1
|
Peralta-Vallejo N, Cañete T, Sampedro-Viana D, Güell-Falgueras P, Río-Álamos C, Oliveras I, Tobeña A, Aznar S, Fernández-Teruel A. Neonatal handling enhances behavioural and attentional domains, and frontocortical synaptic maturation in rat models of schizophrenia-like behaviour and anxiety-related responses. Prog Neuropsychopharmacol Biol Psychiatry 2025; 139:111364. [PMID: 40233871 DOI: 10.1016/j.pnpbp.2025.111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/06/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
The Roman inbred rat strains are a neurodevelopmental model, with the Roman High Avoidance (RHA) presenting specific behaviours and frontal cortex (FC) gene expression changes relevant to schizophrenia symptoms. We wanted to assess the potentially positive modulatory and enduring effects of neonatal handling (NH) on the innate traits associated with both the RHA and their counterpart Roman Low Avoidance (RLA). Male rats received NH or were left untreated (controls). Two different age groups were considered: adolescent and adults. The assessment encompassed exploratory behaviour, social behaviour, anxiety-related behaviour (self-grooming), sensorimotor gating (prepulse inhibition; PPI), and the analysis of gene expression associated with synaptic processes, cortical maturation, and neuroplasticity in the FC. In adolescent rats, NH increased novelty exploration and activity, and reduced novelty-induced self-grooming in RLAs, whereas it improved PPI in RHAs. In adult rats, NH increased novelty-induced activity in both strains, reduced self-grooming in RLA rats, and enhanced social interaction and PPI in RHAs. NH produced significant effects on gene expression in adolescent RHA rats. These effects were observed at the presynaptic level by a reduction of Snap25 and increases of Cables1 and Cdk5, and at the postsynaptic level by increases of Grin2b, Homer1 and Nrg1, as well as by a NH-induced enhancement of Bdnf. NH also increased Nrg1 and Bdnf expression in adult RLA rats. These findings show for the first time that NH is able to modulate several genetically linked synaptic/neuroplasticity alterations in RHA vs. RLA rats, which are paralleled by NH-induced improvements in novelty exploration, social behaviour and sensorimotor gating (PPI).
Collapse
Affiliation(s)
- Natalia Peralta-Vallejo
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Faculty of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain; Centre for Neuroscience and Stereology, and Center for Translational Research, Copenhagen University Hospital Bispebjerg-Frederiksberg, Denmark
| | - Toni Cañete
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Faculty of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Daniel Sampedro-Viana
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Faculty of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Pau Güell-Falgueras
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Faculty of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Cristóbal Río-Álamos
- Department of Psychology, School of Medicine, Austral University of Chile, Valdivia, Chile
| | - Ignasi Oliveras
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Faculty of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain; Department of Medicine, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Adolf Tobeña
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Faculty of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Susana Aznar
- Centre for Neuroscience and Stereology, and Center for Translational Research, Copenhagen University Hospital Bispebjerg-Frederiksberg, Denmark.
| | - Alberto Fernández-Teruel
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Faculty of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
2
|
Banerjee D, Sultana S, Banerjee S. Gas5 regulates early-life stress-induced anxiety and spatial memory. J Neurochem 2024; 168:2999-3018. [PMID: 38960403 DOI: 10.1111/jnc.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 07/05/2024]
Abstract
Early-life stress (ES) induced by maternal separation (MS) remains a proven causality of anxiety and memory deficits at later stages of life. Emerging studies have shown that MS-induced gene expression in the hippocampus is operated at the level of transcription. However, the extent of involvement of non-coding RNAs in MS-induced behavioural deficits remains unexplored. Here, we have investigated the role of synapse-enriched long non-coding RNAs (lncRNAs) in anxiety and memory upon MS. We observed that MS led to an enhancement of expression of the lncRNA growth arrest specific 5 (Gas5) in the hippocampus; accompanied by increased levels of anxiety and deficits in spatial memory. Gas5 knockdown in early life was able to reduce anxiety and partially rescue the spatial memory deficits of maternally separated adult mice. However, the reversal of MS-induced anxiety and memory deficits is not attributed to Gas5 activity during neuronal development as Gas5 RNAi did not influence spine development. Gene Ontology analysis revealed that Gas5 exerts its function by regulating RNA metabolism and translation. Our study highlights the importance of MS-regulated lncRNA in anxiety and spatial memory.
Collapse
Affiliation(s)
| | - Sania Sultana
- National Brain Research Centre, Gurugram, Haryana, India
| | | |
Collapse
|
3
|
Peralta-Vallejo N, Güell-Falgueras P, Cañete T, Sampedro-Viana D, Río-Álamos C, Oliveras I, Tobeña A, Fernández-Teruel A. Schizophrenia-relevant social, attentional and cognitive traits in female RHA vs. RLA rats: Effects of neonatal handling. Behav Brain Res 2024; 459:114762. [PMID: 37977340 DOI: 10.1016/j.bbr.2023.114762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
The Roman high- (RHA) and low-avoidance (RLA) rats were bidirectionally selected and bred for, respectively, their rapid vs. extremely poor acquisition in the two-way active avoidance task. Consistent between-strain neurobehavioural differences have been found in anxiety- and stress-linked traits, as well as in schizophrenia-related phenotypes. RLAs display enhanced anxious- and stress-related phenotypes, whereas RHA rats show impulsivity, hyperactivity and attention/cognition-related impairments. Many of these typical behavioural phenotypes have been reported to be positively modulated by environmental treatments such as neonatal handling (NH). However, most studies on the Roman rat strains have been carried out in males. Thus, the present study for the first time focused on the joint evaluation of differences in novel object exploration (NOE), social interaction (SI), prepulse inhibition of the startle response (PPI), and cognitive performance and flexibility in various spatial tasks (using the Morris water maze, MWM) in females of both Roman rat strains. We also aimed at evaluating the long-lasting effects of NH treatment on the RHA vs. RLA profiles in these tests/tasks. Results show that anxiety-related behavior, as measured by the NOE test and self-grooming in the SI test, was increased in RLA rats, and dramatically reduced by NH. In the SI test RLA rats displayed diminished social interaction, which was rescued by NH. RHA females exhibited a deficit of PPI, which was not affected by NH. Spatial tasks in the MWM showed impairments of working memory, reference learning/memory and spatial reversal learning (i.e., cognitive flexibility) in RHA females. Spatial reference learning and cognitive flexibility (i.e., reversal task) showed some improvement in rats (mainly in RHAs) that had received NH during the first three weeks of life. With the exception of the SI test, the pattern of differences between female RHA vs. RLA profiles was overall consistent with what has previously been found in males of both strains, and NH treatment was able to enduringly improve some emotion-related and (spatial) cognitive outcomes in both strains.
