1
|
Abusaada A, De Rosa F, Luhmann HJ, Kilb W, Sinning A. GABAergic integration of transient and persistent neurons in the developing mouse somatosensory cortex. Front Cell Neurosci 2025; 19:1556174. [PMID: 40078325 PMCID: PMC11897519 DOI: 10.3389/fncel.2025.1556174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
GABA is an essential element in the function of neocortical circuits. The origin, migration and mechanisms of synaptogenesis of GABAergic neurons have been intensively studied. However, little information is available when GABAergic synapses are formed within the different cortical layers, neuronal cell types and subcellular compartments. To quantify the distribution of GABAergic synapses in the immature somatosensory mouse cortex, GABAergic synapses were identified by spatially coincident immunoprofiles for the pre- and postsynaptic markers vGAT and gephyrin at postnatal days (P)0-12. Between P0-5, GABAergic synapses are mainly restricted to the marginal zone, while at later developmental stages a more homogenous distribution is obtained. Cajal-Retzius neurons represent a major target of GABAergic synapses in the marginal zone with a homogeneous synapse distribution along the dendrite. The number of GABAergic synapses per pyramidal neuron increases substantially between P0 and P12, with a stable density and distribution in basal dendrites. In contrast, along apical dendrites synapses accumulate to more proximal positions after P8. Overall, the results of this study demonstrate that early GABAergic synaptogenesis is characterized by a consistent increase in the density of synapses with first a stringent overrepresentation in the marginal zone and a delayed establishment of perisomatic synapses in pyramidal neurons.
Collapse
|
2
|
Damilou A, Cai L, Argunşah AÖ, Han S, Kanatouris G, Karatsoli M, Hanley O, Gesuita L, Kollmorgen S, Helmchen F, Karayannis T. Developmental Cajal-Retzius cell death contributes to the maturation of layer 1 cortical inhibition and somatosensory processing. Nat Commun 2024; 15:6501. [PMID: 39090081 PMCID: PMC11294614 DOI: 10.1038/s41467-024-50658-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
The role of developmental cell death in the formation of brain circuits is not well understood. Cajal-Retzius cells constitute a major transient neuronal population in the mammalian neocortex, which largely disappears at the time of postnatal somatosensory maturation. In this study, we used mouse genetics, anatomical, functional, and behavioral approaches to explore the impact of the early postnatal death of Cajal-Retzius cells in the maturation of the cortical circuit. We find that before their death, Cajal-Retzius cells mainly receive inputs from layer 1 neurons, which can only develop their mature connectivity onto layer 2/3 pyramidal cells after Cajal-Retzius cells disappear. This developmental connectivity progression from layer 1 GABAergic to layer 2/3 pyramidal cells regulates sensory-driven inhibition within, and more so, across cortical columns. Here we show that Cajal-Retzius cell death prevention leads to layer 2/3 hyper-excitability, delayed learning and reduced performance in a multi-whisker-dependent texture discrimination task.
Collapse
Affiliation(s)
- Angeliki Damilou
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich, 8057, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Linbi Cai
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Ali Özgür Argunşah
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Shuting Han
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - George Kanatouris
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Maria Karatsoli
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich, 8057, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Olivia Hanley
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Lorenzo Gesuita
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Sepp Kollmorgen
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich, 8057, Switzerland
| | - Fritjof Helmchen
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich, 8057, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Theofanis Karayannis
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich, 8057, Switzerland.
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
3
|
Taketo M. Activation of adenosine A 1 receptor potentiates metabotropic glutamate receptor 1-mediated Ca 2+ mobilization in the rat hippocampal marginal zone. Brain Res 2023; 1821:148581. [PMID: 37714421 DOI: 10.1016/j.brainres.2023.148581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/14/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Two subtypes of group I metabotropic glutamate receptors (mGluRs), mGluR1 and mGluR5, participate in the regulation of cell excitability and synaptic plasticity in the central nervous system. They couple to the Gq/11 protein and release Ca2+ from the intracellular stores. In the marginal zone of the neonatal hippocampus, Cajal-Retzius (CR) cells, which control radial migration of neurons, express the subtype mGluR1. The adenosine A1 receptor (A1R) is also G-protein coupled and is extensively expressed in the central nervous system. The interactions among G-protein-coupled receptors have been predicted previously, however, there is insufficient evidence of functional interactions between naturally occurring receptors. In this study, potentiation of the mGluR1-mediated response by A1R activation was demonstrated in hippocampal CR cells. Fluorescence imaging revealed that the application of A1R agonists intensified mGluR1-induced elevation of intracellular Ca2+ concentration ([Ca2+]i). Activation of A1R did not change [Ca2+]i. The potentiated responses were independent of extracellular Ca2+ and prevented by the Gi inhibitor. The potentiation of mGluR1-induced [Ca2+]i. elevation was also enhanced by mGluR2/3 activation. These results suggest that mGluR1 and A1R cooperatively influence postnatal hippocampal development by facilitating Ca2+ mobilization in CR cells.
Collapse
Affiliation(s)
- Megumi Taketo
- Department of Physiology Faculty of Medicine, Kansai Medical University, 2-5-1 Shin-machi Hirakata, Osaka 573-1010, Japan.
| |
Collapse
|
4
|
Elorriaga V, Pierani A, Causeret F. Cajal-retzius cells: Recent advances in identity and function. Curr Opin Neurobiol 2023; 79:102686. [PMID: 36774666 DOI: 10.1016/j.conb.2023.102686] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 02/12/2023]
Abstract
Cajal-Retzius cells (CRs) are a transient neuronal type of the developing cerebral cortex. Over the years, they have been shown or proposed to play important functions in neocortical and hippocampal morphogenesis, circuit formation, brain evolution and human pathology. Because of their short lifespan, CRs have been pictured as a purely developmental cell type, whose production and active elimination are both required for correct brain development. In this review, we present some of the findings that allow us to better appreciate the identity and diversity of this very special cell type, and propose a unified definition of what should be considered a Cajal-Retzius cell, especially when working with non-mammalian species or organoids. In addition, we highlight a flurry of recent studies pointing to the importance of CRs in the assembly of functional and dysfunctional cortical networks.
Collapse
Affiliation(s)
- Vicente Elorriaga
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France
| | - Alessandra Pierani
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France.
| | - Frédéric Causeret
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France.
| |
Collapse
|
5
|
Riva M, Moriceau S, Morabito A, Dossi E, Sanchez-Bellot C, Azzam P, Navas-Olive A, Gal B, Dori F, Cid E, Ledonne F, David S, Trovero F, Bartolomucci M, Coppola E, Rebola N, Depaulis A, Rouach N, de la Prida LM, Oury F, Pierani A. Aberrant survival of hippocampal Cajal-Retzius cells leads to memory deficits, gamma rhythmopathies and susceptibility to seizures in adult mice. Nat Commun 2023; 14:1531. [PMID: 36934089 PMCID: PMC10024761 DOI: 10.1038/s41467-023-37249-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/08/2023] [Indexed: 03/20/2023] Open
Abstract
Cajal-Retzius cells (CRs) are transient neurons, disappearing almost completely in the postnatal neocortex by programmed cell death (PCD), with a percentage surviving up to adulthood in the hippocampus. Here, we evaluate CR's role in the establishment of adult neuronal and cognitive function using a mouse model preventing Bax-dependent PCD. CRs abnormal survival resulted in impairment of hippocampus-dependent memory, associated in vivo with attenuated theta oscillations and enhanced gamma activity in the dorsal CA1. At the cellular level, we observed transient changes in the number of NPY+ cells and altered CA1 pyramidal cell spine density. At the synaptic level, these changes translated into enhanced inhibitory currents in hippocampal pyramidal cells. Finally, adult mutants displayed an increased susceptibility to lethal tonic-clonic seizures in a kainate model of epilepsy. Our data reveal that aberrant survival of a small proportion of postnatal hippocampal CRs results in cognitive deficits and epilepsy-prone phenotypes in adulthood.
Collapse
Affiliation(s)
- Martina Riva
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Stéphanie Moriceau
- Platform for Neurobehavioral and metabolism, Structure Fédérative de Recherche Necker, 26 INSERM US24/CNRS UAR, 3633, Paris, France
| | - Annunziato Morabito
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de l'Hopital, 75013, Paris, France
| | - Elena Dossi
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | | | - Patrick Azzam
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | | | - Beatriz Gal
- Instituto Cajal, CSIC, Madrid, Spain
- Universidad Camilo José Cela, Madrid, Spain
| | - Francesco Dori
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Elena Cid
- Instituto Cajal, CSIC, Madrid, Spain
| | - Fanny Ledonne
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Sabrina David
- Key-Obs SAS, 13 avenue Buffon, 45100, Orléans, France
| | | | - Magali Bartolomucci
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Eva Coppola
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Nelson Rebola
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de l'Hopital, 75013, Paris, France
| | - Antoine Depaulis
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | | | - Franck Oury
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, 75015, Paris, France
| | - Alessandra Pierani
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015, Paris, France.
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France.
