of motor impairments, potentially due to abnormalities in how they learn motor control throughout development. Here, we used behavioural techniques to quantify motor learning in autism spectrum disorder, and structural brain imaging to investigate the neural basis of that learning in the cerebellum. Twenty children with autism spectrum disorder and 20 typically developing control subjects, aged 8-12, made reaching movements while holding the handle of a robotic manipulandum. In random trials the reach was perturbed, resulting in errors that were sensed through vision and proprioception. The brain learned from these errors and altered the motor commands on the subsequent reach. We measured learning from error as a function of the sensory modality of that error, and found that children with autism spectrum disorder outperformed typically developing children when learning from errors that were sensed through proprioception, but underperformed typically developing children when learning from errors that were sensed through vision. Previous work had shown that this learning depends on the integrity of a region in the anterior cerebellum. Here we found that the anterior cerebellum, extending into lobule VI, and parts of lobule VIII were smaller than normal in children with autism spectrum disorder, with a volume that was predicted by the pattern of learning from visual and proprioceptive errors. We suggest that the abnormal patterns of motor learning in children with autism spectrum disorder, showing an increased sensitivity to proprioceptive error and a decreased sensitivity to visual error, may be associated with abnormalities in the cerebellum.
Collapse
Affiliation(s)
- Mollie K Marko
- 1 Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Deana Crocetti
- 2 Centre for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Thomas Hulst
- 3 Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Opher Donchin
- 4 The Motor Learning Laboratory, Department of Biomedical Engineering, Ben Gurion University of the Negev, Beersheba, Israel
| | - Reza Shadmehr
- 1 Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Stewart H Mostofsky
- 2 Centre for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland, USA 5 Departments of Neurology and Psychiatry and Behavioural Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Piochon C, Kloth AD, Grasselli G, Titley HK, Nakayama H, Hashimoto K, Wan V, Simmons DH, Eissa T, Nakatani J, Cherskov A, Miyazaki T, Watanabe M, Takumi T, Kano M, Wang SSH, Hansel C. Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism. Nat Commun 2014; 5:5586. [PMID: 25418414 PMCID: PMC4243533 DOI: 10.1038/ncomms6586] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/17/2014] [Indexed: 12/14/2022] Open
Abstract
A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behaviour and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behaviour deficits. We find that in patDp/+ mice delay eyeblink conditioning--a form of cerebellum-dependent motor learning--is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fibre-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibres--a model for activity-dependent synaptic pruning--is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism.
Collapse
Affiliation(s)
- Claire Piochon
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, United States
| | - Alexander D Kloth
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, United States
| | - Giorgio Grasselli
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, United States
| | - Heather K Titley
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, United States
| | - Hisako Nakayama
- Department of Neurophysiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Vivian Wan
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, United States
| | - Dana H Simmons
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, United States
| | - Tahra Eissa
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, United States
| | - Jin Nakatani
- Shiga University of Medical Science, Ohtsu 520-2192, Japan
| | - Adriana Cherskov
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, United States
| | - Taisuke Miyazaki
- Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako 351-0198, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Samuel S-H Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, United States
| | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, United States
| |
Collapse
|
36
|
Schmitt LM, Cook EH, Sweeney JA, Mosconi MW. Saccadic eye movement abnormalities in autism spectrum disorder indicate dysfunctions in cerebellum and brainstem. Mol Autism 2014; 5:47. [PMID: 25400899 PMCID: PMC4233053 DOI: 10.1186/2040-2392-5-47] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/28/2014] [Indexed: 01/05/2023] Open
Abstract
