1
|
Denecke J, Dewenter A, Lee J, Franzmeier N, Valentim C, Kopczak A, Dichgans M, Pirpamer L, Gesierich B, Duering M, Ewers M. Reduced myelin contributes to cognitive impairment in patients with monogenic small vessel disease. Alzheimers Dement 2025; 21:e70127. [PMID: 40317599 PMCID: PMC12046978 DOI: 10.1002/alz.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 05/07/2025]
Abstract
INTRODUCTION Myelin is pivotal for signal transfer and thus cognition. Cerebral small vessel disease (cSVD) is primarily associated with white matter (WM) lesions and diffusion changes; however, myelin alterations and related cognitive impairments in cSVD remain unclear. METHODS We included 64 patients with familial cSVD (i.e., cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy [CADASIL]) and 20 cognitively unimpaired individuals. χ separation applied to susceptibility weighted imaging was used to assess myelin and iron within WM hyperintensities, normal appearing WM, and two strategic fiber tracts. Diffusion-based mean diffusivity and free water were analyzed for comparisons. Cognitive impairment was assessed by the Trail Making Test. RESULTS CADASIL patients showed reduced myelin within WM hyperintensities and its penumbra in the normal appearing WM. Myelin was moderately correlated with diffusion and iron changes and associated with slower processing speed controlled for diffusion and iron alterations. DISCUSSION Myelin constitutes WM alterations distinct from diffusion changes and substantially contributes to explaining cognitive impairment in cSVD. HIGHLIGHTS χ-negative magnetic resonance signal was reduced within white matter hyperintensities and normal appearing white matter in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, suggesting widespread myelin decreases due to cerebral small vessel disease (cSVD). χ-negative values were only moderately associated with diffusion tensor imaging derived indices including free water and mean diffusivity, suggesting that χ separation depicts distinct microstructural changes in cSVD. Alterations in χ-negative values made a unique contribution to explain processing speed impairment, even when controlled for diffusion and iron changes.
Collapse
Affiliation(s)
- Jannis Denecke
- Institute for Stroke and Dementia Research (ISD)LMU University HospitalMunichGermany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD)LMU University HospitalMunichGermany
| | - Jongho Lee
- Laboratory for Imaging Science and TechnologyDepartment of Electrical and Computer EngineeringSeoulRepublic of Korea
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD)LMU University HospitalMunichGermany
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Carolina Valentim
- Institute for Stroke and Dementia Research (ISD)LMU University HospitalMunichGermany
| | - Anna Kopczak
- Institute for Stroke and Dementia Research (ISD)LMU University HospitalMunichGermany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD)LMU University HospitalMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
- German Center for Neurodegenerative Disease (DZNE)MunichGermany
| | - Lukas Pirpamer
- Medical Image Analysis Center (MIAC) and Department of Biomedical EngineeringUniversity of BaselBaselSwitzerland
| | - Benno Gesierich
- Institute for Stroke and Dementia Research (ISD)LMU University HospitalMunichGermany
- Medical Image Analysis Center (MIAC) and Department of Biomedical EngineeringUniversity of BaselBaselSwitzerland
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD)LMU University HospitalMunichGermany
- Medical Image Analysis Center (MIAC) and Department of Biomedical EngineeringUniversity of BaselBaselSwitzerland
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD)LMU University HospitalMunichGermany
- German Center for Neurodegenerative Disease (DZNE)MunichGermany
| |
Collapse
|
2
|
Liran M, Fischer I, Elboim M, Rahamim N, Gordon T, Urshansky N, Assaf Y, Barak B, Barak S. Long-Term Excessive Alcohol Consumption Enhances Myelination in the Mouse Nucleus Accumbens. J Neurosci 2025; 45:e0280242025. [PMID: 39909566 PMCID: PMC11968546 DOI: 10.1523/jneurosci.0280-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
Chronic excessive alcohol (ethanol) consumption induces neuroadaptations in the brain's reward system, including biochemical and structural abnormalities in white matter that are implicated in addiction phenotypes. Here, we demonstrate that long-term (12 week) voluntary ethanol consumption enhances myelination in the nucleus accumbens (NAc) of female and male adult mice, as evidenced by molecular, ultrastructural, and cellular alterations. Specifically, transmission electron microscopy analysis showed increased myelin thickness in the NAc following long-term ethanol consumption, while axon diameter remained unaffected. These changes were paralleled by increased mRNA transcript levels of key transcription factors essential for oligodendrocyte (OL) differentiation, along with elevated expression of critical myelination-related genes. In addition, diffusion tensor imaging revealed increased connectivity between the NAc and the prefrontal cortex, reflected by a higher number of tracts connecting these regions. We also observed ethanol-induced effects on OL lineage cells, with a reduction in the number of mature OLs after 3 weeks of ethanol consumption, followed by an increase after 6 weeks. These findings suggest that ethanol alters OL development prior to increasing myelination in the NAc. Finally, chronic administration of the promyelination drug clemastine to mice with a history of heavy ethanol consumption further elevated ethanol intake and preference, suggesting that increased myelination may contribute to escalated drinking behavior. Together, these findings suggest that heavy ethanol consumption disrupts OL development, induces enhanced myelination in the NAc, and may drive further ethanol intake, reinforcing addictive behaviors.
Collapse
Affiliation(s)
- Mirit Liran
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Inbar Fischer
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - May Elboim
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nofar Rahamim
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Gordon
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nataly Urshansky
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yaniv Assaf
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Boaz Barak
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Segev Barak
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
3
|
He T, Zhang M, Qin J, Wang Y, Li S, Du C, Jiao J, Ji F. Endothelial PD-1 Regulates Vascular Homeostasis and Oligodendrogenesis during Brain Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417410. [PMID: 40013943 PMCID: PMC12021089 DOI: 10.1002/advs.202417410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/14/2025] [Indexed: 02/28/2025]
Abstract
Appropriate vascular and neural development is essential for central nervous system (CNS). Although programmed cell death receptor 1 (PD-1) mediates neurogenesis, its role in cerebrovascular development remains poorly understood. Here, a correlation between cerebral vessels and oligodendrocyte precursor cells (OPCs) is revealed during brain development. The ablation of endothelial PD-1 triggers cortical hypervascularization through excessive angiogenic sprouting, concomitantly driving OPC differentiation. These alterations disrupt blood brain barrier (BBB) maturation, induce dysmyelination, and ultimately result in abnormal behavior in mice. Mechanistically, the loss of endothelial PD-1 suppresses the activity of the Wnt/β-catenin signaling pathway, thereby disrupting normal angiogenesis. Concurrently, it activates the MEK1/2-ERK1/2-GLI1 pathway, leading to increased GREMLIN1 (GREM1) expression. Elevated GREM1 secretion inhibits the BMP/SMAD1/5/SMAD4 signaling cascade in OPCs, which inhibits oligodendrogenesis and myelination. These findings indicate the importance of endothelial cell-intrinsic PD-1 in regulating the oligovascular niche, and suggest potential therapeutic implications for neurological disorders associated with disrupted vascular development.
Collapse
Affiliation(s)
- Tingting He
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Sino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijing100190China
| | - Mengtian Zhang
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jie Qin
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yanyan Wang
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Sihan Li
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chaoyi Du
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jianwei Jiao
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| | - Fen Ji
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| |
Collapse
|
4
|
Kolomeets NS, Uranova NA. Deficit of satellite oligodendrocytes of neurons in the rostral part of the head of the caudate nucleus in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2025; 275:813-822. [PMID: 39073446 DOI: 10.1007/s00406-024-01869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Increasing evidence implicates compromised myelin integrity and oligodendrocyte abnormalities in the dysfunction of neuronal networks in schizophrenia. We previously reported a deficiency of myelinating oligodendrocytes (OL), oligodendrocyte progenitors (OP) and satellite oligodendrocytes of neurons (Sat-OL) in the prefrontal cortex and the inferior parietal cortex - cortical hubs of the frontoparietal cognitive network and default mode network (DMN) altered in schizophrenia. Deficiency of OL and OP was also detected in the head of the caudate nucleus (HCN), which accumulates cortical projections from the associative cortex and is the central node of these networks. However, the number of Sat-Ol per neuron in schizophrenia has not been studied in the HCN. In the current study we estimated the number of Sat-Ol per neuron in the rostral part of the HCN in schizophrenia (n = 18) compared to healthy controls (n = 18) in the same section collection that was previously used to study the number Ol and OP. We found a significant decrease of the number of Sat-Ol per neuron (- 50%, p < 0.001) in schizophrenia as compared to normal controls. Considering that the rostral part of the HCN is an individual network-specific projection zone of the DMN, the deficit of Sat-Ol found in schizophrenia may be related to the dysfunctional DMN-HCN connections, which has been repeatedly described in schizophrenia. The dramatic decrease of the number of Sat-Ol per neuron may be partially related to a pronounced excess of dopamine concentration in the rostral part of the HCN in schizophrenia.
Collapse
Affiliation(s)
- N S Kolomeets
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Kashirskoe shosse 34, Moscow, 115522, Russia
| | - N A Uranova
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Kashirskoe shosse 34, Moscow, 115522, Russia.
| |
Collapse
|
5
|
Larsen KM, Thapaliya K, Barth M, Lin CS, Siebner HR, Garrido MI. Phase Locking of 40 Hz Auditory Steady State Responses Is Modulated by Sensory Predictability and Linked to Cerebellar Myelination. Hum Brain Mapp 2025; 46:e70178. [PMID: 40172034 PMCID: PMC11962760 DOI: 10.1002/hbm.70178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/22/2025] [Accepted: 02/17/2025] [Indexed: 04/04/2025] Open
Abstract
40 Hz auditory steady-state responses (ASSR) can be evoked by brief auditory clicks delivered at 40 Hz. While the neuropharmacology behind the generation of ASSR is well examined, the link between ASSR and microstructural properties of the brain is unclear. Further, whether the 40 Hz ASSR can be manipulated through processes involving top-down control, such as prediction, is currently unknown. We recorded EEG in 50 neurotypical participants while they engaged in a 40 Hz auditory steady-state paradigm. We manipulated the predictability of the stimuli to test the modulatory effect of prediction on 40 Hz steady-state responses. Further, we acquired T1w and T2w structural MRI on the same individuals and used the T1/T2 ratio as a proxy to determine myelination content in gray matter. The phase locking of the 40 Hz ASSR was indeed modulated by prediction, suggesting that prediction violation directly affects phase locking to the 40 Hz ASSR. We found that the prediction violation of the phase locking at 40 Hz (gamma) was associated with the degree of gray matter myelination in the right cerebellum, such that greater myelin led to less desynchronization induced by prediction violations. We demonstrate that prediction violations modulate steady-state activity at 40 Hz and suggest that the efficiency of this process is promoted by greater cerebellar myelin. Our findings provide a structural-functional relationship for myelin and phase locking of auditory oscillatory activity. These results introduce a framework for investigating the interaction of predictive processes and ASSR in disorders where these processes are impaired, such as in psychosis.
Collapse
Affiliation(s)
- Kit Melissa Larsen
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear MedicineCopenhagen University Hospital ‐ Amager and HvidovreCopenhagenDenmark
- Queensland Brain InstituteThe University of QueenslandSaint LuciaAustralia
| | - Kiran Thapaliya
- National Centre for Neuroimmunology and Emerging DiseasesGriffith UniversityNathanAustralia
| | - Markus Barth
- Centre for Advanced ImagingThe University of QueenslandBrisbaneQueenslandAustralia
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneQueenslandAustralia
| | - Chin‐Husan Sophie Lin
- Melbourne School of Psychological SciencesThe University of MelbourneMelbourneAustralia
| | - Hartwig R. Siebner
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear MedicineCopenhagen University Hospital ‐ Amager and HvidovreCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhageCopenhageDenmark
- Department of NeurologyCopenhagen University Hospital BispebjergCopenhagenDenmark
| | - Marta I. Garrido
- Queensland Brain InstituteThe University of QueenslandSaint LuciaAustralia
- Melbourne School of Psychological SciencesThe University of MelbourneMelbourneAustralia
- Graeme Clark Institute for Biomedical EngineeringThe University of MelbourneMelbourneAustralia
| |
Collapse
|
6
|
Elmers J, Mückschel M, Akgün K, Ziemssen T, Beste C. Variations in neuronal cytoskeletal integrity affect directed communication in distributed networks during inhibitory control. Commun Biol 2025; 8:516. [PMID: 40155499 PMCID: PMC11953345 DOI: 10.1038/s42003-025-07974-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
To ensure goal-directed behavior in daily life, the use of inhibitory control is of great importance. The aim of this study is to shed light on the underlying neuronal mechanisms of inhibitory control and the relevance of cytoarchitectonic integrity in it. We combine sophisticated EEG analysis techniques assessing directed communication between brain structures with measurements of neurofilaments as an index of cytoarchitectonic integrity. We show that an extensive theta band activity related neural network with fronto-temporal, parietal, and occipital brain regions is active during response inhibition. Importantly, cytoarchitectonic integrity as measured using neurofilaments modulates nonlinear directional connectivity, particularly when complex reconfiguration of perceptual and action mapping is required. The study thus shows an inter-relation between different levels of biological functioning-the level of cytoarchitectonic integrity and neurophysiological directed communication-for inhibitory control and emphasizes the role of nonlinear brain connectivity in cognitive control.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany.
