1
|
Yatsuda C, Izawa EI. Sex difference of LiCl-induced feeding suppression and, autonomic and HPA axis responses in crows. Physiol Behav 2025; 293:114846. [PMID: 39961427 DOI: 10.1016/j.physbeh.2025.114846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
Visceral sensation is crucial for feeding, emotion, and decision making in humans and non-human animals. Visceral discomforting stimulation activates stress-coping systems, such as the autonomic nervous system (ANS) and hypothalamus-pituitary-adrenal (HPA) axis, with varied responses and thresholds between sexes. Despite these systems working together during visceral discomfort, ANS and HPA have been separately investigated with few studies examining the co-occurrence of the ANS and HPA responses to visceral stimulations. The basic profiles of the ANS and HPA responses to visceral discomfort and sex differences in birds are poorly elucidated. This study investigated the effects of visceral stimulation via intraperitoneal injection of lithium chloride (LiCl) on feeding behavior, ANS and HPA activities, and sex differences in crows. We identified the LiCl dose that suppressed the intake of a preferred food and compared the LiCl-induced feeding suppression between sexes. Changes in heart rate variability (HRV), as a proxy of sympathetic and parasympathetic activities, and serum corticosterone (CORT) levels by LiCl injection were compared. Feeding suppression occurred at higher LiCl doses in males than in females. HRV analysis revealed that LiCl injection reduced HR and increased parasympathetic activity; however, it did not change sympathetic activity, with no sex differences in any variables. In contrast, LiCl injections at lower doses increased serum CORT levels more in males than in females. Our findings provide the first evidence of sex-specific response profiles to feeding suppression and ANS and HPA activities associated with LiCl-induced visceral discomfort in birds.
Collapse
Affiliation(s)
- Chisato Yatsuda
- Department of Psychology, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| | - Ei-Ichi Izawa
- Department of Psychology, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan.
| |
Collapse
|
2
|
Ke X, Cai H, Luo F, Zheng X, Hu Q, Zhou Y, Wang Y, Zhang X, Chen Y, Chen G. TRPC4 Mediates Trigeminal Neuropathic Pain via Ca 2+-ERK/P38-ATF2 Pathway in the Trigeminal Ganglion of Mice. CNS Neurosci Ther 2025; 31:e70368. [PMID: 40202077 PMCID: PMC11979714 DOI: 10.1111/cns.70368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/19/2025] [Accepted: 03/18/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Trigeminal neuropathic pain (TNP) is a debilitating condition characterized by chronic facial pain, yet its underlying mechanisms remain incompletely understood. Transient Receptor Potential Canonical 4 (TRPC4) has been reported to promote the development of abnormal pain or pain hypersensitivity in neuropathic pain. However, the specific contribution of TRPC4 to TNP pathogenesis remains unclear. AIM This study aimed to investigate the role of TRPC4 in a mouse model of trigeminal neuropathic pain induced by chronic constriction of the unilateral infraorbital nerve (CION). METHODS Adult male/female mice were subjected to either CION surgery or sham surgery. Behavioral assays were conducted to assess facial pain-like responses over a 28-day period. TRPC4 distribution in the trigeminal ganglion (TG) was evaluated using Immunofluorescence. TRPC4 inhibitor ML204 and agonist Englerin A were employed to evaluate the impact of TRPC4 on facial pain-like behaviors. A TRPC4-overexpressing HEK293 cell model was conducted via plasmid transfection. To assess the function of TRPC4, we employed cellular calcium imaging technology to investigate the effects of modulating TRPC4 function by analyzing dynamic changes in intracellular calcium ion concentrations in primary trigeminal ganglion neurons and HEK293 cells. Trpc4 shRNA was used to specifically knock down TRPC4 in the trigeminal ganglion. Western blot analysis was used to assess the activation of ERK, P38, and ATF2 signaling pathways. RESULTS Mice subjected to CION exhibited persistent facial pain-like behaviors and a significant increase in TRPC4 expression in TG neurons. Trpc4 shRNA or pharmacological inhibition with ML204 attenuated CION-induced pain behaviors, while activation of TRPC4 with Englerin A induced pain-like responses in naive mice. Calcium imaging revealed that both Englerin A and TRPC4 overexpression elevated intracellular Ca²2+ levels in TG neurons and HEK293 cells. This Ca²2+ influx triggered the activation of ERK and P38, leading to enhanced ATF2 activation. Downregulation of TRPC4 in the TG reduced ERK/P38 phosphorylation and ATF2 expression and activation. CONCLUSION This study provides the first evidence that TRPC4 plays a critical role in CION-induced trigeminal neuropathic pain by promoting the activation of the downstream transcription factor ATF2 via the Ca²2+-ERK/P38 pathway.
Collapse
Affiliation(s)
- Xinlong Ke
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| | - Huajing Cai
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| | - Fangla Luo
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| | - Xing Zheng
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| | - Qian Hu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| | - Youfa Zhou
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| | - Yongjie Wang
- School of PharmacyHangzhou Normal UniversityZhejiangHangzhouChina
| | - Xiangnan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityZhejiangHangzhouChina
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
- Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
- Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| |
Collapse
|
3
|
Bai L, Xiang Y, Shen M, Han Y, Li P, Zuo Z, Li Y. Design, synthesis and activity evaluation of novel quinazolinone compounds as TRPC5 inhibitors. Bioorg Chem 2025; 155:108147. [PMID: 39817997 DOI: 10.1016/j.bioorg.2025.108147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/31/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
The TRPC5 channel plays an important role in regulating various physiological processes, which is related to various human diseases, especially psychiatric and kidney diseases. Although the TRPC5 channel is one of the essential potential target, no drugs against TRPC5 channels have been granted in the market to date. In this study, based on the structure of hit compound ph1, we further synthesied 49 compounds of novel quinazolinone and heterocyclic fusion pyrimidinone derivatives, and their activities were evaluated by electrophysiological assays. After extensive screening, 21 compounds exhibited significant TRPC5 inhibitory activity, and compounds ph8 and ph14 displayed strong inhibitory with IC50 of 1.28 and 2.16 μM, respectively. These identified potential TRPC5 inhibitor may provide lead compounds and experimental evidence for the development of novel TRPC5 inhibitors with potential treatment for anxiety, depression, and progressive kidney disease.
