1
|
Silwal P, Singhal P, Senecal JM, Senecal JE, Lynn BD, Nagy JI. Patterns of connexin36 and eGFP reporter expression among motoneurons in spinal sexually dimorphic motor nuclei in mouse. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2024; 16:55-76. [PMID: 39021417 PMCID: PMC11249853 DOI: 10.62347/ogwv9376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/06/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Sexually dimorphic spinal motoneurons (MNs) in the dorsomedial nucleus (DMN) and dorsolateral nucleus (DLN) as well as those in the cremaster nucleus are involved in reproductive behaviours, and the cremaster nucleus additionally contributes to testicular thermoregulation. It has been reported that MNs in DMN and DLN are extensively linked by gap junctions forming electrical synapses composed of connexin36 (Cx36) and there is evidence that subpopulation of MNs in the cremaster nucleus are also electrically coupled by these synapses. METHODOLOGY We used immunofluorescence methods to detect enhanced green fluorescent protein (eGFP) reporter for Cx36 expression in these motor nuclei. RESULTS We document in male mice that about half the MNs in each of DMN and DLN express eGFP, while the remaining half do not. Further, we found that the eGFP+ vs. eGFP- subsets of MNs in each of these motor nuclei innervate different target muscles; eGFP+ MNs in DMN and DLN project to sexually dimorphic bulbocavernosus and ischiocavernosus muscles, while the eGFP- subsets project to sexually non-dimorphic anal and external urethral sphincter muscles. Similarly, eGFP+ vs. eGFP- cremaster MNs were found to project to anatomically distinct portions of the cremaster muscle. By immunofluorescence, nearly all motoneurons in both DMN and DLN displayed punctate labelling for Cx36, including at eGFP+/eGFP+, eGFP+/eGFP- and eGFP-/eGFP- cell appositions. CONCLUSIONS Most if not all motoneurons in DMN and DLN are electrically coupled, including sexually dimorphic and non-dimorphic motoneurons with each other, despite absence of eGFP reporter in the non-dimorphic populations in these nuclei that have selective projections to sexually non-dimorphic target muscles.
Collapse
Affiliation(s)
- Prabhisha Silwal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| | - Pratyaksh Singhal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| | - Joanne Mm Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| | - Julie Em Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| | - Bruce D Lynn
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| | - James I Nagy
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| |
Collapse
|
2
|
Thomas D, Recabal-Beyer A, Senecal JMM, Serletis D, Lynn BD, Jackson MF, Nagy JI. Association of connexin36 with adherens junctions at mixed synapses and distinguishing electrophysiological features of those at mossy fiber terminals in rat ventral hippocampus. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2024; 16:28-54. [PMID: 39021415 PMCID: PMC11249852 DOI: 10.62347/rtmh4490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/06/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Granule cells in the hippocampus project axons to hippocampal CA3 pyramidal cells where they form large mossy fiber terminals. We have reported that these terminals contain the gap junction protein connexin36 (Cx36) specifically in the stratum lucidum of rat ventral hippocampus, thus creating morphologically mixed synapses that have the potential for dual chemical/electrical transmission. METHODOLOGY Here, we used various approaches to characterize molecular and electrophysiological relationships between the Cx36-containing gap junctions at mossy fiber terminals and their postsynaptic elements and to examine molecular relationships at mixed synapses in the brainstem. RESULTS In rat and human ventral hippocampus, many of these terminals, identified by their selective expression of vesicular zinc transporter-3 (ZnT3), displayed multiple, immunofluorescent Cx36-puncta representing gap junctions, which were absent at mossy fiber terminals in the dorsal hippocampus. In rat, these were found in close proximity to the protein constituents of adherens junctions (i.e., N-cadherin and nectin-1) that are structural hallmarks of mossy fiber terminals, linking these terminals to the dendritic shafts of CA3 pyramidal cells, thus indicating the loci of gap junctions at these contacts. Cx36-puncta were also associated with adherens junctions at mixed synapses in the brainstem, supporting emerging views of the structural organization of the adherens junction-neuronal gap junction complex. Electrophysiologically induced long-term potentiation (LTP) of field responses evoked by mossy fiber stimulation was greater in the ventral than dorsal hippocampus. CONCLUSIONS The electrical component of transmission at mossy fiber terminals may contribute to enhanced LTP responses in the ventral hippocampus.
Collapse
Affiliation(s)
- Deepthi Thomas
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
| | - Antonia Recabal-Beyer
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de ConcepciónVíctor Lamas 1290, Casilla 160, Concepción, Chile
| | - Joanne MM Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
| | - Demitre Serletis
- Epilepsy Center, Neurological Institute, Cleveland ClinicCleveland, Ohio, USA
| | - Bruce D Lynn
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
| | - Michael F Jackson
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- PrairieNeuro Research Centre, Kleysen Institute for Advanced Medicine, Health Science CentreWinnipeg, Manitoba, Canada
| | - James I Nagy
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Singhal P, Senecal JMM, Senecal JEM, Silwal P, Lynn BD, Nagy JI. Characteristics of Electrical Synapses, C-terminals and Small-conductance Ca 2+ activated Potassium Channels in the Sexually Dimorphic Cremaster Motor Nucleus in Spinal Cord of Mouse and Rat. Neuroscience 2023; 521:58-76. [PMID: 37100373 DOI: 10.1016/j.neuroscience.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/17/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Sexually dimorphic motoneurons (MNs) located in lower lumbar spinal cord are involved in mating and reproductive behaviours and are known to be coupled by electrical synapses. The cremaster motor nucleus in upper lumbar spinal cord has also been suggested to support physiological processes associated with sexual behaviours in addition to its thermoregulatory and protective role in maintaining testes integrity. Using immunofluorescence approaches, we investigated whether cremaster MNs also exhibit features reflecting their potential for electrical synaptic communication and examined some of their other synaptic characteristics. Both mice and rats displayed punctate immunolabelling of Cx36 associated with cremaster MNs, indicative of gap junction formation. Transgenic mice with enhanced green fluorescent protein (eGFP) reporter for connexin36 expression showed that subpopulations of cremaster MNs in both male and female mice express eGFP, with greater proportions of those in male mice. The eGFP+ MNs within the cremaster nucleus vs. eGFP- MNs inside and outside this nucleus displayed a 5-fold greater density of serotonergic innervation and exhibited a paucity of innervation by C-terminals arising from cholinergic V0c interneurons. All MNs within the cremaster motor nucleus displayed prominent patches of immunolabelling for SK3 (K+) channels around their periphery, suggestive of their identity as slow MNs, many though not all of which were in apposition to C-terminals. The results provide evidence for electrical coupling of a large proportion of cremaster MNs and suggest the existence of two populations of these MNs with possibly differential innervation of their peripheral target muscles serving different functions.