- German Center for Child and Adolescent Health (DZKJ), Partner Site Leipzig/Dresden, Dresden, Germany.
| |
Collapse
|
7
|
Luo AC, Meisler SL, Sydnor VJ, Alexander-Bloch A, Bagautdinova J, Barch DM, Bassett DS, Davatzikos C, Franco AR, Goldsmith J, Gur RE, Gur RC, Hu F, Jaskir M, Kiar G, Keller AS, Larsen B, Mackey AP, Milham MP, Roalf DR, Shafiei G, Shinohara RT, Somerville LH, Weinstein SM, Yeatman JD, Cieslak M, Rokem A, Satterthwaite TD. Two Axes of White Matter Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644049. [PMID: 40166142 PMCID: PMC11957034 DOI: 10.1101/2025.03.19.644049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Despite decades of neuroimaging research, how white matter develops along the length of major tracts in humans remains unknown. Here, we identify fundamental patterns of white matter maturation by examining developmental variation along major, long-range cortico-cortical tracts in youth ages 5-23 years using diffusion MRI from three large-scale, cross-sectional datasets (total N = 2,710). Across datasets, we delineate two replicable axes of human white matter development. First, we find a deep-to-superficial axis, in which superficial tract regions near the cortical surface exhibit greater age-related change than deep tract regions. Second, we demonstrate that the development of superficial tract regions aligns with the cortical hierarchy defined by the sensorimotor-association axis, with tract ends adjacent to sensorimotor cortices maturing earlier than those adjacent to association cortices. These results reveal developmental variation along tracts that conventional tract-average analyses have previously obscured, challenging the implicit assumption that white matter tracts mature uniformly along their length. Such developmental variation along tracts may have functional implications, including mitigating ephaptic coupling in densely packed deep tract regions and tuning neural synchrony through hierarchical development in superficial tract regions - ultimately refining neural transmission in youth.
Collapse
Affiliation(s)
- Audrey C. Luo
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Steven L. Meisler
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Valerie J. Sydnor
- Department of Psychiatry, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aaron Alexander-Bloch
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joëlle Bagautdinova
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Deanna M. Barch
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Dani S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- The Santa Fe Institute, Santa Fe, NM, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Alexandre R. Franco
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Strategic Data Initiatives, Child Mind Institute, New York, NY, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Jeff Goldsmith
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York
| | - Raquel E. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Fengling Hu
- Penn Statistics in Imaging and Visualization Center, Perelman School of Medicine, University of Pennsylvania, , Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marc Jaskir
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Gregory Kiar
- Center for Data Analytics, Innovation, and Rigor, Child Mind Institute, New York, NY, USA
| | - Arielle S. Keller
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA
| | - Bart Larsen
- Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Allyson P. Mackey
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P. Milham
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Center for Data Analytics, Innovation, and Rigor, Child Mind Institute, New York, NY, USA
| | - David R. Roalf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Golia Shafiei
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Russell T. Shinohara
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Statistics in Imaging and Visualization Center, Perelman School of Medicine, University of Pennsylvania, , Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leah H. Somerville
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Sarah M. Weinstein
- Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, USA
| | - Jason D. Yeatman
- Graduate School of Education, Stanford University, Stanford, CA, USA
- Department of Psychology, Stanford University, Stanford, CA, USA
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford,California, USA
| | - Matthew Cieslak
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Ariel Rokem
- Department of Psychology and eScience Institute, University of Washington, Seattle, Washington, United States of America
| | - Theodore D. Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
8
|
Shibata T, Hattori N, Nishijo H, Takahashi T, Higuchi Y, Kuroda S, Takakusaki K. Evolutionary origins of synchronization for integrating information in neurons. Front Cell Neurosci 2025; 18:1525816. [PMID: 39835293 PMCID: PMC11743564 DOI: 10.3389/fncel.2024.1525816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
The evolution of brain-expressed genes is notably slower than that of genes expressed in other tissues, a phenomenon likely due to high-level functional constraints. One such constraint might be the integration of information by neuron assemblies, enhancing environmental adaptability. This study explores the physiological mechanisms of information integration in neurons through three types of synchronization: chemical, electromagnetic, and quantum. Chemical synchronization involves the diffuse release of neurotransmitters like dopamine and acetylcholine, causing transmission delays of several milliseconds. Electromagnetic synchronization encompasses action potentials, electrical gap junctions, and ephaptic coupling. Electrical gap junctions enable rapid synchronization within cortical GABAergic networks, while ephaptic coupling allows structures like axon bundles to synchronize through extracellular electromagnetic fields, surpassing the speed of chemical processes. Quantum synchronization is hypothesized to involve ion coherence during ion channel passage and the entanglement of photons within the myelin sheath. Unlike the finite-time synchronization seen in chemical and electromagnetic processes, quantum entanglement provides instantaneous non-local coherence states. Neurons might have evolved from slower chemical diffusion to rapid temporal synchronization, with ion passage through gap junctions within cortical GABAergic networks potentially facilitating both fast gamma band synchronization and quantum coherence. This mini-review compiles literature on these three synchronization types, offering new insights into the physiological mechanisms that address the binding problem in neuron assemblies.
Collapse
Affiliation(s)
- Takashi Shibata
- Department of Neurosurgery, Toyama University Hospital, Toyama, Japan
- Department of Neurosurgery, Toyama Nishi General Hospital, Toyama, Japan
| | - Noriaki Hattori
- Department of Rehabilitation, Toyama University Hospital, Toyama, Japan
| | - Hisao Nishijo
- Faculty of Human Sciences, University of East Asia, Yamaguchi, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yuko Higuchi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Satoshi Kuroda
- Department of Neurosurgery, Toyama University Hospital, Toyama, Japan
| | - Kaoru Takakusaki
- The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
9
|
Teo W, Morgan ML, Stys PK. Quantitation of the physicochemical properties of myelin using Nile Red fluorescence spectroscopy. J Neurochem 2025; 169:e16203. [PMID: 39152713 PMCID: PMC11657930 DOI: 10.1111/jnc.16203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
Myelin is a vital structure that is key to rapid saltatory conduction in the central and peripheral nervous systems. Much work has been done over the decades examining the biochemical composition and morphology of myelin at the light and electron microscopic levels. Here we report a method to study myelin based on the fluorescent probe Nile Red. This lipophilic dye readily partitions into live and chemicallyfixed myelin producing bright, well-resolved images of the sheath. Using spectral confocal microscopy, a complete emission spectrum of Nile Red fluorescence can be acquired for each pixel in an image. The solvatochromic properties of Nile Red cause its emission spectrum to change depending on the polarity of its local environment. Therefore, measuring spectral shifts can report subtle changes in the physicochemical properties of myelin. We show differences in myelin polarity in central versus peripheral nervous system and in different regions of central nervous system white matter of the mouse brain, together with developmental and sex variations. This technique is also well suited for measuring subtle changes in myelin properties in live ex vivo white matter specimens. We also demonstrate how light deprivation induces a myelin polarity change in adult mouse optic nerve underscoring a continuing myelin plasticity in response to axonal activity well into adulthood. The Nile Red spectroscopic method allows measurement of subtle physicochemical changes in myelin that can importantly influence its electrical properties and by extension, conduction velocities in axons.
Collapse
Affiliation(s)
- W. Teo
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - M. L. Morgan
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - P. K. Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
10
|
Kundu S, Ghaemmaghami J, Sanidas G, Wolff N, Vij A, Byrd C, Simonti G, Triantafyllou M, Jablonska B, Dean T, Koutroulis I, Gallo V, Kratimenos P. Cerebellar Purkinje Cell Activity Regulates White Matter Response and Locomotor Function after Neonatal Hypoxia. J Neurosci 2025; 45:e0899242024. [PMID: 39472064 DOI: 10.1523/jneurosci.0899-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 01/03/2025] Open
Abstract
Neonatal hypoxia (Hx) causes white matter (WM) injury, particularly in the cerebellum. We previously demonstrated that Hx-induced reduction of cerebellar Purkinje cell (PC) activity results in locomotor deficits. Yet, the mechanism of Hx-induced cerebellar WM injury and associated locomotor abnormalities remains undetermined. Here, we show that the cerebellar WM injury and linked locomotor deficits are driven by PC activity and are reversed when PC activity is restored. Using optogenetics and multielectrode array recordings, we manipulated PC activity and captured the resulting cellular responses in WM oligodendrocyte precursor cells and GABAergic interneurons. To emulate the effects of Hx, we used light-activated halorhodopsin targeted specifically to the PC layer of normal mice. Suppression of PC firing activity at P13 and P21 phenocopied the locomotor deficits observed in Hx. Moreover, histopathologic analysis of the developing cerebellar WM following PC inhibition (P21) revealed a corresponding reduction in oligodendrocyte maturation and myelination, akin to our findings in Hx mice. Conversely, PC stimulation restored PC activity, promoted oligodendrocyte maturation, and enhanced myelination, resulting in reversed Hx-induced locomotor deficits. Our findings highlight the crucial role of PC activity in cerebellar WM development and locomotor performance following neonatal injury.
Collapse
Affiliation(s)
- Srikanya Kundu
- National Institutes of Health, National Center for Advancing Translational Sciences (NCATS), Bethesda, Maryland 20850
- Children's National Research Institute, Washington, DC 20012
| | - Javid Ghaemmaghami
- Children's National Research Institute, Washington, DC 20012
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109
| | | | - Nora Wolff
- Children's National Research Institute, Washington, DC 20012
| | - Abhya Vij
- Boston Children's Hospital, Boston, Massachusetts 02115
- Harvard Medical School, Boston, Massachusetts 02115
| | - Chad Byrd
- Children's National Research Institute, Washington, DC 20012
| | | | | | - Beata Jablonska
- Children's National Research Institute, Washington, DC 20012
- The George Washington University School of Medicine and Health Sciences, Washington, DC 20052
| | - Terry Dean
- Children's National Research Institute, Washington, DC 20012
- The George Washington University School of Medicine and Health Sciences, Washington, DC 20052
- Children's National Hospital, Washington, DC 20010
| | - Ioannis Koutroulis
- Children's National Research Institute, Washington, DC 20012
- The George Washington University School of Medicine and Health Sciences, Washington, DC 20052
- Children's National Hospital, Washington, DC 20010
| | - Vittorio Gallo
- Children's National Research Institute, Washington, DC 20012
- The George Washington University School of Medicine and Health Sciences, Washington, DC 20052
- Children's National Hospital, Washington, DC 20010
- Seattle Children's Research Institute, Seattle, Washington 98105
| | - Panagiotis Kratimenos
- Children's National Research Institute, Washington, DC 20012
- The George Washington University School of Medicine and Health Sciences, Washington, DC 20052
- Children's National Hospital, Washington, DC 20010
| |
Collapse
|
11
|
Demmings MD, da Silva Chagas L, Traetta ME, Rodrigues RS, Acutain MF, Barykin E, Datusalia AK, German-Castelan L, Mattera VS, Mazengenya P, Skoug C, Umemori H. (Re)building the nervous system: A review of neuron-glia interactions from development to disease. J Neurochem 2025; 169:e16258. [PMID: 39680483 DOI: 10.1111/jnc.16258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 12/18/2024]
Abstract
Neuron-glia interactions are fundamental to the development and function of the nervous system. During development, glia, including astrocytes, microglia, and oligodendrocytes, influence neuronal differentiation and migration, synapse formation and refinement, and myelination. In the mature brain, glia are crucial for maintaining neural homeostasis, modulating synaptic activity, and supporting metabolic functions. Neurons, inherently vulnerable to various stressors, rely on glia for protection and repair. However, glia, in their reactive state, can also promote neuronal damage, which contributes to neurodegenerative and neuropsychiatric diseases. Understanding the dual role of glia-as both protectors and potential aggressors-sheds light on their complex contributions to disease etiology and pathology. By appropriately modulating glial activity, it may be possible to mitigate neurodegeneration and restore neuronal function. In this review, which originated from the International Society for Neurochemistry (ISN) Advanced School in 2019 held in Montreal, Canada, we first describe the critical importance of glia in the development and maintenance of a healthy nervous system as well as their contributions to neuronal damage and neurological disorders. We then discuss potential strategies to modulate glial activity during disease to protect and promote a properly functioning nervous system. We propose that targeting glial cells presents a promising therapeutic avenue for rebuilding the nervous system.
