1
|
Bellver-Sanchis A, Ávila-López PA, Tic I, Valle-García D, Ribalta-Vilella M, Labrador L, Banerjee DR, Guerrero A, Casadesus G, Poulard C, Pallàs M, Griñán-Ferré C. Neuroprotective effects of G9a inhibition through modulation of peroxisome-proliferator activator receptor gamma-dependent pathways by miR-128. Neural Regen Res 2024; 19:2532-2542. [PMID: 38526289 PMCID: PMC11090428 DOI: 10.4103/1673-5374.393102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 03/26/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202419110-00033/figure1/v/2024-03-08T184507Z/r/image-tiff Dysregulation of G9a, a histone-lysine N-methyltransferase, has been observed in Alzheimer's disease and has been correlated with increased levels of chronic inflammation and oxidative stress. Likewise, microRNAs are involved in many biological processes and diseases playing a key role in pathogenesis, especially in multifactorial diseases such as Alzheimer's disease. Therefore, our aim has been to provide partial insights into the interconnection between G9a, microRNAs, oxidative stress, and neuroinflammation. To better understand the biology of G9a, we compared the global microRNA expression between senescence-accelerated mouse-prone 8 (SAMP8) control mice and SAMP8 treated with G9a inhibitor UNC0642. We found a downregulation of miR-128 after a G9a inhibition treatment, which interestingly binds to the 3' untranslated region (3'-UTR) of peroxisome-proliferator activator receptor γ (PPARG) mRNA. Accordingly, Pparg gene expression levels were higher in the SAMP8 group treated with G9a inhibitor than in the SAMP8 control group. We also observed modulation of oxidative stress responses might be mainly driven Pparg after G9a inhibitor. To confirm these antioxidant effects, we treated primary neuron cell cultures with hydrogen peroxide as an oxidative insult. In this setting, treatment with G9a inhibitor increases both cell survival and antioxidant enzymes. Moreover, up-regulation of PPARγ by G9a inhibitor could also increase the expression of genes involved in DNA damage responses and apoptosis. In addition, we also described that the PPARγ/AMPK axis partially explains the regulation of autophagy markers expression. Finally, PPARγ/GADD45α potentially contributes to enhancing synaptic plasticity and neurogenesis after G9a inhibition. Altogether, we propose that pharmacological inhibition of G9a leads to a neuroprotective effect that could be due, at least in part, by the modulation of PPARγ-dependent pathways by miR-128.
Collapse
Affiliation(s)
- Aina Bellver-Sanchis
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
| | - Pedro A. Ávila-López
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Iva Tic
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
| | - David Valle-García
- Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca, Mexico
| | - Marta Ribalta-Vilella
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
| | - Luis Labrador
- Department of Pharmacology and Therapeutics, Health Science Center-University of Florida, Gainesville, FL, USA
| | - Deb Ranjan Banerjee
- Department of Chemistry, National Institute of Technology Durgapur, M G Avenue, Durgapur, West Bengal, India
| | - Ana Guerrero
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
| | - Gemma Casadesus
- Department of Pharmacology and Therapeutics, Health Science Center-University of Florida, Gainesville, FL, USA
| | - Coralie Poulard
- Cancer Research Cancer Lyon, Université de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérlogie de Lyon, Lyon, France
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Baig S, Nadaf J, Allache R, Le PU, Luo M, Djedid A, Nkili-Meyong A, Safisamghabadi M, Prat A, Antel J, Guiot MC, Petrecca K. Identity and nature of neural stem cells in the adult human subventricular zone. iScience 2024; 27:109342. [PMID: 38495819 PMCID: PMC10940989 DOI: 10.1016/j.isci.2024.109342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/26/2023] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
The existence of neural stem cells (NSCs) in adult human brain neurogenic regions remains unresolved. To address this, we created a cell atlas of the adult human subventricular zone (SVZ) derived from fresh neurosurgical samples using single-cell transcriptomics. We discovered 2 adult radial glia (RG)-like populations, aRG1 and aRG2. aRG1 shared features with fetal early RG (eRG) and aRG2 were transcriptomically similar to fetal outer RG (oRG). We also captured early neuronal and oligodendrocytic NSC states. We found that the biological programs driven by their transcriptomes support their roles as early lineage NSCs. Finally, we show that these NSCs have the potential to transition between states and along lineage trajectories. These data reveal that multipotent NSCs reside in the adult human SVZ.