Collapse
Affiliation(s)
- Longhui Bai
- School of Pharmacology Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024 China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201 China; University of the Chinese Academy of Sciences, Beijing 100049 China
| | - Yu Xiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023 China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China
| | - Meiling Shen
- School of Pharmacology Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024 China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201 China; University of the Chinese Academy of Sciences, Beijing 100049 China
| | - Yujun Han
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023 China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China
| | - Penghua Li
- School of Pharmacology Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024 China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201 China; University of the Chinese Academy of Sciences, Beijing 100049 China
| | - Zhili Zuo
- School of Pharmacology Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024 China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201 China; University of the Chinese Academy of Sciences, Beijing 100049 China.
| | - Yang Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023 China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; University of the Chinese Academy of Sciences, Beijing 100049 China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040 China.
| |
Collapse
|
4
|
Ke X, Cai H, Chen Y, Chen G. Exploring the therapeutic potential of TRPC channels in chronic pain: An investigation into their mechanisms, functions, and prospects. Eur J Pharmacol 2025; 987:177206. [PMID: 39672226 DOI: 10.1016/j.ejphar.2024.177206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/15/2024]
Abstract
Transient Receptor Potential Canonical (TRPC) channels have received more attention in recent years for their role of in the pathophysiology of chronic pain. These non-selective cation channels, which are predominantly present on cell membranes, play a pivotal role in regulating both physiological and pathological processes. Research advances have shown the critical role of TRPC channels in a variety of chronic pain, including neuropathic, inflammatory, and visceral pain. Activation of TRPC channels increases neuronal excitability, amplifying and prolonging pain signals. Moreover, these channels collaborate with other ion channels and receptors to form complexes that augment the transmission and perception of pain. As research advances, our understanding of TRPC channels' regulation mechanisms and signaling pathways improves. An expanding variety of TRPC modulators has been identified as promising therapeutic agents for chronic pain, opening up novel treatment options. Nevertheless, the diversity and complexity of TRPC channels present challenges in drug development, highlighting the importance of full understanding of their unique properties and activities. This review aims to provide a thorough evaluation of recent breakthrough in TRPC channels research related to chronic pain, with a focus on their mechanisms, functions, and prospective therapeutic application. By integrating existing research findings, we seek to bring new viewpoints and approaches for chronic pain management.
Collapse
Affiliation(s)
- Xinlong Ke
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huajing Cai
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
5
|
Yang L, Peng Z, Gong F, Yan W, Shi Y, Li H, Zhou C, Yao H, Yuan M, Yu F, Feng L, Wan N, Liu G. TRPC4 aggravates hypoxic pulmonary hypertension by promoting pulmonary endothelial cell apoptosis. Free Radic Biol Med 2024; 219:141-152. [PMID: 38636714 DOI: 10.1016/j.freeradbiomed.2024.04.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/31/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Pulmonary hypertension (PH) is a devastating disease that lacks effective treatment options and is characterized by severe pulmonary vascular remodeling. Pulmonary arterial endothelial cell (PAEC) dysfunction drives the initiation and pathogenesis of pulmonary arterial hypertension. Canonical transient receptor potential (TRPC) channels, a family of Ca2+-permeable channels, play an important role in various diseases. However, the effect and mechanism of TRPCs on PH development have not been fully elucidated. Among the TRPC family members, TRPC4 expression was markedly upregulated in PAECs from hypoxia combined with SU5416 (HySu)-induced PH mice and monocrotaline (MCT)-treated PH rats, as well as in hypoxia-exposed PAECs, suggesting that TRPC4 in PAECs may participate in the occurrence and development of PH. In this study, we aimed to investigate whether TRPC4 in PAECs has an aggravating effect on PH and elucidate the molecular mechanisms. We observed that hypoxia treatment promoted PAEC apoptosis through a caspase-12/endoplasmic reticulum stress (ERS)-dependent pathway. Knockdown of TRPC4 attenuated hypoxia-induced apoptosis and caspase-3/caspase-12 activity in PAECs. Accordingly, adeno-associated virus (AAV) serotype 6-mediated pulmonary endothelial TRPC4 silencing (AAV6-Tie-shRNA-TRPC4) or TRPC4 antagonist suppressed PH progression as evidenced by reduced right ventricular systolic pressure (RVSP), pulmonary vascular remodeling, PAEC apoptosis and reactive oxygen species (ROS) production. Mechanistically, unbiased RNA sequencing (RNA-seq) suggested that TRPC4 deficiency suppressed the expression of the proapoptotic protein sushi domain containing 2 (Susd2) in hypoxia-exposed mouse PAECs. Moreover, TRPC4 activated hypoxia-induced PAEC apoptosis by promoting Susd2 expression. Therefore, inhibiting TRPC4 ameliorated PAEC apoptosis and hypoxic PH in animals by repressing Susd2 signaling, which may serve as a therapeutic target for the management of PH.
Collapse
Affiliation(s)
- Liu Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zeyu Peng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Fanpeng Gong
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - WenXin Yan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yi Shi
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hanyi Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chang Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hong Yao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Menglu Yuan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Fan Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Naifu Wan
- Department of Vascular & Cardiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guizhu Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
6
|
Cohen CF, Roh J, Lee SH, Park CK, Berta T. Targeting Nociceptive Neurons and Transient Receptor Potential Channels for the Treatment of Migraine. Int J Mol Sci 2023; 24:ijms24097897. [PMID: 37175602 PMCID: PMC10177956 DOI: 10.3390/ijms24097897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Migraine is a neurovascular disorder that affects approximately 12% of the global population. While its exact causes are still being studied, researchers believe that nociceptive neurons in the trigeminal ganglia play a key role in the pain signals of migraine. These nociceptive neurons innervate the intracranial meninges and convey pain signals from the meninges to the thalamus. Targeting nociceptive neurons is considered promising due to their accessibility and distinct molecular profile, which includes the expression of several transient receptor potential (TRP) channels. These channels have been linked to various pain conditions, including migraine. This review discusses the role and mechanisms of nociceptive neurons in migraine, the challenges of current anti-migraine drugs, and the evidence for well-studied and emerging TRP channels, particularly TRPC4, as novel targets for migraine prevention and treatment.
Collapse
Affiliation(s)
- Cinder Faith Cohen
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jueun Roh
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
- Department of Physiology, Gachon Pain Center, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Chul-Kyu Park
- Department of Physiology, Gachon Pain Center, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
| |
Collapse
|
7
|
Inhibition of Canonical Transient Receptor Potential Channels 4/5 with Highly Selective and Potent Small-Molecule HC-070 Alleviates Mechanical Hypersensitivity in Rat Models of Visceral and Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24043350. [PMID: 36834762 PMCID: PMC9964505 DOI: 10.3390/ijms24043350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Transient receptor potential channels C4/C5 are widely expressed in the pain pathway. Here, we studied the putative analgesic efficacy of the highly selective and potent TRPC4/C5 antagonist HC-070 in rats. Inhibitory potency on human TRPC4 was assessed by using the whole-cell manual patch-clamp technique. Visceral pain sensitivity was assessed by the colonic distension test after intra-colonic trinitrobenzene sulfonic acid injection and partial restraint stress. Mechanical pain sensitivity was assessed by the paw pressure test in the chronic constriction injury (CCI) neuropathic pain model. We confirm that HC-070 is a low nanomolar antagonist. Following single oral doses (3-30 mg/kg in male or female rats), colonic hypersensitivity was significantly and dose-dependently attenuated, even fully reversed to baseline. HC-070 also had a significant anti-hypersensitivity effect in the established phase of the CCI model. HC-070 did not have an effect on the mechanical withdrawal threshold of the non-injured paw, whereas the reference compound morphine significantly increased it. Analgesic effects are observed at unbound brain concentrations near the 50% inhibitory concentration (IC50) recorded in vitro. This suggests that analgesic effects reported here are brought about by TRPC4/C5 blocking in vivo. The results strengthen the idea that TRPC4/C5 antagonism is a novel, safe non-opioid treatment for chronic pain.