Collapse
Affiliation(s)
- Matthew D Demmings
- Neuroscience Program, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Luana da Silva Chagas
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Marianela E Traetta
- Instituto de Biología Celular y Neurociencia (IBCN), Facultad de Medicina, Conicet, Buenos Aires, Argentina
| | - Rui S Rodrigues
- University of Bordeaux, INSERM, Neurocentre Magendie U1215, Bordeaux, France
| | - Maria Florencia Acutain
- Instituto de Biología Celular y Neurociencia (IBCN), Facultad de Medicina, Conicet, Buenos Aires, Argentina
| | - Evgeny Barykin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER Raebareli), Raebareli, UP, India
| | - Liliana German-Castelan
- Neuroscience Program, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Vanesa S Mattera
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB-FFyB-UBA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedzisai Mazengenya
- Center of Medical and bio-Allied Health Sciences Research, College of Medicine, Ajman University, Ajman, United Arab Emirates
| | - Cecilia Skoug
- Department of Neuroscience, Physiology & Pharmacology, Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, UK
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Carlyon RP, Deeks JM, Delgutte B, Chung Y, Vollmer M, Ohl FW, Kral A, Tillein J, Litovsky RY, Schnupp J, Rosskothen-Kuhl N, Goldsworthy RL. Limitations on Temporal Processing by Cochlear Implant Users: A Compilation of Viewpoints. Trends Hear 2025; 29:23312165251317006. [PMID: 40095543 PMCID: PMC12076235 DOI: 10.1177/23312165251317006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 03/19/2025] Open
Abstract
Cochlear implant (CI) users are usually poor at using timing information to detect changes in either pitch or sound location. This deficit occurs even for listeners with good speech perception and even when the speech processor is bypassed to present simple, idealized stimuli to one or more electrodes. The present article presents seven expert opinion pieces on the likely neural bases for these limitations, the extent to which they are modifiable by sensory experience and training, and the most promising ways to overcome them in future. The article combines insights from physiology and psychophysics in cochlear-implanted humans and animals, highlights areas of agreement and controversy, and proposes new experiments that could resolve areas of disagreement.
Collapse
Affiliation(s)
- Robert P. Carlyon
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - John M. Deeks
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Bertrand Delgutte
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
| | - Yoojin Chung
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
| | - Maike Vollmer
- Department of Experimental Audiology, University Clinic of Otolaryngology, Head and Neck Surgery, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Frank W. Ohl
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Andrej Kral
- Institute of Audio-Neuro-Technology & Department of Experimental Otology, Clinics of Otolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Jochen Tillein
- Clinics of Otolaryngology, Head and Neck Surgery, J.W.Goethe University, Frankfurt, Germany
- MedEl Company, Hannover, Germany
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jan Schnupp
- Gerald Choa Neuroscience Institute and Department of Otolaryngology, Chinese University of Hong Kong, Hong Kong (NB Hong Kong is a Special Administrative Region) of China
| | - Nicole Rosskothen-Kuhl
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Oto-Rhino-Laryngology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Raymond L. Goldsworthy
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Rossini L, Maderna E, De Santis D, Rizzi M, Tassi L, Pastori C, Garbelli R, de Curtis M. Altered Gray Matter Myelin in Type IIb Focal Cortical Dysplasia. Neurology 2024; 103:e210057. [PMID: 39586045 DOI: 10.1212/wnl.0000000000210057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/10/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Myelin is altered in several neurologic disorders. Published data demonstrate reduced white matter myelin content and lower oligodendrocyte cell number in postsurgical brain specimens obtained from patients with focal cortical dysplasia (FCD) and temporal lobe epilepsy; a pathogenic role of dysfunctional myelin in focal epilepsies has been proposed. Based on this evidence, our study aims to investigate the myelination status in the gray matter in postsurgical brain specimens from patients with FCDIIb. METHODS We collected specimens from patients with a histopathologic diagnosis of FCDIIb who underwent surgery between 1995 and 2022 in 2 epilepsy surgery centers in Milano; we used nonlesional samples and perilesional tissue within the same FCDIIb specimen as controls. Immunohistochemistry for myelin basic protein (MBP) and electron microscopy were used to quantify myelin alterations in the lesional core of FCDIIb specimens compared with nonlesional and perilesional control areas. Olig2 and breast carcinoma amplified sequence 1 immunohistochemistry, markers of oligodendrocytes, were also evaluated. RESULTS Sixteen patients with FCDIIb (24 ± 14 mean years at surgery, 44% female) and 4 controls (3 histopathology-negative epileptic patients and 1 patient with nonepileptic tumor; 32 ± 11 mean years at surgery, 50% female) were included. The cortical myeloarchitecture was disorganized in the FCD core lesion. MBP immunostained fiber density from 11 paired samples that included both the FCD lesional core and adjacent perilesional cortex in the same tissue section did not reveal a significant difference. Ultrastructural examination performed in the gray matter of 6 specimens from FCDIIb patients (both in the core and in the adjacent perilesional areas) and 2 controls revealed that exclusively in the FCDIIb core, myelinated fiber density was reduced and axons featured thin or no myelin coating and pathologic vacuoles. These changes were associated with a reduction of Olig2-immunostained cells in the FCDIIb cortex core. DISCUSSION Our findings demonstrate that the gray matter at the core of postsurgical FCDIIb specimens contains a high number of poorly myelinated axons and less oligodendrocytes; these findings suggest a potential contribution of altered myelination in the pathogenesis of FCDIIb.
Collapse
Affiliation(s)
- Laura Rossini
- From the Epilepsy Unit (L.R., D.D.S., C.P., R.G., M.d.C.), Division of Neurology V and Neuropathology (E.M.), and Neurosurgery Unit (M.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta; and Claudio Munari Epilepsy Surgery Centre (L.T.), Niguarda Hospital, Milano, Italy
| | - Emanuela Maderna
- From the Epilepsy Unit (L.R., D.D.S., C.P., R.G., M.d.C.), Division of Neurology V and Neuropathology (E.M.), and Neurosurgery Unit (M.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta; and Claudio Munari Epilepsy Surgery Centre (L.T.), Niguarda Hospital, Milano, Italy
| | - Dalia De Santis
- From the Epilepsy Unit (L.R., D.D.S., C.P., R.G., M.d.C.), Division of Neurology V and Neuropathology (E.M.), and Neurosurgery Unit (M.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta; and Claudio Munari Epilepsy Surgery Centre (L.T.), Niguarda Hospital, Milano, Italy
| | - Michele Rizzi
- From the Epilepsy Unit (L.R., D.D.S., C.P., R.G., M.d.C.), Division of Neurology V and Neuropathology (E.M.), and Neurosurgery Unit (M.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta; and Claudio Munari Epilepsy Surgery Centre (L.T.), Niguarda Hospital, Milano, Italy
| | - Laura Tassi
- From the Epilepsy Unit (L.R., D.D.S., C.P., R.G., M.d.C.), Division of Neurology V and Neuropathology (E.M.), and Neurosurgery Unit (M.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta; and Claudio Munari Epilepsy Surgery Centre (L.T.), Niguarda Hospital, Milano, Italy
| | - Chiara Pastori
- From the Epilepsy Unit (L.R., D.D.S., C.P., R.G., M.d.C.), Division of Neurology V and Neuropathology (E.M.), and Neurosurgery Unit (M.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta; and Claudio Munari Epilepsy Surgery Centre (L.T.), Niguarda Hospital, Milano, Italy
| | - Rita Garbelli
- From the Epilepsy Unit (L.R., D.D.S., C.P., R.G., M.d.C.), Division of Neurology V and Neuropathology (E.M.), and Neurosurgery Unit (M.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta; and Claudio Munari Epilepsy Surgery Centre (L.T.), Niguarda Hospital, Milano, Italy
| | - Marco de Curtis
- From the Epilepsy Unit (L.R., D.D.S., C.P., R.G., M.d.C.), Division of Neurology V and Neuropathology (E.M.), and Neurosurgery Unit (M.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta; and Claudio Munari Epilepsy Surgery Centre (L.T.), Niguarda Hospital, Milano, Italy
| |
Collapse
|
14
|
Autio JA, Uematsu A, Ikeda T, Ose T, Hou Y, Magrou L, Kimura I, Ohno M, Murata K, Coalson T, Kennedy H, Glasser MF, Van Essen DC, Hayashi T. Charting cortical-layer specific area boundaries using Gibbs' ringing attenuated T1w/T2w-FLAIR myelin MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615294. [PMID: 39386722 PMCID: PMC11463467 DOI: 10.1101/2024.09.27.615294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cortical areas have traditionally been defined by their distinctive layer cyto- and/or myelo- architecture using postmortem histology. Recent studies have delineated many areas by measuring overall cortical myelin content and its spatial gradients using the T1w/T2w ratio MRI in living primates, including humans. While T1w/T2w studies of areal transitions might benefit from using the layer profile of this myelin-related contrast, a significant confound is Gibbs' ringing artefact, which produces signal fluctuations resembling cortical layers. Here, we address these issues with a novel approach using cortical layer thickness-adjusted T1w/T2w-FLAIR imaging, which effectively cancels out Gibbs' ringing artefacts while enhancing intra-cortical myelin contrast. Whole-brain MRI measures were mapped onto twelve equivolumetric layers, and layer-specific sharp myeloarchitectonic transitions were identified using spatial gradients resulting in a putative 182 area/subarea partition of the macaque cerebral cortex. The myelin maps exhibit notably high homology with those in humans, suggesting cortical myelin shares a similar developmental program across species. Comparison with histological Gallyas myelin stains explains over 80% of the variance in the laminar T1w/T2w-FLAIR profiles, substantiating the validity of the method. Altogether, our approach provides a novel, noninvasive means for precision mapping layer myeloarchitecture in the primate cerebral cortex, advancing the pioneering work of classical neuroanatomists.
Collapse
Affiliation(s)
- Joonas A Autio
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Akiko Uematsu
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takuro Ikeda
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takayuki Ose
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yujie Hou
- Université Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Loïc Magrou
- Université Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
- Center for Neural Science, New York University, New York, NY, United States
| | - Ikko Kimura
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masahiro Ohno
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | | | - Tim Coalson
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri USA
| | - Henry Kennedy
- Université Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS) Key Laboratory of Primate Neurobiology, Shanghai 200031, China
| | - Matthew F Glasser
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri USA
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - David C Van Essen
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri USA
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
15
|
Al Dahhan NZ, Tseng J, de Medeiros C, Narayanan S, Arnold DL, Coe BC, Munoz DP, Yeh EA, Mabbott DJ. Compensatory mechanisms amidst demyelinating disorders: insights into cognitive preservation. Brain Commun 2024; 6:fcae353. [PMID: 39534724 PMCID: PMC11554762 DOI: 10.1093/braincomms/fcae353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Demyelination disrupts the transmission of electrical signals in the brain and affects neurodevelopment in children with disorders such as multiple sclerosis and myelin oligodendrocyte glycoprotein-associated disorders. Although cognitive impairments are prevalent in these conditions, some children maintain cognitive function despite substantial structural injury. These findings raise an important question: in addition to the degenerative process, do compensatory neural mechanisms exist to mitigate the effects of myelin loss? We propose that a multi-dimensional approach integrating multiple neuroimaging modalities, including diffusion tensor imaging, magnetoencephalography and eye-tracking, is key to investigating this question. We examine the structural and functional connectivity of the default mode and executive control networks due to their significant roles in supporting higher-order cognitive processes. As cognitive proxies, we examine saccade reaction times and direction errors during an interleaved pro- (eye movement towards a target) and anti-saccade (eye movement away from a target) task. 28 typically developing children, 18 children with multiple sclerosis and 14 children with myelin oligodendrocyte glycoprotein-associated disorders between 5 and 18.9 years old were scanned at the Hospital for Sick Children. Tractography of diffusion MRI data examined structural connectivity. Intracellular and extracellular microstructural parameters were extracted using a white matter tract integrity model to provide specific inferences on myelin and axon structure. Magnetoencephalography scanning was conducted to examine functional connectivity. Within groups, participants had longer saccade reaction times and greater direction errors on the anti- versus pro-saccade task; there were no group differences on either task. Despite similar behavioural performance, children with demyelinating disorders had significant structural compromise and lower bilateral high gamma, higher left-hemisphere theta and higher right-hemisphere alpha synchrony relative to typically developing children. Children diagnosed with multiple sclerosis had greater structural compromise relative to children with myelin oligodendrocyte glycoprotein-associated disorders; there were no group differences in neural synchrony. For both patient groups, increased disease disability predicted greater structural compromise, which predicted longer saccade reaction times and greater direction errors on both tasks. Structural compromise also predicted increased functional connectivity, highlighting potential adaptive functional reorganisation in response to structural compromise. In turn, increased functional connectivity predicted faster saccade reaction times and fewer direction errors. These findings suggest that increased functional connectivity, indicated by increased alpha and theta synchrony, may be necessary to compensate for structural compromise and preserve cognitive abilities. Further understanding these compensatory neural mechanisms could pave the way for the development of targeted therapeutic interventions aimed at enhancing these mechanisms, ultimately improving cognitive outcomes for affected individuals.