Collapse
Affiliation(s)
- P Singhal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - J M M Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - J E M Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - P Silwal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - B D Lynn
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - J I Nagy
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada.
| |
Collapse
|
4
|
Hamling KR, Harmon K, Schoppik D. The Nature and Origin of Synaptic Inputs to Vestibulospinal Neurons in the Larval Zebrafish. eNeuro 2023; 10:ENEURO.0090-23.2023. [PMID: 37268420 PMCID: PMC10241381 DOI: 10.1523/eneuro.0090-23.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 06/04/2023] Open
Abstract
Vestibulospinal neurons integrate sensed imbalance to regulate postural reflexes. As an evolutionarily conserved neural population, understanding their synaptic and circuit-level properties can offer insight into vertebrate antigravity reflexes. Motivated by recent work, we set out to verify and extend the characterization of vestibulospinal neurons in the larval zebrafish. Using current-clamp recordings together with stimulation, we observed that larval zebrafish vestibulospinal neurons are silent at rest, yet capable of sustained spiking following depolarization. Neurons responded systematically to a vestibular stimulus (translation in the dark); responses were abolished after chronic or acute loss of the utricular otolith. Voltage-clamp recordings at rest revealed strong excitatory inputs with a characteristic multimodal distribution of amplitudes, as well as strong inhibitory inputs. Excitatory inputs within a particular mode (amplitude range) routinely violated refractory period criteria and exhibited complex sensory tuning, suggesting a nonunitary origin. Next, using a unilateral loss-of-function approach, we characterized the source of vestibular inputs to vestibulospinal neurons from each ear. We observed systematic loss of high-amplitude excitatory inputs after utricular lesions ipsilateral, but not contralateral, to the recorded vestibulospinal neuron. In contrast, while some neurons had decreased inhibitory inputs after either ipsilateral or contralateral lesions, there were no systematic changes across the population of recorded neurons. We conclude that imbalance sensed by the utricular otolith shapes the responses of larval zebrafish vestibulospinal neurons through both excitatory and inhibitory inputs. Our findings expand our understanding of how a vertebrate model, the larval zebrafish, might use vestibulospinal input to stabilize posture. More broadly, when compared with recordings in other vertebrates, our data speak to conserved origins of vestibulospinal synaptic input.
Collapse
Affiliation(s)
- Kyla R Hamling
- Departments of Otolaryngology and Neuroscience & Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016
| | - Katherine Harmon
- Departments of Otolaryngology and Neuroscience & Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016
| | - David Schoppik
- Departments of Otolaryngology and Neuroscience & Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016
| |
Collapse
|
5
|
Recabal-Beyer A, Tavakoli H, M M Senecal J, Stecina K, Nagy JI. Interrelationships between spinal sympathetic preganglionic neurons, autonomic systems and electrical synapses formed by connexin36-containing gap junctions. Neuroscience 2023:S0306-4522(23)00220-8. [PMID: 37225049 DOI: 10.1016/j.neuroscience.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/24/2023] [Accepted: 05/14/2023] [Indexed: 05/26/2023]
Abstract
Spinal sympathetic preganglionic neurons (SPNs) are among the many neuronal populations in the mammalian central nervous system (CNS) where there is evidence for electrical coupling between cell pairs linked by gap junctions composed of connexin36 (Cx36). Understanding the organization of this coupling in relation to autonomic functions of spinal sympathetic systems requires knowledge of how these junctions are deployed among SPNs. Here, we document the distribution of immunofluorescence detection of Cx36 among SPNs identified by immunolabelling of their various markers, including choline acetyltransferase, nitric oxide and peripherin in adult and developing mouse and rat. In adult animals, labelling of Cx36 was exclusively punctate and dense concentrations of Cx36-puncta were distributed along the entire length of the spinal thoracic intermediolateral cell column (IML). These puncta were also seen in association with SPN dendritic processes in the lateral funiculus, the intercalated and central autonomic areas and those within and extending medially from the IML. All labelling for Cx36 was absent in spinal cords of Cx36 knockout mice. High densities of Cx36-puncta were already evident among clusters of SPNs in the IML of mouse and rat at postnatal days 10-12. In Cx36BAC::eGFP mice, eGFP reporter was absent in SPNs, thus representing false negative detection, but was localized to some glutamatergic and GABAergic synaptic terminals. Some eGFP+ terminals were found contacting SPN dendrites. These results indicate widespread Cx36 expression in SPNs, further supporting evidence of electrical coupling between these cells, and suggest that SPNs are innervated by neurons that themselves may be electrically coupled.
Collapse
Affiliation(s)
- A Recabal-Beyer
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada R3E 0J9
| | - H Tavakoli
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada R3E 0J9
| | - J M M Senecal
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada R3E 0J9
| | - K Stecina
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada R3E 0J9
| | - J I Nagy
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada R3E 0J9.
| |
Collapse
|
6
|
Hamling KR, Harmon K, Schoppik D. The nature and origin of synaptic inputs to vestibulospinal neurons in the larval zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532859. [PMID: 36993365 PMCID: PMC10055124 DOI: 10.1101/2023.03.15.532859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vestibulospinal neurons integrate sensed imbalance to regulate postural reflexes. As an evolutionarily-conserved neural population, understanding their synaptic and circuit-level properties can offer insight into vertebrate antigravity reflexes. Motivated by recent work, we set out to verify and extend the characterization of vestibulospinal neurons in the larval zebrafish. Using current clamp recordings together with stimulation, we observed that larval zebrafish vestibulospinal neurons are silent at rest, yet capable of sustained spiking following depolarization. Neurons responded systematically to a vestibular stimulus (translation in the dark); responses were abolished after chronic or acute loss of the utricular otolith. Voltage clamp recordings at rest revealed strong excitatory inputs with a characteristic multimodal distribution of amplitudes, as well as strong inhibitory inputs. Excitatory inputs within a particular mode (amplitude range) routinely violated refractory period criteria and exhibited complex sensory tuning, suggesting a non-unitary origin. Next, using a unilateral loss-of-function approach, we characterized the source of vestibular inputs to vestibulospinal neurons from each ear. We observed systematic loss of high-amplitude excitatory inputs after utricular lesions ipsilateral, but not contralateral to the recorded vestibulospinal neuron. In contrast, while some neurons had decreased inhibitory inputs after either ipsilateral or contralateral lesions, there were no systematic changes across the population of recorded neurons. We conclude that imbalance sensed by the utricular otolith shapes the responses of larval zebrafish vestibulospinal neurons through both excitatory and inhibitory inputs. Our findings expand our understanding of how a vertebrate model, the larval zebrafish, might use vestibulospinal input to stabilize posture. More broadly, when compared to recordings in other vertebrates, our data speak to conserved origins of vestibulospinal synaptic input.