Collapse
|
8
|
Rezzani R, Franco C, Franceschetti L, Gianò M, Favero G. A Focus on Enterochromaffin Cells among the Enteroendocrine Cells: Localization, Morphology, and Role. Int J Mol Sci 2022; 23:ijms23073758. [PMID: 35409109 PMCID: PMC8998884 DOI: 10.3390/ijms23073758] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
The intestinal epithelium plays a key role in managing the relationship with the environment, the internal and external inputs, and their changes. One percent of the gut epithelium is represented by the enteroendocrine cells. Among the enteroendocrine cells, a group of specific cells characterized by the presence of yellow granules, the enterochromaffin cells, has been identified. These granules contain many secretion products. Studies showed that these cells are involved in gastrointestinal inflammatory conditions and hyperalgesia; their number increases in these conditions both in affected and not-affected zones of the gut. Moreover, they are involved in the preservation and modulation of the intestinal function and motility, and they sense metabolic-nutritional alterations. Sometimes, they are confused or mixed with other enteroendocrine cells, and it is difficult to define their activity. However, it is known that they change their functions during diseases; they increased in number, but their involvement is related mainly to some secretion products (serotonin, melatonin, substance P). The mechanisms linked to these alterations are not well investigated. Herein, we provide an up-to-date highlight of the main findings about these cells, from their discovery to today. We emphasized their origin, morphology, and their link with diet to better evaluate their role for preventing or treating metabolic disorders considering that these diseases are currently a public health burden.
Collapse
Affiliation(s)
- Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.F.); (L.F.); (M.G.); (G.F.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs—(ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (SISDO), 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-0303-717-483
| | - Caterina Franco
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.F.); (L.F.); (M.G.); (G.F.)
| | - Lorenzo Franceschetti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.F.); (L.F.); (M.G.); (G.F.)
| | - Marzia Gianò
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.F.); (L.F.); (M.G.); (G.F.)
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.F.); (L.F.); (M.G.); (G.F.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs—(ARTO)”, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
9
|
Cohen CF, Prudente AS, Berta T, Lee SH. Transient Receptor Potential Channel 4 Small-Molecule Inhibition Alleviates Migraine-Like Behavior in Mice. Front Mol Neurosci 2021; 14:765181. [PMID: 34790097 PMCID: PMC8591066 DOI: 10.3389/fnmol.2021.765181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Migraine is a common neurological disorder with few available treatment options. Recently, we have demonstrated the role of transient receptor potential cation channel subfamily C member 4 (TRPC4) in itch and the modulation of the calcitonin gene-related peptide (CGRP), a biomarker and emerging therapeutic target for migraine. In this study, we characterized the role of TRPC4 in pain and evaluated its inhibition as anti-migraine pain therapy in preclinical mouse models. First, we found that TRPC4 is highly expressed in trigeminal ganglia and its activation not only mediates itch but also pain. Second, we demonstrated that the small-molecule inhibitor ML204, a specific TRPC4 antagonist, significantly reduced episodic and chronic migraine-like behaviors in male and female mice after injection of nitroglycerin (NTG), a well-known migraine inducer in rodents and humans. Third, we found a significant decrease in CGRP protein levels in the plasma of both male and female mice treated with ML-204, which largely prevented the development of chronic migraine-like behavior. Using sensory neuron cultures, we confirmed that activation of TRPC4 elicited release of CGRP, which was significantly diminished by ML-204. Collectively, our findings identify TRPC4 in peripheral sensory neurons as a mediator of CGRP release and NTG-evoked migraine. Since a TRPC4 antagonist is already in clinical trials, we expect that this study will rapidly lead to novel and effective clinical treatments for migraineurs.
Collapse
Affiliation(s)
- Cinder Faith Cohen
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States.,Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Arthur Silveira Prudente
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States.,Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| |
Collapse
|
10
|
Advances in TRP channel drug discovery: from target validation to clinical studies. Nat Rev Drug Discov 2021; 21:41-59. [PMID: 34526696 PMCID: PMC8442523 DOI: 10.1038/s41573-021-00268-4] [Citation(s) in RCA: 294] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 12/20/2022]
Abstract
Transient receptor potential (TRP) channels are multifunctional signalling molecules with many roles in sensory perception and cellular physiology. Therefore, it is not surprising that TRP channels have been implicated in numerous diseases, including hereditary disorders caused by defects in genes encoding TRP channels (TRP channelopathies). Most TRP channels are located at the cell surface, which makes them generally accessible drug targets. Early drug discovery efforts to target TRP channels focused on pain, but as our knowledge of TRP channels and their role in health and disease has grown, these efforts have expanded into new clinical indications, ranging from respiratory disorders through neurological and psychiatric diseases to diabetes and cancer. In this Review, we discuss recent findings in TRP channel structural biology that can affect both drug development and clinical indications. We also discuss the clinical promise of novel TRP channel modulators, aimed at both established and emerging targets. Last, we address the challenges that these compounds may face in clinical practice, including the need for carefully targeted approaches to minimize potential side-effects due to the multifunctional roles of TRP channels.
Collapse
|
11
|
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020; 27:84. [PMID: 32741357 PMCID: PMC7395987 DOI: 10.1186/s12929-020-00673-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium.
- , Waterloo, Belgium.
| |
Collapse
|
12
|
Chu WG, Wang FD, Sun ZC, Ma SB, Wang X, Han WJ, Wang F, Bai ZT, Wu SX, Freichel M, Xie RG, Luo C. TRPC1/4/5 channels contribute to morphine-induced analgesic tolerance and hyperalgesia by enhancing spinal synaptic potentiation and structural plasticity. FASEB J 2020; 34:8526-8543. [PMID: 32359120 DOI: 10.1096/fj.202000154rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/10/2024]
Abstract
Opioid analgesics remain the mainstay for managing intractable chronic pain, but their use is limited by detrimental side effects such as analgesic tolerance and hyperalgesia. Calcium-dependent synaptic plasticity is a key determinant in opiates tolerance and hyperalgesia. However, the exact substrates for this calcium-dependent synaptic plasticity in mediating these maladaptive processes are largely unknown. Canonical transient receptor potential 1, 4, and 5 (TRPC1, 4, 5) proteins assemble into heteromultimeric nonselective cation channels with high Ca2+ permeability and influence various neuronal functions. However, whether and how TRPC1/4/5 channels contribute to the development of opiates tolerance and hyperalgesia remains elusive. Here, we show that TRPC1/4/5 channels contribute to the generation of morphine tolerance and hyperalgesia. Chronic morphine exposure leads to upregulation of TRPC1/4/5 channels in the spinal cord. Spinally expressed TRPC1, TPRC4, and TRPC5 are required for chronic morphine-induced synaptic long-term potentiation (LTP) as well as remodeling of synaptic spines in the dorsal horn, thereby orchestrating functional and structural plasticity during the course of morphine-induced hyperalgesia and tolerance. These effects are attributed to TRPC1/4/5-mediated Ca2+ elevation in the spinal dorsal horn induced by chronic morphine treatment. This study identifies TRPC1/4/5 channels as a promising novel target to prevent the unwanted morphine tolerance and hyperalgesia.