Collapse
Affiliation(s)
- Noor Z Al Dahhan
- Neurosciences and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Julie Tseng
- Neurosciences and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Cynthia de Medeiros
- Neurosciences and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Sridar Narayanan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Douglas L Arnold
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Brian C Coe
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
| | - E Ann Yeh
- Neurosciences and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Neurology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, M5G 1X8, Canada
| | - Donald J Mabbott
- Neurosciences and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, M5S 3G3, Canada
| |
Collapse
|
16
|
Carey NJ, Doll CA, Appel B. Oligodendrocytes use postsynaptic proteins to coordinate myelin formation on axons of distinct neurotransmitter classes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.02.616365. [PMID: 39574762 PMCID: PMC11580840 DOI: 10.1101/2024.10.02.616365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Axon myelination can tune neuronal circuits through placement and modulation of different patterns of myelin sheaths on distinct types of axons. How myelin formation is coordinated on distinct axon classes remains largely unknown. Recent work indicates neuronal activity and vesicle release promote myelin formation, and myelin-producing oligodendrocytes express canonical postsynaptic factors that potentially facilitate oligodendrocyte-axon interaction for myelin ensheathment. Here, we examined whether the inhibitory postsynaptic scaffold protein Gephyrin (Gphn) mediates selective myelination of specific axon classes in the larval zebrafish. Consistent with this possibility, Gphn was enriched in myelin on GABAergic and glycinergic axons. Strikingly, in gphnb deficient larvae, myelin sheaths were longer specifically on GABAergic axons, and the frequency of myelin placement shifted toward glutamatergic axons at the expense of GABAergic axons. Collectively, our results indicate that oligodendrocytes use postsynaptic machinery to coordinate myelin formation in an axon identity-dependent manner.
Collapse
Affiliation(s)
- Natalie J Carey
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA, 80445
| | - Caleb A Doll
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA, 80445
| | - Bruce Appel
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA, 80445
| |
Collapse
|
17
|
Calabro FJ, Parr AC, Sydnor VJ, Hetherington H, Prasad KM, Ibrahim TS, Sarpal DK, Famalette A, Verma P, Luna B. Leveraging ultra-high field (7T) MRI in psychiatric research. Neuropsychopharmacology 2024; 50:85-102. [PMID: 39251774 PMCID: PMC11525672 DOI: 10.1038/s41386-024-01980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Non-invasive brain imaging has played a critical role in establishing our understanding of the neural properties that contribute to the emergence of psychiatric disorders. However, characterizing core neurobiological mechanisms of psychiatric symptomatology requires greater structural, functional, and neurochemical specificity than is typically obtainable with standard field strength MRI acquisitions (e.g., 3T). Ultra-high field (UHF) imaging at 7 Tesla (7T) provides the opportunity to identify neurobiological systems that confer risk, determine etiology, and characterize disease progression and treatment outcomes of major mental illnesses. Increases in scanner availability, regulatory approval, and sequence availability have made the application of UHF to clinical cohorts more feasible than ever before, yet the application of UHF approaches to the study of mental health remains nascent. In this technical review, we describe core neuroimaging methodologies which benefit from UHF acquisition, including high resolution structural and functional imaging, single (1H) and multi-nuclear (e.g., 31P) MR spectroscopy, and quantitative MR techniques for assessing brain tissue iron and myelin. We discuss advantages provided by 7T MRI, including higher signal- and contrast-to-noise ratio, enhanced spatial resolution, increased test-retest reliability, and molecular and neurochemical specificity, and how these have begun to uncover mechanisms of psychiatric disorders. Finally, we consider current limitations of UHF in its application to clinical cohorts, and point to ongoing work that aims to overcome technical hurdles through the continued development of UHF hardware, software, and protocols.
Collapse
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerie J Sydnor
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Konasale M Prasad
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Tamer S Ibrahim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Famalette
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Piya Verma
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Fischer I, Shohat S, Leichtmann-Bardoogo Y, Nayak R, Wiener G, Rosh I, Shemen A, Tripathi U, Rokach M, Bar E, Hussein Y, Castro AC, Chen G, Soffer A, Schokoroy-Trangle S, Elad-Sfadia G, Assaf Y, Schroeder A, Monteiro P, Stern S, Maoz BM, Barak B. Shank3 mutation impairs glutamate signaling and myelination in ASD mouse model and human iPSC-derived OPCs. SCIENCE ADVANCES 2024; 10:eadl4573. [PMID: 39392881 PMCID: PMC11468907 DOI: 10.1126/sciadv.adl4573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 09/06/2024] [Indexed: 10/13/2024]
Abstract
Autism spectrum disorder (ASD) is characterized by social and neurocognitive impairments, with mutations of the SHANK3 gene being prominent in patients with monogenic ASD. Using the InsG3680 mouse model with a Shank3 mutation seen in humans, we revealed an unknown role for Shank3 in postsynaptic oligodendrocyte (OL) features, similar to its role in neurons. This was shown by impaired molecular and physiological glutamatergic traits of InsG3680-derived primary OL cultures. In vivo, InsG3680 mice exhibit significant reductions in the expression of key myelination-related transcripts and proteins, along with deficits in myelin ultrastructure, white matter, axonal conductivity, and motor skills. Last, we observed significant impairments, with clinical relevance, in induced pluripotent stem cell-derived OLs from a patient with the InsG3680 mutation. Together, our study provides insight into Shank3's role in OLs and reveals a mechanism of the crucial connection of myelination to ASD pathology.
Collapse
Affiliation(s)
- Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sophie Shohat
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
- The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yael Leichtmann-Bardoogo
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ritu Nayak
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Gal Wiener
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Idan Rosh
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Aviram Shemen
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Utkarsh Tripathi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - May Rokach
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
- The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yara Hussein
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ana Carolina Castro
- Department of Biomedicine–Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Gal Chen
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
- The Interdisciplinary Program for Biotechnology, Technion, Haifa, Israel
| | - Adi Soffer
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Sari Schokoroy-Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Galit Elad-Sfadia
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Assaf
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- The Strauss Center for Neuroimaging, Tel Aviv University, Tel Aviv, Israel
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
| | - Patricia Monteiro
- Department of Biomedicine–Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ben M. Maoz
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Sagol Center for Regenerative Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
- The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
19
|
Kaller MS, Lazari A, Feng Y, van der Toorn A, Rühling S, Thomas CW, Shimizu T, Bannerman D, Vyazovskiy V, Richardson WD, Sampaio-Baptista C, Johansen-Berg H. Ablation of oligodendrogenesis in adult mice alters brain microstructure and activity independently of behavioral deficits. Glia 2024; 72:1728-1745. [PMID: 38982743 DOI: 10.1002/glia.24576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 07/11/2024]
Abstract
Oligodendrocytes continue to differentiate from their precursor cells even in adulthood, a process that can be modulated by neuronal activity and experience. Previous work has indicated that conditional ablation of oligodendrogenesis in adult mice leads to learning and memory deficits in a range of behavioral tasks. The current study replicated and re-evaluated evidence for a role of oligodendrogenesis in motor learning, using a complex running wheel task. Further, we found that ablating oligodendrogenesis alters brain microstructure (ex vivo MRI) and brain activity (in vivo EEG) independent of experience with the task. This suggests a role for adult oligodendrocyte formation in the maintenance of brain function and indicates that task-independent changes due to oligodendrogenesis ablation need to be considered when interpreting learning and memory deficits in this model.
Collapse
Affiliation(s)
- Malte S Kaller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yingshi Feng
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht & Utrecht University, Utrecht, The Netherlands
| | - Sebastian Rühling
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christopher W Thomas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Takahiro Shimizu
- The Wolfson Institute for Biomedical Research, University College London, London, UK
| | - David Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Vladyslav Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - William D Richardson
- The Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Cassandra Sampaio-Baptista
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Al Dahhan NZ, Powanwe AS, Ismail M, Cox E, Tseng J, de Medeiros C, Laughlin S, Bouffet E, Lefebvre J, Mabbott DJ. Network connectivity underlying information processing speed in children: Application of a pediatric brain tumor survivor injury model. Neuroimage Clin 2024; 44:103678. [PMID: 39357471 PMCID: PMC11474185 DOI: 10.1016/j.nicl.2024.103678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Elucidating how adaptive and maladaptive changes to the structural connectivity of brain networks influences neural synchrony, and how this structure-function coupling impacts cognition is an important question in human neuroscience. This study assesses these links in the default mode and executive control networks during resting state, a visual-motor task, and through computational modeling in the developing brain and in acquired brain injuries. Pediatric brain tumor survivors were used as an injury model as they are known to exhibit cognitive deficits, structural connectivity compromise, and perturbations in neural communication. Focusing on information processing speed to assess cognitive performance, we demonstrate that during the presence and absence of specific task demands, structural connectivity of these critical brain networks directly influences neural communication and information processing speed, and white matter compromise has an indirect adverse impact on reaction time via perturbed neural synchrony. Further, when our experimentally acquired structural connectomes simulated neural activity, the resulting functional simulations aligned with our empirical results and accurately predicted cognitive group differences. Overall, our synergistic findings further our understanding of the neural underpinnings of cognition and when it is perturbed. Further establishing alterations in structural-functional coupling as biomarkers of cognitive impairments could facilitate early intervention and monitoring of these deficits.
Collapse
Affiliation(s)
- Noor Z Al Dahhan
- The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arthur S Powanwe
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Minarose Ismail
- The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Elizabeth Cox
- The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Julie Tseng
- The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | | - Suzanne Laughlin
- The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Eric Bouffet
- The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Jérémie Lefebvre
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada; Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, Canada
| | - Donald J Mabbott
- The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; University of Toronto, Toronto, ON M5S 3G3, Canada.
| |
Collapse
|
21
|
Marshall-Phelps KL, Almeida R. Axonal neurotransmitter release in the regulation of myelination. Biosci Rep 2024; 44:BSR20231616. [PMID: 39230890 PMCID: PMC11427734 DOI: 10.1042/bsr20231616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/05/2024] Open
Abstract
Myelination of axons is a key determinant of fast action potential propagation, axonal health and circuit function. Previously considered a static structure, it is now clear that myelin is dynamically regulated in response to neuronal activity in the central nervous system (CNS). However, how activity-dependent signals are conveyed to oligodendrocytes remains unclear. Here, we review the potential mechanisms by which neurons could communicate changing activity levels to myelin, with a focus on the accumulating body of evidence to support activity-dependent vesicular signalling directly onto myelin sheaths. We discuss recent in vivo findings of activity-dependent fusion of neurotransmitter vesicles from non-synaptic axonal sites, and how modulation of this vesicular fusion regulates the stability and growth of myelin sheaths. We also consider the potential mechanisms by which myelin could sense and respond to axon-derived signals to initiate remodelling, and the relevance of these adaptations for circuit function. We propose that axonal vesicular signalling represents an important and underappreciated mode of communication by which neurons can transmit activity-regulated signals to myelinating oligodendrocytes and, potentially, more broadly to other cell types in the CNS.
Collapse
Affiliation(s)
- Katy L.H. Marshall-Phelps
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K
- MS Society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, U.K
| | - Rafael G. Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K
- MS Society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
22
|
Yin C, Luo K, Zhu X, Zheng R, Wang Y, Yu G, Wang X, She F, Chen X, Li T, Chen J, Bian B, Su Y, Niu J, Wang Y. Fluoxetine Rescues Excessive Myelin Formation and Psychological Behaviors in a Murine PTSD Model. Neurosci Bull 2024; 40:1037-1052. [PMID: 39014176 PMCID: PMC11306862 DOI: 10.1007/s12264-024-01249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/04/2024] [Indexed: 07/18/2024] Open
Abstract
Posttraumatic stress disorder (PTSD) is a complex mental disorder notable for traumatic experience memory. Although current first-line treatments are linked with clinically important symptom reduction, a large proportion of patients retained to experience considerable residual symptoms, indicating pathogenic mechanism should be illustrated further. Recent studies reported that newly formed myelin could shape neural circuit function and be implicated in fear memory preservation. However, its role in PTSD remains to be elucidated. In this study, we adopted a restraint stress-induced PTSD mouse model and found that PTSD-related neuropsychiatric symptoms were accompanied by increased myelination in the posterior parietal cortex and hippocampus. Fluoxetine, but not risperidone or sertraline, has a more profound rescue effect on neuropsychological behaviors and myelin abnormalities. Further mechanistic experiments revealed that fluoxetine could directly interfere with oligodendroglial differentiation by upregulating Wnt signaling. Our data demonstrated the correlation between PTSD and abnormal myelination, suggesting that the oligodendroglial lineage could be a target for PTSD treatment.
Collapse
Affiliation(s)
- Chenrui Yin
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Kefei Luo
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Xinyue Zhu
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Ronghang Zheng
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Yu Wang
- Department of Respiratory Diseases, Central Medical Branch of PLA General Hospital, Beijing, 100853, China
| | - Guangdan Yu
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xiaorui Wang
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Fei She
- Department of Emergency, the Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100142, China
| | - Xiaoying Chen
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Tao Li
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Jingfei Chen
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Baduojie Bian
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, 857000, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jianqin Niu
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China.
| | - Yuxin Wang
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China.
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, 857000, China.
| |
Collapse
|
23
|
Ibañez S, Sengupta N, Luebke JI, Wimmer K, Weaver CM. Myelin dystrophy impairs signal transmission and working memory in a multiscale model of the aging prefrontal cortex. eLife 2024; 12:RP90964. [PMID: 39028036 PMCID: PMC11259433 DOI: 10.7554/elife.90964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.