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, 75014, Paris, France.
| |
Collapse
|
6
|
Luhmann HJ. Malformations-related neocortical circuits in focal seizures. Neurobiol Dis 2023; 178:106018. [PMID: 36706927 DOI: 10.1016/j.nbd.2023.106018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
This review article gives an overview on the molecular, cellular and network mechanisms underlying focal seizures in neocortical networks with developmental malformations. Neocortical malformations comprise a large variety of structural abnormalities associated with epilepsy and other neurological and psychiatric disorders. Genetic or acquired disorders of neocortical cell proliferation, neuronal migration and/or programmed cell death may cause pathologies ranging from the expression of dysmorphic neurons and heterotopic cell clusters to abnormal layering and cortical misfolding. After providing a brief overview on the pathogenesis and structure of neocortical malformations in humans, animal models are discussed and how they contributed to our understanding on the mechanisms of neocortical hyperexcitability associated with developmental disorders. State-of-the-art molecular biological and electrophysiological techniques have been also used in humans and on resectioned neocortical tissue of epileptic patients and provide deep insights into the subcellular, cellular and network mechanisms contributing to focal seizures. Finally, a brief outlook is given how novel models and methods can shape translational research in the near future.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz, Germany.
| |
Collapse
|
7
|
López-Mengual A, Segura-Feliu M, Sunyer R, Sanz-Fraile H, Otero J, Mesquida-Veny F, Gil V, Hervera A, Ferrer I, Soriano J, Trepat X, Farré R, Navajas D, Del Río JA. Involvement of Mechanical Cues in the Migration of Cajal-Retzius Cells in the Marginal Zone During Neocortical Development. Front Cell Dev Biol 2022; 10:886110. [PMID: 35652101 PMCID: PMC9150848 DOI: 10.3389/fcell.2022.886110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence points to coordinated action of chemical and mechanical cues during brain development. At early stages of neocortical development, angiogenic factors and chemokines such as CXCL12, ephrins, and semaphorins assume crucial roles in orchestrating neuronal migration and axon elongation of postmitotic neurons. Here we explore the intrinsic mechanical properties of the developing marginal zone of the pallium in the migratory pathways and brain distribution of the pioneer Cajal-Retzius cells. These neurons are generated in several proliferative regions in the developing brain (e.g., the cortical hem and the pallial subpallial boundary) and migrate tangentially in the preplate/marginal zone covering the upper portion of the developing cortex. These cells play crucial roles in correct neocortical layer formation by secreting several molecules such as Reelin. Our results indicate that the motogenic properties of Cajal-Retzius cells and their perinatal distribution in the marginal zone are modulated by both chemical and mechanical factors, by the specific mechanical properties of Cajal-Retzius cells, and by the differential stiffness of the migratory routes. Indeed, cells originating in the cortical hem display higher migratory capacities than those generated in the pallial subpallial boundary which may be involved in the differential distribution of these cells in the dorsal-lateral axis in the developing marginal zone.
Collapse
Affiliation(s)
- Ana López-Mengual
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Miriam Segura-Feliu
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Raimon Sunyer
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain
| | - Héctor Sanz-Fraile
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain
| | - Jorge Otero
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Madrid, Spain
| | - Francina Mesquida-Veny
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Vanessa Gil
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Arnau Hervera
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Isidre Ferrer
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Senior Consultant, Bellvitge University Hospital, Hospitalet de Llobregat, Barcelona, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - Jordi Soriano
- Departament de Física de La Matèria Condensada, Universitat de Barcelona, Barcelona, Spain.,University of Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
| | - Xavier Trepat
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Integrative Cell and Tissue Dynamics, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain.,Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Institució Catalana de Recerca I Estudis Avançats, University of Barcelona, Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Madrid, Spain.,Institut D'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Daniel Navajas
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Madrid, Spain.,Cellular and Respiratory Biomechanics, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Luhmann HJ, Kanold PO, Molnár Z, Vanhatalo S. Early brain activity: Translations between bedside and laboratory. Prog Neurobiol 2022; 213:102268. [PMID: 35364141 PMCID: PMC9923767 DOI: 10.1016/j.pneurobio.2022.102268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 01/29/2023]
Abstract
Neural activity is both a driver of brain development and a readout of developmental processes. Changes in neuronal activity are therefore both the cause and consequence of neurodevelopmental compromises. Here, we review the assessment of neuronal activities in both preclinical models and clinical situations. We focus on issues that require urgent translational research, the challenges and bottlenecks preventing translation of biomedical research into new clinical diagnostics or treatments, and possibilities to overcome these barriers. The key questions are (i) what can be measured in clinical settings versus animal experiments, (ii) how do measurements relate to particular stages of development, and (iii) how can we balance practical and ethical realities with methodological compromises in measurements and treatments.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz, Germany.,Correspondence:, , ,
| | - Patrick O. Kanold
- Department of Biomedical Engineering and Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, 720 Rutland Avenue / Miller 379, Baltimore, MD 21205, USA.,Correspondence:, , ,
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| | - Sampsa Vanhatalo
- BABA Center, Departments of Physiology and Clinical Neurophysiology, Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
9
|
Cossart R, Garel S. Step by step: cells with multiple functions in cortical circuit assembly. Nat Rev Neurosci 2022; 23:395-410. [DOI: 10.1038/s41583-022-00585-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 12/23/2022]
|
10
|
Genescu I, Aníbal-Martínez M, Kouskoff V, Chenouard N, Mailhes-Hamon C, Cartonnet H, Lokmane L, Rijli FM, López-Bendito G, Gambino F, Garel S. Dynamic interplay between thalamic activity and Cajal-Retzius cells regulates the wiring of cortical layer 1. Cell Rep 2022; 39:110667. [PMID: 35417707 PMCID: PMC9035679 DOI: 10.1016/j.celrep.2022.110667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/17/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Abstract
Cortical wiring relies on guidepost cells and activity-dependent processes that are thought to act sequentially. Here, we show that the construction of layer 1 (L1), a main site of top-down integration, is regulated by crosstalk between transient Cajal-Retzius cells (CRc) and spontaneous activity of the thalamus, a main driver of bottom-up information. While activity was known to regulate CRc migration and elimination, we found that prenatal spontaneous thalamic activity and NMDA receptors selectively control CRc early density, without affecting their demise. CRc density, in turn, regulates the distribution of upper layer interneurons and excitatory synapses, thereby drastically impairing the apical dendrite activity of output pyramidal neurons. In contrast, postnatal sensory-evoked activity had a limited impact on L1 and selectively perturbed basal dendrites synaptogenesis. Collectively, our study highlights a remarkable interplay between thalamic activity and CRc in L1 functional wiring, with major implications for our understanding of cortical development. Prenatal thalamic waves of activity regulate CRc density in L1 Prenatal and postnatal CRc manipulations alter specific interneuron populations Postnatal CRc shape L5 apical dendrite structural and functional properties Early sensory activity selectively regulates L5 basal dendrite spine formation
Collapse
Affiliation(s)
- Ioana Genescu
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Mar Aníbal-Martínez
- Instituto de Neurosciencias de Alicante, Universidad Miguel Hernandez, Sant Joan d'Alacant, Spain
| | - Vladimir Kouskoff
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Nicolas Chenouard
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Caroline Mailhes-Hamon
- Acute Transgenesis Facility, Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Hugues Cartonnet
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Ludmilla Lokmane
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4056 Basel, Switzerland
| | | | - Frédéric Gambino
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Sonia Garel
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Collège de France, 75005 Paris, France.
| |
Collapse
|
11
|
Keeping the Balance: GABAB Receptors in the Developing Brain and Beyond. Brain Sci 2022; 12:brainsci12040419. [PMID: 35447949 PMCID: PMC9031223 DOI: 10.3390/brainsci12040419] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/16/2022] Open
Abstract
The main neurotransmitter in the brain responsible for the inhibition of neuronal activity is γ-aminobutyric acid (GABA). It plays a crucial role in circuit formation during development, both via its primary effects as a neurotransmitter and also as a trophic factor. The GABAB receptors (GABABRs) are G protein-coupled metabotropic receptors; on one hand, they can influence proliferation and migration; and, on the other, they can inhibit cells by modulating the function of K+ and Ca2+ channels, doing so on a slower time scale and with a longer-lasting effect compared to ionotropic GABAA receptors. GABABRs are expressed pre- and post-synaptically, at both glutamatergic and GABAergic terminals, thus being able to shape neuronal activity, plasticity, and the balance between excitatory and inhibitory synaptic transmission in response to varying levels of extracellular GABA concentration. Furthermore, given their subunit composition and their ability to form complexes with several associated proteins, GABABRs display heterogeneity with regard to their function, which makes them a promising target for pharmacological interventions. This review will describe (i) the latest results concerning GABABRs/GABABR-complex structures, their function, and the developmental time course of their appearance and functional integration in the brain, (ii) their involvement in manifestation of various pathophysiological conditions, and (iii) the current status of preclinical and clinical studies involving GABABR-targeting drugs.
Collapse
|
12
|
Merkulyeva N, Mikhalkin A. SMI-32 labeling in Cajal-Retzius cells of feline primary visual cortex. Neurosci Lett 2021; 762:136165. [PMID: 34371123 DOI: 10.1016/j.neulet.2021.136165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022]
Abstract
Cajal-Retzius cells are one of the transient elements of the developing cerebral cortex. These cells express some characteristic molecules. One of them, heavy-chain neurofilaments, participating in the construction of the mature cerebral networks, are believed to be a specific feature of the human's Cajal-Retzius cells. Using histochemical stain for SMI-32 antibody to the non-phosphorylated heavy-chain neurofilaments, large neurons having horizontally oriented soma and bipolar processes were labeled in the molecular layer of the primary visual cortex of cats aged 0-2 postnatal days. Using DiI technique, similar neurons having a well-developed system of parallel vertical branches coming from the two horizontal processes were visualized in these areas. The location and general morphology of these neurons were similar to the Cajal-Retzius cells allowing to suppose for the carnivores to share similar with primates developmental mechanisms of the corticogenesis.