Collapse
Affiliation(s)
- Salma Baig
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Javad Nadaf
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Redouane Allache
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Phuong U. Le
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Michael Luo
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Annisa Djedid
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Andriniaina Nkili-Meyong
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Maryam Safisamghabadi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Alex Prat
- Neuroimmunology Research Lab, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X0A9, Canada
| | - Jack Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Marie-Christine Guiot
- Department of Neuropathology, Montreal Neurological Institute-Hospital, McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| |
Collapse
|
3
|
Wang S, Xie Z, Jun T, Ma X, Zhang M, Rao F, Xu H, Lu J, Ding X, Li Z. Identification of potential crucial genes and therapeutic targets for epilepsy. Eur J Med Res 2024; 29:43. [PMID: 38212777 PMCID: PMC10782668 DOI: 10.1186/s40001-024-01643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Epilepsy, a central neurological disorder, has a complex genetic architecture. There is some evidence suggesting that genetic factors play a role in both the occurrence of epilepsy and its treatment. However, the genetic determinants of epilepsy are largely unknown. This study aimed to identify potential therapeutic targets for epilepsy. METHODS Differentially expressed genes (DEGs) were extracted from the expression profiles of GSE44031 and GSE1834. Gene co-expression analysis was used to confirm the regulatory relationship between newly discovered epilepsy candidate genes and known epilepsy genes. Expression quantitative trait loci analysis was conducted to determine if epilepsy risk single-nucleotide polymorphisms regulate DEGs' expression in human brain tissue. Finally, protein-protein interaction analysis and drug-gene interaction analysis were performed to assess the role of DEGs in epilepsy treatment. RESULTS The study found that the protein tyrosine phosphatase receptor-type O gene (PTPRO) and the growth arrest and DNA damage inducible alpha gene (GADD45A) were significantly upregulated in epileptic rats compared to controls in both datasets. Gene co-expression analysis revealed that PTPRO was co-expressed with RBP4, NDN, PAK3, FOXG1, IDS, and IDS, and GADD45A was co-expressed with LRRK2 in human brain tissue. Expression quantitative trait loci analysis suggested that epilepsy risk single-nucleotide polymorphisms could be responsible for the altered PTPRO and GADD45A expression in human brain tissue. Moreover, the protein encoded by GADD45A had a direct interaction with approved antiepileptic drug targets, and GADD45A interacts with genistein and cisplatin. CONCLUSIONS The results of this study highlight PTPRO and GADD45A as potential genes for the diagnosis and treatment of epilepsy.
Collapse
Affiliation(s)
- Shitao Wang
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China.
| | - Zhenrong Xie
- The Medical Biobank, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Tian Jun
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Xuelu Ma
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Mengen Zhang
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Feng Rao
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Hui Xu
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Jinghong Lu
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Xiangqian Ding
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Zongyou Li
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| |
Collapse
|
4
|
Sultan FA, Sawaya BE. Gadd45 in Neuronal Development, Function, and Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:117-148. [PMID: 35505167 DOI: 10.1007/978-3-030-94804-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The growth arrest and DNA damage-inducible (Gadd) 45 proteins have been associated with numerous cellular mechanisms including cell cycle control, DNA damage sensation and repair, genotoxic stress, neoplasia, and molecular epigenetics. The genes were originally identified in in vitro screens of irradiation- and interleukin-induced transcription and have since been implicated in a host of normal and aberrant central nervous system processes. These include early and postnatal development, injury, cancer, memory, aging, and neurodegenerative and psychiatric disease states. The proteins act through a variety of molecular signaling cascades including the MAPK cascade, cell cycle control mechanisms, histone regulation, and epigenetic DNA demethylation. In this review, we provide a comprehensive discussion of the literature implicating each of the three members of the Gadd45 family in these processes.
Collapse
Affiliation(s)
- Faraz A Sultan
- Department of Psychiatry, Rush University, Chicago, IL, USA.
| | - Bassel E Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Departments of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
5
|
Brito DV, Kupke J, Gulmez Karaca K, Oliveira AM. Regulation of neuronal plasticity by the DNA repair associated Gadd45 proteins. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100031. [PMID: 36685757 PMCID: PMC9846468 DOI: 10.1016/j.crneur.2022.100031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/17/2022] [Accepted: 02/07/2022] [Indexed: 01/25/2023] Open
Abstract
Neurons respond rapidly to extracellular stimuli by activating signaling pathways that modulate the function of already synthetized proteins. Alternatively, signal transduction to the cell nucleus induces de novo synthesis of proteins required for long-lasting adaptations. These complementary strategies are necessary for neuronal plasticity processes that underlie, among other functions, the formation of memories. Nonetheless, it is still not fully understood how the coupling between different stimuli and the activity of constitutively and/or de novo expressed proteins gate neuronal plasticity. Here, we discuss the molecular functions of the Growth Arrest and DNA Damage 45 (Gadd45) family of proteins in neuronal adaptation. We highlight recent findings that indicate that Gadd45 family members regulate this function through multiple cellular processes (e.g., DNA demethylation, gene expression, RNA stability, MAPK signaling). We then summarize the regulation of Gadd45 expression in neurons and put forward the hypothesis that the constitutive and neuronal activity-induced pools of Gadd45 proteins have distinct and complementary roles in modulating neuronal plasticity. Therefore, we propose that Gadd45 proteins are essential for brain function and their dysfunction might underlie pathophysiological conditions such as neuropsychiatric disorders.