Collapse
Affiliation(s)
- Sara Ibañez
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of MedicineBostonUnited States
- Centre de Recerca Matemàtica, Edifici C, Campus BellaterraBellaterraSpain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici CBellaterraSpain
| | - Nilapratim Sengupta
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of MedicineBostonUnited States
- Department of Mathematics, Franklin and Marshall CollegeLancasterUnited States
| | - Jennifer I Luebke
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of MedicineBostonUnited States
| | - Klaus Wimmer
- Centre de Recerca Matemàtica, Edifici C, Campus BellaterraBellaterraSpain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici CBellaterraSpain
| | - Christina M Weaver
- Department of Mathematics, Franklin and Marshall CollegeLancasterUnited States
| |
Collapse
|
24
|
Song J, Saglam A, Zuchero JB, Buch VP. Translating Molecular Approaches to Oligodendrocyte-Mediated Neurological Circuit Modulation. Brain Sci 2024; 14:648. [PMID: 39061389 PMCID: PMC11275066 DOI: 10.3390/brainsci14070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The central nervous system (CNS) exhibits remarkable adaptability throughout life, enabled by intricate interactions between neurons and glial cells, in particular, oligodendrocytes (OLs) and oligodendrocyte precursor cells (OPCs). This adaptability is pivotal for learning and memory, with OLs and OPCs playing a crucial role in neural circuit development, synaptic modulation, and myelination dynamics. Myelination by OLs not only supports axonal conduction but also undergoes adaptive modifications in response to neuronal activity, which is vital for cognitive processing and memory functions. This review discusses how these cellular interactions and myelin dynamics are implicated in various neurocircuit diseases and disorders such as epilepsy, gliomas, and psychiatric conditions, focusing on how maladaptive changes contribute to disease pathology and influence clinical outcomes. It also covers the potential for new diagnostics and therapeutic approaches, including pharmacological strategies and emerging biomarkers in oligodendrocyte functions and myelination processes. The evidence supports a fundamental role for myelin plasticity and oligodendrocyte functionality in synchronizing neural activity and high-level cognitive functions, offering promising avenues for targeted interventions in CNS disorders.
Collapse
Affiliation(s)
- Jingwei Song
- Medical Scientist Training Program, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Aybike Saglam
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (A.S.); (J.B.Z.)
| | - J. Bradley Zuchero
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (A.S.); (J.B.Z.)
| | - Vivek P. Buch
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (A.S.); (J.B.Z.)
| |
Collapse
|
25
|
Abdollahi N, Prescott SA. Impact of Extracellular Current Flow on Action Potential Propagation in Myelinated Axons. J Neurosci 2024; 44:e0569242024. [PMID: 38688722 PMCID: PMC11211723 DOI: 10.1523/jneurosci.0569-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
Myelinated axons conduct action potentials, or spikes, in a saltatory manner. Inward current caused by a spike occurring at one node of Ranvier spreads axially to the next node, which regenerates the spike when depolarized enough for voltage-gated sodium channels to activate, and so on. The rate at which this process progresses dictates the velocity at which the spike is conducted and depends on several factors including axial resistivity and axon diameter that directly affect axial current. Here we show through computational simulations in modified double-cable axon models that conduction velocity also depends on extracellular factors whose effects can be explained by their indirect influence on axial current. Specifically, we show that a conventional double-cable model, with its outside layer connected to ground, transmits less axial current than a model whose outside layer is less absorptive. A more resistive barrier exists when an axon is packed tightly between other myelinated fibers, for example. We show that realistically resistive boundary conditions can significantly increase the velocity and energy efficiency of spike propagation, while also protecting against propagation failure. Certain factors like myelin thickness may be less important than typically thought if extracellular conditions are more resistive than normally considered. We also show how realistically resistive boundary conditions affect ephaptic interactions. Overall, these results highlight the unappreciated importance of extracellular conditions for axon function.
Collapse
Affiliation(s)
- Nooshin Abdollahi
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
26
|
Yalçın B, Pomrenze MB, Malacon K, Drexler R, Rogers AE, Shamardani K, Chau IJ, Taylor KR, Ni L, Contreras-Esquivel D, Malenka RC, Monje M. Myelin plasticity in the ventral tegmental area is required for opioid reward. Nature 2024; 630:677-685. [PMID: 38839962 PMCID: PMC11186775 DOI: 10.1038/s41586-024-07525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
All drugs of abuse induce long-lasting changes in synaptic transmission and neural circuit function that underlie substance-use disorders1,2. Another recently appreciated mechanism of neural circuit plasticity is mediated through activity-regulated changes in myelin that can tune circuit function and influence cognitive behaviour3-7. Here we explore the role of myelin plasticity in dopaminergic circuitry and reward learning. We demonstrate that dopaminergic neuronal activity-regulated myelin plasticity is a key modulator of dopaminergic circuit function and opioid reward. Oligodendroglial lineage cells respond to dopaminergic neuronal activity evoked by optogenetic stimulation of dopaminergic neurons, optogenetic inhibition of GABAergic neurons, or administration of morphine. These oligodendroglial changes are evident selectively within the ventral tegmental area but not along the axonal projections in the medial forebrain bundle nor within the target nucleus accumbens. Genetic blockade of oligodendrogenesis dampens dopamine release dynamics in nucleus accumbens and impairs behavioural conditioning to morphine. Taken together, these findings underscore a critical role for oligodendrogenesis in reward learning and identify dopaminergic neuronal activity-regulated myelin plasticity as an important circuit modification that is required for opioid reward.
Collapse
Affiliation(s)
- Belgin Yalçın
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Matthew B Pomrenze
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Karen Malacon
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Richard Drexler
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Abigail E Rogers
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Kiarash Shamardani
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Isabelle J Chau
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Kathryn R Taylor
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Lijun Ni
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | | | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford, CA, USA.
| |
Collapse
|
27
|
Nagai Y, Kirino E, Tanaka S, Usui C, Inami R, Inoue R, Hattori A, Uchida W, Kamagata K, Aoki S. Functional connectivity in autism spectrum disorder evaluated using rs-fMRI and DKI. Cereb Cortex 2024; 34:129-145. [PMID: 38012112 PMCID: PMC11065111 DOI: 10.1093/cercor/bhad451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
We evaluated functional connectivity (FC) in patients with adult autism spectrum disorder (ASD) using resting-state functional MRI (rs-fMRI) and diffusion kurtosis imaging (DKI). We acquired rs-fMRI data from 33 individuals with ASD and 33 healthy controls (HC) and DKI data from 18 individuals with ASD and 17 HC. ASD showed attenuated FC between the right frontal pole (FP) and the bilateral temporal fusiform cortex (TFusC) and enhanced FC between the right thalamus and the bilateral inferior division of lateral occipital cortex, and between the cerebellar vermis and the right occipital fusiform gyrus (OFusG) and the right lingual gyrus, compared with HC. ASD demonstrated increased axial kurtosis (AK) and mean kurtosis (MK) in white matter (WM) tracts, including the right anterior corona radiata (ACR), forceps minor (FM), and right superior longitudinal fasciculus (SLF). In ASD, there was also a significant negative correlation between MK and FC between the cerebellar vermis and the right OFusG in the corpus callosum, FM, right SLF and right ACR. Increased DKI metrics might represent neuroinflammation, increased complexity, or disrupted WM tissue integrity that alters long-distance connectivity. Nonetheless, protective or compensating adaptations of inflammation might lead to more abundant glial cells and cytokine activation effectively alleviating the degeneration of neurons, resulting in increased complexity. FC abnormality in ASD observed in rs-fMRI may be attributed to microstructural alterations of the commissural and long-range association tracts in WM as indicated by DKI.
Collapse
Affiliation(s)
- Yasuhito Nagai
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Eiji Kirino
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
- Department of Psychiatry, Juntendo University Shizuoka Hospital, 1129 Nagaoka Izunokuni-shi Shizuoka 410-2295, Japan
- Juntendo Institute of Mental Health, 700-1 Fukuroyama Koshigaya-shi Saitama 343-0032, Japan
| | - Shoji Tanaka
- Department of Information and Communication Sciences, Sophia University, 7-1 Kioi-cho Chiyoda-ku Tokyo 102-8554, Japan
| | - Chie Usui
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Rie Inami
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Reiichi Inoue
- Juntendo Institute of Mental Health, 700-1 Fukuroyama Koshigaya-shi Saitama 343-0032, Japan
| | - Aki Hattori
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
- Faculty of Health Data Science, Juntendo University, 6-8-1 Hinode Urayasu-shi Chiba 279-0013, Japan
| |
Collapse
|
28
|
Mercier O, Quilichini PP, Magalon K, Gil F, Ghestem A, Richard F, Boudier T, Cayre M, Durbec P. Transient demyelination causes long-term cognitive impairment, myelin alteration and network synchrony defects. Glia 2024; 72:960-981. [PMID: 38363046 DOI: 10.1002/glia.24513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
In the adult brain, activity-dependent myelin plasticity is required for proper learning and memory consolidation. Myelin loss, alteration, or even subtle structural modifications can therefore compromise the network activity, leading to functional impairment. In multiple sclerosis, spontaneous myelin repair process is possible, but it is heterogeneous among patients, sometimes leading to functional recovery, often more visible at the motor level than at the cognitive level. In cuprizone-treated mouse model, massive brain demyelination is followed by spontaneous and robust remyelination. However, reformed myelin, although functional, may not exhibit the same morphological characteristics as developmental myelin, which can have an impact on the activity of neural networks. In this context, we used the cuprizone-treated mouse model to analyze the structural, functional, and cognitive long-term effects of transient demyelination. Our results show that an episode of demyelination induces despite remyelination long-term cognitive impairment, such as deficits in spatial working memory, social memory, cognitive flexibility, and hyperactivity. These deficits were associated with a reduction in myelin content in the medial prefrontal cortex (mPFC) and hippocampus (HPC), as well as structural myelin modifications, suggesting that the remyelination process may be imperfect in these structures. In vivo electrophysiological recordings showed that the demyelination episode altered the synchronization of HPC-mPFC activity, which is crucial for memory processes. Altogether, our data indicate that the myelin repair process following transient demyelination does not allow the complete recovery of the initial myelin properties in cortical structures. These subtle modifications alter network features, leading to prolonged cognitive deficits in mice.
Collapse
Affiliation(s)
- Océane Mercier
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Pascale P Quilichini
- U1106 after INS, Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Karine Magalon
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Florian Gil
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Antoine Ghestem
- U1106 after INS, Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Richard
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Thomas Boudier
- Aix Marseille Univ, Turing Centre for Living Systems, Marseille, France
| | - Myriam Cayre
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Pascale Durbec
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| |
Collapse
|
29
|
Poggi G, Klaus F, Pryce CR. Pathophysiology in cortico-amygdala circuits and excessive aversion processing: the role of oligodendrocytes and myelination. Brain Commun 2024; 6:fcae140. [PMID: 38712320 PMCID: PMC11073757 DOI: 10.1093/braincomms/fcae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/27/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Stress-related psychiatric illnesses, such as major depressive disorder, anxiety and post-traumatic stress disorder, present with alterations in emotional processing, including excessive processing of negative/aversive stimuli and events. The bidirectional human/primate brain circuit comprising anterior cingulate cortex and amygdala is of fundamental importance in processing emotional stimuli, and in rodents the medial prefrontal cortex-amygdala circuit is to some extent analogous in structure and function. Here, we assess the comparative evidence for: (i) Anterior cingulate/medial prefrontal cortex<->amygdala bidirectional neural circuits as major contributors to aversive stimulus processing; (ii) Structural and functional changes in anterior cingulate cortex<->amygdala circuit associated with excessive aversion processing in stress-related neuropsychiatric disorders, and in medial prefrontal cortex<->amygdala circuit in rodent models of chronic stress-induced increased aversion reactivity; and (iii) Altered status of oligodendrocytes and their oligodendrocyte lineage cells and myelination in anterior cingulate/medial prefrontal cortex<->amygdala circuits in stress-related neuropsychiatric disorders and stress models. The comparative evidence from humans and rodents is that their respective anterior cingulate/medial prefrontal cortex<->amygdala circuits are integral to adaptive aversion processing. However, at the sub-regional level, the anterior cingulate/medial prefrontal cortex structure-function analogy is incomplete, and differences as well as similarities need to be taken into account. Structure-function imaging studies demonstrate that these neural circuits are altered in both human stress-related neuropsychiatric disorders and rodent models of stress-induced increased aversion processing. In both cases, the changes include altered white matter integrity, albeit the current evidence indicates that this is decreased in humans and increased in rodent models. At the cellular-molecular level, in both humans and rodents, the current evidence is that stress disorders do present with changes in oligodendrocyte lineage, oligodendrocytes and/or myelin in these neural circuits, but these changes are often discordant between and even within species. Nonetheless, by integrating the current comparative evidence, this review provides a timely insight into this field and should function to inform future studies-human, monkey and rodent-to ascertain whether or not the oligodendrocyte lineage and myelination are causally involved in the pathophysiology of stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Giulia Poggi
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, CH-8008 Zurich, Switzerland
| | - Federica Klaus
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA 92093, USA
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, CH-8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
- URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
30
|
Khelfaoui H, Ibaceta-Gonzalez C, Angulo MC. Functional myelin in cognition and neurodevelopmental disorders. Cell Mol Life Sci 2024; 81:181. [PMID: 38615095 PMCID: PMC11016012 DOI: 10.1007/s00018-024-05222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/15/2024]
Abstract
In vertebrates, oligodendrocytes (OLs) are glial cells of the central nervous system (CNS) responsible for the formation of the myelin sheath that surrounds the axons of neurons. The myelin sheath plays a crucial role in the transmission of neuronal information by promoting the rapid saltatory conduction of action potentials and providing neurons with structural and metabolic support. Saltatory conduction, first described in the peripheral nervous system (PNS), is now generally recognized as a universal evolutionary innovation to respond quickly to the environment: myelin helps us think and act fast. Nevertheless, the role of myelin in the central nervous system, especially in the brain, may not be primarily focused on accelerating conduction speed but rather on ensuring precision. Its principal function could be to coordinate various neuronal networks, promoting their synchronization through oscillations (or rhythms) relevant for specific information processing tasks. Interestingly, myelin has been directly involved in different types of cognitive processes relying on brain oscillations, and myelin plasticity is currently considered to be part of the fundamental mechanisms for memory formation and maintenance. However, despite ample evidence showing the involvement of myelin in cognition and neurodevelopmental disorders characterized by cognitive impairments, the link between myelin, brain oscillations, cognition and disease is not yet fully understood. In this review, we aim to highlight what is known and what remains to be explored to understand the role of myelin in high order brain processes.