Collapse
Affiliation(s)
- Wen-Guang Chu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Fu-Dong Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- The Fourth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhi-Chuan Sun
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Sui-Bin Ma
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xu Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Research Center for Resource Polypeptide Drugs & College of Life Sciences, Yanan University, Yanan, China
| | - Wen-Juan Han
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Fei Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhan-Tao Bai
- Research Center for Resource Polypeptide Drugs & College of Life Sciences, Yanan University, Yanan, China
| | - Sheng-Xi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Canonical Transient Receptor Potential (TRPC) Channels in Nociception and Pathological Pain. Neural Plast 2020; 2020:3764193. [PMID: 32273889 PMCID: PMC7115173 DOI: 10.1155/2020/3764193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/26/2020] [Accepted: 03/07/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic pathological pain is one of the most intractable clinical problems faced by clinicians and can be devastating for patients. Despite much progress we have made in understanding chronic pain in the last decades, its underlying mechanisms remain elusive. It is assumed that abnormal increase of calcium levels in the cells is a key determinant in the transition from acute to chronic pain. Exploring molecular players mediating Ca2+ entry into cells and molecular mechanisms underlying activity-dependent changes in Ca2+ signaling in the somatosensory pain pathway is therefore helpful towards understanding the development of chronic, pathological pain. Canonical transient receptor potential (TRPC) channels form a subfamily of nonselective cation channels, which permit the permeability of Ca2+ and Na+ into the cells. Initiation of Ca2+ entry pathways by these channels triggers the development of many physiological and pathological functions. In this review, we will focus on the functional implication of TRPC channels in nociception with the elucidation of their role in the detection of external stimuli and nociceptive hypersensitivity.
Collapse
|
14
|
Wang H, Cheng X, Tian J, Xiao Y, Tian T, Xu F, Hong X, Zhu MX. TRPC channels: Structure, function, regulation and recent advances in small molecular probes. Pharmacol Ther 2020; 209:107497. [PMID: 32004513 DOI: 10.1016/j.pharmthera.2020.107497] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/14/2020] [Indexed: 02/08/2023]
Abstract
Transient receptor potential canonical (TRPC) channels constitute a group of receptor-operated calcium-permeable nonselective cation channels of the TRP superfamily. The seven mammalian TRPC members, which can be further divided into four subgroups (TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7) based on their amino acid sequences and functional similarities, contribute to a broad spectrum of cellular functions and physiological roles. Studies have revealed complexity of their regulation involving several components of the phospholipase C pathway, Gi and Go proteins, and internal Ca2+ stores. Recent advances in cryogenic electron microscopy have provided several high-resolution structures of TRPC channels. Growing evidence demonstrates the involvement of TRPC channels in diseases, particularly the link between genetic mutations of TRPC6 and familial focal segmental glomerulosclerosis. Because TRPCs were discovered by the molecular identity first, their pharmacology had lagged behind. This is rapidly changing in recent years owning to great efforts from both academia and industry. A number of potent tool compounds from both synthetic and natural products that selective target different subtypes of TRPC channels have been discovered, including some preclinical drug candidates. This review will cover recent advancements in the understanding of TRPC channel regulation, structure, and discovery of novel TRPC small molecular probes over the past few years, with the goal of facilitating drug discovery for the study of TRPCs and therapeutic development.
Collapse
Affiliation(s)
- Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Xiaoding Cheng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yuling Xiao
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Tian Tian
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China
| | - Fuchun Xu
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China.
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Sharma S, Hopkins CR. Review of Transient Receptor Potential Canonical (TRPC5) Channel Modulators and Diseases. J Med Chem 2019; 62:7589-7602. [PMID: 30943030 DOI: 10.1021/acs.jmedchem.8b01954] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transient receptor potential canonical (TRPC) channels are highly homologous, nonselective cation channels that form many homo- and heterotetrameric channels. These channels are highly abundant in the brain and kidney and have been implicated in numerous diseases, such as depression, addiction, and chronic kidney disease, among others. Historically, there have been very few selective modulators of the TRPC family in order to fully understand their role in disease despite their physiological significance. However, that has changed recently and there has been a significant increase in interest in this family of channels which has led to the emergence of selective tool compounds, and even preclinical drug candidates, over the past few years. This review will cover these new advancements in the discovery of TRPC modulators and the emergence of newly reported structural information which will undoubtedly lead to even greater advancements.
Collapse
Affiliation(s)
- Swagat Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Nebraska Medical Center , Omaha , Nebraska 68198-6125 , United States
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Nebraska Medical Center , Omaha , Nebraska 68198-6125 , United States
| |
Collapse
|
16
|
Rubaiy HN. Treasure troves of pharmacological tools to study transient receptor potential canonical 1/4/5 channels. Br J Pharmacol 2019; 176:832-846. [PMID: 30656647 PMCID: PMC6433652 DOI: 10.1111/bph.14578] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/25/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022] Open
Abstract
Canonical or classical transient receptor potential 4 and 5 proteins (TRPC4 and TRPC5) assemble as homomers or heteromerize with TRPC1 protein to form functional nonselective cationic channels with high calcium permeability. These channel complexes, TRPC1/4/5, are widely expressed in nervous and cardiovascular systems, also in other human tissues and cell types. It is debatable that TRPC1 protein is able to form a functional ion channel on its own. A recent explosion of molecular information about TRPC1/4/5 has emerged including knowledge of their distribution, function, and regulation suggesting these three members of the TRPC subfamily of TRP channels play crucial roles in human physiology and pathology. Therefore, these ion channels represent potential drug targets for cancer, epilepsy, anxiety, pain, and cardiac remodelling. In recent years, a number of highly selective small-molecule modulators of TRPC1/4/5 channels have been identified as being potent with improved pharmacological properties. This review will focus on recent remarkable small-molecule agonists: (-)-englerin A and tonantzitlolone and antagonists: Pico145 and HC7090, of TPRC1/4/5 channels. In addition, this work highlights other recently identified modulators of these channels such as the benzothiadiazine derivative, riluzole, ML204, clemizole, and AC1903. Together, these treasure troves of agonists and antagonists of TRPC1/4/5 channels provide valuable hints to comprehend the functional importance of these ion channels in native cells and in vivo animal models. Importantly, human diseases and disorders mediated by these proteins can be studied using these compounds to perhaps initiate drug discovery efforts to develop novel therapeutic agents.