Collapse
Affiliation(s)
- David V.C. Brito
- Institute of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany,Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139, Faro, Portugal
| | - Janina Kupke
- Institute of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Kubra Gulmez Karaca
- Institute of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Kapittelweg 29, 6525, EN Nijmegen, the Netherlands
| | - Ana M.M. Oliveira
- Institute of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany,Corresponding author. Institute of Neurobiology, Interdisciplinary Center for Neurosciences (IZN) Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Malukiewicz J, Boere V, de Oliveira MAB, D'arc M, Ferreira JVA, French J, Housman G, de Souza CI, Jerusalinsky L, R de Melo F, M Valença-Montenegro M, Moreira SB, de Oliveira E Silva I, Pacheco FS, Rogers J, Pissinatti A, Del Rosario RCH, Ross C, Ruiz-Miranda CR, Pereira LCM, Schiel N, de Fátima Rodrigues da Silva F, Souto A, Šlipogor V, Tardif S. An Introduction to the Callithrix Genus and Overview of Recent Advances in Marmoset Research. ILAR J 2021; 61:110-138. [PMID: 34933341 DOI: 10.1093/ilar/ilab027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/12/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
We provide here a current overview of marmoset (Callithrix) evolution, hybridization, species biology, basic/biomedical research, and conservation initiatives. Composed of 2 subgroups, the aurita group (C aurita and C flaviceps) and the jacchus group (C geoffroyi, C jacchus, C kuhlii, and C penicillata), this relatively young primate radiation is endemic to the Brazilian Cerrado, Caatinga, and Atlantic Forest biomes. Significant impacts on Callithrix within these biomes resulting from anthropogenic activity include (1) population declines, particularly for the aurita group; (2) widespread geographic displacement, biological invasions, and range expansions of C jacchus and C penicillata; (3) anthropogenic hybridization; and (4) epizootic Yellow Fever and Zika viral outbreaks. A number of Brazilian legal and conservation initiatives are now in place to protect the threatened aurita group and increase research about them. Due to their small size and rapid life history, marmosets are prized biomedical models. As a result, there are increasingly sophisticated genomic Callithrix resources available and burgeoning marmoset functional, immuno-, and epigenomic research. In both the laboratory and the wild, marmosets have given us insight into cognition, social group dynamics, human disease, and pregnancy. Callithrix jacchus and C penicillata are emerging neotropical primate models for arbovirus disease, including Dengue and Zika. Wild marmoset populations are helping us understand sylvatic transmission and human spillover of Zika and Yellow Fever viruses. All of these factors are positioning marmosets as preeminent models to facilitate understanding of facets of evolution, hybridization, conservation, human disease, and emerging infectious diseases.
Collapse
Affiliation(s)
- Joanna Malukiewicz
- Primate Genetics Laboratory, German Primate Centre, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Vanner Boere
- Institute of Humanities, Arts, and Sciences, Federal University of Southern Bahia, Itabuna, Bahia, Brazil
| | | | - Mirela D'arc
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jéssica V A Ferreira
- Centro de Conservação e Manejo de Fauna da Caatinga, UNIVASF, Petrolina, Pernambuco, Brazil
| | - Jeffrey French
- Department of Psychology, University of Nebraska Omaha, Omaha, Nebraska, USA
| | | | | | - Leandro Jerusalinsky
- Instituto Chico Mendes de Conservação da Biodiversidade, Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros (ICMBio/CPB), Cabedelo, Paraíba, Brazil
| | - Fabiano R de Melo
- Department of Forest Engineering, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
- Centro de Conservação dos Saguis-da-Serra, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Mônica M Valença-Montenegro
- Instituto Chico Mendes de Conservação da Biodiversidade, Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros (ICMBio/CPB), Cabedelo, Paraíba, Brazil
| | | | - Ita de Oliveira E Silva
- Institute of Humanities, Arts, and Sciences, Federal University of Southern Bahia, Itabuna, Bahia, Brazil
| | - Felipe Santos Pacheco
- Centro de Conservação dos Saguis-da-Serra, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
- Post-Graduate Program in Animal Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Alcides Pissinatti
- Centro de Primatologia do Rio de Janeiro, Guapimirim, Rio de Janeiro, Brazil
| | - Ricardo C H Del Rosario
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Corinna Ross
- Science and Mathematics, Texas A&M University San Antonio, San Antonio, Texas, USA
- Texas Biomedical Research Institute, Southwest National Primate Research Center, San Antonio, Texas, USA
| | - Carlos R Ruiz-Miranda
- Laboratory of Environmental Sciences, Center for Biosciences and Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Luiz C M Pereira
- Centro de Conservação e Manejo de Fauna da Caatinga, UNIVASF, Petrolina, Pernambuco, Brazil
| | - Nicola Schiel
- Department of Biology, Federal Rural University of Pernambuco, Recife, Brazil
| | | | - Antonio Souto
- Department of Zoology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Vedrana Šlipogor
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Suzette Tardif
- Texas Biomedical Research Institute, Southwest National Primate Research Center, San Antonio, Texas, USA
| |
Collapse
|
7
|