Collapse
Affiliation(s)
- Hasni Khelfaoui
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France
| | - Cristobal Ibaceta-Gonzalez
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France
| | - Maria Cecilia Angulo
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France.
- GHU-PARIS Psychiatrie Et Neurosciences, Hôpital Sainte Anne, 75014, Paris, France.
| |
Collapse
|
31
|
Rokach M, Portioli C, Brahmachari S, Estevão BM, Decuzzi P, Barak B. Tackling myelin deficits in neurodevelopmental disorders using drug delivery systems. Adv Drug Deliv Rev 2024; 207:115218. [PMID: 38403255 DOI: 10.1016/j.addr.2024.115218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/27/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Interest in myelin and its roles in almost all brain functions has been greatly increasing in recent years, leading to countless new studies on myelination, as a dominant process in the development of cognitive functions. Here, we explore the unique role myelin plays in the central nervous system and specifically discuss the results of altered myelination in neurodevelopmental disorders. We present parallel developmental trajectories involving myelination that correlate with the onset of cognitive impairment in neurodevelopmental disorders and discuss the key challenges in the treatment of these chronic disorders. Recent developments in drug repurposing and nano/micro particle-based therapies are reviewed as a possible pathway to circumvent some of the main hurdles associated with early intervention, including patient's adherence and compliance, side effects, relapse, and faster route to possible treatment of these disorders. The strategy of drug encapsulation overcomes drug solubility and metabolism, with the possibility of drug targeting to a specific compartment, reducing side effects upon systemic administration.
Collapse
Affiliation(s)
- May Rokach
- Sagol School of Neuroscience, Tel-Aviv University, Israel
| | - Corinne Portioli
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Sayanti Brahmachari
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Bianca Martins Estevão
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Boaz Barak
- Sagol School of Neuroscience, Tel-Aviv University, Israel; Faculty of Social Sciences, The School of Psychological Sciences, Tel-Aviv University, Israel.
| |
Collapse
|
32
|
Naffaa MM. Significance of the anterior cingulate cortex in neurogenesis plasticity: Connections, functions, and disorders across postnatal and adult stages. Bioessays 2024; 46:e2300160. [PMID: 38135889 DOI: 10.1002/bies.202300160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
The anterior cingulate cortex (ACC) is a complex and continually evolving brain region that remains a primary focus of research due to its multifaceted functions. Various studies and analyses have significantly advanced our understanding of how the ACC participates in a wide spectrum of memory and cognitive processes. However, despite its strong connections to brain areas associated with hippocampal and olfactory neurogenesis, the functions of the ACC in regulating postnatal and adult neurogenesis in these regions are still insufficiently explored. Investigating the intricate involvement of the ACC in neurogenesis could enhance our comprehension of essential aspects of brain plasticity. This involvement stems from its complex circuitry with other relevant brain regions, thereby exerting both direct and indirect impacts on the neurogenesis process. This review sheds light on the promising significance of the ACC in orchestrating postnatal and adult neurogenesis in conditions related to memory, cognitive behavior, and associated disorders.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
33
|
Kamen Y, Evans KA, Sitnikov S, Spitzer SO, de Faria O, Yucel M, Káradóttir RT. Clemastine and metformin extend the window of NMDA receptor surface expression in ageing oligodendrocyte precursor cells. Sci Rep 2024; 14:4091. [PMID: 38374232 PMCID: PMC10876931 DOI: 10.1038/s41598-024-53615-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
In the central nervous system, oligodendrocyte precursor cells (OPCs) proliferate and differentiate into myelinating oligodendrocytes throughout life, allowing for ongoing myelination and myelin repair. With age, differentiation efficacy decreases and myelin repair fails; therefore, recent therapeutic efforts have focused on enhancing differentiation. Many cues are thought to regulate OPC differentiation, including neuronal activity, which OPCs can sense and respond to via their voltage-gated ion channels and glutamate receptors. However, OPCs' density of voltage-gated ion channels and glutamate receptors differs with age and brain region, and correlates with their proliferation and differentiation potential, suggesting that OPCs exist in different functional cell states, and that age-associated states might underlie remyelination failure. Here, we use whole-cell patch-clamp to investigate whether clemastine and metformin, two pro-remyelination compounds, alter OPC membrane properties and promote a specific OPC state. We find that clemastine and metformin extend the window of NMDAR surface expression, promoting an NMDAR-rich OPC state. Our findings highlight a possible mechanism for the pro-remyelinating action of clemastine and metformin, and suggest that OPC states can be modulated as a strategy to promote myelin repair.
Collapse
Affiliation(s)
- Yasmine Kamen
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 A0W, UK.
| | - Kimberley Anne Evans
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 A0W, UK
| | - Sergey Sitnikov
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 A0W, UK
| | - Sonia Olivia Spitzer
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 A0W, UK
| | - Omar de Faria
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 A0W, UK
| | - Mert Yucel
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 A0W, UK
| | - Ragnhildur Thóra Káradóttir
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 A0W, UK.
- Department of Physiology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
34
|
Lasnick OHM, Hoeft F. Sensory temporal sampling in time: an integrated model of the TSF and neural noise hypothesis as an etiological pathway for dyslexia. Front Hum Neurosci 2024; 17:1294941. [PMID: 38234592 PMCID: PMC10792016 DOI: 10.3389/fnhum.2023.1294941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Much progress has been made in research on the causal mechanisms of developmental dyslexia. In recent years, the "temporal sampling" account of dyslexia has evolved considerably, with contributions from neurogenetics and novel imaging methods resulting in a much more complex etiological view of the disorder. The original temporal sampling framework implicates disrupted neural entrainment to speech as a causal factor for atypical phonological representations. Yet, empirical findings have not provided clear evidence of a low-level etiology for this endophenotype. In contrast, the neural noise hypothesis presents a theoretical view of the manifestation of dyslexia from the level of genes to behavior. However, its relative novelty (published in 2017) means that empirical research focused on specific predictions is sparse. The current paper reviews dyslexia research using a dual framework from the temporal sampling and neural noise hypotheses and discusses the complementary nature of these two views of dyslexia. We present an argument for an integrated model of sensory temporal sampling as an etiological pathway for dyslexia. Finally, we conclude with a brief discussion of outstanding questions.
Collapse
Affiliation(s)
- Oliver H. M. Lasnick
- brainLENS Laboratory, Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | | |
Collapse
|
35
|
Alonso KW, Dahhan NZA, Riggs L, Tseng J, de Medeiros C, Scott M, Laughlin S, Bouffet E, Mabbott DJ. Network connectivity underlying episodic memory in children: Application of a pediatric brain tumor survivor injury model. Dev Sci 2024; 27:e13413. [PMID: 37218519 DOI: 10.1111/desc.13413] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/20/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
Episodic memory involves personal experiences paired with their context. The Medial Temporal, Posterior Medial, Anterior Temporal, and Medial Prefrontal networks have been found to support the hippocampus in episodic memory in adults. However, there lacks a model that captures how the structural and functional connections of these networks interact to support episodic memory processing in children. Using diffusion-weighted imaging, magnetoencephalography, and memory tests, we quantified differences in white matter microstructure, neural communication, and episodic memory performance, respectively, of healthy children (n = 23) and children with reduced memory performance. Pediatric brain tumor survivors (PBTS; n = 24) were used as a model, as they exhibit reduced episodic memory and perturbations in white matter and neural communication. We observed that PBTS, compared to healthy controls, showed significantly (p < 0.05) (1) disrupted white matter microstructure between these episodic memory networks through lower fractional anisotropy and higher mean and axial diffusivity, (2) perturbed theta band (4-7 Hz) oscillatory synchronization in these same networks through higher weighted phase lag indices (wPLI), and (3) lower episodic memory performance in the Transverse Patterning and Children's Memory Scale (CMS) tasks. Using partial-least squares path modeling, we found that brain tumor treatment predicted network white matter damage, which predicted inter-network theta hypersynchrony and lower verbal learning (directly) and lower verbal recall (indirectly via theta hypersynchrony). Novel to the literature, our findings suggest that white matter modulates episodic memory through effect on oscillatory synchronization within relevant brain networks. RESEARCH HIGHLIGHTS: Investigates the relationship between structural and functional connectivity of episodic memory networks in healthy children and pediatric brain tumor survivors Pediatric brain tumor survivors demonstrate disrupted episodic memory, white matter microstructure and theta oscillatory synchronization compared to healthy children Findings suggest white matter microstructure modulates episodic memory through effects on oscillatory synchronization within relevant episodic memory networks.
Collapse
Affiliation(s)
- Katie Wade Alonso
- The Hospital for Sick Children, Toronto, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
| | | | - Lily Riggs
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
- Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Julie Tseng
- The Hospital for Sick Children, Toronto, Canada
| | | | - Ming Scott
- The Hospital for Sick Children, Toronto, Canada
| | | | | | - Donald J Mabbott
- The Hospital for Sick Children, Toronto, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
36
|
Zhu TT, Wang H, Liu PM, Gu HW, Pan WT, Zhao MM, Hashimoto K, Yang JJ. Clemastine-induced enhancement of hippocampal myelination alleviates memory impairment in mice with chronic pain. Neurobiol Dis 2024; 190:106375. [PMID: 38092269 DOI: 10.1016/j.nbd.2023.106375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023] Open
Abstract
Patients with chronic pain often experience memory impairment, but the underlying mechanisms remain elusive. The myelin sheath is crucial for rapid and accurate action potential conduction, playing a pivotal role in the development of cognitive abilities in the central nervous system. The study reveals that myelin degradation occurs in the hippocampus of chronic constriction injury (CCI) mice, which display both chronic pain and memory impairment. Using fiber photometry, we observed diminished task-related neuronal activity in the hippocampus of CCI mice. Interestingly, the repeated administration with clemastine, which promotes myelination, counteracts the CCI-induced myelin loss and reduced neuronal activity. Notably, clemastine specifically ameliorates the impaired memory without affecting chronic pain in CCI mice. Overall, our findings highlight the significant role of myelin abnormalities in CCI-induced memory impairment, suggesting a potential therapeutic approach for treating memory impairments associated with neuropathic pain.
Collapse
Affiliation(s)
- Ting-Ting Zhu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - He Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Pan-Miao Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Han-Wen Gu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wei-Tong Pan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Ming-Ming Zhao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kenji Hashimoto
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
37
|
Cho CH, Deyneko IV, Cordova-Martinez D, Vazquez J, Maguire AS, Diaz JR, Carbonell AU, Tindi JO, Cui MH, Fleysher R, Molholm S, Lipton ML, Branch CA, Hodgson L, Jordan BA. ANKS1B encoded AIDA-1 regulates social behaviors by controlling oligodendrocyte function. Nat Commun 2023; 14:8499. [PMID: 38129387 PMCID: PMC10739966 DOI: 10.1038/s41467-023-43438-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Heterozygous deletions in the ANKS1B gene cause ANKS1B neurodevelopmental syndrome (ANDS), a rare genetic disease characterized by autism spectrum disorder (ASD), attention deficit/hyperactivity disorder, and speech and motor deficits. The ANKS1B gene encodes for AIDA-1, a protein that is enriched at neuronal synapses and regulates synaptic plasticity. Here we report an unexpected role for oligodendroglial deficits in ANDS pathophysiology. We show that Anks1b-deficient mouse models display deficits in oligodendrocyte maturation, myelination, and Rac1 function, and recapitulate white matter abnormalities observed in ANDS patients. Selective loss of Anks1b from the oligodendrocyte lineage, but not from neuronal populations, leads to deficits in social preference and sensory reactivity previously observed in a brain-wide Anks1b haploinsufficiency model. Furthermore, we find that clemastine, an antihistamine shown to increase oligodendrocyte precursor cell maturation and central nervous system myelination, rescues deficits in social preference in 7-month-old Anks1b-deficient mice. Our work shows that deficits in social behaviors present in ANDS may originate from abnormal Rac1 activity within oligodendrocytes.