Collapse
Affiliation(s)
- Natalia Merkulyeva
- Lab Neuromorphology, Pavlov Institute of Physiology RAS Russia, Saint-Petersburg, Makarov emb., 6, 199034, Russia.
| | - Aleksandr Mikhalkin
- Lab Neuromorphology, Pavlov Institute of Physiology RAS Russia, Saint-Petersburg, Makarov emb., 6, 199034, Russia
| |
Collapse
|
13
|
Li J, Sun L, Peng XL, Yu XM, Qi SJ, Lu ZJ, Han JDJ, Shen Q. Integrative genomic analysis of early neurogenesis reveals a temporal genetic program for differentiation and specification of preplate and Cajal-Retzius neurons. PLoS Genet 2021; 17:e1009355. [PMID: 33760820 PMCID: PMC7990179 DOI: 10.1371/journal.pgen.1009355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 01/12/2021] [Indexed: 01/02/2023] Open
Abstract
Neurogenesis in the developing neocortex begins with the generation of the preplate, which consists of early-born neurons including Cajal-Retzius (CR) cells and subplate neurons. Here, utilizing the Ebf2-EGFP transgenic mouse in which EGFP initially labels the preplate neurons then persists in CR cells, we reveal the dynamic transcriptome profiles of early neurogenesis and CR cell differentiation. Genome-wide RNA-seq and ChIP-seq analyses at multiple early neurogenic stages have revealed the temporal gene expression dynamics of early neurogenesis and distinct histone modification patterns in early differentiating neurons. We have identified a new set of coding genes and lncRNAs involved in early neuronal differentiation and validated with functional assays in vitro and in vivo. In addition, at E15.5 when Ebf2-EGFP+ cells are mostly CR neurons, single-cell sequencing analysis of purified Ebf2-EGFP+ cells uncovers molecular heterogeneities in CR neurons, but without apparent clustering of cells with distinct regional origins. Along a pseudotemporal trajectory these cells are classified into three different developing states, revealing genetic cascades from early generic neuronal differentiation to late fate specification during the establishment of CR neuron identity and function. Our findings shed light on the molecular mechanisms governing the early differentiation steps during cortical development, especially CR neuron differentiation. Neural stem cells and progenitor cells in the embryonic brain give rise to neurons following a precise temporal order after initial expansion. Early-born neurons including Cajal-Retzius (CR) cells and subplate neurons form the preplate in the developing cerebral cortex, then CR neurons occupy the layer 1, playing an important role in cortical histogenesis. The molecular mechanisms governing the early neuronal differentiation processes remain to be explored. Here, by genome-wide approaches including bulk RNA-seq, single-cell RNA-seq and ChIP-seq, we comprehensively characterized the temporal dynamic gene expression profile and epigenetic status at different stages during early cortical development and uncovered molecularly heterogeneous subpopulations within the CR cells. We revealed CR neuron signatures and cell type-specific histone modification patterns along early neuron specification. Using in vitro and in vivo assays, we identified novel lncRNAs as potential functional regulators in preplate differentiation and CR neuron identity establishment. Our study provides a comprehensive analysis of the genetic and epigenetic programs during neuronal differentiation and would help bring new insights into the early cortical neurogenesis process, particularly the differentiation of CR neurons.
Collapse
Affiliation(s)
- Jia Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- PTN graduate program, School of Life Sciences, Peking University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Lei Sun
- PTN graduate program, School of Life Sciences, Tsinghua University, Beijing, China
| | | | - Xiao-Ming Yu
- School of Medicine, Tsinghua University, Beijing, China
| | - Shao-Jun Qi
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing-Dong J. Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qin Shen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Brain and Spinal Cord Clinical Research Center, Tongji University, Shanghai, China
- * E-mail:
| |
Collapse
|
14
|
Genescu I, Garel S. Being superficial: a developmental viewpoint on cortical layer 1 wiring. Curr Opin Neurobiol 2020; 66:125-134. [PMID: 33186879 DOI: 10.1016/j.conb.2020.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/03/2020] [Accepted: 10/04/2020] [Indexed: 01/01/2023]
Abstract
Functioning of the neocortex relies on a complex architecture of circuits, as illustrated by the causal link between neocortical excitation/inhibition imbalance and the etiology of several neurodevelopmental disorders. An important entry point to cortical circuits is located in the superficial layer 1 (L1), which contains mostly local and long-range inputs and sparse inhibitory interneurons that collectively regulate cerebral functions. While increasing evidence indicates that L1 has important physiological roles, our understanding of how it wires up during development remains limited. Here, we provide an integrated overview of L1 anatomy, function and development, with a focus on transient early born Cajal-Retzius neurons, and highlight open questions key for progressing our understanding of this essential yet understudied layer of the cerebral cortex.
Collapse
Affiliation(s)
- Ioana Genescu
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sonia Garel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France; Collège de France, Paris, France.
| |
Collapse
|
15
|
Molnár Z, Luhmann HJ, Kanold PO. Transient cortical circuits match spontaneous and sensory-driven activity during development. Science 2020; 370:370/6514/eabb2153. [PMID: 33060328 DOI: 10.1126/science.abb2153] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
At the earliest developmental stages, spontaneous activity synchronizes local and large-scale cortical networks. These networks form the functional template for the establishment of global thalamocortical networks and cortical architecture. The earliest connections are established autonomously. However, activity from the sensory periphery reshapes these circuits as soon as afferents reach the cortex. The early-generated, largely transient neurons of the subplate play a key role in integrating spontaneous and sensory-driven activity. Early pathological conditions-such as hypoxia, inflammation, or exposure to pharmacological compounds-alter spontaneous activity patterns, which subsequently induce disturbances in cortical network activity. This cortical dysfunction may lead to local and global miswiring and, at later stages, can be associated with neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz 55128, Germany.
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, 720 Rutland Avenue, MRB 379, Baltimore, MD 21205, USA. .,Johns Hopkins University Kavli Neuroscience Discovery Institute, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Luhmann HJ, Fukuda A. Can we understand human brain development from experimental studies in rodents? Pediatr Int 2020; 62:1139-1144. [PMID: 32531857 DOI: 10.1111/ped.14339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/05/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
Animal models are needed to gain an understanding of the genetic, molecular, cellular, and network mechanisms of human brain development. In rodents, a large spectrum of in vitro and in vivo approaches allows detailed analyses and specific experimental manipulations for studying the sequence of developmental steps in corticogenesis. Neurogenesis, neuronal migration, cellular differentiation, programmed cell death, synaptogenesis, and myelination are surprisingly similar in the rodent cortex and the human cortex. Spontaneous EEG activity in the pre- and early postnatal human cortex resembles the activity patterns recorded with intracortical multi-electrode arrays in newborn rodents. This early activity is generated by thalamic activation of a subplate-driven local network coupled via gap junctions, which controls the development of cortical columns and the spatio-temporal pattern of apoptosis. Disturbances of this activity may induce disturbances in cortical structure and function leading to neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Atsuo Fukuda
- Department of Physiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
17
|
Ogino H, Yamakage Y, Yamashita MB, Kohno T, Hattori M. Assay for Reelin-Cleaving Activity of ADAMTS and Detection of Reelin and Its Fragments in the Brain. Methods Mol Biol 2020; 2043:105-111. [PMID: 31463906 DOI: 10.1007/978-1-4939-9698-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteolytic cleavage of the secreted signaling protein Reelin has been suggested to play causative roles in many neuropsychiatric and neurodegenerative disorders. Therefore, characterization of the proteolytic activity against Reelin is important not only for understanding how the brain works but also for the development of novel therapy for these disorders. Notably, ADAMTS family proteases are the primary suspects of Reelin-cleaving proteases under many, though not all, circumstances. Here we describe how to measure the Reelin-cleaving activity of ADAMTS (or of any other protease that may cleave Reelin), how to purify the Reelin-cleaving protease ADAMTS-3 from the culture supernatant of cortical neurons, and how to detect endogenous Reelin protein and its fragments in the brain.
Collapse
Affiliation(s)
- Himari Ogino
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Yuko Yamakage
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Mihoshi B Yamashita
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan.
| |
Collapse
|
18
|
Riva M, Genescu I, Habermacher C, Orduz D, Ledonne F, Rijli FM, López-Bendito G, Coppola E, Garel S, Angulo MC, Pierani A. Activity-dependent death of transient Cajal-Retzius neurons is required for functional cortical wiring. eLife 2019; 8:50503. [PMID: 31891351 PMCID: PMC6938399 DOI: 10.7554/elife.50503] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/06/2019] [Indexed: 12/19/2022] Open
Abstract
Programmed cell death and early activity contribute to the emergence of functional cortical circuits. While most neuronal populations are scaled-down by death, some subpopulations are entirely eliminated, raising the question of the importance of such demise for cortical wiring. Here, we addressed this issue by focusing on Cajal-Retzius neurons (CRs), key players in cortical development that are eliminated in postnatal mice in part via Bax-dependent apoptosis. Using Bax-conditional mutants and CR hyperpolarization, we show that the survival of electrically active subsets of CRs triggers an increase in both dendrite complexity and spine density of upper layer pyramidal neurons, leading to an excitation/inhibition imbalance. The survival of these CRs is induced by hyperpolarization, highlighting an interplay between early activity and neuronal elimination. Taken together, our study reveals a novel activity-dependent programmed cell death process required for the removal of transient immature neurons and the proper wiring of functional cortical circuits.