Magalhães SA, Foresti ML, Barros VN, Mello LE. Marmosets have a greater diversity of c-Fos response after hyperstimulation in distinct cortical regions as compared to rats. J Comp Neurol 2020; 529:1628-1641. [PMID: 32975324 DOI: 10.1002/cne.25044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 11/06/2022]
Abstract
Previous evidence indicated a potential mechanism that might support the fact that primates exhibit greater neural integration capacity as a result of the activation of different structures of the central nervous system, as compared to rodents. The current study aimed to provide further evidence to confirm previous findings by analyzing the patterns of c-Fos expression in more neocortical structures of rats and marmosets using a more robust quantitative technique and evaluating a larger number of brain areas. Nineteen Wistar rats and 21 marmosets (Callithrix jacchus) were distributed among control groups (animals without injections) and animals injected with pentylenetetrazol (PTZ) and euthanized at different time points after stimulus. Immunohistochemical detection of c-Fos was quantified using unbiased and efficient stereological cell counting in eight neocortical regions. Marmosets had a c-Fos expression that was notably more widely expressed (5× more cells) and longer lasting (up to 3 hr) than rats. c-Fos expression in rats presented similar patterns of expression according to the function of the brain cortical structures (associative, sensorial, and motor functions), which was not observed for marmosets (in which no clear pattern could be drawn, and a more diverse profile emerged). Our results provide evidence that the marmoset brain has a greater neuronal activation after intense stimulation by means of PTZ and a more complex pattern of brain activation. We speculate that these functional differences may contribute for the understanding of the different neuronal processing capacities of the neocortex in these mammals' orders.
Collapse
Affiliation(s)
| | - Maira Licia Foresti
- Physiology Department, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto D'Or de Pesquisa e Ensino, Botafogo, Brazil
| | | | - Luiz E Mello
- Physiology Department, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto D'Or de Pesquisa e Ensino, Botafogo, Brazil
| |
Collapse
|
8
|
Apulei J, Kim N, Testa D, Ribot J, Morizet D, Bernard C, Jourdren L, Blugeon C, Di Nardo AA, Prochiantz A. Non-cell Autonomous OTX2 Homeoprotein Regulates Visual Cortex Plasticity Through Gadd45b/g. Cereb Cortex 2020; 29:2384-2395. [PMID: 29771284 DOI: 10.1093/cercor/bhy108] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/19/2018] [Indexed: 11/14/2022] Open
Abstract
The non-cell autonomous transfer of OTX2 homeoprotein transcription factor into juvenile mouse cerebral cortex regulates parvalbumin interneuron maturation and critical period timing. By analyzing gene expression in primary visual cortex of wild-type and Otx2+/GFP mice at plastic and nonplastic ages, we identified several putative genes implicated in Otx2-dependent visual cortex plasticity for ocular dominance. Cortical OTX2 infusion in juvenile mice induced Gadd45b/g expression through direct regulation of transcription. Intriguingly, a reverse effect was found in the adult, where reducing cortical OTX2 resulted in Gadd45b/g upregulation. Viral expression of Gadd45b in adult visual cortex directly induced ocular dominance plasticity with concomitant changes in MeCP2 foci within parvalbumin interneurons and in methylation states of several plasticity gene promoters, suggesting epigenetic regulation. This interaction provides a molecular mechanism for OTX2 to trigger critical period plasticity yet suppress adult plasticity.
Collapse
Affiliation(s)
- Jessica Apulei
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Namsuk Kim
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Damien Testa
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Jérôme Ribot
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - David Morizet
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Clémence Bernard
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Laurent Jourdren
- Genomic Core Facility, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, Paris, France
| | - Corinne Blugeon
- Genomic Core Facility, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, Paris, France
| | - Ariel A Di Nardo
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| |
Collapse
|
9
|
Zamboni M, Llorens-Bobadilla E, Magnusson JP, Frisén J. A Widespread Neurogenic Potential of Neocortical Astrocytes Is Induced by Injury. Cell Stem Cell 2020; 27:605-617.e5. [PMID: 32758425 PMCID: PMC7534841 DOI: 10.1016/j.stem.2020.07.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/02/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
Parenchymal astrocytes have emerged as a potential reservoir for new neurons in non-neurogenic brain regions. It is currently unclear how astrocyte neurogenesis is controlled molecularly. Here we show that Notch signaling-deficient astrocytes can generate new neurons after injury. Using single-cell RNA sequencing, we found that, when Notch signaling is blocked, astrocytes transition to a neural stem cell-like state. However, only after injury do a few of these primed astrocytes unfold a neurogenic program, including a self-amplifying progenitor-like state. Further, reconstruction of the trajectories of individual cells allowed us to uncouple astrocyte neurogenesis from reactive gliosis, which occur along independent branches. Finally, we show that cortical neurogenesis molecularly recapitulates canonical subventricular zone neurogenesis with remarkable fidelity. Our study supports a widespread potential of parenchymal astrocytes to function as dormant neural stem cells.