Background Individuals with autism spectrum disorder (ASD) show atypical scan paths during social interaction and when viewing faces, and recent evidence suggests that they also show abnormal saccadic eye movement dynamics and accuracy when viewing less complex and non-social stimuli. Eye movements are a uniquely promising target for studies of ASD as their spatial and temporal characteristics can be measured precisely and the brain circuits supporting them are well-defined. Control of saccade metrics is supported by discrete circuits within the cerebellum and brainstem - two brain regions implicated in magnetic resonance (MR) morphometry and histopathological studies of ASD. The functional integrity of these distinct brain systems can be examined by evaluating different parameters of visually-guided saccades. Methods A total of 65 participants with ASD and 43 healthy controls, matched on age (between 6 and 44-years-old), gender and nonverbal IQ made saccades to peripheral targets. To examine the influence of attentional processes, blocked gap and overlap trials were presented. We examined saccade latency, accuracy and dynamics, as well as the trial-to-trial variability of participants’ performance. Results Saccades of individuals with ASD were characterized by reduced accuracy, elevated variability in accuracy across trials, and reduced peak velocity and prolonged duration. In addition, their saccades took longer to accelerate to peak velocity, with no alteration in the duration of saccade deceleration. Gap/overlap effects on saccade latencies were similar across groups, suggesting that visual orienting and attention systems are relatively spared in ASD. Age-related changes did not differ across groups. Conclusions Deficits precisely and consistently directing eye movements suggest impairment in the error-reducing function of the cerebellum in ASD. Atypical increases in the duration of movement acceleration combined with lower peak saccade velocities implicate pontine nuclei, specifically suggesting reduced excitatory activity in burst cells that drive saccades relative to inhibitory activity in omnipause cells that maintain stable fixation. Thus, our findings suggest that both cerebellar and brainstem abnormalities contribute to altered sensorimotor control in ASD. Electronic supplementary material The online version of this article (doi:10.1186/2040-2392-5-47) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lauren M Schmitt
- Center for Autism and Developmental Disabilities, University of Texas Southwestern, 5323 Harry Hines Blvd, Dallas, TX 75390-9086 USA
| | - Edwin H Cook
- Department of Psychiatry, University of Illinois at Chicago, 1747 W. Roosevelt Rd (MC 747), Chicago, IL 60608 USA
| | - John A Sweeney
- Center for Autism and Developmental Disabilities, University of Texas Southwestern, 5323 Harry Hines Blvd, Dallas, TX 75390-9086 USA ; Centre for Autism Spectrum Disorders, Bond University, Gold Coast, QLD 4229 Australia
| | - Matthew W Mosconi
- Center for Autism and Developmental Disabilities, University of Texas Southwestern, 5323 Harry Hines Blvd, Dallas, TX 75390-9086 USA ; Departments of Psychiatry and Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9086 USA
| |
Collapse
|
37
|
Gray MJ, Blangero A, Herman JP, Wallman J, Harwood MR. Adaptation of naturally paced saccades. J Neurophysiol 2014; 111:2343-54. [PMID: 24623511 PMCID: PMC4097875 DOI: 10.1152/jn.00905.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/11/2014] [Indexed: 11/22/2022] Open
Abstract
In the natural environment, humans make saccades almost continuously. In many eye movement experiments, however, observers are required to fixate for unnaturally long periods of time. The resulting long and monotonous experimental sessions can become especially problematic when collecting data in a clinical setting, where time can be scarce and subjects easily fatigued. With this in mind, we tested whether the well-studied motor learning process of saccade adaptation could be induced with a dramatically shortened intertrial interval. Observers made saccades to targets that stepped left or right either ∼250 ms or ∼1,600 ms after the saccade landed. In experiment I, we tested baseline saccade parameters to four different target amplitudes (5°, 10°, 15°, and 20°) in the two timing settings. In experiments II and III, we adapted 10° saccades via 2° intrasaccadic steps either backwards or forwards, respectively. Seven subjects performed eight separate adaptation sessions (2 intertrial timings × 2 adaptation direction × 2 session trial lengths). Adaptation proceeded remarkably similarly in both timing conditions across the multiple sessions. In the faster-paced sessions, robust adaptation was achieved in under 2 min, demonstrating the efficacy of our approach to streamlining saccade adaptation experiments. Although saccade amplitudes were similar between conditions, the faster-paced condition unexpectedly resulted in significantly higher peak velocities in all subjects. This surprising finding demonstrates that the stereotyped "main sequence" relationship between saccade amplitude and peak velocity is not as fixed as originally thought.
Collapse
Affiliation(s)
- Michael J Gray
- PhD Program in Behavioral and Cognitive Neuroscience, The Graduate Center at City University of New York, New York, New York; Department of Biology, The City College of New York, New York, New York; and
| | - Annabelle Blangero
- Department of Biology, The City College of New York, New York, New York; and
| | - James P Herman
- Department of Biology, The City College of New York, New York, New York; and Laboratory of Sensorimotor Research, National Eye institute, National Institutes of Health, Bethesda, Maryland
| | - Josh Wallman
- Department of Biology, The City College of New York, New York, New York; and
| | - Mark R Harwood
- Department of Biology, The City College of New York, New York, New York; and
| |
Collapse
|
38
|
|
39
|
Chukoskie L, Townsend J, Westerfield M. Motor Skill in Autism Spectrum Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 113:207-49. [DOI: 10.1016/b978-0-12-418700-9.00007-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|