Collapse
Affiliation(s)
- Hussein N. Rubaiy
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical SchoolUniversity of HullHullUK
| |
Collapse
|
17
|
Rubaiy HN, Ludlow MJ, Siems K, Norman K, Foster R, Wolf D, Beutler JA, Beech DJ. Tonantzitlolone is a nanomolar potency activator of transient receptor potential canonical 1/4/5 channels. Br J Pharmacol 2018; 175:3361-3368. [PMID: 29859013 DOI: 10.1111/bph.14379] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/24/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE The diterpene ester tonantzitlolone (TZL) is a natural product, which displays cytotoxicity towards certain types of cancer cell such as renal cell carcinoma cells. The effect is similar to that of (-)-englerin A, and so, although it is chemically distinct, we investigated whether TZL also targets transient receptor potential canonical (TRPC) channels of the 1, 4 and 5 type (TRPC1/4/5 channels). EXPERIMENTAL APPROACH The effects of TZL on renal cell carcinoma A498 cells natively expressing TRPC1 and TRPC4, modified HEK293 cells overexpressing TRPC4, TRPC5, TRPC4-TRPC1 or TRPC5-TRPC1 concatemer, TRPC3 or TRPM2, or CHO cells overexpressing TRPV4 were studied by determining changes in intracellular Ca2+ , or whole-cell or excised membrane patch-clamp electrophysiology. KEY RESULTS TZL induced an elevation of intracellular Ca2+ in A498 cells, similar to that evoked by englerin A. TZL activated overexpressed channels with EC50 values of 123 nM (TRPC4), 83 nM (TRPC5), 140 nM (TRPC4-TRPC1) and 61 nM (TRPC5-TRPC1). These effects of TZL were reversible on wash-out and potently inhibited by the TRPC1/4/5 inhibitor Pico145. TZL activated TRPC5 channels when bath-applied to excised outside-out but not inside-out patches. TZL failed to activate endogenous store-operated Ca2+ entry or overexpressed TRPC3, TRPV4 or TRPM2 channels in HEK 293 cells. CONCLUSIONS AND IMPLICATIONS TZL is a novel potent agonist for TRPC1/4/5 channels, which should be useful for testing the functionality of this type of ion channel and understanding how TRPC1/4/5 agonists achieve selective cytotoxicity against certain types of cancer cell.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John A Beutler
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | | |
Collapse
|
18
|
Minard A, Bauer CC, Wright DJ, Rubaiy HN, Muraki K, Beech DJ, Bon RS. Remarkable Progress with Small-Molecule Modulation of TRPC1/4/5 Channels: Implications for Understanding the Channels in Health and Disease. Cells 2018; 7:E52. [PMID: 29865154 PMCID: PMC6025525 DOI: 10.3390/cells7060052] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
Proteins of the TRPC family can form many homo- and heterotetrameric cation channels permeable to Na⁺, K⁺ and Ca2+. In this review, we focus on channels formed by the isoforms TRPC1, TRPC4 and TRPC5. We review evidence for the formation of different TRPC1/4/5 tetramers, give an overview of recently developed small-molecule TRPC1/4/5 activators and inhibitors, highlight examples of biological roles of TRPC1/4/5 channels in different tissues and pathologies, and discuss how high-quality chemical probes of TRPC1/4/5 modulators can be used to understand the involvement of TRPC1/4/5 channels in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Aisling Minard
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK.
| | - Claudia C Bauer
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK.
| | - David J Wright
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK.
| | - Hussein N Rubaiy
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull HU6 7RX, UK.
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan.
| | - David J Beech
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK.
| | - Robin S Bon
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
19
|
Na + entry through heteromeric TRPC4/C1 channels mediates (-)Englerin A-induced cytotoxicity in synovial sarcoma cells. Sci Rep 2017; 7:16988. [PMID: 29209034 PMCID: PMC5717101 DOI: 10.1038/s41598-017-17303-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022] Open
Abstract
The sesquiterpene (-)Englerin A (EA) is an organic compound from the plant Phyllanthus engleri which acts via heteromeric TRPC4/C1 channels to cause cytotoxicity in some types of cancer cell but not normal cells. Here we identified selective cytotoxicity of EA in human synovial sarcoma cells (SW982 cells) and investigated the mechanism. EA induced cation channel current (Icat) in SW982 cells with biophysical characteristics of heteromeric TRPC4/C1 channels. Inhibitors of homomeric TRPC4 channels were weak inhibitors of the Icat and EA-induced cytotoxicity whereas a potent inhibitor of TRPC4/C1 channels (Pico145) strongly inhibited Icat and cytotoxicity. Depletion of TRPC1 converted Icat into a current with biophysical and pharmacological properties of homomeric TRPC4 channels and depletion of TRPC1 or TRPC4 suppressed the cytotoxicity of EA. A Na+/K+-ATPase inhibitor (ouabain) potentiated EA-induced cytotoxicity and direct Na+ loading by gramicidin-A caused Pico145-resistant cytotoxicity in the absence of EA. We conclude that EA has a potent cytotoxic effect on human synovial sarcoma cells which is mediated by heteromeric TRPC4/C1 channels and Na+ loading.
Collapse
|
20
|
Abstract
Preclinical research remains an important tool for discovery and validation of novel therapeutics for gastrointestinal disorders. While in vitro assays can be used to verify receptor-ligand interactions and test for structural activity of new compounds, only whole-animal studies can demonstrate drug efficacy within the gastrointestinal system. Most major gastrointestinal disorders have been modeled in animals; however the translational relevance of each model is not equal. The purpose of this chapter is to provide a critical evaluation of common animal models that are being used to develop pharmaceuticals for gastrointestinal disorders. For brevity, the models are presented for upper gastrointestinal disorders involving the esophagus, stomach, and small intestine and lower gastrointestinal disorders that focus on the colon. Particular emphasis is used to explain the face and construct validity of each model, and the limitations of each model, including data interpretation, are highlighted. This chapter does not evaluate models that rely on surgical or other non-pharmacological interventions for treatment.
Collapse
|
21
|
Lindström JB, Pierce NT, Latz MI. Role of TRP Channels in Dinoflagellate Mechanotransduction. THE BIOLOGICAL BULLETIN 2017; 233:151-167. [PMID: 29373067 DOI: 10.1086/695421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Transient receptor potential (TRP) ion channels are common components of mechanosensing pathways, mainly described in mammals and other multicellular organisms. To gain insight into the evolutionary origins of eukaryotic mechanosensory proteins, we investigated the involvement of TRP channels in mechanosensing in a unicellular eukaryotic protist, the dinoflagellate Lingulodinium polyedra. BLASTP analysis of the protein sequences predicted from the L. polyedra transcriptome revealed six sequences with high similarity to human TRPM2, TRPM8, TRPML2, TRPP1, and TRPP2; and characteristic TRP domains were identified in all sequences. In a phylogenetic tree including all mammalian TRP subfamilies and TRP channel sequences from unicellular and multicellular organisms, the L. polyedra sequences grouped with the TRPM, TPPML, and TRPP clades. In pharmacological experiments, we used the intrinsic bioluminescence of L. polyedra as a reporter of mechanoresponsivity. Capsaicin and RN1734, agonists of mammalian TRPV, and arachidonic acid, an agonist of mammalian TRPV, TRPA, TRPM, and Drosophila TRP, all stimulated bioluminescence in L. polyedra. Mechanical stimulation of bioluminescence, but not capsaicin-stimulated bioluminescence, was inhibited by gadolinium (Gd3+), a general inhibitor of mechanosensitive ion channels, and the phospholipase C (PLC) inhibitor U73122. These pharmacological results are consistent with the involvement of TRP-like channels in mechanosensing by L. polyedra. The TRP channels do not appear to be mechanoreceptors but rather are components of the mechanotransduction signaling pathway and may be activated via a PLC-dependent mechanism. The presence and function of TRP channels in a dinoflagellate emphasize the evolutionary conservation of both the channel structures and their functions.