Collapse
Affiliation(s)
- Chang Hoon Cho
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Human Pathobiology and OMNI Reverse Translation, Genentech, Inc., San Francisco, CA, USA
| | - Ilana Vasilisa Deyneko
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dylann Cordova-Martinez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Juan Vazquez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anne S Maguire
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jenny R Diaz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abigail U Carbonell
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jaafar O Tindi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min-Hui Cui
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Roman Fleysher
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sophie Molholm
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael L Lipton
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Craig A Branch
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Louis Hodgson
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
38
|
Taylor KR, Monje M. Neuron-oligodendroglial interactions in health and malignant disease. Nat Rev Neurosci 2023; 24:733-746. [PMID: 37857838 PMCID: PMC10859969 DOI: 10.1038/s41583-023-00744-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Experience sculpts brain structure and function. Activity-dependent modulation of the myelinated infrastructure of the nervous system has emerged as a dimension of adaptive change during childhood development and in adulthood. Myelination is a richly dynamic process, with neuronal activity regulating oligodendrocyte precursor cell proliferation, oligodendrogenesis and myelin structural changes in some axonal subtypes and in some regions of the nervous system. This myelin plasticity and consequent changes to conduction velocity and circuit dynamics can powerfully influence neurological functions, including learning and memory. Conversely, disruption of the mechanisms mediating adaptive myelination can contribute to cognitive impairment. The robust effects of neuronal activity on normal oligodendroglial precursor cells, a putative cellular origin for many forms of glioma, indicates that dysregulated or 'hijacked' mechanisms of myelin plasticity could similarly promote growth in this devastating group of brain cancers. Indeed, neuronal activity promotes the pathogenesis of many forms of glioma in preclinical models through activity-regulated paracrine factors and direct neuron-to-glioma synapses. This synaptic integration of glioma into neural circuits is central to tumour growth and invasion. Thus, not only do neuron-oligodendroglial interactions modulate neural circuit structure and function in the healthy brain, but neuron-glioma interactions also have important roles in the pathogenesis of glial malignancies.
Collapse
Affiliation(s)
- Kathryn R Taylor
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
39
|
Wu Q, Ren Q, Meng J, Gao WJ, Chang YZ. Brain Iron Homeostasis and Mental Disorders. Antioxidants (Basel) 2023; 12:1997. [PMID: 38001850 PMCID: PMC10669508 DOI: 10.3390/antiox12111997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Iron plays an essential role in various physiological processes. A disruption in iron homeostasis can lead to severe consequences, including impaired neurodevelopment, neurodegenerative disorders, stroke, and cancer. Interestingly, the link between mental health disorders and iron homeostasis has not received significant attention. Therefore, our understanding of iron metabolism in the context of psychological diseases is incomplete. In this review, we aim to discuss the pathologies and potential mechanisms that relate to iron homeostasis in associated mental disorders. We propose the hypothesis that maintaining brain iron homeostasis can support neuronal physiological functions by impacting key enzymatic activities during neurotransmission, redox balance, and myelination. In conclusion, our review highlights the importance of investigating the relationship between trace element nutrition and the pathological process of mental disorders, focusing on iron. This nutritional perspective can offer valuable insights for the clinical treatment of mental disorders.
Collapse
Affiliation(s)
- Qiong Wu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Qiuyang Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Jingsi Meng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Wei-Juan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| |
Collapse
|
40
|
Caldwell M, Ayo-Jibunoh V, Mendoza JC, Brimblecombe KR, Reynolds LM, Zhu Jiang XY, Alarcon C, Fiore E, N Tomaio J, Phillips GR, Mingote S, Flores C, Casaccia P, Liu J, Cragg SJ, McCloskey DP, Yetnikoff L. Axo-glial interactions between midbrain dopamine neurons and oligodendrocyte lineage cells in the anterior corpus callosum. Brain Struct Funct 2023; 228:1993-2006. [PMID: 37668732 PMCID: PMC10516790 DOI: 10.1007/s00429-023-02695-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023]
Abstract
Oligodendrocyte progenitor cells (OPCs) receive synaptic innervation from glutamatergic and GABAergic axons and can be dynamically regulated by neural activity, resulting in activity-dependent changes in patterns of axon myelination. However, it remains unclear to what extent other types of neurons may innervate OPCs. Here, we provide evidence implicating midbrain dopamine neurons in the innervation of oligodendrocyte lineage cells in the anterior corpus callosum and nearby white matter tracts of male and female adult mice. Dopaminergic axon terminals were identified in the corpus callosum of DAT-Cre mice after injection of an eYFP reporter virus into the midbrain. Furthermore, fast-scan cyclic voltammetry revealed monoaminergic transients in the anterior corpus callosum, consistent with the anatomical findings. Using RNAscope, we further demonstrate that ~ 40% of Olig2 + /Pdfgra + cells and ~ 20% of Olig2 + /Pdgfra- cells in the anterior corpus callosum express Drd1 and Drd2 transcripts. These results suggest that oligodendrocyte lineage cells may respond to dopamine released from midbrain dopamine axons, which could affect myelination. Together, this work broadens our understanding of neuron-glia interactions with important implications for myelin plasticity by identifying midbrain dopamine axons as a potential regulator of corpus callosal oligodendrocyte lineage cells.
Collapse
Affiliation(s)
- Megan Caldwell
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Vanessa Ayo-Jibunoh
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Josue Criollo Mendoza
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Katherine R Brimblecombe
- Centre for Integrative Neuroscience, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Lauren M Reynolds
- Plasticité du Cerveau, CNRS UMR8249, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Paris, France
| | - Xin Yan Zhu Jiang
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Colin Alarcon
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Elizabeth Fiore
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Jacquelyn N Tomaio
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Greg R Phillips
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
- Center for Developmental Neuroscience, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Susana Mingote
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Cecilia Flores
- Department of Psychiatry and of Neurology and Neuroscience, McGill University, and Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
- Department of Neuroscience and Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jia Liu
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Stephanie J Cragg
- Centre for Integrative Neuroscience, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Dan P McCloskey
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Leora Yetnikoff
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA.
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA.
| |
Collapse
|
41
|
Shimizu T, Nayar SG, Swire M, Jiang Y, Grist M, Kaller M, Sampaio Baptista C, Bannerman DM, Johansen-Berg H, Ogasawara K, Tohyama K, Li H, Richardson WD. Oligodendrocyte dynamics dictate cognitive performance outcomes of working memory training in mice. Nat Commun 2023; 14:6499. [PMID: 37838794 PMCID: PMC10576739 DOI: 10.1038/s41467-023-42293-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023] Open
Abstract
Previous work has shown that motor skill learning stimulates and requires generation of myelinating oligodendrocytes (OLs) from their precursor cells (OLPs) in the brains of adult mice. In the present study we ask whether OL production is also required for non-motor learning and cognition, using T-maze and radial-arm-maze tasks that tax spatial working memory. We find that maze training stimulates OLP proliferation and OL production in the medial prefrontal cortex (mPFC), anterior corpus callosum (genu), dorsal thalamus and hippocampal formation of adult male mice; myelin sheath formation is also stimulated in the genu. Genetic blockade of OL differentiation and neo-myelination in Myrf conditional-knockout mice strongly impairs training-induced improvements in maze performance. We find a strong positive correlation between the performance of individual wild type mice and the scale of OLP proliferation and OL generation during training, but not with the number or intensity of c-Fos+ neurons in their mPFC, underscoring the important role played by OL lineage cells in cognitive processing.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Stuart G Nayar
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Matthew Swire
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Yi Jiang
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Matthew Grist
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Malte Kaller
- Wellcome Centre for Integrative Neuroimaging, Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Cassandra Sampaio Baptista
- Wellcome Centre for Integrative Neuroimaging, Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, G12 8QB, Glasgow, UK
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3TA, UK
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Katsutoshi Ogasawara
- Technical Support Center for Life Science Research, Iwate Medical University, 1-1-1 Idaidori, Yahabacho, Shiwa-gun, Morioka, Iwate, 028-3694, Japan
| | - Koujiro Tohyama
- Department of Physiology, Iwate Medical University, 1-1-1 Idaidori, Yahabacho, Shiwa-gun, Morioka, Iwate, 028-3694, Japan
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
42
|
Williams N, Ojanperä A, Siebenhühner F, Toselli B, Palva S, Arnulfo G, Kaski S, Palva JM. The influence of inter-regional delays in generating large-scale brain networks of phase synchronization. Neuroimage 2023; 279:120318. [PMID: 37572765 DOI: 10.1016/j.neuroimage.2023.120318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023] Open
Abstract
Large-scale networks of phase synchronization are considered to regulate the communication between brain regions fundamental to cognitive function, but the mapping to their structural substrates, i.e., the structure-function relationship, remains poorly understood. Biophysical Network Models (BNMs) have demonstrated the influences of local oscillatory activity and inter-regional anatomical connections in generating alpha-band (8-12 Hz) networks of phase synchronization observed with Electroencephalography (EEG) and Magnetoencephalography (MEG). Yet, the influence of inter-regional conduction delays remains unknown. In this study, we compared a BNM with standard "distance-dependent delays", which assumes constant conduction velocity, to BNMs with delays specified by two alternative methods accounting for spatially varying conduction velocities, "isochronous delays" and "mixed delays". We followed the Approximate Bayesian Computation (ABC) workflow, i) specifying neurophysiologically informed prior distributions of BNM parameters, ii) verifying the suitability of the prior distributions with Prior Predictive Checks, iii) fitting each of the three BNMs to alpha-band MEG resting-state data (N = 75) with Bayesian optimization for Likelihood-Free Inference (BOLFI), and iv) choosing between the fitted BNMs with ABC model comparison on a separate MEG dataset (N = 30). Prior Predictive Checks revealed the range of dynamics generated by each of the BNMs to encompass those seen in the MEG data, suggesting the suitability of the prior distributions. Fitting the models to MEG data yielded reliable posterior distributions of the parameters of each of the BNMs. Finally, model comparison revealed the BNM with "distance-dependent delays", as the most probable to describe the generation of alpha-band networks of phase synchronization seen in MEG. These findings suggest that distance-dependent delays might contribute to the neocortical architecture of human alpha-band networks of phase synchronization. Hence, our study illuminates the role of inter-regional delays in generating the large-scale networks of phase synchronization that might subserve the communication between regions vital to cognition.
Collapse
Affiliation(s)
- N Williams
- Helsinki Institute of Information Technology, Department of Computer Science, Aalto University, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University, Finland.
| | - A Ojanperä
- Department of Computer Science, Aalto University, Finland
| | - F Siebenhühner
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Finland; BioMag laboratory, HUS Medical Imaging Center, Helsinki, Finland
| | - B Toselli
- Department of Informatics, Bioengineering, Robotics & Systems Engineering, University of Genoa, Italy
| | - S Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Finland; Centre for Cognitive Neuroimaging, School of Neuroscience & Psychology, University of Glasgow, United Kingdom
| | - G Arnulfo
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Finland; Department of Informatics, Bioengineering, Robotics & Systems Engineering, University of Genoa, Italy
| | - S Kaski
- Helsinki Institute of Information Technology, Department of Computer Science, Aalto University, Finland; Department of Computer Science, Aalto University, Finland; Department of Computer Science, University of Manchester, United Kingdom
| | - J M Palva
- Department of Neuroscience and Biomedical Engineering, Aalto University, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Finland; Centre for Cognitive Neuroimaging, School of Neuroscience & Psychology, University of Glasgow, United Kingdom
| |
Collapse
|
43
|
Ibañez S, Sengupta N, Luebke JI, Wimmer K, Weaver CM. Myelin dystrophy in the aging prefrontal cortex leads to impaired signal transmission and working memory decline: a multiscale computational study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555476. [PMID: 37693412 PMCID: PMC10491254 DOI: 10.1101/2023.08.30.555476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Normal aging leads to myelin alternations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are often correlated with cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First we built a multicompartment pyramidal neuron model fit to monkey dlPFC data, with axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions, to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination in a population of neurons. Lasso regression identified distinctive parameter sets likely to modulate an axon's susceptibility to CV changes following demyelination versus remyelination. Next we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from electron microscopy up to behavior on aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.
Collapse
Affiliation(s)
- Sara Ibañez
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA 02118
- Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, 08193 Bellaterra, Spain
| | - Nilapratim Sengupta
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA 02118
- Department of Mathematics, Franklin and Marshall College, Lancaster, PA, USA 17604
| | - Jennifer I Luebke
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA 02118
| | - Klaus Wimmer
- Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, 08193 Bellaterra, Spain
| | - Christina M Weaver
- Department of Mathematics, Franklin and Marshall College, Lancaster, PA, USA 17604
| |
Collapse
|
44
|
Scheuer KS, Judge JM, Zhao X, Jackson MB. Velocity of conduction between columns and layers in barrel cortex reported by parvalbumin interneurons. Cereb Cortex 2023; 33:9917-9926. [PMID: 37415260 PMCID: PMC10656945 DOI: 10.1093/cercor/bhad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023] Open
Abstract
Inhibitory interneurons expressing parvalbumin (PV) play critical roles throughout the brain. Their rapid spiking enables them to control circuit dynamics on a millisecond time scale, and the timing of their activation by different excitatory pathways is critical to these functions. We used a genetically encoded hybrid voltage sensor to image PV interneuron voltage changes with sub-millisecond precision in primary somatosensory barrel cortex (BC) of adult mice. Electrical stimulation evoked depolarizations with a latency that increased with distance from the stimulating electrode, allowing us to determine conduction velocity. Spread of responses between cortical layers yielded an interlaminar conduction velocity and spread within layers yielded intralaminar conduction velocities in different layers. Velocities ranged from 74 to 473 μm/ms depending on trajectory; interlaminar conduction was 71% faster than intralaminar conduction. Thus, computations within columns are more rapid than between columns. The BC integrates thalamic and intracortical input for functions such as texture discrimination and sensory tuning. Timing differences between intra- and interlaminar PV interneuron activation could impact these functions. Imaging of voltage in PV interneurons reveals differences in signaling dynamics within cortical circuitry. This approach offers a unique opportunity to investigate conduction in populations of axons based on their targeting specificity.