Collapse
Affiliation(s)
- Kyla R Hamling
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
| | - Katherine Harmon
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
| | - David Schoppik
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
| |
Collapse
|
7
|
Recabal-Beyer AJ, Senecal JMM, Senecal JEM, Lynn BD, Nagy JI. On the Organization of Connexin36 Expression in Electrically Coupled Cholinergic V0c Neurons (Partition Cells) in the Spinal Cord and Their C-terminal Innervation of Motoneurons. Neuroscience 2022; 485:91-115. [PMID: 35090881 DOI: 10.1016/j.neuroscience.2022.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/07/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022]
Abstract
Large cholinergic neurons (V0c neurons; aka, partition cells) in the spinal cord project profusely to motoneurons on which they form C-terminal contacts distinguished by their specialized postsynaptic subsurface cisterns (SSCs). The V0c neurons are known to be rhythmically active during locomotion and release of acetylcholine (ACh) from their terminals is known to modulate the excitability of motoneurons in what appears to be a task-dependent manner. Here, we present evidence that a subpopulation of V0c neurons express the gap junction forming protein connexin36 (Cx36), indicating that they are coupled by electrical synapses. Based on immunofluorescence imaging and the use of Cx36BAC-enhanced green fluorescent protein (eGFP) mice in which C-terminals immunolabelled for their marker vesicular acetylcholine transporter (vAChT) are also labelled for eGFP, we found a heterogeneous distribution of eGFP+ C-terminals on motoneurons at cervical, thoracic and lumber spinal levels. The density of C-terminals on motoneurons varied as did the proportion of those that were eGFP+ vs. eGFP-. We present evidence that fast vs. slow motoneurons have a greater abundance of these terminals and fast motoneurons also have the highest density that were eGFP+. Thus, our results indicate that a subpopulation of V0c neurons projects preferentially to fast motoneurons, suggesting that the capacity for synchronous activity conferred by electrical synapses among networks of coupled V0c neurons enhances their dynamic capabilities for synchronous regulation of motoneuron excitability during high muscle force generation. The eGFP+ vs. eGFP- V0c neurons were more richly innervated by serotonergic terminals, suggesting their greater propensity for regulation by descending serotonergic systems.
Collapse
Affiliation(s)
- A J Recabal-Beyer
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - J M M Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - J E M Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - B D Lynn
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - J I Nagy
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
8
|
Thomas D, Senecal JMM, Lynn BD, Traub RD, Nagy JI. Connexin36 localization along axon initial segments in the mammalian CNS. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2020; 12:153-165. [PMID: 33500746 PMCID: PMC7811956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Electrical synapses formed by gap junctions occur at a variety of neuronal subcellular sites in the mammalian central nervous system (CNS), including at somatic, dendritic and axon terminal compartments. Numerous electrophysiological studies using mice and rats, as well as computer modelling approaches, have predicted the additional occurrence of electrical synapses between axons near their emergence from neuronal somata. Here, we used immunofluorescence methods to search for localization of the neuronal gap junction-forming protein connexin36 (Cx36) along axon initial segments (AISs) labelled for the AIS marker ankyrinG. Immunofluorescent Cx36-puncta were found to be associated with AISs in several CNS regions of mice, including the spinal cord, inferior olive and cerebral cortex. Localization of Cx36-puncta at AISs was confirmed by confocal single scan and 3D imaging, immunofluorescence intensity profiling and high resolution structured illumination microscopy (SIM). AISs measuring up to 30 µm in length displayed typically a single Cx36-punctum and the incidence of these long AISs displaying Cx36-puncta ranged from 3% to 7% in the inferior olive and in various layers of the cerebral cortex. In the inferior olive, the gap junction associated protein zonula occludens-1 (ZO-1) was found to be co-localized with Cx36-puncta on AISs, indicating that these puncta have some of the molecular constituents of gap junctions. Our results add to the neuronal subcellular locations at which Cx36 is deployed, and raise possibilities for its involvement in novel functions in the AIS compartment.
Collapse
Affiliation(s)
- Deepthi Thomas
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of ManitobaWinnipeg, Canada
| | - Joanne MM Senecal
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of ManitobaWinnipeg, Canada
| | - Bruce D Lynn
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of ManitobaWinnipeg, Canada
| | - Roger D Traub
- AI Foundations, IBM T.J. Watson Research CenterYorktown Heights, NY, USA
| | - James I Nagy
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of ManitobaWinnipeg, Canada
| |
Collapse
|
9
|
Liu Z, Kimura Y, Higashijima SI, Hildebrand DGC, Morgan JL, Bagnall MW. Central Vestibular Tuning Arises from Patterned Convergence of Otolith Afferents. Neuron 2020; 108:748-762.e4. [PMID: 32937099 DOI: 10.1016/j.neuron.2020.08.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/09/2020] [Accepted: 08/19/2020] [Indexed: 01/31/2023]
Abstract
As sensory information moves through the brain, higher-order areas exhibit more complex tuning than lower areas. Though models predict that complexity arises via convergent inputs from neurons with diverse response properties, in most vertebrate systems, convergence has only been inferred rather than tested directly. Here, we measure sensory computations in zebrafish vestibular neurons across multiple axes in vivo. We establish that whole-cell physiological recordings reveal tuning of individual vestibular afferent inputs and their postsynaptic targets. Strong, sparse synaptic inputs can be distinguished by their amplitudes, permitting analysis of afferent convergence in vivo. An independent approach, serial-section electron microscopy, supports the inferred connectivity. We find that afferents with similar or differing preferred directions converge on central vestibular neurons, conferring more simple or complex tuning, respectively. Together, these results provide a direct, quantifiable demonstration of feedforward input convergence in vivo.
Collapse
Affiliation(s)
- Zhikai Liu
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Yukiko Kimura
- Department of Neurobiology, National Institute for Basic Biology, Okazaki, Japan
| | | | | | - Joshua L Morgan
- Department of Ophthalmology, Washington University in St. Louis, St. Louis, MO, USA
| | - Martha W Bagnall
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
10
|
Ovsepian SV, O'Leary VB, Vesselkin NP. Evolutionary origins of chemical synapses. VITAMINS AND HORMONES 2020; 114:1-21. [PMID: 32723540 DOI: 10.1016/bs.vh.2020.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Synaptic transmission is a fundamental neurobiological process by which neurons interact with each other and non-neuronal cells. It involves release of active substances from the presynaptic neuron onto receptive elements of postsynaptic cells, inducing waves of spreading electrochemical response. While much has been learned about the cellular and molecular mechanisms driving and governing transmitter release and sensing, the evolutionary origin of synaptic connections remains obscure. Herein, we review emerging evidence and concepts suggesting that key components of chemical synapse arose independently from neurons, in different functional and biological contexts, before the rise of multicellular living forms. We argue that throughout evolution, distinct synaptic constituents have been co-opted from ancestral forms for a new role in early metazoan, leading to the rise of chemical synapses and neurotransmission. Such a mosaic model of the origin of chemical synapses agrees with and supports the pluralistic hypothesis of evolutionary change.