Collapse
Affiliation(s)
- Natalia Peralta-Vallejo
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Faculty of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Pau Güell-Falgueras
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Faculty of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Toni Cañete
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Faculty of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Daniel Sampedro-Viana
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Faculty of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Cristóbal Río-Álamos
- Department of Psychology, School of Medicine, Austral University of Chile, Valdivia, Chile
| | - Ignasi Oliveras
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Faculty of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Adolf Tobeña
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Faculty of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Alberto Fernández-Teruel
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Faculty of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
4
|
Sampedro-Viana D, Cañete T, Sanna F, Soley B, Giorgi O, Corda MG, Torrecilla P, Oliveras I, Tapias-Espinosa C, Río-Álamos C, Sánchez-González A, Tobeña A, Fernández-Teruel A. Decreased social interaction in the RHA rat model of schizophrenia-relevant features: Modulation by neonatal handling. Behav Processes 2021; 188:104397. [PMID: 33887361 DOI: 10.1016/j.beproc.2021.104397] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/26/2021] [Accepted: 04/03/2021] [Indexed: 12/18/2022]
Abstract
The Roman-Low (RLA) and High-Avoidance (RHA) rat strains have been bidirectionally selected and bred, respectively, for extremely poor vs. rapid acquisition of the two-way active avoidance task. Over 50 years of selective breeding have led to two strains displaying many differential specific phenotypes. While RLAs display anxious-related behaviours, RHA rats show impulsivity, and schizophrenia-like positive and cognitive symptoms or phenotypes. Neonatal handling (NH) is an environmental treatment with long-lasting anxiolytic-like and anti-stress effects. NH also reduces symptoms related to schizophrenia, such as pre-pulse inhibition (PPI) impairment and latent inhibition (LI) deficits, and improves spatial working memory and cognitive flexibility. The present work was aimed at exploring whether RHAs also display negative schizophrenia-like symptoms (or phenotypes), such as lowered preference for social interaction (i.e. asociality), and whether NH would reduce these deficits. To this aim, we evaluated naïve inbred RHA and RLA rats in a social interaction (SI) test after either long- or short-term habituation to the testing set up (studies 1-2). In Study 3 we tested untreated and NH-treated RHA and RLA rats in novel object exploration (NOE) and SI tests. Compared with RHAs, RLA rats displayed increased anxiety-related behaviours in the NOE (i.e. higher behavioural inhibition, lesser exploration of the novel object) and SI (i.e. higher levels of self-grooming) tests which were dramatically reduced by NH treatment, thus supporting the long-lasting anxiolytic-like effect of NH. Remarkably, RHA rats showed decreased social preference in the SI test compared with RLAs, evidencing that RHAs would present a relative asociality, which is thought to model some negative symptomatology (i.e. social withdrawal) of schizophrenia. NH increased absolute levels of social behaviour in both strains, but with a more marked effect in RHA rats, especially in the first 5 min of the SI test. Thus, it is hypothesized that, apart from its effects on anxiety-related behaviours, NH might have long-lasting positive effects on behavioural and neurobiological processes that are impaired in schizophrenia.
Collapse
Affiliation(s)
- Daniel Sampedro-Viana
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Francesco Sanna
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy
| | - Bernat Soley
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Osvaldo Giorgi
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy
| | - Maria G Corda
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy
| | - Pilar Torrecilla
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Ignasi Oliveras
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Carles Tapias-Espinosa
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain
| | | | - Ana Sánchez-González
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain.
| |
Collapse
|
5
|
Babicola L, Ventura R, D'Addario SL, Ielpo D, Andolina D, Di Segni M. Long term effects of early life stress on HPA circuit in rodent models. Mol Cell Endocrinol 2021; 521:111125. [PMID: 33333214 DOI: 10.1016/j.mce.2020.111125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023]
Abstract
Adaptation to environmental challenges represents a critical process for survival, requiring the complex integration of information derived from both external cues and internal signals regarding current conditions and previous experiences. The Hypothalamic-pituitary-adrenal axis plays a central role in this process inducing the activation of a neuroendocrine signaling cascade that affects the delicate balance of activity and cross-talk between areas that are involved in sensorial, emotional, and cognitive processing such as the hippocampus, amygdala, Prefrontal Cortex, Ventral Tegmental Area, and dorsal raphe. Early life stress, especially early critical experiences with caregivers, influences the functional and structural organization of these areas, affects these processes in a long-lasting manner and may result in long-term maladaptive and psychopathological outcomes, depending on the complex interaction between genetic and environmental factors. This review summarizes the results of studies that have modeled this early postnatal stress in rodents during the first 2 postnatal weeks, focusing on the long-term effects on molecular and structural alteration in brain areas involved in Hypothalamic-pituitary-adrenal axis function. Moreover, a brief investigation of epigenetic mechanisms and specific genetic targets mediating the long-term effects of these early environmental manipulations and at the basis of differential neurobiological and behavioral effects during adulthood is provided.