Collapse
Affiliation(s)
- Martina Riva
- Institut Imagine, Université de Paris, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Université de Paris, Paris, France.,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France
| | - Ioana Genescu
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Chloé Habermacher
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France.,INSERM U1128, Paris, France
| | | | - Fanny Ledonne
- Institut Jacques Monod, CNRS UMR 7592, Université de Paris, Paris, France
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Eva Coppola
- Institut Imagine, Université de Paris, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Université de Paris, Paris, France.,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France
| | - Sonia Garel
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Maria Cecilia Angulo
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France.,INSERM U1128, Paris, France
| | - Alessandra Pierani
- Institut Imagine, Université de Paris, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Université de Paris, Paris, France.,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France
| |
Collapse
|
19
|
Abstract
In spite of the high metabolic cost of cellular production, the brain contains only a fraction of the neurons generated during embryonic development. In the rodent cerebral cortex, a first wave of programmed cell death surges at embryonic stages and affects primarily progenitor cells. A second, larger wave unfolds during early postnatal development and ultimately determines the final number of cortical neurons. Programmed cell death in the developing cortex is particularly dependent on neuronal activity and unfolds in a cell-specific manner with precise temporal control. Pyramidal cells and interneurons adjust their numbers in sync, which is likely crucial for the establishment of balanced networks of excitatory and inhibitory neurons. In contrast, several other neuronal populations are almost completely eliminated through apoptosis during the first two weeks of postnatal development, highlighting the importance of programmed cell death in sculpting the mature cerebral cortex.
Collapse
Affiliation(s)
- Fong Kuan Wong
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; .,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; .,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
20
|
Multifunctional TRPV1 Ion Channels in Physiology and Pathology with Focus on the Brain, Vasculature, and Some Visceral Systems. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5806321. [PMID: 31263706 PMCID: PMC6556840 DOI: 10.1155/2019/5806321] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/15/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
TRPV1 has been originally cloned as the heat and capsaicin receptor implicated in acute pain signalling, while further research has shifted the focus to its importance in chronic pain caused by inflammation and associated with this TRPV1 sensitization. However, accumulating evidence suggests that, apart from pain signalling, TRPV1 subserves many other unrelated to nociception functions in the nervous system. In the brain, TRPV1 can modulate synaptic transmission via both pre- and postsynaptic mechanisms and there is a functional crosstalk between GABA receptors and TRPV1. Other fundamental processes include TRPV1 role in plasticity, microglia-to-neuron communication, and brain development. Moreover, TRPV1 is widely expressed in the peripheral tissues, including the vasculature, gastrointestinal tract, urinary bladder, epithelial cells, and the cells of the immune system. TRPV1 can be activated by a large array of physical (heat, mechanical stimuli) and chemical factors (e.g., protons, capsaicin, resiniferatoxin, and endogenous ligands, such as endovanilloids). This causes two general cell effects, membrane depolarization and calcium influx, thus triggering depending on the cell-type diverse functional responses ranging from neuronal excitation to secretion and smooth muscle contraction. Here, we review recent research on the diverse TRPV1 functions with focus on the brain, vasculature, and some visceral systems as the basis of our better understanding of TRPV1 role in different human disorders.
Collapse
|
21
|
Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN, Bertagnolli D, Goldy J, Garren E, Economo MN, Viswanathan S, Penn O, Bakken T, Menon V, Miller J, Fong O, Hirokawa KE, Lathia K, Rimorin C, Tieu M, Larsen R, Casper T, Barkan E, Kroll M, Parry S, Shapovalova NV, Hirschstein D, Pendergraft J, Sullivan HA, Kim TK, Szafer A, Dee N, Groblewski P, Wickersham I, Cetin A, Harris JA, Levi BP, Sunkin SM, Madisen L, Daigle TL, Looger L, Bernard A, Phillips J, Lein E, Hawrylycz M, Svoboda K, Jones AR, Koch C, Zeng H. Shared and distinct transcriptomic cell types across neocortical areas. Nature 2018; 563:72-78. [PMID: 30382198 DOI: 10.1038/s41586-018-0654-5] [Citation(s) in RCA: 1115] [Impact Index Per Article: 159.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 09/24/2018] [Indexed: 12/11/2022]
Abstract
The neocortex contains a multitude of cell types that are segregated into layers and functionally distinct areas. To investigate the diversity of cell types across the mouse neocortex, here we analysed 23,822 cells from two areas at distant poles of the mouse neocortex: the primary visual cortex and the anterior lateral motor cortex. We define 133 transcriptomic cell types by deep, single-cell RNA sequencing. Nearly all types of GABA (γ-aminobutyric acid)-containing neurons are shared across both areas, whereas most types of glutamatergic neurons were found in one of the two areas. By combining single-cell RNA sequencing and retrograde labelling, we match transcriptomic types of glutamatergic neurons to their long-range projection specificity. Our study establishes a combined transcriptomic and projectional taxonomy of cortical cell types from functionally distinct areas of the adult mouse cortex.
Collapse
Affiliation(s)
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Emma Garren
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Michael N Economo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sarada Viswanathan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Osnat Penn
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Vilas Menon
- Allen Institute for Brain Science, Seattle, WA, USA.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Olivia Fong
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Kanan Lathia
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Eliza Barkan
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Sheana Parry
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Aaron Szafer
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Ian Wickersham
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ali Cetin
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Loren Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Amy Bernard
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| |
Collapse
|
22
|
Taketo M. Metabotropic glutamate receptor 1-mediated calcium mobilization in the neonatal hippocampal marginal zone. Eur J Neurosci 2018; 48:3344-3353. [PMID: 30304574 DOI: 10.1111/ejn.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/16/2018] [Accepted: 10/04/2018] [Indexed: 11/30/2022]
Abstract
The hippocampal marginal zone contains Cajal-Retzius (C-R) cells and participates in the regulation of cortical development. Two subtypes of group I metabotropic glutamate receptors (mGluRs), mGluR1 and mGluR5, are found in the central nervous system and are considered to regulate neuronal excitability. The release of Ca2+ from intracellular stores is thought to be a main consequence of activation of these receptor subtypes. In hippocampal C-R cells, the expression of mGluR1 has been showed using immunohistochemical techniques, but its function has not been elucidated. In this study, Ca2+ mobilization through mGluR1 activation was demonstrated in the neonatal rat hippocampus. In marginal zone C-R cells, intracellular Ca2+ elevation was detected by fluorescence imaging after the application of a group I mGluR-specific agonist. This response was prevented by application of an mGluR1 antagonist but was not changed by application of an mGluR5 antagonist. The intracellular Ca2+ elevation induced by mGluR1 activation was still observed in Ca2+ -free perfusate, indicating the release of Ca2+ from intracellular stores. γ-Aminobutyric acid and ionotropic glutamate receptor-mediated intracellular Ca2+ elevation was also detected in mGluR1-possessing neurons, although the former was much smaller than that mediated by mGluR1. These results indicate that mGluR1 is functionally expressed in C-R cells in the neonatal marginal zone and regulates cell function through the elevation of intracellular Ca2+ .
Collapse
Affiliation(s)
- Megumi Taketo
- Department of Physiology 1, Faculty of Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
23
|
Kilb W. Putative Role of Taurine as Neurotransmitter During Perinatal Cortical Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:281-292. [PMID: 28849463 DOI: 10.1007/978-94-024-1079-2_25] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neurotransmitters and neuronal activity affect neurodevelopmental events like neurogenesis, neuronal migration, apoptosis and differentiation. Beside glutamate and gamma-amino butyric acid, the aminosulfonic acid taurine has been considered as possible neurotransmitter that influences early neuronal development. In this article I review recent studies of our group which demonstrate that taurine can affect a variety of identified neuronal populations in the immature neocortex and directly modulates neuronal activity. These experiments revealed that taurine evoke dose-dependent membrane responses in a variety of neocortical neuron populations, including Cajal-Retzius cells, subplate neurons and GABAergic interneurons. Taurine responses persist in the presence of GABA(A) receptor antagonists and are reduced by the addition of strychnine, suggesting that glycine receptors are involved in taurine-mediated membrane responses. Gramicidin-perforated patch-clamp and cell-attached recordings demonstrated that taurine evokes depolarizing and mainly excitatory membrane responses, in accordance with the high intracellular Cl- concentration in immature neurons. In addition, taurine increases the frequency of postsynaptic GABAergic currents (PSCs) in a considerable fraction of immature pyramidal neurons, indicating a specific activation of presynaptic GABAergic networks projecting toward and exciting pyramidal neurons. In summary, these results suggest that taurine may be critically involved in the regulation of network excitability in the immature neocortex and hippocampus via interactions with glycine receptors.
Collapse
Affiliation(s)
- Werner Kilb
- Institute of Physiology, University Medical Center, Johannes-Gutenberg University, Mainz, Germany.
| |
Collapse
|
24
|
Anstötz M, Quattrocolo G, Maccaferri G. Cajal-Retzius cells and GABAergic interneurons of the developing hippocampus: Close electrophysiological encounters of the third kind. Brain Res 2018; 1697:124-133. [PMID: 30071194 DOI: 10.1016/j.brainres.2018.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/17/2018] [Accepted: 07/28/2018] [Indexed: 01/24/2023]
Abstract
In contrast to the large number of studies investigating the electrophysiological properties and synaptic connectivity of hippocampal pyramidal neurons, granule cells, and GABAergic interneurons, much less is known about Cajal-Retzius cells. In this review article, we discuss the possible reasons underlying this difference, and review experimental work performed on this cell type in the hippocampus, comparing it with results obtained in the neocortex. Our main emphasis is on data obtained with in vitro electrophysiology. In particular, we address the bidirectional connectivity between Cajal-Retzius cells and GABAergic interneurons, examine their synaptic properties and propose specific functions of Cajal-Retzius cell/GABAergic interneuron microcircuits. Lastly, we discuss the potential involvement of these microcircuits in critical physiological hippocampal functions such as postnatal neurogenesis or pathological scenarios such as temporal lobe epilepsy.