Collapse
Affiliation(s)
- Saak V Ovsepian
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany; International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland; Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic; Department of Psychiatry and Medical Psychology, 3rd Faculty of Medicine of Charles University, Prague, Czech Republic.
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská, Czech Republic
| | - Nikolai P Vesselkin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia; Faculty of Medicine, The State University of Saint Petersburg, St. Petersburg, Russia
| |
Collapse
|
11
|
McCormick CA. Immunocytochemical Evidence for Electrical Synapses in the Dorsal Descending and Dorsal Anterior Octaval Nuclei in the Goldfish, Carassius auratus. BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:34-50. [PMID: 31189161 DOI: 10.1159/000499687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/13/2019] [Indexed: 11/19/2022]
Abstract
The dorsal portion of the descending octaval nucleus (dDO), the main first-order auditory nucleus in jawed fish, includes four lateral and three medial neuronal populations that project to the auditory midbrain. One medial population and one lateral population contain neurons that receive a remarkably large axon terminal from the utricular branch of the octaval nerve. Immunocytochemistry for connexin 35 (Cx35) was used to determine whether this connection includes electrical synapses. Although Cx35 was not localized to these large contacts, it was observed in the three other lateral dDO populations. Another first-order nucleus, the dorsal portion of the anterior octaval nucleus (dAO), primitively projects to the auditory midbrain in jawed fishes and contains neurons positive for Cx35. Utricular branch terminals were coincident with some Cx35 puncta in dDO and dAO. The results are discussed in light of what is known about the occurrence of electrical synapses in first-order auditory and vestibular nuclei in fish and tetrapods.
Collapse
Affiliation(s)
- Catherine A McCormick
- Department of Biology and Department of Neuroscience, Oberlin College, Oberlin, Ohio, USA,
| |
Collapse
|
12
|
Nagy JI, Pereda AE, Rash JE. On the occurrence and enigmatic functions of mixed (chemical plus electrical) synapses in the mammalian CNS. Neurosci Lett 2019; 695:53-64. [PMID: 28911821 PMCID: PMC5845811 DOI: 10.1016/j.neulet.2017.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/28/2017] [Accepted: 09/10/2017] [Indexed: 12/31/2022]
Abstract
Electrical synapses with diverse configurations and functions occur at a variety of interneuronal appositions, thereby significantly expanding the physiological complexity of neuronal circuitry over that provided solely by chemical synapses. Gap junctions between apposed dendritic and somatic plasma membranes form "purely electrical" synapses that allow for electrical communication between coupled neurons. In addition, gap junctions at axon terminals synapsing on dendrites and somata allow for "mixed" (dual chemical+electrical) synaptic transmission. "Dual transmission" was first documented in the autonomic nervous system of birds, followed by its detection in the central nervous systems of fish, amphibia, and reptiles. Subsequently, mixed synapses have been detected in several locations in the mammalian CNS, where their properties and functional roles remain undetermined. Here, we review available evidence for the presence, complex structural composition, and emerging functional properties of mixed synapses in the mammalian CNS.
Collapse
Affiliation(s)
- James I Nagy
- Department of Physiology and Pathophysiology, Faculty of Medicine, 745 Bannatyne Ave, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada.
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - John E Rash
- Department of Biomedical Sciences, and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
13
|
Lynn BD, Li X, Hormuzdi SG, Griffiths EK, McGlade CJ, Nagy JI. E3 ubiquitin ligases LNX1 and LNX2 localize at neuronal gap junctions formed by connexin36 in rodent brain and molecularly interact with connexin36. Eur J Neurosci 2018; 48:3062-3081. [PMID: 30295974 DOI: 10.1111/ejn.14198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/31/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022]
Abstract
Electrical synapses in the mammalian central nervous system (CNS) are increasingly recognized as highly complex structures for mediation of neuronal communication, both with respect to their capacity for dynamic short- and long-term modification in efficacy of synaptic transmission and their multimolecular regulatory and structural components. These two characteristics are inextricably linked, such that understanding of mechanisms that contribute to electrical synaptic plasticity requires knowledge of the molecular composition of electrical synapses and the functions of proteins associated with these synapses. Here, we provide evidence that the key component of gap junctions that form the majority of electrical synapses in the mammalian CNS, namely connexin36 (Cx36), directly interacts with the related E3 ubiquitin ligase proteins Ligand of NUMB protein X1 (LNX1) and Ligand of NUMB protein X2 (LNX2). This is based on immunofluorescence colocalization of LNX1 and LNX2 with Cx36-containing gap junctions in adult mouse brain versus lack of such coassociation in LNX null mice, coimmunoprecipitation of LNX proteins with Cx36, and pull-down of Cx36 with the second PDZ domain of LNX1 and LNX2. Furthermore, cotransfection of cultured cells with Cx36 and E3 ubiquitin ligase-competent LNX1 and LNX2 isoforms led to loss of Cx36-containing gap junctions between cells, whereas these junctions persisted following transfection with isoforms of these proteins that lack ligase activity. Our results suggest that a LNX protein mediates ubiquitination of Cx36 at neuronal gap junctions, with consequent Cx36 internalization, and may thereby contribute to intracellular mechanisms that govern the recently identified modifiability of synaptic transmission at electrical synapses.