Collapse
Affiliation(s)
- Lucy Babicola
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Rossella Ventura
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| | - Sebastian Luca D'Addario
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Donald Ielpo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Diego Andolina
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| |
Collapse
|
6
|
Liu J, Dimitrov S, Sawangjit A, Born J, Ehrlich I, Hallschmid M. Short-term high-fat feeding induces a reversible net decrease in synaptic AMPA receptors in the hypothalamus. J Nutr Biochem 2021; 87:108516. [PMID: 33022406 DOI: 10.1016/j.jnutbio.2020.108516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/09/2020] [Accepted: 09/11/2020] [Indexed: 01/05/2023]
Abstract
Dietary obesity compromises brain function, but the effects of high-fat food on synaptic transmission in hypothalamic networks, as well as their potential reversibility, are yet to be fully characterized. We investigated the impact of high-fat feeding on a hallmark of synaptic plasticity, i.e., the expression of glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) that contain the subunits GluA1 and GluA2, in hypothalamic and cortical synaptoneurosomes of male rats. In the main experiment (experiment 1), three days, but not one day of high-fat diet (HFD) decreased the levels of AMPAR GluA1 and GluA2 subunits, as well as GluA1 phosphorylation at Ser845, in hypothalamus but not cortex. In experiment 2, we compared the effects of the three-day HFD with those a three-day HFD followed by four recovery days of normal chow. This experiment corroborated the suppressive effect of high-fat feeding on hypothalamic but not cortical AMPAR GluA1, GluA2, and GluA1 phosphorylation at Ser845, and indicated that the effects are reversed by normal-chow feeding. High-fat feeding generally increased energy intake, body weight, and serum concentrations of insulin, leptin, free fatty acids, and corticosterone; only the three-day HFD increased wakefulness assessed via video analysis. Results indicate a reversible down-regulation of hypothalamic glutamatergic synaptic strength in response to short-term high-fat feeding. Preceding the manifestation of obesity, this rapid change in glutamatergic neurotransmission may underlie counter-regulatory efforts to prevent excess body weight gain, and therefore, represent a new target of interventions to improve metabolic control.
Collapse
Affiliation(s)
- Jianfeng Liu
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Stoyan Dimitrov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Tübingen, Germany
| | - Anuck Sawangjit
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Tübingen, Germany
| | - Ingrid Ehrlich
- Hertie Institute for Clinical Brain Research and Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany; Department of Neurobiology, Institute for Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Manfred Hallschmid
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Tübingen, Germany.
| |
Collapse
|
7
|
Arambula SE, McCarthy MM. Neuroendocrine-Immune Crosstalk Shapes Sex-Specific Brain Development. Endocrinology 2020; 161:bqaa055. [PMID: 32270188 PMCID: PMC7217281 DOI: 10.1210/endocr/bqaa055] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Sex is an essential biological variable that significantly impacts multiple aspects of neural functioning in both the healthy and diseased brain. Sex differences in brain structure and function are organized early in development during the critical period of sexual differentiation. While decades of research establish gonadal hormones as the primary modulators of this process, new research has revealed a critical, and perhaps underappreciated, role of the neuroimmune system in sex-specific brain development. The immune and endocrine systems are tightly intertwined and share processes and effector molecules that influence the nervous system. Thus, a natural question is whether endocrine-immune crosstalk contributes to sexual differentiation of the brain. In this mini-review, we first provide a conceptual framework by classifying the major categories of neural sex differences and review the concept of sexual differentiation of the brain, a process occurring early in development and largely controlled by steroid hormones. Next, we describe developmental sex differences in the neuroimmune system, which may represent targets or mediators of the sexual differentiation process. We then discuss the overwhelming evidence in support of crosstalk between the neuroendocrine and immune systems and highlight recent examples that shape sex differences in the brain. Finally, we review how early life events can perturb sex-specific neurodevelopment via aberrant immune activation.
Collapse
Affiliation(s)
- Sheryl E Arambula
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
8
|
Castro-Zavala A, Martín-Sánchez A, Valverde O. Sex differences in the vulnerability to cocaine's addictive effects after early-life stress in mice. Eur Neuropsychopharmacol 2020; 32:12-24. [PMID: 31918976 DOI: 10.1016/j.euroneuro.2019.12.112] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/13/2019] [Accepted: 12/13/2019] [Indexed: 01/28/2023]
Abstract
Even though men are more likely to use drugs, women tend to progress faster from drug use to drug abuse, especially in the case of psychostimulants such as cocaine. Preclinical studies evaluating the differences in cocaine self-administration (SA) between sexes are contradictory. While some have shown no between-sex differences, others have reported female rodents to acquire higher percentages of cocaine SA criteria. Furthermore, early-life adversity is a risk factor for substance-use disorder and clinical evidence showed that women who have experienced childhood adversity are more likely to use drugs in comparison with males. However, the molecular differences between sexes as a consequence of early-life adversity or cocaine consumption have scarcely been explored. The aim of our study was to evaluate the differences in the expression of the GluA1, GluA2 subunits of AMPA receptors, pCREB and CREB in male and female mice exposed to maternal separation with early weaning (MSEW). Moreover, we evaluated the effects of cocaine SA in both sexes during adulthood, and the possible changes in GluA1, GluA2, pCREB and CREB expressions. Our results showed a higher acquisition percentage in females and an MSEW-induced increase in cocaine-seeking solely in males. Additionally, we observed sex differences in GluA1, GluA2, CREB and pCREB levels in the NAc and the VTA. The present results displayed changes in molecules that play a crucial role in the regulation of the rewarding effects of cocaine, helping to elucidate the mechanisms involved in the progression from cocaine use to cocaine abuse in both females and males.