Collapse
Key Words
- AA, amino acids
- AMTB hydrochloride, N-(3-Aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)benzamide hydrochloride
- Ce, Caenorhabditis elegans
- Cr, Chlamydomonas reinhardtii
- DMSO, dimethyl sulfoxide
- Dm, Drosophila melanogaster
- Dr, Danio rerio
- FSW, filtered seawater
- Gd3+, gadolinium
- GsMTx4, Grammostola spatulata mechanotoxin 4
- HC067047, 2-Methyl-1-[3-(4-morpholinyl)propyl]-5-phenyl-N-[3-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide
- HMM, Hidden Markov Model
- Hs, Homo sapiens
- Lp, Lingulodinium polyedra
- ML204, 4-Methyl-2-(1-piperidinyl)-quinoline
- Mb, Monosiga brevicollis
- ORF, open reading frame
- PIP2, Phosphatidylinositol 4,5-bisphosphate
- PLC, phospholipase C
- Pt, Paramecium tetraurelia
- RHC80267, O,O′-[1,6-Hexanediylbis(iminocarbonyl)]dioxime cyclohexanone
- RN1734, 2,4-Dichloro-N-isopropyl-N-(2-isopropylaminoethyl)benzenesulfonamide
- RN1747, 1-(4-Chloro-2-nitrophenyl)sulfonyl-4-benzylpiperazine
- TMHMM, transmembrane helix prediction
- TRP, transient receptor potential channel
- U73122, 1-[6-[((17β)-3-Methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione
Collapse
|
22
|
Bellono NW, Bayrer JR, Leitch DB, Castro J, Zhang C, O'Donnell TA, Brierley SM, Ingraham HA, Julius D. Enterochromaffin Cells Are Gut Chemosensors that Couple to Sensory Neural Pathways. Cell 2017; 170. [PMID: 28648659 PMCID: PMC5839326 DOI: 10.1016/j.cell.2017.05.034] [Citation(s) in RCA: 581] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dietary, microbial, and inflammatory factors modulate the gut-brain axis and influence physiological processes ranging from metabolism to cognition. The gut epithelium is a principal site for detecting such agents, but precisely how it communicates with neural elements is poorly understood. Serotonergic enterochromaffin (EC) cells are proposed to fulfill this role by acting as chemosensors, but understanding how these rare and unique cell types transduce chemosensory information to the nervous system has been hampered by their paucity and inaccessibility to single-cell measurements. Here, we circumvent this limitation by exploiting cultured intestinal organoids together with single-cell measurements to elucidate intrinsic biophysical, pharmacological, and genetic properties of EC cells. We show that EC cells express specific chemosensory receptors, are electrically excitable, and modulate serotonin-sensitive primary afferent nerve fibers via synaptic connections, enabling them to detect and transduce environmental, metabolic, and homeostatic information from the gut directly to the nervous system.
Collapse
Affiliation(s)
- Nicholas W Bellono
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - James R Bayrer
- Department of Pediatrics, Division of Gastroenterology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Duncan B Leitch
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joel Castro
- Visceral Pain Group, Flinders University, Bedford Park, SA 5042, Australia; Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA 5000, Australia
| | - Chuchu Zhang
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tracey A O'Donnell
- Visceral Pain Group, Flinders University, Bedford Park, SA 5042, Australia; Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA 5000, Australia
| | - Stuart M Brierley
- Visceral Pain Group, Flinders University, Bedford Park, SA 5042, Australia; Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA 5000, Australia
| | - Holly A Ingraham
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - David Julius
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
23
|
Bellono NW, Bayrer JR, Leitch DB, Castro J, Zhang C, O'Donnell TA, Brierley SM, Ingraham HA, Julius D. Enterochromaffin Cells Are Gut Chemosensors that Couple to Sensory Neural Pathways. Cell 2017; 170:185-198.e16. [PMID: 28648659 PMCID: PMC5839326 DOI: 10.1016/j.cell.2017.05.034,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/05/2017] [Accepted: 05/22/2017] [Indexed: 12/29/2024]
Abstract
Dietary, microbial, and inflammatory factors modulate the gut-brain axis and influence physiological processes ranging from metabolism to cognition. The gut epithelium is a principal site for detecting such agents, but precisely how it communicates with neural elements is poorly understood. Serotonergic enterochromaffin (EC) cells are proposed to fulfill this role by acting as chemosensors, but understanding how these rare and unique cell types transduce chemosensory information to the nervous system has been hampered by their paucity and inaccessibility to single-cell measurements. Here, we circumvent this limitation by exploiting cultured intestinal organoids together with single-cell measurements to elucidate intrinsic biophysical, pharmacological, and genetic properties of EC cells. We show that EC cells express specific chemosensory receptors, are electrically excitable, and modulate serotonin-sensitive primary afferent nerve fibers via synaptic connections, enabling them to detect and transduce environmental, metabolic, and homeostatic information from the gut directly to the nervous system.
Collapse
Affiliation(s)
- Nicholas W Bellono
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - James R Bayrer
- Department of Pediatrics, Division of Gastroenterology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Duncan B Leitch
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joel Castro
- Visceral Pain Group, Flinders University, Bedford Park, SA 5042, Australia; Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA 5000, Australia
| | - Chuchu Zhang
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tracey A O'Donnell
- Visceral Pain Group, Flinders University, Bedford Park, SA 5042, Australia; Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA 5000, Australia
| | - Stuart M Brierley
- Visceral Pain Group, Flinders University, Bedford Park, SA 5042, Australia; Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA 5000, Australia
| | - Holly A Ingraham
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - David Julius
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
24
|
Jardín I, López JJ, Diez R, Sánchez-Collado J, Cantonero C, Albarrán L, Woodard GE, Redondo PC, Salido GM, Smani T, Rosado JA. TRPs in Pain Sensation. Front Physiol 2017. [PMID: 28649203 PMCID: PMC5465271 DOI: 10.3389/fphys.2017.00392] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
According to the International Association for the Study of Pain (IASP) pain is characterized as an "unpleasant sensory and emotional experience associated with actual or potential tissue damage". The TRP super-family, compressing up to 28 isoforms in mammals, mediates a myriad of physiological and pathophysiological processes, pain among them. TRP channel might be constituted by similar or different TRP subunits, which will result in the formation of homomeric or heteromeric channels with distinct properties and functions. In this review we will discuss about the function of TRPs in pain, focusing on TRP channles that participate in the transduction of noxious sensation, especially TRPV1 and TRPA1, their expression in nociceptors and their sensitivity to a large number of physical and chemical stimuli.