Collapse
Affiliation(s)
- Bruce D Lynn
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xinbo Li
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Sheriar G Hormuzdi
- D'Arcy Thompson Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Emily K Griffiths
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - C Jane McGlade
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - James I Nagy
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Nagy JI, Lynn BD. Structural and Intermolecular Associations Between Connexin36 and Protein Components of the Adherens Junction-Neuronal Gap Junction Complex. Neuroscience 2018; 384:241-261. [PMID: 29879437 DOI: 10.1016/j.neuroscience.2018.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 11/20/2022]
Abstract
Intimate structural and functional relationships between gap junctions and adherens junctions have been demonstrated in peripheral tissues, but have not been thoroughly examined in the central nervous system, where adherens junctions are often found in close proximity to neuronal gap junctions. Here, we used immunofluorescence approaches to document the localization of various protein components of adherens junctions in relation to those that we have previously reported to occur at electrical synapses formed by neuronal gap junctions composed of connexin36 (Cx36). The adherens junction constituents N-cadherin and nectin-1 were frequently found to localize near or overlap with Cx36-containing gap junctions in several brain regions examined. This was also true of the adherens junction-associated proteins α-catenin and β-catenin, as well as the proteins zonula occludens-1 and AF6 (aka, afadin) that were reported constituents of both adherens junctions and gap junctions. The deployment of the protein constituents of these junctions was especially striking at somatic contacts between primary afferent neurons in the mesencephalic trigeminal nucleus (MesV), where the structural components of adherens junctions appeared to be maintained in connexin36 null mice. These results support emerging views concerning the multi-molecular composition of electrical synapses and raise possibilities for various structural and functional protein-protein interactions at what now can be considered the adherens junction-neuronal gap junction complex. Further, the results point to intracellular signaling pathways that could potentially contribute to the assembly, maintenance and turnover of this complex, as well as to the dynamic nature of neuronal communication at electrical synapses.
Collapse
Affiliation(s)
- J I Nagy
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - B D Lynn
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
15
|
Nagy JI, Lynn BD, Senecal JMM, Stecina K. Connexin36 Expression in Primary Afferent Neurons in Relation to the Axon Reflex and Modality Coding of Somatic Sensation. Neuroscience 2018; 383:216-234. [PMID: 29746988 DOI: 10.1016/j.neuroscience.2018.04.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/02/2018] [Accepted: 04/26/2018] [Indexed: 01/25/2023]
Abstract
Electrical coupling mediated by connexin36-containing gap junctions that form electrical synapses is known to be prevalent in the central nervous system, but such coupling was long ago reported also to occur between cutaneous sensory fibers. Here, we provide evidence supporting the capability of primary afferent fibers to engage in electrical coupling. In transgenic mice with enhanced green fluorescent protein (eGFP) serving as a reporter for connexin36 expression, immunofluorescence labeling of eGFP was found in subpopulations of neurons in lumbar dorsal root and trigeminal sensory ganglia, and in fibers within peripheral nerves and tissues. Immunolabeling of connexin36 was robust in the sciatic nerve, weaker in sensory ganglia than in peripheral nerve, and absent in these tissues from Cx36 null mice. Connexin36 mRNA was detected in ganglia from wild-type mice, but not in those from Cx36 null mice. Labeling of eGFP was localized within a subpopulation of ganglion cells containing substance P and calcitonin gene-releasing peptide, and in peripheral fibers containing these peptides. Expression of eGFP was also found in various proportions of sensory ganglion neurons containing transient receptor potential (TRP) channels, including TRPV1 and TRPM8. Ganglion cells labeled for isolectin B4 and tyrosine hydroxylase displayed very little co-localization with eGFP. Our results suggest that previously observed electrical coupling between peripheral sensory fibers occurs via electrical synapses formed by Cx36-containing gap junctions, and that some degree of selectivity in the extent of electrical coupling may occur between fibers belonging to subpopulations of sensory neurons identified according to their sensory modality responsiveness.
Collapse
Affiliation(s)
- J I Nagy
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| | - B D Lynn
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - J M M Senecal
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - K Stecina
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
16
|
Nagy JI, Pereda AE, Rash JE. Electrical synapses in mammalian CNS: Past eras, present focus and future directions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:102-123. [PMID: 28577972 PMCID: PMC5705454 DOI: 10.1016/j.bbamem.2017.05.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 12/19/2022]
Abstract
Gap junctions provide the basis for electrical synapses between neurons. Early studies in well-defined circuits in lower vertebrates laid the foundation for understanding various properties conferred by electrical synaptic transmission. Knowledge surrounding electrical synapses in mammalian systems unfolded first with evidence indicating the presence of gap junctions between neurons in various brain regions, but with little appreciation of their functional roles. Beginning at about the turn of this century, new approaches were applied to scrutinize electrical synapses, revealing the prevalence of neuronal gap junctions, the connexin protein composition of many of those junctions, and the myriad diverse neural systems in which they occur in the mammalian CNS. Subsequent progress indicated that electrical synapses constitute key elements in synaptic circuitry, govern the collective activity of ensembles of electrically coupled neurons, and in part orchestrate the synchronized neuronal network activity and rhythmic oscillations that underlie fundamental integrative processes. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- James I Nagy
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - John E Rash
- Department of Biomedical Sciences, and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
17
|
Petralia RS, Wang YX, Mattson MP, Yao PJ. Invaginating Presynaptic Terminals in Neuromuscular Junctions, Photoreceptor Terminals, and Other Synapses of Animals. Neuromolecular Med 2017; 19:193-240. [PMID: 28612182 PMCID: PMC6518423 DOI: 10.1007/s12017-017-8445-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Typically, presynaptic terminals form a synapse directly on the surface of postsynaptic processes such as dendrite shafts and spines. However, some presynaptic terminals invaginate-entirely or partially-into postsynaptic processes. We survey these invaginating presynaptic terminals in all animals and describe several examples from the central nervous system, including giant fiber systems in invertebrates, and cup-shaped spines, electroreceptor synapses, and some specialized auditory and vestibular nerve terminals in vertebrates. We then examine mechanoreceptors and photoreceptors, concentrating on the complex of pre- and postsynaptic processes found in basal invaginations of the cell. We discuss in detail the role of vertebrate invaginating horizontal cell processes in both chemical and electrical feedback mechanisms. We also discuss the common presence of indenting or invaginating terminals in neuromuscular junctions on muscles of most kinds of animals, and especially discuss those of Drosophila and vertebrates. Finally, we consider broad questions about the advantages of possessing invaginating presynaptic terminals and describe some effects of aging and disease, especially on neuromuscular junctions. We suggest that the invagination is a mechanism that can enhance both chemical and electrical interactions at the synapse.