Collapse
Affiliation(s)
- Margherita Zamboni
- Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | | | - Jens Peter Magnusson
- Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden.
| |
Collapse
|
10
|
Bretas RV, Taoka M, Suzuki H, Iriki A. Secondary somatosensory cortex of primates: beyond body maps, toward conscious self-in-the-world maps. Exp Brain Res 2020; 238:259-272. [PMID: 31960104 PMCID: PMC7007896 DOI: 10.1007/s00221-020-05727-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/07/2020] [Indexed: 12/28/2022]
Abstract
Recent human imaging studies have revealed the involvement of the secondary somatosensory cortex (SII) in processes that require high-level information integration, such as self-consciousness, social relations, whole body representation, and metaphorical extrapolations. These functions are far beyond its known role in the formation of body maps (even in their most complex forms), requiring the integration of different information modalities in addition to somatosensory information. However, no evidence of such complex processing seems to have been detected at the neuronal level in animal experiments, which would constitute a major discrepancy between human and non-human animals. This article scrutinizes this gap, introducing experimental evidence of human and non-human primates’ SII functions set in context with their evolutionary significance and mechanisms, functionally situating the human SII as a primate brain. Based on the presented data, a new concept of a somatocentric holistic self is proposed, represented as a more comprehensive body-in-the-world map in the primate SII, taking into account evolutionary aspects that characterize the human SII and its implication in the emergence of self-consciousness. Finally, the idea of projection is introduced from the viewpoint of cognitive science, providing a logical explanation to bridge this gap between observed behavior and neurophysiological data.
Collapse
Affiliation(s)
- Rafael V Bretas
- Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Miki Taoka
- Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiroaki Suzuki
- Graduate School of Social Informatics, Aoyama Gakuin University, Tokyo, Japan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan. .,Azrieli Program in Brain, Mind and Consciousness, Canadian Institute of Advanced Research, Toronto, Canada.
| |
Collapse
|
11
|
Aparisi Rey A, Karaulanov E, Sharopov S, Arab K, Schäfer A, Gierl M, Guggenhuber S, Brandes C, Pennella L, Gruhn WH, Jelinek R, Maul C, Conrad A, Kilb W, Luhmann HJ, Niehrs C, Lutz B. Gadd45α modulates aversive learning through post-transcriptional regulation of memory-related mRNAs. EMBO Rep 2019; 20:embr.201846022. [PMID: 30948457 PMCID: PMC6549022 DOI: 10.15252/embr.201846022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 01/25/2023] Open
Abstract
Learning is essential for survival and is controlled by complex molecular mechanisms including regulation of newly synthesized mRNAs that are required to modify synaptic functions. Despite the well‐known role of RNA‐binding proteins (RBPs) in mRNA functionality, their detailed regulation during memory consolidation is poorly understood. This study focuses on the brain function of the RBP Gadd45α (growth arrest and DNA damage‐inducible protein 45 alpha, encoded by the Gadd45a gene). Here, we find that hippocampal memory and long‐term potentiation are strongly impaired in Gadd45a‐deficient mice, a phenotype accompanied by reduced levels of memory‐related mRNAs. The majority of the Gadd45α‐regulated transcripts show unusually long 3′ untranslated regions (3′UTRs) that are destabilized in Gadd45a‐deficient mice via a transcription‐independent mechanism, leading to reduced levels of the corresponding proteins in synaptosomes. Moreover, Gadd45α can bind specifically to these memory‐related mRNAs. Our study reveals a new function for extended 3′UTRs in memory consolidation and identifies Gadd45α as a novel regulator of mRNA stability.
Collapse
Affiliation(s)
- Alejandro Aparisi Rey
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Salim Sharopov
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | - Stephan Guggenhuber
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Caroline Brandes
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Luigi Pennella
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Ruth Jelinek
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christina Maul
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andrea Conrad
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christof Niehrs
- Institute of Molecular Biology, Mainz, Germany .,Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
12
|
Transcriptome analysis provides insights into the molecular mechanisms responsible for evisceration behavior in the sea cucumber Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:143-157. [PMID: 30851504 DOI: 10.1016/j.cbd.2019.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 01/05/2023]
Abstract
The sea cucumber Apostichopus japonicus (Selenka) is a valuable economic species in Southeast Asia. It has many fascinating behavioral characteristics, such as autolysis, aestivation, regeneration, and evisceration, thus it is a notable species for studies of special behaviors. Evisceration and autotomy are controlled by the neural network and involve a complicated physiological process. The occurrence of evisceration behavior in sea cucumbers is strongly related to their environment, and it negatively impacts their economic value. Evisceration behavior plays a pivotal role in the survival of A. japonicus, and when it is induced by dramatic changes in the coastal ecological environment and the aquaculture setting it can strongly affect the economic performance of this species. Although numerous studies have focused on intestinal regeneration of A. japonicus, less is known about evisceration behavior, especially its underlying molecular mechanisms. Thus, identification of genes that regulate evisceration in the sea cucumber likely will provide a scientific explanation for this significant specific behavior. In this study, Illumina sequencing (RNA-Seq) was performed on A. japonicus specimens in three states: normal (TCQ), eviscerating (TCZ), and 3 h after evisceration (TCH). In total, 129,905 unigenes were generated with an N50 length of 2651 base pairs, and 54,787 unigenes were annotated from seven functional databases (KEGG, KOG, GO, NR, NT, Interpro, and Swiss-Prot). Additionally, 190, 191, and 320 genes were identified as differentially expressed genes (DEGs) in the comparisons of TCQ vs. TCZ, TCZ vs. TCH, and TCQ vs. TCH, respectively. These DEGs mapped to 157, 113, and 190 signaling pathways in the KEGG database, respectively. KEGG analyses also revealed that potential DEGs enriched in the categories of "environmental information processing," "organismal system," "metabolism," and "cellular processes," and they were involved in evisceration behavior in A. japonicus. These DEGs are related to muscle contraction, hormone and neurotransmitter secretion, nerve and muscle damage, energy support, cellular stress, and apoptosis. In conclusion, through our comparative analysis of A. japonicus in different stages, we identified many candidate evisceration-related genes and signaling pathways that likely are involved in evisceration behavior. These results should help further elucidate the mechanisms underlying evisceration behavior in sea cucumbers.