Collapse
Affiliation(s)
- Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Ana Martín-Sánchez
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, Barcelona 08003, Spain; Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, Barcelona 08003, Spain; Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
9
|
Gillespie SL, Cole SW, Christian LM. Early adversity and the regulation of gene expression: Implications for prenatal health. Curr Opin Behav Sci 2019; 28:111-118. [PMID: 31815157 PMCID: PMC6897329 DOI: 10.1016/j.cobeha.2019.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Early life, including prenatal development and childhood, is a period of sensitivity, with potential for developmental programming under conditions of adversity. The intergenerational effects of early adversity have received attention, most often studied in relation to fetal development according to maternal exposures. Less often considered but critically important is the effect of early adversity on future prenatal risk (e.g., risk for preeclampsia, preterm birth), which threatens the health of mother and infant. The body's ability to turn collections of genes "on" or "off" across a range of tissues via receptor-driven transcription factors and epigenetic mechanisms (i.e., chemical modifications to the genome) in response to the perceived environment may help to explain such associations. This review aims to summarize discoveries surrounding the effects of early adversity on gene expression, emphasizing prenatal populations. First, we review findings from gene expression studies examining the effects of early adversity on various tissues known to contribute to prenatal health in adulthood. Next, we review several gene regulatory mechanisms thought to underlie differences in gene expression. Finally, we discuss potential implications for prenatal risk among early adversity-exposed mothers according to our current understanding of the biology that contributes to the development of prenatal syndromes.
Collapse
Affiliation(s)
| | - Steve W Cole
- Department of Psychiatry & Biobehavioral Sciences and Medicine, UCLA School of Medicine, Los Angeles, CA
| | - Lisa M Christian
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH
- The Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
10
|
Velasco ER, Florido A, Milad MR, Andero R. Sex differences in fear extinction. Neurosci Biobehav Rev 2019; 103:81-108. [PMID: 31129235 PMCID: PMC6692252 DOI: 10.1016/j.neubiorev.2019.05.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/08/2019] [Accepted: 05/19/2019] [Indexed: 12/18/2022]
Abstract
Despite the exponential increase in fear research during the last years, few studies have included female subjects in their design. The need to include females arises from the knowledge gap of mechanistic processes underlying the behavioral and neural differences observed in fear extinction. Moreover, the exact contribution of sex and hormones in relation to learning and behavior is still largely unknown. Insights from this field could be beneficial as fear-related disorders are twice as prevalent in women compared to men. Here, we review an up-to-date summary of animal and human studies in adulthood that report sex differences in fear extinction from a structural and functional approach. Furthermore, we describe how these factors could contribute to the observed sex differences in fear extinction during normal and pathological conditions.
Collapse
Affiliation(s)
- E R Velasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - A Florido
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - M R Milad
- Department of Psychiatry, University of Illinois at Chicago, USA
| | - R Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Corporació Sanitaria Parc Taulí, Sabadell, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
11
|
Abstract
The developmental period constitutes a critical window of sensitivity to stress. Indeed, early-life adversity increases the risk to develop psychiatric diseases, but also gastrointestinal disorders such as the irritable bowel syndrome at adulthood. In the past decade, there has been huge interest in the gut-brain axis, especially as regards stress-related emotional behaviours. Animal models of early-life adversity, in particular, maternal separation (MS) in rodents, demonstrate lasting deleterious effects on both the gut and the brain. Here, we review the effects of MS on both systems with a focus on stress-related behaviours. In addition, we discuss more recent findings showing the impact of gut-directed interventions, including nutrition with pre- and probiotics, illustrating the role played by gut microbiota in mediating the long-term effects of MS. Overall, preclinical studies suggest that nutritional approaches with pro- and prebiotics may constitute safe and efficient strategies to attenuate the effects of early-life stress on the gut-brain axis. Further research is required to understand the complex mechanisms underlying gut-brain interaction dysfunctions after early-life stress as well as to determine the beneficial impact of gut-directed strategies in a context of early-life adversity in human subjects.
Collapse
|
12
|
Ganguly P, Honeycutt JA, Rowe JR, Demaestri C, Brenhouse HC. Effects of early life stress on cocaine conditioning and AMPA receptor composition are sex-specific and driven by TNF. Brain Behav Immun 2019; 78:41-51. [PMID: 30654007 PMCID: PMC6488364 DOI: 10.1016/j.bbi.2019.01.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/18/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
Exposure to early life adversity can predispose adolescents to the formation of substance abuse disorders. In rodents, early stressors such as repeated maternal separation (MS) impact AMPAR activity in the prefrontal cortex (PFC) and nucleus accumbens (NAc), regions involved in drug-cue association after cocaine-induced conditioned place preference (CPP). Notably, previous reports suggest that the pro-inflammatory cytokine tumor necrosis factor (TNF) regulates AMPAR subunit composition; increased TNF levels are reported to reduce GluA2-positive AMPARs. Since MS can elevate adolescent TNF levels, the stressor may therefore alter AMPAR subunit composition via neuroimmune signaling, thereby affecting cocaine-induced CPP. We tested the specific role of soluble TNF in MS-induced GluA2 loss and cocaine-induced CPP with biologic disruption of TNF signaling. TNF gene and protein expression were elevated in both PFC and NAc of MS males, but not females. GluA2 expression was reduced in both regions in only male MS rats, and systemic treatment with either ibudilast - a phosphodiesterase inhibitor, or XPro1595 - a blood-brain barrier-permeable blocker of soluble TNF - reversed such loss. MS males also formed greater preference for a cocaine-paired environment, the expression of which returned to control levels after XPro1595 administration. These data suggest a sex-specific mechanistic link between TNF signaling and changes in GluA2 expression and drug-cue conditioning, thereby providing further evidence for a role of MS and neuro-immune activity in cortical and striatal AMPAR changes. Moreover, manipulation of the TNF signaling pathway represents a novel approach for influencing response to reinforcing effects of drug use.