Collapse
Affiliation(s)
- Ronald S Petralia
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA.
| | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD, 21224, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD, 21224, USA
| |
Collapse
|
18
|
Nagy JI, Rash JE. Cx36, Cx43 and Cx45 in mouse and rat cerebellar cortex: species-specific expression, compensation in Cx36 null mice and co-localization in neurons vs. glia. Eur J Neurosci 2017; 46:1790-1804. [PMID: 28561933 DOI: 10.1111/ejn.13614] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/13/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022]
Abstract
Electrical synapses formed by connexin36 (Cx36)-containing gap junctions between interneurons in the cerebellar cortex have been well characterized, including those formed between basket cells and between Golgi cells, and there is gene reporter-based evidence for the expression of connexin45 (Cx45) in the cerebellar molecular layer. Here, we used immunofluorescence approaches to further investigate expression patterns of Cx36 and Cx45 in this layer and to examine localization relationships of these connexins with each other and with glial connexin43 (Cx43). In mice, strain differences were found, such that punctate labelling for Cx36 was differentially distributed in the molecular layer of C57BL/6 vs. CD1 mice. In mice with EGFP reporter representing Cx36 expression, Cx36-puncta were localized to processes of stellate cells and other cerebellar interneurons. Punctate labelling of Cx45 was faint in the molecular layer of wild-type mice and was increased in intensity in mice with Cx36 gene ablation. The vast majority of Cx36-puncta co-localized with Cx45-puncta, which in turn was associated with the scaffolding protein zonula occludens-1. In rats, Cx45-puncta were also co-localized with Cx36-puncta and additionally occurred along Bergmann glial processes adjacent to Cx43-puncta. The results indicate strain and species differences in Cx36 as well as Cx45 expression, possible compensatory processes after loss of Cx36 expression and localization of Cx45 to both neuronal and Bergmann glial gap junctions. Further, expression of both Cx43 and Cx45 in Bergmann glia of rat may contribute to the complex properties of junctional coupling between these cells and perhaps to their reported coupling with Purkinje cells.
Collapse
Affiliation(s)
- J I Nagy
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB, R3E 0J9, Canada
| | - J E Rash
- Department of Biomedical Sciences, and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
19
|
Liu P, Chen B, Mailler R, Wang ZW. Antidromic-rectifying gap junctions amplify chemical transmission at functionally mixed electrical-chemical synapses. Nat Commun 2017; 8:14818. [PMID: 28317880 PMCID: PMC5364397 DOI: 10.1038/ncomms14818] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 02/06/2017] [Indexed: 11/09/2022] Open
Abstract
Neurons communicate through chemical synapses and electrical synapses (gap junctions). Although these two types of synapses often coexist between neurons, little is known about whether they interact, and whether any interactions between them are important to controlling synaptic strength and circuit functions. By studying chemical and electrical synapses between premotor interneurons (AVA) and downstream motor neurons (A-MNs) in the Caenorhabditis elegans escape circuit, we found that disrupting either the chemical or electrical synapses causes defective escape response. Gap junctions between AVA and A-MNs only allow antidromic current, but, curiously, disrupting them inhibits chemical transmission. In contrast, disrupting chemical synapses has no effect on the electrical coupling. These results demonstrate that gap junctions may serve as an amplifier of chemical transmission between neurons with both electrical and chemical synapses. The use of antidromic-rectifying gap junctions to amplify chemical transmission is potentially a conserved mechanism in circuit functions.
Collapse
Affiliation(s)
- Ping Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Bojun Chen
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Roger Mailler
- Department of Computer Science, University of Tulsa, Tulsa, Oklahoma 74104, USA
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| |
Collapse
|
20
|
Siu RCF, Smirnova E, Brown CA, Zoidl C, Spray DC, Donaldson LW, Zoidl G. Structural and Functional Consequences of Connexin 36 (Cx36) Interaction with Calmodulin. Front Mol Neurosci 2016; 9:120. [PMID: 27917108 PMCID: PMC5114276 DOI: 10.3389/fnmol.2016.00120] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/26/2016] [Indexed: 11/26/2022] Open
Abstract
Functional plasticity of neuronal gap junctions involves the interaction of the neuronal connexin36 with calcium/calmodulin-dependent kinase II (CaMKII). The important relationship between Cx36 and CaMKII must also be considered in the context of another protein partner, Ca2+ loaded calmodulin, binding an overlapping site in the carboxy-terminus of Cx36. We demonstrate that CaM and CaMKII binding to Cx36 is calcium-dependent, with Cx36 able to engage with CaM outside of the gap junction plaque. Furthermore, Ca2+ loaded calmodulin activates Cx36 channels, which is different to other connexins. The NMR solution structure demonstrates that CaM binds Cx36 in its characteristic compact state with major hydrophobic contributions arising from W277 at anchor position 1 and V284 at position 8 of Cx36. Our results establish Cx36 as a hub binding Ca2+ loaded CaM and they identify this interaction as a critical step with implications for functions preceding the initiation of CaMKII mediated plasticity at electrical synapses.
Collapse
Affiliation(s)
| | | | | | - Christiane Zoidl
- Biology Program, York University, TorontoON, Canada
- Psychology Program, York University, TorontoON, Canada
| | - David C. Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New YorkNY, USA
| | | | - Georg Zoidl
- Biology Program, York University, TorontoON, Canada
- Psychology Program, York University, TorontoON, Canada
| |
Collapse
|
21
|
Rubio ME, Nagy JI. Connexin36 expression in major centers of the auditory system in the CNS of mouse and rat: Evidence for neurons forming purely electrical synapses and morphologically mixed synapses. Neuroscience 2015; 303:604-29. [PMID: 26188286 PMCID: PMC4576740 DOI: 10.1016/j.neuroscience.2015.07.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 10/23/2022]
Abstract
Electrical synapses formed by gap junctions composed of connexin36 (Cx36) are widely distributed in the mammalian central nervous system (CNS). Here, we used immunofluorescence methods to document the expression of Cx36 in the cochlear nucleus and in various structures of the auditory pathway of rat and mouse. Labeling of Cx36 visualized exclusively as Cx36-puncta was densely distributed primarily on the somata and initial dendrites of neuronal populations in the ventral cochlear nucleus, and was abundant in superficial layers of the dorsal cochlear nucleus. Other auditory centers displaying Cx36-puncta included the medial nucleus of the trapezoid body (MNTB), regions surrounding the lateral superior olivary nucleus, the dorsal nucleus of the medial lemniscus, the nucleus sagulum, all subnuclei of the inferior colliculus, and the auditory cerebral cortex. In EGFP-Cx36 transgenic mice, EGFP reporter was detected in neurons located in each of auditory centers that harbored Cx36-puncta. In the ventral cochlear nuclei and the MNTB, many neuronal somata were heavily innervated by nerve terminals containing vesicular glutamate transporter-1 (vglut1) and Cx36 was frequently localized at these terminals. Cochlear ablation caused a near total depletion of vglut1-positive terminals in the ventral cochlear nuclei, with a commensurate loss of labeling for Cx36 around most neuronal somata, but preserved Cx36-puncta at somatic neuronal appositions. The results suggest that electrical synapses formed by Cx36-containing gap junctions occur in most of the widely distributed centers of the auditory system. Further, it appears that morphologically mixed chemical/electrical synapses formed by nerve terminals are abundant in the ventral cochlear nucleus, including those at endbulbs of Held formed by cochlear primary afferent fibers, and those at calyx of Held synapses on MNTB neurons.