Collapse
Affiliation(s)
- Isaac Jardín
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - José J López
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Raquel Diez
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - José Sánchez-Collado
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Carlos Cantonero
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Letizia Albarrán
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Pedro C Redondo
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Ginés M Salido
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Sevilla, University of SevilleSevilla, Spain
| | - Juan A Rosado
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| |
Collapse
|
25
|
Rubaiy HN, Ludlow MJ, Henrot M, Gaunt HJ, Miteva K, Cheung SY, Tanahashi Y, Hamzah N, Musialowski KE, Blythe NM, Appleby HL, Bailey MA, McKeown L, Taylor R, Foster R, Waldmann H, Nussbaumer P, Christmann M, Bon RS, Muraki K, Beech DJ. Picomolar, selective, and subtype-specific small-molecule inhibition of TRPC1/4/5 channels. J Biol Chem 2017; 292:8158-8173. [PMID: 28325835 PMCID: PMC5437225 DOI: 10.1074/jbc.m116.773556] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/19/2017] [Indexed: 02/02/2023] Open
Abstract
The concentration of free cytosolic Ca2+ and the voltage across the plasma membrane are major determinants of cell function. Ca2+-permeable non-selective cationic channels are known to regulate these parameters, but understanding of these channels remains inadequate. Here we focus on transient receptor potential canonical 4 and 5 proteins (TRPC4 and TRPC5), which assemble as homomers or heteromerize with TRPC1 to form Ca2+-permeable non-selective cationic channels in many mammalian cell types. Multiple roles have been suggested, including in epilepsy, innate fear, pain, and cardiac remodeling, but limitations in tools to probe these channels have restricted progress. A key question is whether we can overcome these limitations and develop tools that are high-quality, reliable, easy to use, and readily accessible for all investigators. Here, through chemical synthesis and studies of native and overexpressed channels by Ca2+ and patch-clamp assays, we describe compound 31, a remarkable small-molecule inhibitor of TRPC1/4/5 channels. Its potency ranged from 9 to 1300 pm, depending on the TRPC1/4/5 subtype and activation mechanism. Other channel types investigated were unaffected, including TRPC3, TRPC6, TRPV1, TRPV4, TRPA1, TRPM2, TRPM8, and store-operated Ca2+ entry mediated by Orai1. These findings suggest identification of an important experimental tool compound, which has much higher potency for inhibiting TRPC1/4/5 channels than previously reported agents, impressive specificity, and graded subtype selectivity within the TRPC1/4/5 channel family. The compound should greatly facilitate future studies of these ion channels. We suggest naming this TRPC1/4/5-inhibitory compound Pico145.
Collapse
Affiliation(s)
| | | | - Matthias Henrot
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | | | | | | | - Yasuyuki Tanahashi
- Schools of Medicine; Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | | | | | | | | | | | | | - Roger Taylor
- Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Richard Foster
- Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Herbert Waldmann
- Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Peter Nussbaumer
- Lead Discovery Center GmbH, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
| | - Mathias Christmann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | | | - Katsuhiko Muraki
- School of Pharmacy, Aichi-Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan.
| | | |
Collapse
|
26
|
Gaunt HJ, Vasudev NS, Beech DJ. Transient receptor potential canonical 4 and 5 proteins as targets in cancer therapeutics. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:611-620. [PMID: 27289383 PMCID: PMC5045487 DOI: 10.1007/s00249-016-1142-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/05/2022]
Abstract
Novel approaches towards cancer therapy are urgently needed. One approach might be to target ion channels mediating Ca2+ entry because of the critical roles played by Ca2+ in many cell types, including cancer cells. There are several types of these ion channels, but here we address those formed by assembly of transient receptor potential canonical (TRPC) proteins, particularly those which involve two closely related members of the family: TRPC4 and TRPC5. We focus on these proteins because recent studies point to roles in important aspects of cancer: drug resistance, transmission of drug resistance through extracellular vesicles, tumour vascularisation, and evoked cancer cell death by the TRPC4/5 channel activator (−)-englerin A. We conclude that further research is both justified and necessary before these proteins can be considered as strong targets for anti-cancer cell drug discovery programmes. It is nevertheless already apparent that inhibitors of the channels would be unlikely to cause significant adverse effects, but, rather, have other effects which may be beneficial in the context of cancer and chemotherapy, potentially including suppression of innate fear, visceral pain and pathological cardiac remodelling.
Collapse
Affiliation(s)
- Hannah J Gaunt
- School of Medicine, University of Leeds, LIGHT Building, Clarendon Way, Leeds, LS2 9JT, UK.
| | - Naveen S Vasudev
- School of Medicine, University of Leeds, LIGHT Building, Clarendon Way, Leeds, LS2 9JT, UK
| | - David J Beech
- School of Medicine, University of Leeds, LIGHT Building, Clarendon Way, Leeds, LS2 9JT, UK.
| |
Collapse
|
27
|
Wei H, Sagalajev B, Yüzer MA, Koivisto A, Pertovaara A. Regulation of neuropathic pain behavior by amygdaloid TRPC4/C5 channels. Neurosci Lett 2015; 608:12-7. [DOI: 10.1016/j.neulet.2015.09.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/13/2022]
|
28
|
Greenwood-Van Meerveld B, Prusator DK, Johnson AC. Animal models of gastrointestinal and liver diseases. Animal models of visceral pain: pathophysiology, translational relevance, and challenges. Am J Physiol Gastrointest Liver Physiol 2015; 308:G885-903. [PMID: 25767262 DOI: 10.1152/ajpgi.00463.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/11/2015] [Indexed: 02/08/2023]
Abstract
Visceral pain describes pain emanating from the thoracic, pelvic, or abdominal organs. In contrast to somatic pain, visceral pain is generally vague, poorly localized, and characterized by hypersensitivity to a stimulus such as organ distension. Animal models have played a pivotal role in our understanding of the mechanisms underlying the pathophysiology of visceral pain. This review focuses on animal models of visceral pain and their translational relevance. In addition, the challenges of using animal models to develop novel therapeutic approaches to treat visceral pain will be discussed.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Veterans Affairs Medical Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Dawn K Prusator
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anthony C Johnson
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
29
|
Zhu Y, Lu Y, Qu C, Miller M, Tian J, Thakur DP, Zhu J, Deng Z, Hu X, Wu M, McManus OB, Li M, Hong X, Zhu MX, Luo HR. Identification and optimization of 2-aminobenzimidazole derivatives as novel inhibitors of TRPC4 and TRPC5 channels. Br J Pharmacol 2015; 172:3495-509. [PMID: 25816897 DOI: 10.1111/bph.13140] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/16/2015] [Accepted: 03/18/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential canonical (TRPC) channels play important roles in a broad array of physiological functions and are involved in various diseases. However, due to a lack of potent subtype-specific inhibitors the exact roles of TRPC channels in physiological and pathophysiological conditions have not been elucidated. EXPERIMENTAL APPROACH Using fluorescence membrane potential and Ca(2+) assays and electrophysiological recordings, we characterized new 2-aminobenzimidazole-based small molecule inhibitors of TRPC4 and TRPC5 channels identified from cell-based fluorescence high-throughput screening. KEY RESULTS The original compound, M084, was a potent inhibitor of both TRPC4 and TRPC5, but was also a weak inhibitor of TRPC3. Structural modifications of the lead compound resulted in the identification of analogues with improved potency and selectivity for TRPC4 and TRPC5 channels. The aminobenzimidazole derivatives rapidly inhibited the TRPC4- and TRPC5-mediated currents when applied from the extracellular side and this inhibition was independent of the mode of activation of these channels. The compounds effectively blocked the plateau potential mediated by TRPC4-containing channels in mouse lateral septal neurons, but did not affect the activity of heterologously expressed TRPA1, TRPM8, TRPV1 or TRPV3 channels or that of the native voltage-gated Na(+) , K(+) and Ca(2) (+) channels in dissociated neurons. CONCLUSIONS AND IMPLICATIONS The TRPC4/C5-selective inhibitors developed here represent novel and useful pharmaceutical tools for investigation of physiological and pathophysiological functions of TRPC4/C5 channels.