Collapse
|
13
|
Warr N, May J, Teboul L, Suzuki T, Asami M, Perry ACF, Wells S, Greenfield A. Characterisation and use of a functional Gadd45g bacterial artificial chromosome. Sci Rep 2018; 8:17318. [PMID: 30470800 PMCID: PMC6251886 DOI: 10.1038/s41598-018-35458-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/05/2018] [Indexed: 01/23/2023] Open
Abstract
Bacterial artificial chromosomes (BACs) offer a means of manipulating gene expression and tagging gene products in the mammalian genome without the need to alter endogenous gene structure and risk deleterious phenotypic consequences. However, for a BAC clone to be useful for such purposes it must be shown to contain all the regulatory elements required for normal gene expression and allow phenotypic rescue in the absence of an endogenous gene. Here, we report identification of a functional BAC containing Gadd45g, a gene implicated in DNA repair, DNA demethylation and testis determination in mice and exhibiting a broad pattern of embryonic expression. Mouse fetuses lacking the endogenous Gadd45g gene undergo normal testis development in the presence of the Gadd45g BAC transgene. Moreover, a survey of embryonic Gadd45g expression from the BAC reveals that all reported sites of expression are maintained. This functional BAC can now be used for subsequent manipulation of the Gadd45g gene with the confidence that regulatory elements required for embryonic expression, including testis determination, are present. We describe the generation and characterisation of a Gadd45g-mCherry fluorescent reporter exhibiting strong expression in developing gonads and neural tissue, recapitulating endogenous gene expression, as evidence of this.
Collapse
Affiliation(s)
- Nick Warr
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Joel May
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
- Boston University School of Medicine, Vascular Biology Section, 650 Albany St, X720, Boston, MA, 02118, USA
| | - Lydia Teboul
- The Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Toru Suzuki
- Laboratory of Mammalian Molecular Embryology, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Maki Asami
- Laboratory of Mammalian Molecular Embryology, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Anthony C F Perry
- Laboratory of Mammalian Molecular Embryology, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Sara Wells
- The Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Andy Greenfield
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK.
| |
Collapse
|
14
|
Elsen GE, Bedogni F, Hodge RD, Bammler TK, MacDonald JW, Lindtner S, Rubenstein JLR, Hevner RF. The Epigenetic Factor Landscape of Developing Neocortex Is Regulated by Transcription Factors Pax6→ Tbr2→ Tbr1. Front Neurosci 2018; 12:571. [PMID: 30186101 PMCID: PMC6113890 DOI: 10.3389/fnins.2018.00571] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Epigenetic factors (EFs) regulate multiple aspects of cerebral cortex development, including proliferation, differentiation, laminar fate, and regional identity. The same neurodevelopmental processes are also regulated by transcription factors (TFs), notably the Pax6→ Tbr2→ Tbr1 cascade expressed sequentially in radial glial progenitors (RGPs), intermediate progenitors, and postmitotic projection neurons, respectively. Here, we studied the EF landscape and its regulation in embryonic mouse neocortex. Microarray and in situ hybridization assays revealed that many EF genes are expressed in specific cortical cell types, such as intermediate progenitors, or in rostrocaudal gradients. Furthermore, many EF genes are directly bound and transcriptionally regulated by Pax6, Tbr2, or Tbr1, as determined by chromatin immunoprecipitation-sequencing and gene expression analysis of TF mutant cortices. Our analysis demonstrated that Pax6, Tbr2, and Tbr1 form a direct feedforward genetic cascade, with direct feedback repression. Results also revealed that each TF regulates multiple EF genes that control DNA methylation, histone marks, chromatin remodeling, and non-coding RNA. For example, Tbr1 activates Rybp and Auts2 to promote the formation of non-canonical Polycomb repressive complex 1 (PRC1). Also, Pax6, Tbr2, and Tbr1 collectively drive massive changes in the subunit isoform composition of BAF chromatin remodeling complexes during differentiation: for example, a novel switch from Bcl7c (Baf40c) to Bcl7a (Baf40a), the latter directly activated by Tbr2. Of 11 subunits predominantly in neuronal BAF, 7 were transcriptionally activated by Pax6, Tbr2, or Tbr1. Using EFs, Pax6→ Tbr2→ Tbr1 effect persistent changes of gene expression in cell lineages, to propagate features such as regional and laminar identity from progenitors to neurons.