Collapse
Affiliation(s)
- M E Rubio
- Departments of Otolaryngology and Neurobiology, University of Pittsburgh Medical School, Pittsburgh, USA
| | - J I Nagy
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
22
|
Blakley BW, Garcia CEA, da Sliva SR, Florêncio VMB, Nagy JI. Elevated auditory brainstem response thresholds in mice with Connexin36 gene ablation. Acta Otolaryngol 2015; 135:814-8. [PMID: 25891643 DOI: 10.3109/00016489.2015.1034880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION Expression of connexin36 (Cx36) and electrical synapses formed by Cx36-containing gap junctions contribute to normal auditory brainstem response thresholds in mice. OBJECTIVES Electrical synaptic transmission mediated by gap junctions has not been intensively studied in the auditory system. This study used transgenic mice with knockout of the gene coding for the major protein that forms neuronal gap junctions in mammalian brain (Cx36) to evaluate the role of Cx36 in murine hearing. METHODS Auditory brainstem response (ABR) thresholds and distortion product otoacoustic emissions (DPOAEs) were measured in 26 wild-type and 26 Cx36 knockout mice. ABR thresholds were used to assess auditory brainstem function at four frequencies. DPOAEs were delivered for seven frequency pairs to assess cochlear function. RESULTS The magnitudes of the 2f1-f2 distortion products were not different between Cx36 knockout and wild-type mice, suggesting similar cochlear function in the two groups. ABR thresholds were significantly elevated in the Cx36 knockout compared with the wild-type groups, suggesting impaired function in the auditory brainstem. The results suggest that electrical synapses formed by Cx36-containing gap junctions contribute to auditory sound processing and function at the level of the brainstem, not the cochlea. These findings may be important for understanding human auditory pathology.
Collapse
Affiliation(s)
- Brian W Blakley
- Department of Otolaryngology, University of Manitoba , Winnipeg , Canada
| | | | | | | | | |
Collapse
|
23
|
Shruti S, Schulz DJ, Lett KM, Marder E. Electrical coupling and innexin expression in the stomatogastric ganglion of the crab Cancer borealis. J Neurophysiol 2014; 112:2946-58. [PMID: 25210156 PMCID: PMC4254872 DOI: 10.1152/jn.00536.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/06/2014] [Indexed: 02/07/2023] Open
Abstract
Gap junctions are intercellular channels that allow for the movement of small molecules and ions between the cytoplasm of adjacent cells and form electrical synapses between neurons. In invertebrates, the gap junction proteins are coded for by the innexin family of genes. The stomatogastric ganglion (STG) in the crab Cancer borealis contains a small number of identified and electrically coupled neurons. We identified Innexin 1 (Inx1), Innexin 2 (Inx2), Innexin 3 (Inx3), Innexin 4 (Inx4), Innexin 5 (Inx5), and Innexin 6 (Inx6) members of the C. borealis innexin family. We also identified six members of the innexin family from the lobster Homarus americanus transcriptome. These innexins show significant sequence similarity to other arthropod innexins. Using in situ hybridization and reverse transcriptase-quantitative PCR (RT-qPCR), we determined that all the cells in the crab STG express multiple innexin genes. Electrophysiological recordings of coupling coefficients between identified pairs of pyloric dilator (PD) cells and PD-lateral posterior gastric (LPG) neurons show that the PD-PD electrical synapse is nonrectifying while the PD-LPG synapse is apparently strongly rectifying.
Collapse
Affiliation(s)
- Sonal Shruti
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts; and
| | - David J Schulz
- Division of Biological Sciences, University of Missouri at Columbia, Columbia, Missouri
| | - Kawasi M Lett
- Division of Biological Sciences, University of Missouri at Columbia, Columbia, Missouri
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts; and
| |
Collapse
|
24
|
Heterotypic gap junctions at glutamatergic mixed synapses are abundant in goldfish brain. Neuroscience 2014; 285:166-93. [PMID: 25451276 DOI: 10.1016/j.neuroscience.2014.10.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 11/22/2022]
Abstract
Gap junctions provide for direct intercellular electrical and metabolic coupling. The abundance of gap junctions at "large myelinated club ending (LMCE)" synapses on Mauthner cells (M-cells) of the teleost brain provided a convenient model to correlate anatomical and physiological properties of electrical synapses. There, presynaptic action potentials were found to evoke short-latency electrical "pre-potentials" immediately preceding their accompanying glutamate-induced depolarizations, making these the first unambiguously identified "mixed" (i.e., chemical plus electrical) synapses in the vertebrate CNS. We recently showed that gap junctions at these synapses exhibit asymmetric electrical resistance (i.e., electrical rectification), which we correlated with total molecular asymmetry of connexin composition in their apposing gap junction hemiplaques, with connexin35 (Cx35) restricted to axon terminal hemiplaques and connexin34.7 (Cx34.7) restricted to apposing M-cell plasma membranes. We now show that similarly heterotypic neuronal gap junctions are abundant throughout goldfish brain, with labeling exclusively for Cx35 in presynaptic hemiplaques and exclusively for Cx34.7 in postsynaptic hemiplaques. Moreover, the vast majority of these asymmetric gap junctions occur at glutamatergic axon terminals. The widespread distribution of heterotypic gap junctions at glutamatergic mixed synapses throughout goldfish brain and spinal cord implies that pre- vs. postsynaptic asymmetry at electrical synapses evolved early in the chordate lineage. We propose that the advantages of the molecular and functional asymmetry of connexins at electrical synapses that are so prominently expressed in the teleost CNS are unlikely to have been abandoned in higher vertebrates. However, to create asymmetric coupling in mammals, where most gap junctions are composed of connexin36 (Cx36) on both sides, would require some other mechanism, such as differential phosphorylation of connexins on opposite sides of the same gap junction or on asymmetric differences in the complement of their scaffolding and regulatory proteins.
Collapse
|
25
|
Nagy JI, Urena-Ramirez V, Ghia JE. Functional alterations in gut contractility after connexin36 ablation and evidence for gap junctions forming electrical synapses between nitrergic enteric neurons. FEBS Lett 2014; 588:1480-90. [PMID: 24548563 PMCID: PMC4043341 DOI: 10.1016/j.febslet.2014.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 02/02/2023]
Abstract
Neurons in the enteric nervous system utilize numerous neurotransmitters to orchestrate rhythmic gut smooth muscle contractions. We examined whether electrical synapses formed by gap junctions containing connexin36 also contribute to communication between enteric neurons in mouse colon. Spontaneous contractility properties and responses to electrical field stimulation and cholinergic agonist were altered in gut from connexin36 knockout vs. wild-type mice. Immunofluorescence revealed punctate labelling of connexin36 that was localized at appositions between somata of enteric neurons immunopositive for the enzyme nitric oxide synthase. There is indication for a possible functional role of gap junctions between inhibitory nitrergic enteric neurons.