Collapse
Affiliation(s)
- Prabarna Ganguly
- Department of Psychology, Developmental Neuropsychobiology Laboratory, Northeastern University, Boston, MA 02115, USA
| | - Jennifer A Honeycutt
- Department of Psychology, Developmental Neuropsychobiology Laboratory, Northeastern University, Boston, MA 02115, USA
| | - June R Rowe
- Department of Psychology, Developmental Neuropsychobiology Laboratory, Northeastern University, Boston, MA 02115, USA
| | - Camila Demaestri
- Department of Psychology, Developmental Neuropsychobiology Laboratory, Northeastern University, Boston, MA 02115, USA
| | - Heather C Brenhouse
- Department of Psychology, Developmental Neuropsychobiology Laboratory, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Camiré O, Lazarevich I, Gilbert T, Topolnik L. Mechanisms of Supralinear Calcium Integration in Dendrites of Hippocampal CA1 Fast-Spiking Cells. Front Synaptic Neurosci 2018; 10:47. [PMID: 30618708 PMCID: PMC6297674 DOI: 10.3389/fnsyn.2018.00047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022] Open
Abstract
In fast-spiking (FS), parvalbumin-expressing interneurons of the CA1 hippocampus, activation of the GluA2-lacking Ca2+-permeable AMPA receptors (CP-AMPARs) in basal dendrites is coupled to Ca2+-induced Ca2+-release (CICR), and can result in a supralinear summation of postsynaptic Ca2+-transients (post-CaTs). While this mechanism is important in controlling the direction of long-term plasticity, it is still unknown whether it can operate at all excitatory synapses converging onto FS cells or at a set of synapses receiving a particular input. Using a combination of patch-clamp recordings and two-photon Ca2+ imaging in acute mouse hippocampal slices with computational simulations, here we compared the generation of supralinear post-CaTs between apical and basal dendrites of FS cells. We found that, similar to basal dendrites, apical post-CaTs summated supralinearly and relied mainly on the activation of the CP-AMPARs, with a variable contribution of other Ca2+ sources, such as NMDA receptors, L-type voltage-gated Ca2+-channels and Ca2+ release. In addition, supralinear post-CaTs generated in apical dendrites had a slower decay time and a larger cumulative charge than those in basal, and were associated with a stronger level of somatic depolarization. The model predicted that modulation of ryanodine receptors and of the Ca2+ extrusion mechanisms, such as the Na+/Ca2+-exchanger and SERCA pump, had a major impact on the magnitude of supralinear post-CaTs. These data reveal that supralinear Ca2+ summation is a common mechanism of Ca2+ signaling at CP-AMPAR-containing synapses. Shaped in a location-specific manner through modulation of ryanodine receptors and Ca2+ extrusion mechanisms, CP-AMPAR/CICR signaling is suitable for synapse-specific bidirectional modification of incoming inputs in the absence of active dendritic conductances.
Collapse
Affiliation(s)
- Olivier Camiré
- Department of Biochemistry, Microbiology and Bio-informatics, Faculty of Science and Engineering; Neuroscience Axis, CHU de Québec Research Center (CHUL), Laval University, Québec, QC, Canada
| | - Ivan Lazarevich
- Department of Biochemistry, Microbiology and Bio-informatics, Faculty of Science and Engineering; Neuroscience Axis, CHU de Québec Research Center (CHUL), Laval University, Québec, QC, Canada.,Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Tommy Gilbert
- Department of Biochemistry, Microbiology and Bio-informatics, Faculty of Science and Engineering; Neuroscience Axis, CHU de Québec Research Center (CHUL), Laval University, Québec, QC, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Faculty of Science and Engineering; Neuroscience Axis, CHU de Québec Research Center (CHUL), Laval University, Québec, QC, Canada
| |
Collapse
|
14
|
Lazzaretti C, Kincheski GC, Pandolfo P, Krolow R, Toniazzo AP, Arcego DM, de Sá Couto-Pereira N, Zeidán-Chuliá F, de Oliveira BHN, Bertolini D, Breunig RL, Ferreira AK, Kolling J, Siebert C, Wyse AT, Souza TME, Dalmaz C. Neonatal handling impairs intradimensional shift and alters plasticity markers in the medial prefrontal cortex of adult rats. Physiol Behav 2018; 197:29-36. [PMID: 30266584 DOI: 10.1016/j.physbeh.2018.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
Abstract
Stress response can be modulated by neonatal/childhood events. Neonatal handling (NH) is an animal model in which the animals are subjected to brief separations from the dam during the first days of life, and it leads to lower emotionality and behavioral changes in adulthood. The aim of this study was to observe if early events, such as (NH), may program associative learning and behavioral flexibility in adult male rats and if these changes could be related to altered neurochemistry in the medial prefrontal cortex (mPFC). We evaluated proteins related to synaptic plasticity (brain-derived neurotrophic factor [BDNF] and synaptophysin [SYP]) as well as Na+/K+-ATPase activity. Additionally, we evaluated proteins related to the dopaminergic system (tyrosine hydroxylase [TH] and phosphorylated TH [pTH]), since this system appears to be affected in some neonatal interventions. Neonatally handled animals exhibited impairment in simple discrimination and intradimensional shift but not in reversal or compound discrimination; in addition, no alteration in switching from an egocentric spatial to a cued strategy was observed. These effects were accompanied by a decrease in SYP levels and Na+/K+-ATPase activity, suggesting reduced synaptic function. These results indicate that NH increases attention to irrelevant stimuli and/or impairs associative learning, and this is accompanied by neurochemical alterations in the (mPFC).