Collapse
Affiliation(s)
- Katherine S Scheuer
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - John M Judge
- Biophysics Program, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Meyer B Jackson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, United States
| |
Collapse
|
45
|
Castaldo F, Páscoa Dos Santos F, Timms RC, Cabral J, Vohryzek J, Deco G, Woolrich M, Friston K, Verschure P, Litvak V. Multi-modal and multi-model interrogation of large-scale functional brain networks. Neuroimage 2023; 277:120236. [PMID: 37355200 PMCID: PMC10958139 DOI: 10.1016/j.neuroimage.2023.120236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
Existing whole-brain models are generally tailored to the modelling of a particular data modality (e.g., fMRI or MEG/EEG). We propose that despite the differing aspects of neural activity each modality captures, they originate from shared network dynamics. Building on the universal principles of self-organising delay-coupled nonlinear systems, we aim to link distinct features of brain activity - captured across modalities - to the dynamics unfolding on a macroscopic structural connectome. To jointly predict connectivity, spatiotemporal and transient features of distinct signal modalities, we consider two large-scale models - the Stuart Landau and Wilson and Cowan models - which generate short-lived 40 Hz oscillations with varying levels of realism. To this end, we measure features of functional connectivity and metastable oscillatory modes (MOMs) in fMRI and MEG signals - and compare them against simulated data. We show that both models can represent MEG functional connectivity (FC), functional connectivity dynamics (FCD) and generate MOMs to a comparable degree. This is achieved by adjusting the global coupling and mean conduction time delay and, in the WC model, through the inclusion of balance between excitation and inhibition. For both models, the omission of delays dramatically decreased the performance. For fMRI, the SL model performed worse for FCD and MOMs, highlighting the importance of balanced dynamics for the emergence of spatiotemporal and transient patterns of ultra-slow dynamics. Notably, optimal working points varied across modalities and no model was able to achieve a correlation with empirical FC higher than 0.4 across modalities for the same set of parameters. Nonetheless, both displayed the emergence of FC patterns that extended beyond the constraints of the anatomical structure. Finally, we show that both models can generate MOMs with empirical-like properties such as size (number of brain regions engaging in a mode) and duration (continuous time interval during which a mode appears). Our results demonstrate the emergence of static and dynamic properties of neural activity at different timescales from networks of delay-coupled oscillators at 40 Hz. Given the higher dependence of simulated FC on the underlying structural connectivity, we suggest that mesoscale heterogeneities in neural circuitry may be critical for the emergence of parallel cross-modal functional networks and should be accounted for in future modelling endeavours.
Collapse
Affiliation(s)
- Francesca Castaldo
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Francisco Páscoa Dos Santos
- Eodyne Systems SL, Barcelona, Spain; Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ryan C Timms
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - Portuguese Government Associate Laboratory, Braga/Guimarães, Portugal; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, United United Kingdom
| | - Jakub Vohryzek
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, United United Kingdom; Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gustavo Deco
- Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Mark Woolrich
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Paul Verschure
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
46
|
Chen H, Xu J, Lv W, Hu Z, Ke Z, Qin R, Xu Y. Altered static and dynamic functional network connectivity related to cognitive decline in individuals with white matter hyperintensities. Behav Brain Res 2023; 451:114506. [PMID: 37230298 DOI: 10.1016/j.bbr.2023.114506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
White matter hyperintensities (WMH) of assumed vascular origin are common in elderly individuals and are closely associated with cognitive decline. However, the underlying neural mechanisms of WMH-related cognitive impairment remain unclear. After strict screening, 59 healthy controls (HC, n = 59), 51 patients with WMH and normal cognition (WMH-NC, n = 51) and 68 patients with WMH and mild cognitive impairment (WMH-MCI, n = 68) were included in the final analyses. All individuals underwent multimodal magnetic resonance imaging (MRI) and cognitive evaluations. We investigated the neural mechanism underlying WMH-related cognitive impairment based on static and dynamic functional network connectivity (sFNC and dFNC) approaches. Finally, the support vector machine (SVM) method was performed to identify WMH-MCI individuals. The sFNC analysis indicated that functional connectivity within the visual network (VN) could mediate the impairment of information processing speed related to WMH (indirect effect: 0.24; 95% CI: 0.03, 0.88 and indirect effect: 0.05; 95% CI: 0.001, 0.14). WMH may regulate the dFNC between the higher-order cognitive network and other networks and enhance the dynamic variability between the left frontoparietal network (lFPN) and the VN to compensate for the decline in high-level cognitive functions. The SVM model achieved good prediction ability for WMH-MCI patients based on the above characteristic connectivity patterns. Our findings shed light on the dynamic regulation of brain network resources to maintain cognitive processing in individuals with WMH. Crucially, dynamic reorganization of brain networks could be regarded as a potential neuroimaging biomarker for identifying WMH-related cognitive impairment.
Collapse
Affiliation(s)
- Haifeng Chen
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Jingxian Xu
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Weiping Lv
- Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
| | - Zheqi Hu
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhihong Ke
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Ruomeng Qin
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China; Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China.
| |
Collapse
|
47
|
Kondiles B, Murphy R, Widman A, Perlmutter S, Horner P. Cortical stimulation leads to shortened myelin sheaths and increased axonal branching in spared axons after cervical spinal cord injury. Glia 2023; 71:1947-1959. [PMID: 37096399 PMCID: PMC10649492 DOI: 10.1002/glia.24376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/26/2023]
Abstract
Neural activity and learning lead to myelin sheath plasticity in the intact central nervous system (CNS), but this plasticity has not been well-studied after CNS injury. In the context of spinal cord injury (SCI), demyelination occurs at the lesion site and natural remyelination of surviving axons can take months. To determine if neural activity modulates myelin and axon plasticity in the injured, adult CNS, we electrically stimulated the contralesional motor cortex at 10 Hz to drive neural activity in the corticospinal tract of rats with sub-chronic spinal contusion injuries. We quantified myelin and axonal characteristics by tracing corticospinal axons rostral to and at the lesion epicenter and identifying nodes of Ranvier by immunohistochemistry. Three weeks of daily stimulation induced very short myelin sheaths, axon branching, and thinner axons outside of the lesion zone, where remodeling has not previously been reported. Surprisingly, remodeling was particularly robust rostral to the injury which suggests that electrical stimulation can promote white matter plasticity even in areas not directly demyelinated by the contusion. Stimulation did not alter myelin or axons at the lesion site, which suggests that neuronal activity does not contribute to myelin remodeling near the injury in the sub-chronic period. These data are the first to demonstrate wide-scale remodeling of nodal and myelin structures of a mature, long-tract motor pathway in response to electrical stimulation. This finding suggests that neuromodulation promotes white matter plasticity in intact regions of pathways after injury and raises intriguing questions regarding the interplay between axonal and myelin plasticity.
Collapse
Affiliation(s)
- B.R. Kondiles
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific St. Seattle, WA, 98105, USA
- Center for Neuroregeneration, Dept. of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner, Houston, TX, 77030, USA
| | - R.L. Murphy
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific St. Seattle, WA, 98105, USA
| | - A.J. Widman
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific St. Seattle, WA, 98105, USA
| | - S.I. Perlmutter
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific St. Seattle, WA, 98105, USA
| | - P.J. Horner
- Center for Neuroregeneration, Dept. of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner, Houston, TX, 77030, USA
| |
Collapse
|
48
|
Lawton W, Araujo O, Kufaishi Y. Language Environment and Infants' Brain Structure. J Neurosci 2023; 43:5129-5131. [PMID: 37438100 PMCID: PMC10342219 DOI: 10.1523/jneurosci.0787-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023] Open
Affiliation(s)
- Will Lawton
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Ozzy Araujo
- Undergraduate Life Sciences Program, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Yousif Kufaishi
- Undergraduate Life Sciences Program, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
49
|
Slapø NB, Jørgensen KN, Elvsåshagen T, Nerland S, Roelfs D, Valstad M, Timpe CMF, Richard G, Beck D, Sæther LS, Frogner Werner MC, Lagerberg TV, Andreassen OA, Melle I, Agartz I, Westlye LT, Moberget T, Jönsson EG. Relationship between function and structure in the visual cortex in healthy individuals and in patients with severe mental disorders. Psychiatry Res Neuroimaging 2023; 332:111633. [PMID: 37028226 DOI: 10.1016/j.pscychresns.2023.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 04/09/2023]
Abstract
Patients with schizophrenia spectrum disorders (SCZspect) and bipolar disorders (BD) show impaired function in the primary visual cortex (V1), indicated by altered visual evoked potential (VEP). While the neural substrate for altered VEP in these patients remains elusive, altered V1 structure may play a role. One previous study found a positive relationship between the amplitude of the P100 component of the VEP and V1 surface area, but not V1 thickness, in a small sample of healthy individuals. Here, we aimed to replicate these findings in a larger healthy control (HC) sample (n = 307) and to examine the same relationship in patients with SCZspect (n = 30) or BD (n = 45). We also compared the mean P100 amplitude, V1 surface area and V1 thickness between controls and patients and found no significant group differences. In HC only, we found a significant positive P100-V1 surface area association, while there were no significant P100-V1 thickness relationships in HC, SCZspect or BD. Together, our results confirm previous findings of a positive P100-V1 surface area association in HC, whereas larger patient samples are needed to further clarify the function-structure relationship in V1 in SCZspect and BD.
Collapse
Affiliation(s)
- Nora Berz Slapø
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway.
| | - Kjetil Nordbø Jørgensen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Torbjørn Elvsåshagen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Neurology, Oslo University Hospital, Norway
| | - Stener Nerland
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Daniel Roelfs
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway
| | - Mathias Valstad
- Department of Mental Disorders, Norwegian Institute of Public Health, Norway
| | - Clara M F Timpe
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | | | - Dani Beck
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | | | | | - Trine Vik Lagerberg
- NORMENT, Division of Mental Health and Addiction, Oslo University hospital, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University hospital, Norway
| | - Ingrid Melle
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University hospital, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| | - Lars T Westlye
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | - Torgeir Moberget
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Behavioral Sciences, Faculty of Health Sciences, Oslo Metropolitan University, OsloMet, Oslo, Norway
| | - Erik G Jönsson
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| |
Collapse
|
50
|
Winkler F, Venkatesh HS, Amit M, Batchelor T, Demir IE, Deneen B, Gutmann DH, Hervey-Jumper S, Kuner T, Mabbott D, Platten M, Rolls A, Sloan EK, Wang TC, Wick W, Venkataramani V, Monje M. Cancer neuroscience: State of the field, emerging directions. Cell 2023; 186:1689-1707. [PMID: 37059069 PMCID: PMC10107403 DOI: 10.1016/j.cell.2023.02.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 04/16/2023]
Abstract
The nervous system governs both ontogeny and oncology. Regulating organogenesis during development, maintaining homeostasis, and promoting plasticity throughout life, the nervous system plays parallel roles in the regulation of cancers. Foundational discoveries have elucidated direct paracrine and electrochemical communication between neurons and cancer cells, as well as indirect interactions through neural effects on the immune system and stromal cells in the tumor microenvironment in a wide range of malignancies. Nervous system-cancer interactions can regulate oncogenesis, growth, invasion and metastatic spread, treatment resistance, stimulation of tumor-promoting inflammation, and impairment of anti-cancer immunity. Progress in cancer neuroscience may create an important new pillar of cancer therapy.
Collapse
Affiliation(s)
- Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Humsa S Venkatesh
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Moran Amit
- Department of Head and Neck Surgery, MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Tracy Batchelor
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Ihsan Ekin Demir
- Department of Surgery, Technical University of Munich, Munich, Germany
| | - Benjamin Deneen
- Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX, USA
| | - David H Gutmann
- Department of Neurology, Washington University, St Louis, MO, USA
| | - Shawn Hervey-Jumper
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas Kuner
- Department of Functional Neuroanatomy, University of Heidelberg, Heidelberg, Germany
| | - Donald Mabbott
- Department of Psychology, University of Toronto and Neuroscience & Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Asya Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Erica K Sloan
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology Theme, Monash University, Parkville, VIC, Australia
| | - Timothy C Wang
- Department of Medicine, Division of Digestive and Gastrointestinal Diseases, Columbia University, New York, NY, USA
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Functional Neuroanatomy, University of Heidelberg, Heidelberg, Germany.
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|