Collapse
Affiliation(s)
- Max Anstötz
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Giulia Quattrocolo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gianmaria Maccaferri
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
25
|
Garcia LP, Witteveen JS, Middelman A, van Hulten JA, Martens GJM, Homberg JR, Kolk SM. Perturbed Developmental Serotonin Signaling Affects Prefrontal Catecholaminergic Innervation and Cortical Integrity. Mol Neurobiol 2018; 56:1405-1420. [PMID: 29948943 PMCID: PMC6400880 DOI: 10.1007/s12035-018-1105-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/03/2018] [Indexed: 11/26/2022]
Abstract
Proper development of the medial prefrontal cortex (mPFC), crucial for correct cognitive functioning, requires projections from, among others, the serotonergic (5-HT) and catecholaminergic systems, but it is unclear how these systems influence each other during development. Here, we describe the parallel development of the 5-HT and catecholaminergic prefrontal projection systems in rat and demonstrate a close engagement of both systems in the proximity of Cajal-Retzius cells. We further show that in the absence of the 5-HT transporter (5-HTT), not only the developing 5-HT but also the catecholaminergic system, including their projections towards the mPFC, are affected. In addition, the layer identity of the mPFC neurons and reelin-positive interneuron number and integration are altered in the absence of the 5-HTT. Together, our data demonstrate a functional interplay between the developing mPFC 5-HT and catecholaminergic systems, and call for a holistic approach in studying neurotransmitter systems-specific developmental consequences for adult behavior, to eventually allow the design of better treatment strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Lidiane P Garcia
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Molecular Animal Physiology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Josefine S Witteveen
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Molecular Animal Physiology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Anthonieke Middelman
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Josephus A van Hulten
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Molecular Animal Physiology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Gerard J M Martens
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Molecular Animal Physiology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Judith R Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Sharon M Kolk
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Molecular Animal Physiology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
26
|
Cortical developmental death: selected to survive or fated to die. Curr Opin Neurobiol 2018; 53:35-42. [PMID: 29738999 DOI: 10.1016/j.conb.2018.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 11/20/2022]
Abstract
The mature cerebral cortex only contains a fraction of the cells that are generated during embryonic development. Indeed some neuronal populations are produced in excess and later subjected to partial elimination whereas others are almost completely removed during the first two postnatal weeks in mice. Although the identity of cells that disappear, the time course and mechanisms of their death are becoming reasonably well established, the meaning of producing supernumerary cells still remains elusive. In this review, we focus on recent data that shed a new light on the mechanisms involved in adjusting cell numbers and discuss the significance of refinement versus complete elimination of cell populations in the developing cortex.
Collapse
|
27
|
Iacono G, Mereu E, Guillaumet-Adkins A, Corominas R, Cuscó I, Rodríguez-Esteban G, Gut M, Pérez-Jurado LA, Gut I, Heyn H. bigSCale: an analytical framework for big-scale single-cell data. Genome Res 2018; 28:878-890. [PMID: 29724792 PMCID: PMC5991513 DOI: 10.1101/gr.230771.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 04/11/2018] [Indexed: 11/24/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) has significantly deepened our insights into complex tissues, with the latest techniques capable of processing tens of thousands of cells simultaneously. Analyzing increasing numbers of cells, however, generates extremely large data sets, extending processing time and challenging computing resources. Current scRNA-seq analysis tools are not designed to interrogate large data sets and often lack sensitivity to identify marker genes. With bigSCale, we provide a scalable analytical framework to analyze millions of cells, which addresses the challenges associated with large data sets. To handle the noise and sparsity of scRNA-seq data, bigSCale uses large sample sizes to estimate an accurate numerical model of noise. The framework further includes modules for differential expression analysis, cell clustering, and marker identification. A directed convolution strategy allows processing of extremely large data sets, while preserving transcript information from individual cells. We evaluated the performance of bigSCale using both a biological model of aberrant gene expression in patient-derived neuronal progenitor cells and simulated data sets, which underlines the speed and accuracy in differential expression analysis. To test its applicability for large data sets, we applied bigSCale to assess 1.3 million cells from the mouse developing forebrain. Its directed down-sampling strategy accumulates information from single cells into index cell transcriptomes, thereby defining cellular clusters with improved resolution. Accordingly, index cell clusters identified rare populations, such as reelin (Reln)-positive Cajal-Retzius neurons, for which we report previously unrecognized heterogeneity associated with distinct differentiation stages, spatial organization, and cellular function. Together, bigSCale presents a solution to address future challenges of large single-cell data sets.
Collapse
Affiliation(s)
- Giovanni Iacono
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Elisabetta Mereu
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Amy Guillaumet-Adkins
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Roser Corominas
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.,Hospital del Mar Research Institute (IMIM), 08003 Barcelona, Spain
| | - Ivon Cuscó
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.,Hospital del Mar Research Institute (IMIM), 08003 Barcelona, Spain
| | - Gustavo Rodríguez-Esteban
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Luis Alberto Pérez-Jurado
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.,Hospital del Mar Research Institute (IMIM), 08003 Barcelona, Spain
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| |
Collapse
|
28
|
Meyer G, González-Gómez M. The heterogeneity of human Cajal-Retzius neurons. Semin Cell Dev Biol 2018; 76:101-111. [DOI: 10.1016/j.semcdb.2017.08.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 12/29/2022]
|
29
|
Blanquie O, Liebmann L, Hübner CA, Luhmann HJ, Sinning A. NKCC1-Mediated GABAergic Signaling Promotes Postnatal Cell Death in Neocortical Cajal-Retzius Cells. Cereb Cortex 2018; 27:1644-1659. [PMID: 26819276 DOI: 10.1093/cercor/bhw004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During early development, a substantial proportion of central neurons undergoes programmed cell death. This activity-dependent process is essential for the proper structural and functional development of the brain. To uncover cell type-specific differences in the regulation of neuronal survival versus apoptosis, we studied activity-regulated cell death in Cajal-Retzius neurons (CRNs) and the overall neuronal population in the developing mouse cerebral cortex. CRNs in the upper neocortical layer represent an early-born neuronal population, which is important for cortical development and largely disappears by apoptosis during neonatal stages. In contrast to the overall neuronal population, activity blockade with tetrodotoxin improved survival of CRNs in culture. Activation of GABAA receptors also blocked spontaneous activity and caused overall cell death including apoptosis of CRNs. Blockade of the Na-K-Cl transporter NKCC1 in vitro or its genetic deletion in vivo rescued CRNs from apoptosis. This effect was mediated by blockade of the p75NTR receptor signaling pathway. In summary, we discovered a novel developmental death pathway mediated by NKCC1, via GABAA receptor-mediated membrane depolarization and p75NTR signaling in CRNs. This pathway controls apoptosis of CRNs and may be critically involved in neurodevelopmental disorders such as autism and schizophrenia.
Collapse
Affiliation(s)
- Oriane Blanquie
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Lutz Liebmann
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Christian A Hübner
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
30
|
Bohannon AS, Hablitz JJ. Developmental Changes in HCN Channel Modulation of Neocortical Layer 1 Interneurons. Front Cell Neurosci 2018; 12:20. [PMID: 29440994 PMCID: PMC5797556 DOI: 10.3389/fncel.2018.00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/15/2018] [Indexed: 01/31/2023] Open
Abstract
Layer 1 (L1) interneurons (INs) play a key role in modulating the integration of inputs to pyramidal neurons (PNs) and controlling cortical network activity. Hyperpolarization-activated, cyclic nucleotide-gated, non-specific cation (HCN) channels are known to alter the intrinsic and synaptic excitability of principal components (PCs) as well as select populations of GABAergic INs. However, the developmental profile and functional role of HCN channels in diverse L1 IN populations is not completely understood. In the present study, we used electrophysiological characterization, in conjunction with unbiased hierarchical cluster analysis, to examine developmental modulation of L1 INs by HCN channels in the rat medial agranular cortex (AGm). We identified three physiologically discrete IN populations which were classified as regular spiking (RS), burst accommodating (BA) and non-accommodating (NA). A distinct developmental pattern of excitability modulation by HCN channels was observed for each group. RS and NA cells displayed distinct morphologies with modulation of EPSPs increasing in RS cells and decreasing in NA cells across development. The results indicate a possible role of HCN channels in the formation and maintenance of cortical circuits through alteration of the excitability of distinct AGm L1 INs.
Collapse
Affiliation(s)
- Andrew S Bohannon
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
31
|
Abstract
Schizophrenia is a complex disorder lacking an effective treatment option for the pervasive and debilitating cognitive impairments experienced by patients. Working memory is a core cognitive function impaired in schizophrenia that depends upon activation of distributed neural network, including the circuitry of the dorsolateral prefrontal cortex (DLPFC). Accordingly, individuals diagnosed with schizophrenia show reduced DLPFC activation while performing working-memory tasks. This lower DLPFC activation appears to be an integral part of the disease pathophysiology, and not simply a reflection of poor performance. Thus, the cellular and circuitry alterations that underlie lower DLPFC neuronal activity in schizophrenia must be determined in order to identify appropriate therapeutic targets. Studies using human postmortem brain tissue provide a robust way to investigate and characterize these cellular and circuitry alterations at multiple levels of resolution, and such studies provide essential information that cannot be obtained either through in vivo studies in humans or through experimental animal models. Studies examining neuronal morphology, protein expression and localization, and transcript levels indicate that a microcircuit composed of excitatory pyramidal cells and inhibitory interneurons containing the calcium-binding protein parvalbumin is altered in the DLPFC of subjects with schizophrenia and likely contributes to DLPFC dysfunction.