Collapse
Affiliation(s)
- Gina E. Elsen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Francesco Bedogni
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Rebecca D. Hodge
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Susan Lindtner
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Robert F. Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
- Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
15
|
Grassi D, Franz H, Vezzali R, Bovio P, Heidrich S, Dehghanian F, Lagunas N, Belzung C, Krieglstein K, Vogel T. Neuronal Activity, TGFβ-Signaling and Unpredictable Chronic Stress Modulate Transcription of Gadd45 Family Members and DNA Methylation in the Hippocampus. Cereb Cortex 2018; 27:4166-4181. [PMID: 28444170 DOI: 10.1093/cercor/bhx095] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
Neuronal activity is altered in several neurological and psychiatric diseases. Upon depolarization not only neurotransmitters are released but also cytokines and other activators of signaling cascades. Unraveling their complex implication in transcriptional control in receiving cells will contribute to understand specific central nervous system (CNS) pathologies and will be of therapeutically interest. In this study we depolarized mature hippocampal neurons in vitro using KCl and revealed increased release not only of brain-derived neurotrophic factor (BDNF) but also of transforming growth factor beta (TGFB). Neuronal activity together with BDNF and TGFB controls transcription of DNA modifying enzymes specifically members of the DNA-damage-inducible (Gadd) family, Gadd45a, Gadd45b, and Gadd45g. MeDIP followed by massive parallel sequencing and transcriptome analyses revealed less DNA methylation upon KCl treatment. Psychiatric disorder-related genes, namely Tshz1, Foxn3, Jarid2, Per1, Map3k5, and Arc are transcriptionally activated and demethylated upon neuronal activation. To analyze whether misexpression of Gadd45 family members are associated with psychiatric diseases, we applied unpredictable chronic mild stress (UCMS) as established model for depression to mice. UCMS led to reduced expression of Gadd45 family members. Taken together, our data demonstrate that Gadd45 family members are new putative targets for UCMS treatments.
Collapse
Affiliation(s)
- Daniela Grassi
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Department of Basic Biomedical Sciences, Faculty of Biomedical Science and Health, Universidad Europea de Madrid, Madrid, Spain
| | - Henriette Franz
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Riccardo Vezzali
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Patrick Bovio
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Stefanie Heidrich
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Fariba Dehghanian
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Natalia Lagunas
- Inserm U 930, Université François Rabelais, 37200 Tours, France
| | | | - Kerstin Krieglstein
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Tanja Vogel
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
16
|
Jeon H, Lee SH. From Neurons to Social Beings: Short Review of the Mirror Neuron System Research and Its Socio-Psychological and Psychiatric Implications. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2018; 16:18-31. [PMID: 29397663 PMCID: PMC5810456 DOI: 10.9758/cpn.2018.16.1.18] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/22/2017] [Accepted: 12/14/2017] [Indexed: 12/05/2022]
Abstract
The mirror neuron system (MNS) is a brain network activated when we move our body parts and when we observe the actions of other agent. Since the mirror neuron’s discovery in research on monkeys, several studies have examined its network and properties in both animals and humans. This review discusses MNS studies of animals and human MNS studies related to high-order social cognitions such as emotion and empathy, as well as relations between MNS dysfunction and mental disorders. Finally, these evidences are understood from an evolutionary perspective.