Collapse
Affiliation(s)
- Yingmin Zhu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yungang Lu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA.,The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunrong Qu
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei, China
| | - Melissa Miller
- Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dhananjay P Thakur
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jinmei Zhu
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei, China
| | - Zixin Deng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei, China
| | - Xianming Hu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meng Wu
- Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Owen B McManus
- Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Min Li
- Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
30
|
Kannampalli P, Sengupta JN. Role of principal ionotropic and metabotropic receptors in visceral pain. J Neurogastroenterol Motil 2015; 21:147-58. [PMID: 25843070 PMCID: PMC4398235 DOI: 10.5056/jnm15026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 02/24/2015] [Accepted: 03/26/2015] [Indexed: 12/13/2022] Open
Abstract
Visceral pain is the most common form of pain caused by varied diseases and a major reason for patients to seek medical consultation. It also leads to a significant economic burden due to workdays lost and reduced productivity. Further, long-term use of non-specific medications is also associated with side effects affecting the quality of life. Despite years of extensive research and the availability of several therapeutic options, management of patients with chronic visceral pain is often inadequate, resulting in frustration for both patients and physicians. This is, most likely, because the mechanisms associated with chronic visceral pain are different from those of acute pain. Accumulating evidence from years of research implicates several receptors and ion channels in the induction and maintenance of central and peripheral sensitization during chronic pain states. Understanding the specific role of these receptors will facilitate to capitalize on their unique properties to augment the therapeutic efficacy while at the same time minimizing unwanted side effects. The aim of this review is to provide a concise review of the recent literature that reports on the role of principal ionotropic receptors and metabotropic receptors in the modulation visceral pain. We also include an overview of the possibility of these receptors as potential new targets for the treatment of chronic visceral pain conditions.
Collapse
Affiliation(s)
- Pradeep Kannampalli
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jyoti N Sengupta
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
31
|
Isensee J, Wenzel C, Buschow R, Weissmann R, Kuss AW, Hucho T. Subgroup-elimination transcriptomics identifies signaling proteins that define subclasses of TRPV1-positive neurons and a novel paracrine circuit. PLoS One 2014; 9:e115731. [PMID: 25551770 PMCID: PMC4281118 DOI: 10.1371/journal.pone.0115731] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/29/2014] [Indexed: 12/24/2022] Open
Abstract
Normal and painful stimuli are detected by specialized subgroups of peripheral sensory neurons. The understanding of the functional differences of each neuronal subgroup would be strongly enhanced by knowledge of the respective subgroup transcriptome. The separation of the subgroup of interest, however, has proven challenging as they can hardly be enriched. Instead of enriching, we now rapidly eliminated the subgroup of neurons expressing the heat-gated cation channel TRPV1 from dissociated rat sensory ganglia. Elimination was accomplished by brief treatment with TRPV1 agonists followed by the removal of compromised TRPV1(+) neurons using density centrifugation. By differential microarray and sequencing (RNA-Seq) based expression profiling we compared the transcriptome of all cells within sensory ganglia versus the same cells lacking TRPV1 expressing neurons, which revealed 240 differentially expressed genes (adj. p<0.05, fold-change>1.5). Corroborating the specificity of the approach, many of these genes have been reported to be involved in noxious heat or pain sensitization. Beyond the expected enrichment of ion channels, we found the TRPV1 transcriptome to be enriched for GPCRs and other signaling proteins involved in adenosine, calcium, and phosphatidylinositol signaling. Quantitative population analysis using a recent High Content Screening (HCS) microscopy approach identified substantial heterogeneity of expressed target proteins even within TRPV1-positive neurons. Signaling components defined distinct further subgroups within the population of TRPV1-positive neurons. Analysis of one such signaling system showed that the pain sensitizing prostaglandin PGD2 activates DP1 receptors expressed predominantly on TRPV1(+) neurons. In contrast, we found the PGD2 producing prostaglandin D synthase to be expressed exclusively in myelinated large-diameter neurons lacking TRPV1, which suggests a novel paracrine neuron-neuron communication. Thus, subgroup analysis based on the elimination rather than enrichment of the subgroup of interest revealed proteins that define subclasses of TRPV1-positive neurons and suggests a novel paracrine circuit.
Collapse
Affiliation(s)
- Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Cologne, Germany
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail:
| | - Carsten Wenzel
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Rene Buschow
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Robert Weissmann
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Andreas W. Kuss
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Cologne, Germany
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
32
|
Acupuncture for visceral pain: neural substrates and potential mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:609594. [PMID: 25614752 PMCID: PMC4295157 DOI: 10.1155/2014/609594] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/13/2014] [Accepted: 12/13/2014] [Indexed: 12/17/2022]
Abstract
Visceral pain is the most common form of pain caused by varied diseases and a major reason for patients to seek medical consultation. Despite much advances, the pathophysiological mechanism is still poorly understood comparing with its somatic counterpart and, as a result, the therapeutic efficacy is usually unsatisfactory. Acupuncture has long been used for the management of numerous disorders in particular pain and visceral pain, characterized by the high therapeutic benefits and low adverse effects. Previous findings suggest that acupuncture depresses pain via activation of a number of neurotransmitters or modulators including opioid peptides, serotonin, norepinephrine, and adenosine centrally and peripherally. It endows us, by advancing the understanding of the role of ion channels and gut microbiota in pain process, with novel perspectives to probe the mechanisms underlying acupuncture analgesia. In this review, after describing the visceral innervation and the relevant afferent pathways, in particular the ion channels in visceral nociception, we propose three principal mechanisms responsible for acupuncture induced benefits on visceral pain. Finally, potential topics are highlighted regarding the future studies in this field.
Collapse
|
33
|
Fu J, Gao Z, Shen B, Zhu MX. Canonical transient receptor potential 4 and its small molecule modulators. SCIENCE CHINA-LIFE SCIENCES 2014; 58:39-47. [PMID: 25480324 DOI: 10.1007/s11427-014-4772-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 09/06/2014] [Indexed: 02/04/2023]
Abstract
Canonical transient receptor potential 4 (TRPC4) forms non-selective cation channels that contribute to phospholipase C-dependent Ca(2+) entry into cells following stimulation of G protein coupled receptors and receptor tyrosine kinases. Moreover, the channels are regulated by pertussis toxin-sensitive Gi/o proteins, lipids, and various other signaling mechanisms. TRPC4-containing channels participate in the regulation of a variety of physiological functions, including excitability of both gastrointestinal smooth muscles and brain neurons. This review is to present recent advances in the understanding of physiology and development of small molecular modulators of TRPC4 channels.
Collapse
Affiliation(s)
- Jie Fu
- Department of Physiology, Anhui Medical University, Hefei, 230032, China
| | | | | | | |
Collapse
|
34
|
Nilius B, Szallasi A. Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 2014; 66:676-814. [PMID: 24951385 DOI: 10.1124/pr.113.008268] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The large Trp gene family encodes transient receptor potential (TRP) proteins that form novel cation-selective ion channels. In mammals, 28 Trp channel genes have been identified. TRP proteins exhibit diverse permeation and gating properties and are involved in a plethora of physiologic functions with a strong impact on cellular sensing and signaling pathways. Indeed, mutations in human genes encoding TRP channels, the so-called "TRP channelopathies," are responsible for a number of hereditary diseases that affect the musculoskeletal, cardiovascular, genitourinary, and nervous systems. This review gives an overview of the functional properties of mammalian TRP channels, describes their roles in acquired and hereditary diseases, and discusses their potential as drug targets for therapeutic intervention.
Collapse
Affiliation(s)
- Bernd Nilius
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.)
| | - Arpad Szallasi
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.)
| |
Collapse
|