Collapse
Affiliation(s)
- Jill R Glausier
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
32
|
Kirischuk S, Sinning A, Blanquie O, Yang JW, Luhmann HJ, Kilb W. Modulation of Neocortical Development by Early Neuronal Activity: Physiology and Pathophysiology. Front Cell Neurosci 2017; 11:379. [PMID: 29238291 PMCID: PMC5712676 DOI: 10.3389/fncel.2017.00379] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022] Open
Abstract
Animal and human studies revealed that patterned neuronal activity is an inherent feature of developing nervous systems. This review summarizes our current knowledge about the mechanisms generating early electrical activity patterns and their impact on structural and functional development of the cerebral cortex. All neocortical areas display distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, intermittent spontaneous activity is synchronized within small neuronal networks, becoming more complex with further development. This transition is accompanied by a gradual shift from electrical to chemical synaptic transmission, with a particular role of non-synaptic tonic currents before the onset of phasic synaptic activity. In this review article we first describe functional impacts of classical neurotransmitters (GABA, glutamate) and modulatory systems (e.g., acetylcholine, ACh) on early neuronal activities in the neocortex with special emphasis on electrical synapses, nonsynaptic and synaptic currents. Early neuronal activity influences probably all developmental processes and is crucial for the proper formation of neuronal circuits. In the second part of our review, we illustrate how specific activity patterns might interfere with distinct neurodevelopmental processes like proliferation, migration, axonal and dendritic sprouting, synapse formation and neurotransmitter specification. Finally, we present evidence that transient alterations in neuronal activity during restricted perinatal periods can lead to persistent changes in functional connectivity and therefore might underlie the manifestation of neurological and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Oriane Blanquie
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
33
|
Ledonne F, Orduz D, Mercier J, Vigier L, Grove EA, Tissir F, Angulo MC, Pierani A, Coppola E. Targeted Inactivation of Bax Reveals a Subtype-Specific Mechanism of Cajal-Retzius Neuron Death in the Postnatal Cerebral Cortex. Cell Rep 2017; 17:3133-3141. [PMID: 28009284 DOI: 10.1016/j.celrep.2016.11.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 09/26/2016] [Accepted: 11/23/2016] [Indexed: 12/31/2022] Open
Abstract
Cajal-Retzius cells (CRs), the first-born neurons in the developing cerebral cortex, coordinate crucial steps in the construction of functional circuits. CRs are thought to be transient, as they disappear during early postnatal life in both mice and humans, where their abnormal persistence is associated with pathological conditions. Embryonic CRs comprise at least three molecularly and functionally distinct subtypes: septum, ventral pallium/pallial-subpallial boundary (PSB), and hem. However, whether subtype-specific features exist postnatally and through which mechanisms they disappear remain unknown. We report that CR subtypes display unique distributions and dynamics of death in the postnatal mouse cortex. Surprisingly, although all CR subtypes undergo cell death, septum, but not hem, CRs die in a Bax-dependent manner. Bax-inactivated rescued septum-CRs maintain immature electrophysiological properties. These results underlie the existence of an exquisitely refined control of developmental cell death and provide a model to test the effect of maintaining immature circuits in the adult neocortex.
Collapse
Affiliation(s)
- Fanny Ledonne
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex 13, France
| | - David Orduz
- INSERM U1128, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Judith Mercier
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex 13, France
| | - Lisa Vigier
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex 13, France
| | | | - Fadel Tissir
- Université Catholique de Louvain, Institute of Neuroscience, 1200 Brussels, Belgium
| | - Maria Cecilia Angulo
- INSERM U1128, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Alessandra Pierani
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex 13, France.
| | - Eva Coppola
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex 13, France.
| |
Collapse
|
34
|
Kilb W, Fukuda A. Taurine as an Essential Neuromodulator during Perinatal Cortical Development. Front Cell Neurosci 2017; 11:328. [PMID: 29123472 PMCID: PMC5662885 DOI: 10.3389/fncel.2017.00328] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/04/2017] [Indexed: 01/10/2023] Open
Abstract
A variety of experimental studies demonstrated that neurotransmitters are an important factor for the development of the central nervous system, affecting neurodevelopmental events like neurogenesis, neuronal migration, programmed cell death, and differentiation. While the role of the classical neurotransmitters glutamate and gamma-aminobutyric acid (GABA) on neuronal development is well established, the aminosulfonic acid taurine has also been considered as possible neuromodulator during early neuronal development. The purpose of the present review article is to summarize the properties of taurine as neuromodulator in detail, focusing on the direct involvement of taurine on various neurodevelopmental events and the regulation of neuronal activity during early developmental epochs. The current knowledge is that taurine lacks a synaptic release mechanism but is released by volume-sensitive organic anion channels and/or a reversal of the taurine transporter. Extracellular taurine affects neurons and neuronal progenitor cells mainly via glycine, GABA(A), and GABA(B) receptors with considerable receptor and subtype-specific affinities. Taurine has been shown to directly influence neurogenesis in vitro as well as neuronal migration in vitro and in vivo. It provides a depolarizing signal for a variety of neuronal population in the immature central nervous system, thereby directly influencing neuronal activity. While in the neocortex, taurine probably enhance neuronal activity, in the immature hippocampus, a tonic taurinergic tone might be necessary to attenuate activity. In summary, taurine must be considered as an essential modulator of neurodevelopmental events, and possible adverse consequences on fetal and/or early postnatal development should be evaluated for pharmacological therapies affecting taurinergic functions.
Collapse
Affiliation(s)
- Werner Kilb
- Institute of Physiology, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
35
|
Homeostatic interplay between electrical activity and neuronal apoptosis in the developing neocortex. Neuroscience 2017; 358:190-200. [PMID: 28663094 DOI: 10.1016/j.neuroscience.2017.06.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 12/15/2022]
Abstract
An intriguing feature of nervous system development in most animal species is that the initial number of generated neurons is higher than the number of neurons incorporated into mature circuits. A substantial portion of neurons is indeed eliminated via apoptosis during a short time window - in rodents the first two postnatal weeks. While it is well established that neurotrophic factors play a central role in controlling neuronal survival and apoptosis in the peripheral nervous system (PNS), the situation is less clear in the central nervous system (CNS). In postnatal rodent neocortex, the peak of apoptosis coincides with the occurrence of spontaneous, synchronous activity patterns. In this article, we review recent results that demonstrate the important role of electrical activity for neuronal survival in the neocortex, describe the role of Ca2+ and neurotrophic factors in translating electrical activity into pro-survival signals, and finally discuss the clinical impact of the tight relation between electrical activity and neuronal survival versus apoptosis.
Collapse
|
36
|
Luhmann HJ, Khazipov R. Neuronal activity patterns in the developing barrel cortex. Neuroscience 2017; 368:256-267. [PMID: 28528963 DOI: 10.1016/j.neuroscience.2017.05.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 11/26/2022]
Abstract
The developing barrel cortex reveals a rich repertoire of neuronal activity patterns, which have been also found in other sensory neocortical areas and in other species including the somatosensory cortex of preterm human infants. The earliest stage is characterized by asynchronous, sparse single-cell firing at low frequencies. During the second stage neurons show correlated firing, which is initially mediated by electrical synapses and subsequently transforms into network bursts depending on chemical synapses. Activity patterns during this second stage are synchronous plateau assemblies, delta waves, spindle bursts and early gamma oscillations (EGOs). In newborn rodents spindle bursts and EGOs occur spontaneously or can be elicited by sensory stimulation and synchronize the activity in a barrel-related columnar network with topographic organization at the day of birth. Interfering with this early activity causes a disturbance in the development of the cortical architecture, indicating that spindle bursts and EGOs influence the formation of cortical columns. Early neuronal activity also controls the rate of programed cell death in the developing barrel cortex, suggesting that spindle bursts and EGOs are physiological activity patterns particularly suited to suppress apoptosis. It remains to be studied in more detail how these different neocortical activity patterns control early developmental processes such as formation of synapses, microcircuits, topographic maps and large-scale networks.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany.
| | - Rustem Khazipov
- INMED - INSERM, Aix-Marseille University, Marseille 13273, France; Laboratory of Neurobiology, Kazan Federal University, Kazan 420008, Russia
| |
Collapse
|
37
|
Meyer G, González-Gómez M. The Subpial Granular Layer and Transient Versus Persisting Cajal-Retzius Neurons of the Fetal Human Cortex. Cereb Cortex 2017; 28:2043-2058. [DOI: 10.1093/cercor/bhx110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022] Open
Affiliation(s)
- Gundela Meyer
- Units of Anatomy (MGG) and Histology (GM), Department of Basic Medical Science, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Miriam González-Gómez
- Units of Anatomy (MGG) and Histology (GM), Department of Basic Medical Science, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| |
Collapse
|
38
|
Mahmoudzadeh M, Wallois F, Kongolo G, Goudjil S, Dehaene-Lambertz G. Functional Maps at the Onset of Auditory Inputs in Very Early Preterm Human Neonates. Cereb Cortex 2017; 27:2500-2512. [PMID: 27102655 DOI: 10.1093/cercor/bhw103] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
During the last trimester of human gestation, neurons reach their final destination and establish long- and short-distance connections. Due to the difficulties obtaining functional data at this age, the characteristics of the functional architecture at the onset of sensory thalamocortical connectivity in humans remain largely unknown. In particular, it is unknown to what extent responses evoked by an external stimulus are general or already sensitive to certain stimuli. In the present study, we recorded high-density event-related potentials (ERPs) in 19 neonates, tested ten weeks before term (28-32 weeks gestational age (wGA), that is, at an average age of 30 wGA) by means of a syllable discrimination task (i.e., a phonetic change: ba vs. ga; and a voice change: male vs. female voice). We first observed that the syllables elicited 4 peaks with distinct topographies implying a progression of the sensory input along a processing hierarchy; second, repetition induced a decrease in the amplitude (repetition suppression) of these peaks, but their latencies and topographies remained stable; and third, a change of stimulus generated mismatch responses, which were more precisely time-locked to event onset in the case of a phonetic change than in the case of a voice change. A hierarchical and parallel functional architecture is therefore able to process environmental sounds in a timely precise fashion, well before term birth. This elaborate functional architecture at the onset of extrinsic neural activity suggests that specialized areas weakly dependent on the environment are present in the perisylvian region as part of the genetic endowment of the human species.