Collapse
Affiliation(s)
- Camilla Lazzaretti
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Centro Universitário Cenecista de Osório (UNICNEC), Osório, RS, Brazil.
| | | | - Pablo Pandolfo
- Universidade Federal Fluminense (UFF), Rio de Janeiro, RJ, Brazil
| | - Rachel Krolow
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana Paula Toniazzo
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Natividade de Sá Couto-Pereira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fares Zeidán-Chuliá
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ben-Hur Neves de Oliveira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Diego Bertolini
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Raquel Luísa Breunig
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Andréa Kurek Ferreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Janaína Kolling
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cassiana Siebert
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Angela Teresinha Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Tadeu Mello E Souza
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carla Dalmaz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Vangopoulou C, Bourmpoula MT, Koupourtidou C, Giompres P, Stamatakis A, Kouvelas ED, Mitsacos A. Effects of an early life experience on rat brain cannabinoid receptors in adolescence and adulthood. IBRO Rep 2018; 5:1-9. [PMID: 30135950 PMCID: PMC6095101 DOI: 10.1016/j.ibror.2018.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/14/2018] [Accepted: 05/26/2018] [Indexed: 12/17/2022] Open
Abstract
Neonatal handling is an experimental model of early life experience associated with resilience in later life challenges, altering the ability of animals to respond to stress. The endocannabinoid system of the brain modulates the neuroendocrine and behavioral effects of stress, while this system is also capable of being modulated by stress exposure itself. The present study has addressed the question of whether neonatal handling in rats could affect cannabinoid receptors, in an age- and sex-dependent manner, using in situ hybridization and receptor binding techniques. Different effects of neonatal handling were observed in adolescent and adult brain on CB1 receptor mRNA and [3H]CP55,940 binding levels, which in some cases were sexually dimorphic. Neonatal handling interfered in the developmental trajectories of CB1 receptor mRNA levels in striatum and amygdaloid nuclei, as well as of [3H]CP55,940 binding levels in almost all regions studied. Adult handled rats showed reduced [3H]CP55,940 binding levels in the prefrontal cortex, striatum, nucleus accumbens and basolateral amygdala, while binding levels in prefrontal cortex of adolescent handled rats were increased. Finally, handling resulted in decreases in female [3H]CP55,940 binding levels in the striatum, nucleus accumbens, CA3 and DG of dorsal hippocampus and basolateral amygdala. Our results suggest that a brief and repeated maternal separation during the neonatal period induces changes on cannabinoid receptors differently manifested between adolescence and adulthood, male and female brain, which could be correlated to their stress response.
Collapse
Key Words
- 2-AG, 2-arachidonoylglycerol
- ANOVA, analysis of variance
- Adolescence
- BLA, basolateral nucleus of amygdala
- BSA, bovine serum albumin
- CA1, dorsal field 1 of Ammon’s horn
- CA3, dorsal field 3 of Ammon’s horn
- CB1 cannabinoid receptors
- CB1, cannabinoid receptor 1
- CPu-DL, dorsolateral striatum
- CPu-VM, ventromedial striatum
- CeA, central amygdaloid nucleus
- Cg1, anterior cingulate cortex
- DG, dentate gyrus
- Female rat brain
- GR, glucocorticoid receptors
- GrDG, dentate gyrus granule cell layer
- HPA, hypothalamic-pituitary-adrenal
- IL, infralimbic cortex
- LTD, long-term depression
- MO, medial orbital cortex
- Male rat brain
- Maternal separation
- MoDG, dentate gyrus molecular layer
- NAc, nucleus accumbens
- NS, not significant
- Neonatal handling
- PFC, prefrontal cortex
- PND, postnatal day
- PrL, prelimbic cortex
- ROD, relative optical density
- RT, room temperature
- eCB, endocannabinoid
- mPFC, medial prefrontal cortex
Collapse
Affiliation(s)
- Chara Vangopoulou
- Laboratory of Physiology, Medical School, University of Patras, 26500, Patras, Greece
| | - Maria T. Bourmpoula
- Laboratory of Physiology, Medical School, University of Patras, 26500, Patras, Greece
| | | | - Panagiotis Giompres
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, 265040, Patras, Greece
| | - Antonios Stamatakis
- Laboratory of Biology-Biochemistry, Faculty of Nursing, University of Athens, 11527, Athens, Greece
| | - Elias D. Kouvelas
- Laboratory of Physiology, Medical School, University of Patras, 26500, Patras, Greece
| | - Ada Mitsacos
- Laboratory of Physiology, Medical School, University of Patras, 26500, Patras, Greece
| |
Collapse
|
16
|
Zhou H, Cheng Z, Bass N, Krystal JH, Farrer LA, Kranzler HR, Gelernter J. Genome-wide association study identifies glutamate ionotropic receptor GRIA4 as a risk gene for comorbid nicotine dependence and major depression. Transl Psychiatry 2018; 8:208. [PMID: 30287806 PMCID: PMC6172277 DOI: 10.1038/s41398-018-0258-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/21/2018] [Accepted: 05/11/2018] [Indexed: 12/20/2022] Open
Abstract
Smoking and major depression frequently co-occur, at least in part due to shared genetic risk. However, the nature of the shared genetic basis is poorly understood. To detect genetic risk variants for comorbid nicotine dependence (ND) and major depression (MD), we conducted genome-wide association study (GWAS) in two samples of African-American participants (Yale-Penn 1 and 2) using linear mixed model, followed by meta-analysis. 3724 nicotine-exposed subjects were analyzed: 2596 from Yale-Penn-1 and 1128 from Yale-Penn-2. Continuous measures (Fagerström Test for Nicotine Dependence (FTND) scores and DSM-IV MD criteria) rather than disorder status were used to maximize the power of the GWAS. Genotypes were ascertained using the Illumina HumanOmni1-Quad array (Yale-Penn-1 sample) or the Illumina HumanCore Exome array (Yale-Penn-2 sample), followed by imputation based on the 1000 Genomes reference panel. An intronic variant at the GRIA4 locus, rs68081839, was significantly associated with ND-MD comorbidity (β = 0.69 [95% CI, 0.43-0.89], P = 1.53 × 10-8). GRIA4 encodes an AMPA-sensitive glutamate receptor that mediates fast excitatory synaptic transmission and neuroplasticity. Conditional analyses revealed that the association was explained jointly by both traits. Enrichment analysis showed that the top risk genes and genes co-expressed with GRIA4 are enriched in cell adhesion, calcium ion binding, and synapses. They also have enriched expression in the brain and they have been implicated in the risk for other neuropsychiatric disorders. Further research is needed to determine the replicability of these findings and to identify the biological mechanisms through which genetic risk for each condition is conveyed.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Zhongshan Cheng