Collapse
Affiliation(s)
- James Imre Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - Viridiana Urena-Ramirez
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada; Department of Immunology and Internal Medicine section of Gastroenterology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - Jean-Eric Ghia
- Department of Immunology and Internal Medicine section of Gastroenterology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
26
|
Bautista W, McCrea DA, Nagy JI. Connexin36 identified at morphologically mixed chemical/electrical synapses on trigeminal motoneurons and at primary afferent terminals on spinal cord neurons in adult mouse and rat. Neuroscience 2014; 263:159-80. [PMID: 24406437 PMCID: PMC3951135 DOI: 10.1016/j.neuroscience.2013.12.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 10/25/2022]
Abstract
Morphologically mixed chemical/electrical synapses at axon terminals, with the electrical component formed by gap junctions, is common in the CNS of lower vertebrates. In mammalian CNS, evidence for morphologically mixed synapses has been obtained in only a few locations. Here, we used immunofluorescence approaches to examine the localization of the neuronally expressed gap junction forming protein connexin36 (Cx36) in relation to the axon terminal marker vesicular glutamate transporter-1 (vglut1) in the spinal cord and the trigeminal motor nucleus (Mo5) of rat and mouse. In adult rodents, immunolabeling for Cx36 appeared exclusively as Cx36-puncta, and was widely distributed at all rostro-caudal levels in most spinal cord laminae and in the Mo5. A high proportion of Cx36-puncta was co-localized with vglut1, forming morphologically mixed synapses on motoneurons, in intermediate spinal cord lamina, and in regions of medial lamina VII, where vglut1-containing terminals associated with Cx36 converged on neurons adjacent to the central canal. Unilateral transection of lumbar dorsal roots reduced immunolabeling of both vglut1 and Cx36 in intermediate laminae and lamina IX. Further, vglut1-terminals displaying Cx36-puncta were contacted by terminals labeled for glutamic acid decarboxylase65, which is known to be contained in presynaptic terminals on large-diameter primary afferents. Developmentally, mixed synapses begin to emerge in the spinal cord only after the second to third postnatal week and thereafter increase to adult levels. Our findings demonstrate that axon terminals of primary afferent origin form morphologically mixed synapses containing Cx36 in broadly distributed areas of adult rodent spinal cord and Mo5.
Collapse
Affiliation(s)
- W Bautista
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - D A McCrea
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - J I Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
27
|
Bautista W, Nagy JI. Connexin36 in gap junctions forming electrical synapses between motoneurons in sexually dimorphic motor nuclei in spinal cord of rat and mouse. Eur J Neurosci 2014; 39:771-87. [PMID: 24304165 PMCID: PMC3943632 DOI: 10.1111/ejn.12439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 12/01/2022]
Abstract
Pools of motoneurons in the lumbar spinal cord innervate the sexually dimorphic perineal musculature, and are themselves sexually dimorphic, showing differences in number and size between male and female rodents. In two of these pools, the dorsomedial nucleus (DMN) and the dorsolateral nucleus (DLN), dimorphic motoneurons are intermixed with non-dimorphic neurons innervating anal and external urethral sphincter muscles. As motoneurons in these nuclei are reportedly linked by gap junctions, we examined immunofluorescence labeling for the gap junction-forming protein connexin36 (Cx36) in male and female mice and rats. Fluorescent Cx36-labeled puncta occurred in distinctly greater amounts in the DMN and DLN of male rodents than in other spinal cord regions. These puncta were localized to motoneuron somata, proximal dendrites, and neuronal appositions, and were distributed either as isolated or large patches of puncta. In both rats and mice, Cx36-labeled puncta were associated with nearly all (> 94%) DMN and DLN motoneurons. The density of Cx36-labeled puncta increased dramatically from postnatal days 9 to 15, unlike the developmental decreases in these puncta observed in other central nervous system regions. In females, Cx36 labeling of puncta in the DLN was similar to that in males, but was sparse in the DMN. In enhanced green fluorescent protein (EGFP)-Cx36 transgenic mice, motoneurons in the DMN and DLN were intensely labeled for the EGFP reporter in males, but less so in females. The results indicate the presence of Cx36-containing gap junctions in the sexually dimorphic DMN and DLN of both male and female rodents, suggesting coupling of not only sexually dimorphic but also non-dimorphic motoneurons in these nuclei.
Collapse
Affiliation(s)
- W. Bautista
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - J. I. Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
28
|
Bautista W, Rash JE, Vanderpool KG, Yasumura T, Nagy JI. Re-evaluation of connexins associated with motoneurons in rodent spinal cord, sexually dimorphic motor nuclei and trigeminal motor nucleus. Eur J Neurosci 2013; 39:757-70. [PMID: 24313680 DOI: 10.1111/ejn.12450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/06/2013] [Accepted: 11/09/2013] [Indexed: 11/30/2022]
Abstract
Electrical synapses formed by neuronal gap junctions composed of connexin36 (Cx36) are a common feature in mammalian brain circuitry, but less is known about their deployment in spinal cord. It has been reported based on connexin mRNA and/or protein detection that developing and/or mature motoneurons express a variety of connexins, including Cx26, Cx32, Cx36 and Cx43 in trigeminal motoneurons, Cx36, Cx37, Cx40, Cx43 and Cx45 in spinal motoneurons, and Cx32 in sexually dimorphic motoneurons. We re-examined the localization of these connexins during postnatal development and in adult rat and mouse using immunofluorescence labeling for each connexin. We found Cx26 in association only with leptomeninges in the trigeminal motor nucleus (Mo5), Cx32 only with oligodendrocytes and myelinated fibers among motoneurons in this nucleus and in the spinal cord, and Cx37, Cx40 and Cx45 only with blood vessels in the ventral horn of spinal cord, including those among motoneurons. By freeze-fracture replica immunolabeling, > 100 astrocyte gap junctions but no neuronal gap junctions were found based on immunogold labeling for Cx43, whereas 16 neuronal gap junctions at postnatal day (P)4, P7 and P18 were detected based on Cx36 labeling. Punctate labeling for Cx36 was localized to the somatic and dendritic surfaces of peripherin-positive motoneurons in the Mo5, motoneurons throughout the spinal cord, and sexually dimorphic motoneurons at lower lumbar levels. In studies of electrical synapses and electrical transmission between developing and between adult motoneurons, our results serve to focus attention on mediation of this transmission by gap junctions composed of Cx36.
Collapse
Affiliation(s)
- W Bautista
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | |
Collapse
|