Collapse
Affiliation(s)
- Mahdi Mahmoudzadeh
- INSERM, U1105, GRAMFC, Université de Picardie, CHU Nord, Amiens F80000, France
| | - Fabrice Wallois
- INSERM, U1105, GRAMFC, Université de Picardie, CHU Nord, Amiens F80000, France
| | - Guy Kongolo
- INSERM, U1105, GRAMFC, Université de Picardie, CHU Nord, Amiens F80000, France
| | - Sabrina Goudjil
- INSERM, U1105, GRAMFC, Université de Picardie, CHU Nord, Amiens F80000, France
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, CNRS, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, Gif/Yvette 91191, France
| |
Collapse
|
39
|
|
40
|
de Frutos C, Bouvier G, Arai Y, Thion M, Lokmane L, Keita M, Garcia-Dominguez M, Charnay P, Hirata T, Riethmacher D, Grove E, Tissir F, Casado M, Pierani A, Garel S. Reallocation of Olfactory Cajal-Retzius Cells Shapes Neocortex Architecture. Neuron 2016; 92:435-448. [DOI: 10.1016/j.neuron.2016.09.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 07/13/2016] [Accepted: 09/06/2016] [Indexed: 11/25/2022]
|
41
|
Luhmann HJ, Sinning A, Yang JW, Reyes-Puerta V, Stüttgen MC, Kirischuk S, Kilb W. Spontaneous Neuronal Activity in Developing Neocortical Networks: From Single Cells to Large-Scale Interactions. Front Neural Circuits 2016; 10:40. [PMID: 27252626 PMCID: PMC4877528 DOI: 10.3389/fncir.2016.00040] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/06/2016] [Indexed: 11/13/2022] Open
Abstract
Neuronal activity has been shown to be essential for the proper formation of neuronal circuits, affecting developmental processes like neurogenesis, migration, programmed cell death, cellular differentiation, formation of local and long-range axonal connections, synaptic plasticity or myelination. Accordingly, neocortical areas reveal distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, when immature neurons start to develop voltage-dependent channels, spontaneous activity is highly synchronized within small neuronal networks and governed by electrical synaptic transmission. Subsequently, spontaneous activity patterns become more complex, involve larger networks and propagate over several neocortical areas. The developmental shift from local to large-scale network activity is accompanied by a gradual shift from electrical to chemical synaptic transmission with an initial excitatory action of chloride-gated channels activated by GABA, glycine and taurine. Transient neuronal populations in the subplate (SP) support temporary circuits that play an important role in tuning early neocortical activity and the formation of mature neuronal networks. Thus, early spontaneous activity patterns control the formation of developing networks in sensory cortices, and disturbances of these activity patterns may lead to long-lasting neuronal deficits.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Vicente Reyes-Puerta
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Maik C Stüttgen
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| |
Collapse
|
42
|
Kummer M, Kirmse K, Zhang C, Haueisen J, Witte OW, Holthoff K. Column-like Ca(2+) clusters in the mouse neonatal neocortex revealed by three-dimensional two-photon Ca(2+) imaging in vivo. Neuroimage 2016; 138:64-75. [PMID: 27222218 DOI: 10.1016/j.neuroimage.2016.05.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/27/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022] Open
Abstract
Neuronal network activity in the developing brain is generated in a discontinuous manner. In the visual cortex during the period of physiological blindness of immaturity, this activity mainly comprises retinally triggered spindle bursts or Ca(2+) clusters thought to contribute to the activity-dependent construction of cortical circuits. In spite of potentially important developmental functions, the spatial structure of these activity patterns remains largely unclear. In order to address this issue, we here used three-dimensional two-photon Ca(2+) imaging in the visual cortex of neonatal mice at postnatal days (P) 3-4 in vivo. Large-scale voxel imaging covering a cortical depth of 200μm revealed that Ca(2+) clusters, identified as spindle bursts in simultaneous extracellular recordings, recruit cortical glutamatergic neurons of the upper cortical plate (CP) in a column-like manner. Specifically, the majority of Ca(2+) clusters exhibit prominent horizontal confinement and high intra-cluster density of activation involving the entire depth of the upper CP. Moreover, using simultaneous Ca(2+) imaging from hundreds of neurons at single-cellular resolution, we demonstrate that the degree of neuronal co-activation within Ca(2+) clusters displays substantial heterogeneity. We further provide evidence that co-activated cells within Ca(2+) clusters are spatially distributed in a non-stochastic manner. In summary, our data support the conclusion that dense coding in the form of column-like Ca(2+) clusters is a characteristic property of network activity in the developing visual neocortex. Such knowledge is expected to be relevant for a refined understanding of how specific spatiotemporal characteristics of early network activity instruct the development of cortical circuits.
Collapse
Affiliation(s)
- Michael Kummer
- Hans-Berger Department of Neurology, University Hospital Jena, D-07747 Jena, Germany
| | - Knut Kirmse
- Hans-Berger Department of Neurology, University Hospital Jena, D-07747 Jena, Germany
| | - Chuanqiang Zhang
- Hans-Berger Department of Neurology, University Hospital Jena, D-07747 Jena, Germany
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technical University Ilmenau, D-98693 Ilmenau, Germany
| | - Otto W Witte
- Hans-Berger Department of Neurology, University Hospital Jena, D-07747 Jena, Germany
| | - Knut Holthoff
- Hans-Berger Department of Neurology, University Hospital Jena, D-07747 Jena, Germany.
| |
Collapse
|
43
|
Gabbott PLA. "Subpial Fan Cell" - A Class of Calretinin Neuron in Layer 1 of Adult Monkey Prefrontal Cortex. Front Neuroanat 2016; 10:28. [PMID: 27147978 PMCID: PMC4829592 DOI: 10.3389/fnana.2016.00028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022] Open
Abstract
Layer 1 of the cortex contains populations of neurochemically distinct neurons and afferent fibers which markedly affect neural activity in the apical dendritic tufts of pyramidal cells. Understanding the causal mechanisms requires knowledge of the cellular architecture and synaptic organization of layer 1. This study has identified eight morphological classes of calretinin immunopositive (CRet+) neurons (including Cajal-Retzius cells) in layer 1 of the prefrontal cortex (PFC) in adult monkey (Macaca fasicularis), with a distinct class — termed “subpial fan (SPF) cell” — described in detail. SPF cells were rare horizontal unipolar CRet+ cells located directly beneath the pia with a single thick primary dendrite that branched into a characteristic fan-like dendritic tree tangential to the pial surface. Dendrites had spines, filamentous processes and thorny branchlets. SPF cells lay millimeters apart with intralaminar axons that ramified widely in upper layer 1. Such cells were GABA immunonegative (-) and occurred in areas beyond PFC. Interspersed amidst SPF cells displaying normal structural integrity were degenerating CRet+ neurons (including SPF cells) and clumps of lipofuscin-rich cellular debris. The number of degenerating SPF cells increased during adulthood. Ultrastructural analyses indicated SPF cell somata received asymmetric (A — presumed excitatory) and symmetric (S — presumed inhibitory) synaptic contacts. Proximal dendritic shafts received mainly S-type and distal shafts mostly A-type input. All dendritic thorns and most dendritic spines received both synapse types. The tangential areal density of SPF cell axonal varicosities varied radially from parent somata — with dense clusters in more distal zones. All boutons formed A-type contacts with CRet- structures. The main post-synaptic targets were dendritic shafts (67%; mostly spine-bearing) and dendritic spines (24%). SPF-SPF cell innervation was not observed. Morphometry of SPF cells indicated a unique class of CRet+/GABA- neuron in adult monkey PFC — possibly a subtype of persisting Cajal-Retzius cell. The distribution and connectivity of SPF cells suggest they act as integrative hubs in upper layer 1 during postnatal maturation. The main synaptic output of SPF cells likely provides a transminicolumnar excitatory influence across swathes of apical dendritic tufts — thus affecting information processing in discrete patches of layer 1 in adult monkey PFC.