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Nicholas Bass
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Clinical Neurosciences Division, VA National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
- Department of Genetics and Genomics, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology and Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Henry R Kranzler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- VISN 4 MIRECC, Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Department of Psychiatry, VA CT Healthcare Center, West Haven, CT, USA.
| |
Collapse
|
17
|
Reshetnikov VV, Lepeshko AA, Ryabushkina YA, Studenikina AA, Merkulova TI, Bondar NP. The Long-Term Effects of Early Postnatal Stress on Cognitive Abilities and Expression of Genes of the Glutamatergic System in Mice. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418020095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Wei Y, Wang G, Wang H, He J, Zhang N, Wu Z, Xiao L, Yang C. Sex-dependent impact of different degrees of maternal separation experience on OFT behavioral performances after adult chronic unpredictable mild stress exposure in rats. Physiol Behav 2018; 194:153-161. [PMID: 29723593 DOI: 10.1016/j.physbeh.2018.04.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/16/2018] [Accepted: 04/26/2018] [Indexed: 12/15/2022]
Abstract
Early-life social-environmental factors are important for normal development, and different degrees of early-life stress experience have different impacts on adult behaviors and stress responsiveness. The aim of present study was to investigate the long-term effects of different degrees of maternal separation (MS) on male and female rats and subsequent responsiveness to chronic unpredictable mild stress (CUMS) exposure in adults. Sprague-Dawley (SD) newborn pups were exposed to either 15 min/day of MS (MS15), 360 min/day of MS (MS360) or no separation (NS) during postnatal day (PND)4-PND10. At PND56, behavioral tasks, including sucrose preference test (SPT), forced swimming test (FST) and open field test (OFT), were used to explore depressive and anxiety-like behaviors. Then the rats received a series of CUMS for 28 days, behavioral tasks were recorded after CUMS. Prior to CUMS, the behavioral performances in male and female rats were consistent, MS360 led to increased immobile time in FST and decreased activity in OFT, while MS15 rats exhibited behavioral performances similar to NS group. After CUMS, sexual dimorphism was observed in the OFT behavioral responses to adult stress re-exposure, but no differences in FST were observed. CUMS male rats with MS360 experiences showed the worst behavioral performances in OFT compared to those of the other male rats groups, while CUMS female rats without MS experience showed the worst behavioral performances in OFT compared to those of the other female rats groups. Both CUMS male and female rats with MS15 experiences showed better trend in OFT performances than those of CUMS rats with MS360 experience and without MS experiences. These results suggest that brief MS experiences increase the OFT behavioral resilience of rats to adult stress re-exposure, and prolonged MS promotes OFT behavioral resilience of female rats to adult stress re-exposure, while increases vulnerability of male rats to adult stress re-exposure.
Collapse
Affiliation(s)
- Yanyan Wei
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China.
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Jing He
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Nan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Zuotian Wu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Can Yang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| |
Collapse
|
19
|
Brenhouse HC, Danese A, Grassi-Oliveira R. Neuroimmune Impacts of Early-Life Stress on Development and Psychopathology. Curr Top Behav Neurosci 2018; 43:423-447. [PMID: 30003509 DOI: 10.1007/7854_2018_53] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Maltreatment and trauma in childhood, termed early-life stress (ELS), has long-term effects on the immune system. ELS impacts immune signaling at the time of exposure but also disrupts the developmental trajectory of certain immunological processes, both in the periphery and in the brain. One consequence of these early alterations is a heightened immune response to stressors later in life. However, chronic and sustained inflammatory response can also lead to excitotoxicity and prevent typical brain development. In this chapter, we discuss current progress toward understanding the contribution of neuroimmune signaling to ELS-attributable dysfunction or maladaptation with a focus on postnatal experiences. To do so we first present an operational definition of ELS. Then, we offer a brief overview of the immune system and neuroimmune development, followed by a section discussing the interaction between immunity, childhood trauma, and mental disorders in humans. We present evidence from animal models about immune alterations after ELS and discuss the ways in which ELS-induced immune changes ultimately affect brain and behavior, as well as the importance of individual differences and future directions in this field. Taken together, we submit that when encountered with ELS, some core brain circuits could develop differently via various mechanisms involving dysfunctional immune reprograming. However, given the remarkable plasticity of both the brain and the immune system, many of the deleterious effects of ELS may be mitigated with interventions that account for sex and target neuroimmune interactions over the lifespan.