Collapse
Affiliation(s)
- Paul L A Gabbott
- Neural Architectonics CentreOxford, UK; Department of Life, Health, and Chemical Sciences, The Open UniversityMilton Keynes, UK; University Department of Pharmacology, University of OxfordOxford, UK
| |
Collapse
|
44
|
Tkachenko LA, Zykin PA, Nasyrov RA, Krasnoshchekova EI. Distinctive Features of the Human Marginal Zone and Cajal-Retzius Cells: Comparison of Morphological and Immunocytochemical Features at Midgestation. Front Neuroanat 2016; 10:26. [PMID: 27047346 PMCID: PMC4797683 DOI: 10.3389/fnana.2016.00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/04/2016] [Indexed: 12/13/2022] Open
Abstract
Despite a long history of research of cortical marginal zone (MZ) organization and development, a number of issues remain unresolved. One particular issue is the problem of Cajal-Retzius cells (C-R) identification. It is currently based on morphology and Reelin expression. The aim of this research is to investigate MZ cytoarchitectonics and Reelin-producing cells morphotypes in the superior temporal, pre- and postcentral cortex at GW24-26. We used Reelin (Reln) as the marker for C-R cells and microtubule-associated protein 2 (MAP2) and neurofilament heavy chain protein (N200) as markers of neuronal maturation. The MZ of all of the investigated areas had the distinct cytoarchitectonic of alternating cell sparse (MZP, SR) and cell dense (SGL, DGL) layers. The distribution of the neuromarkers across the MZ also showed layer specificity. MAP2-positive cells were only found in the SGL. N200 and Reelin-positive neurons in the MZP. N200-positive processes were forming a plexus at the DGL level. All of the N200-positive neurons found were in the MZP and had distinctive morphological features of C-R cells. All of the N200-positive neurons in MZ were also positive for Reelin, whereas MAP2-positive cells lack Reelin. Thus, the joint use of two immunomarkers allowed us to discern the C-R cells based on their morphotype and neurochemistry and indicate that the Reelin-positive cells of MZ at 24-26 GW were morphologically C-R cells. In the current study, we identified three C-R cells morphotypes. Using a 3D reconstruction, we made sure that all of them belonged to the single morphotype of triangular C-R cells. This approach will allow future studies to separate C-R cells from other Reelin-producing neurons which appear at later corticogenesis stages. In addition, our findings support the assumption that a plexus could be formed not only with C-R cells processes but also possibly by other cell processes by the poorly researched DGL, which is only allocated as a part of the human MZ.
Collapse
Affiliation(s)
- Lyubov A. Tkachenko
- Laboratory of Functional Neuromorphology, Department of Cytology and Histology, Saint-Petersburg State UniversitySaint-Petersburg, Russia
| | - Pavel A. Zykin
- Laboratory of Functional Neuromorphology, Department of Cytology and Histology, Saint-Petersburg State UniversitySaint-Petersburg, Russia
| | - Ruslan A. Nasyrov
- Department of Pathological Anatomy, Saint-Petersburg State Pediatric Medical UniversitySaint-Petersburg, Russia
| | - Elena I. Krasnoshchekova
- Laboratory of Functional Neuromorphology, Department of Cytology and Histology, Saint-Petersburg State UniversitySaint-Petersburg, Russia
| |
Collapse
|
45
|
Tang BL. Rab, Arf, and Arl-Regulated Membrane Traffic in Cortical Neuron Migration. J Cell Physiol 2015; 231:1417-23. [DOI: 10.1002/jcp.25261] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
| |
Collapse
|
46
|
Ohtaka-Maruyama C, Okado H. Molecular Pathways Underlying Projection Neuron Production and Migration during Cerebral Cortical Development. Front Neurosci 2015; 9:447. [PMID: 26733777 PMCID: PMC4682034 DOI: 10.3389/fnins.2015.00447] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022] Open
Abstract
Glutamatergic neurons of the mammalian cerebral cortex originate from radial glia (RG) progenitors in the ventricular zone (VZ). During corticogenesis, neuroblasts migrate toward the pial surface using two different migration modes. One is multipolar (MP) migration with random directional movement, and the other is locomotion, which is a unidirectional movement guided by the RG fiber. After reaching their final destination, the neurons finalize their migration by terminal translocation, which is followed by maturation via dendrite extension to initiate synaptogenesis and thereby complete neural circuit formation. This switching of migration modes during cortical development is unique in mammals, which suggests that the RG-guided locomotion mode may contribute to the evolution of the mammalian neocortical 6-layer structure. Many factors have been reported to be involved in the regulation of this radial neuronal migration process. In general, the radial migration can be largely divided into four steps; (1) maintenance and departure from the VZ of neural progenitor cells, (2) MP migration and transition to bipolar cells, (3) RG-guided locomotion, and (4) terminal translocation and dendrite maturation. Among these, many different gene mutations or knockdown effects have resulted in failure of the MP to bipolar transition (step 2), suggesting that it is a critical step, particularly in radial migration. Moreover, this transition occurs at the subplate layer. In this review, we summarize recent advances in our understanding of the molecular mechanisms underlying each of these steps. Finally, we discuss the evolutionary aspects of neuronal migration in corticogenesis.
Collapse
Affiliation(s)
- Chiaki Ohtaka-Maruyama
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science Tokyo, Japan
| | - Haruo Okado
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science Tokyo, Japan
| |
Collapse
|
47
|
Cionni M, Menke C, Stottmann RW. Novel genetic tools facilitate the study of cortical neuron migration. Mamm Genome 2015; 27:8-16. [PMID: 26662625 DOI: 10.1007/s00335-015-9615-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
Key facets of mammalian forebrain cortical development include the radial migration of projection neurons and subsequent cellular differentiation into layer-specific subtypes. Inappropriate regulation of these processes can lead to a number of congenital brain defects in both mouse and human, including lissencephaly and intellectual disability. The genes regulating these processes are still not all identified, suggesting genetic analyses will continue to be a powerful tool in mechanistically studying the development of the cerebral cortex. Reelin is a molecule which we have understood to be critical for proper cortical development for many years. The precise mechanism of Reelin, however, is not fully understood. To address both of these unresolved issues, we report here the creation of a novel conditional allele of the Reelin gene and showcase the use of an Etv1-GFP transgenic line highlighting a subpopulation of the cortex: layer V pyramidal neurons. Together, these represent genetic tools which may facilitate the study of cortical development in a number of different ways.
Collapse
Affiliation(s)
- Megan Cionni
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., MLC 7016, Cincinnati, OH, 45229, USA
| | - Chelsea Menke
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., MLC 7016, Cincinnati, OH, 45229, USA
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., MLC 7016, Cincinnati, OH, 45229, USA. .,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
48
|
Luhmann HJ, Fukuda A, Kilb W. Control of cortical neuronal migration by glutamate and GABA. Front Cell Neurosci 2015; 9:4. [PMID: 25688185 PMCID: PMC4311642 DOI: 10.3389/fncel.2015.00004] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/06/2015] [Indexed: 11/13/2022] Open
Abstract
Neuronal migration in the cortex is controlled by the paracrine action of the classical neurotransmitters glutamate and GABA. Glutamate controls radial migration of pyramidal neurons by acting primarily on NMDA receptors and regulates tangential migration of inhibitory interneurons by activating non-NMDA and NMDA receptors. GABA, acting on ionotropic GABAA-rho and GABAA receptors, has a dichotomic action on radially migrating neurons by acting as a GO signal in lower layers and as a STOP signal in upper cortical plate (CP), respectively. Metabotropic GABAB receptors promote radial migration into the CP and tangential migration of interneurons. Besides GABA, the endogenous GABAergic agonist taurine is a relevant agonist controlling radial migration. To a smaller extent glycine receptor activation can also influence radial and tangential migration. Activation of glutamate and GABA receptors causes increases in intracellular Ca(2+) transients, which promote neuronal migration by acting on the cytoskeleton. Pharmacological or genetic manipulation of glutamate or GABA receptors during early corticogenesis induce heterotopic cell clusters in upper layers and loss of cortical lamination, i.e., neuronal migration disorders which can be associated with neurological or neuropsychiatric diseases. The pivotal role of NMDA and ionotropic GABA receptors in cortical neuronal migration is of major clinical relevance, since a number of drugs acting on these receptors (e.g., anti-epileptics, anesthetics, alcohol) may disturb the normal migration pattern when present during early corticogenesis.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - A Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Shizuoka, Japan
| | - W Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| |
Collapse
|
49
|
Abdijadid S, Mathern GW, Levine MS, Cepeda C. Basic mechanisms of epileptogenesis in pediatric cortical dysplasia. CNS Neurosci Ther 2014; 21:92-103. [PMID: 25404064 DOI: 10.1111/cns.12345] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/29/2014] [Accepted: 10/03/2014] [Indexed: 12/25/2022] Open
Abstract
Cortical dysplasia (CD) is a neurodevelopmental disorder due to aberrant cell proliferation and differentiation. Advances in neuroimaging have proven effective in early identification of the more severe lesions and timely surgical removal to treat epilepsy. However, the exact mechanisms of epileptogenesis are not well understood. This review examines possible mechanisms based on anatomical and electrophysiological studies. CD can be classified as CD type I consisting of architectural abnormalities, CD type II with the presence of dysmorphic cytomegalic neurons and balloon cells, and CD type III which occurs in association with other pathologies. Use of freshly resected brain tissue has allowed a better understanding of basic mechanisms of epileptogenesis and has delineated the role of abnormal cells and synaptic activity. In CD type II, it was demonstrated that balloon cells do not initiate epileptic activity, whereas dysmorphic cytomegalic and immature neurons play an important role in generation and propagation of epileptic discharges. An unexpected finding in pediatric CD was that GABA synaptic activity is not reduced, and in fact, it may facilitate the occurrence of epileptic activity. This could be because neuronal circuits display morphological and functional signs of dysmaturity. In consequence, drugs that increase GABA function may prove ineffective in pediatric CD. In contrast, drugs that counteract depolarizing actions of GABA or drugs that inhibit the mammalian target of rapamycin (mTOR) pathway could be more effective.
Collapse
Affiliation(s)
- Sara Abdijadid
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | |
Collapse
|