Collapse
Affiliation(s)
| | - Andrea Danese
- Social, Genetic, and Developmental Psychiatry Centre, Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL), Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| |
Collapse
|
20
|
Chen A, Chen Y, Tang Y, Bao C, Cui Z, Xiao M, Lin C. Hippocampal AMPARs involve the central sensitization of rats with irritable bowel syndrome. Brain Behav 2017; 7:e00650. [PMID: 28293483 PMCID: PMC5346530 DOI: 10.1002/brb3.650] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/29/2016] [Accepted: 12/22/2016] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The roles of hippocampal AMPARs were investigated in irritable bowel syndrome (IBS)-like rats to clarify the central sensitization mechanisms. METHODS IBS model was induced by neonatal maternal separation. The effects of AMPARs on visceral hypersensitivity were examined by the responses of abdominal muscle to colorectal distension after the bilateral intrahippocampal injections of CNQX (an AMPAR inhibitor). The expressions of hippocampal AMPARs (GluR1 and GluR2) were determined by Western blot. RESULTS The IBS-like rats showed visceral hypersensitivity when compared with controls. Bilateral intrahippocampal injections of CNQX alleviated the visceral pain in IBS-like rats. The maximal effect appeared at the time point of 30 min, and the duration lasted for 90 min after CNQX application, under 40 and 60 mmHg CRD. The expressions of hippocampal GluR2 significantly increased in IBS-like rats when compared with controls (p < .05). However, the levels of hippocampal GluR1 had no significant differences in rats. Hippocampal LTP induced by HFS was significantly enhanced when compared with controls (p < .05). The expressions of GluR2 significantly increased in the control and IBS-like rats after 60 min LTP of recordings (p < .05), but not GluR1. CONCLUSION Neonatal maternal separation enhances the expression of GluR2 and facilitates the LTP in the hippocampus, which could lead to the formation of visceral hypersensitivity when grown up.
Collapse
Affiliation(s)
- Aiqin Chen
- Fujian Provincial Key Laboratory of Neuroglia and DiseasesLaboratory of Pain ResearchDepartment of Physiology and PathophysiologyFujian Medical UniversityFuzhouFujianChina
| | - Yu Chen
- Fujian Provincial Key Laboratory of Neuroglia and DiseasesLaboratory of Pain ResearchDepartment of Physiology and PathophysiologyFujian Medical UniversityFuzhouFujianChina
| | - Ying Tang
- Fujian Provincial Key Laboratory of Neuroglia and DiseasesLaboratory of Pain ResearchDepartment of Physiology and PathophysiologyFujian Medical UniversityFuzhouFujianChina
| | - Chengjia Bao
- Fujian Provincial Key Laboratory of Neuroglia and DiseasesLaboratory of Pain ResearchDepartment of Physiology and PathophysiologyFujian Medical UniversityFuzhouFujianChina
| | - Zizhi Cui
- Fujian Provincial Key Laboratory of Neuroglia and DiseasesLaboratory of Pain ResearchDepartment of Physiology and PathophysiologyFujian Medical UniversityFuzhouFujianChina
| | - Meng Xiao
- 2013 Seven‐year Clinical MedicineFujian Medical UniversityFuzhouFujianChina
| | - Chun Lin
- Fujian Provincial Key Laboratory of Neuroglia and DiseasesLaboratory of Pain ResearchDepartment of Physiology and PathophysiologyFujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
21
|
Genetically determined differences in noradrenergic function: The spontaneously hypertensive rat model. Brain Res 2016; 1641:291-305. [DOI: 10.1016/j.brainres.2015.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/06/2015] [Accepted: 11/12/2015] [Indexed: 01/01/2023]
|
22
|
Neonatal tactile stimulation decreases depression‐like and anxiety‐like behaviors and potentiates sertraline action in young rats. Int J Dev Neurosci 2015; 47:192-7. [DOI: 10.1016/j.ijdevneu.2015.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 01/03/2023] Open
|
23
|
|
24
|
Jones NC, O'Brien TJ, Carmant L. Interaction between sex and early-life stress: influence on epileptogenesis and epilepsy comorbidities. Neurobiol Dis 2014; 72 Pt B:233-41. [PMID: 25266701 DOI: 10.1016/j.nbd.2014.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/08/2014] [Accepted: 09/12/2014] [Indexed: 12/22/2022] Open
Abstract
Epilepsy is a common brain disorder which is characterised by recurring seizures. In addition to suffering from the constant stress of living with this neurological condition, patients also frequently experience comorbid psychiatric and cognitive disorders which significantly impact their quality of life. There is growing appreciation that stress, in particular occurring in early life, can negatively impact brain development, creating an enduring vulnerability to develop epilepsy. This aligns with the solid connections between early life environments and the development of psychiatric conditions, promoting the possibility that adverse early life events could represent a common risk factor for the later development of both epilepsy and comorbid psychiatric disorders. The influence of sex has been little studied, but recent research points to potential important interactions, particularly with regard to effects mediated by HPA axis programming. Understanding these interactions, and the underlying molecular mechanisms, will provide important new insights into the causation of both epilepsy and of psychiatric disorders, and potentially open up novel avenues for treatment.
Collapse
Affiliation(s)
- Nigel C Jones
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia.
| | - Terence J O'Brien
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Lionel Carmant
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|