Collapse
Affiliation(s)
- Hyeonjin Jeon
- Clinical Emotion and Cognition Research Laboratory, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University Ilsan Paik Hospital, Goyang, Korea.,Department of Psychiatry, Inje University Ilsan Paik Hospital, Goyang, Korea
| |
Collapse
|
17
|
Ooi KK, Yeo CI, Mahandaran T, Ang KP, Akim AM, Cheah YK, Seng HL, Tiekink ER. G 2 /M cell cycle arrest on HT-29 cancer cells and toxicity assessment of triphenylphosphanegold(I) carbonimidothioates, Ph 3 PAu[SC(OR) = NPh], R = Me, Et, and iPr, during zebrafish development. J Inorg Biochem 2017; 166:173-181. [DOI: 10.1016/j.jinorgbio.2016.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 10/13/2016] [Accepted: 11/03/2016] [Indexed: 12/17/2022]
|
18
|
Epigenetics of Epileptogenesis-Evoked Upregulation of Matrix Metalloproteinase-9 in Hippocampus. PLoS One 2016; 11:e0159745. [PMID: 27505431 PMCID: PMC4978505 DOI: 10.1371/journal.pone.0159745] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/07/2016] [Indexed: 01/20/2023] Open
Abstract
Enhanced levels of Matrix Metalloproteinase-9 (MMP-9) have been implicated in the pathogenesis of epilepsy in humans and rodents. Lack of Mmp-9 impoverishes, whereas excess of Mmp-9 facilitates epileptogenesis. Epigenetic mechanisms driving the epileptogenesis-related upregulation of MMP-9 expression are virtually unknown. The aim of this study was to reveal these mechanisms. We analyzed hippocampi extracted from adult and pediatric patients with temporal lobe epilepsy as well as from partially and fully pentylenetetrazole kindled rats. We used a unique approach to the analysis of the kindling model results (inclusion in the analysis of rats being during kindling, and not only a group of fully kindled animals), which allowed us to separate the molecular effects exerted by the epileptogenesis from those related to epilepsy and epileptic activity. Consequently, it allowed for a disclosure of molecular mechanisms underlying causes, and not consequences, of epilepsy. Our data show that the epileptogenesis-evoked upregulation of Mmp-9 expression is regulated by removal from Mmp-9 gene proximal promoter of the two, interweaved potent silencing mechanisms–DNA methylation and Polycomb Repressive Complex 2 (PRC2)-related repression. Demethylation depends on a gradual dissociation of the DNA methyltransferases, Dnmt3a and Dnmt3b, and on progressive association of the DNA demethylation promoting protein Gadd45β to Mmp-9 proximal gene promoter in vivo. The PRC2-related mechanism relies on dissociation of the repressive transcription factor YY1 and the dissipation of the PRC2-evoked trimethylation on Lys27 of the histone H3 from the proximal Mmp-9 promoter chromatin in vivo. Moreover, we show that the DNA hydroxymethylation, a new epigenetic DNA modification, which is localized predominantly in the gene promoters and is particularly abundant in the brain, is not involved in a regulation of MMP-9 expression during the epileptogenesis in the rat hippocampus as well as in the hippocampi of pediatric and adult epileptic patients. Additionally, we have also found that despite of its transient nature, the histone modification H3S10ph is strongly and gradually accumulated during epileptogenesis in the cell nuclei and in the proximal Mmp-9 gene promoter in the hippocampus, which suggests that H3S10ph can be involved in DNA demethylation in mammals, and not only in Neurospora. The study identifies MMP-9 as the first protein coding gene which expression is regulated by DNA methylation in human epilepsy. We present a detailed epigenetic model of the epileptogenesis-evoked upregulation of MMP-9 expression in the hippocampus. To our knowledge, it is the most complex and most detailed mechanism of epigenetic regulation of gene expression ever revealed for a particular gene in epileptogenesis. Our results also suggest for the first time that dysregulation of DNA methylation found in epilepsy is a cause rather than a consequence of this condition.
Collapse
|
19
|
Matsunaga E, Nambu S, Oka M, Tanaka M, Taoka M, Iriki A. Identification of tool use acquisition-associated genes in the primate neocortex. Dev Growth Differ 2015; 57:484-495. [PMID: 26173833 PMCID: PMC11520950 DOI: 10.1111/dgd.12227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022]
Abstract
Japanese macaques are able to learn how to use rakes to take food after only a few weeks of training. Since tool-use training induced rapid morphological changes in some restricted brain areas, this system will be a good model for studying the neural basis of plasticity in human brains. To examine the mechanisms of tool-use associated brain expansion on the molecular and cellular level, here, we performed comprehensive analysis of gene expressions with microarray. We identified various transcripts showing differential expression between trained and untrained monkeys in the region around the lateral and intraparietal sulci. Among candidates, we focused on genes related to synapse formation and function. Using quantitative reverse transcription-polymerase chain reaction and histochemical analysis, we confirmed at least three genes (ADAM19, SPON2, and WIF1) with statistically different expression levels in neurons and glial cells. Comparative analysis revealed that tool use-associated genes were more obviously expressed in macaque monkeys than marmosets or mice. Thus, our findings suggest that cognitive tasks induce structural changes in the neocortex via gene expression, and that learning-associated genes innately differ with relation to learning ability.
Collapse
Affiliation(s)
- Eiji Matsunaga
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, 351-0198, Japan
| | - Sanae Nambu
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, 351-0198, Japan
| | - Mariko Oka
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, 351-0198, Japan
| | - Michio Tanaka
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, 351-0198, Japan
| | - Miki Taoka
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, 351-0198, Japan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, 351-0198, Japan
| |
Collapse
|
20
|
Tassano E, Gamucci A, Celle ME, Ronchetto P, Cuoco C, Gimelli G. Clinical and Molecular Cytogenetic Characterization of a de novo Interstitial 1p31.1p31.3 Deletion in a Boy with Moderate Intellectual Disability and Severe Language Impairment. Cytogenet Genome Res 2015; 146:39-43. [DOI: 10.1159/000431391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2015] [Indexed: 11/19/2022] Open
Abstract
Interstitial 1p deletions are rare events. Very few cases of 1p31.1p31.3 deletions characterized by variable phenotypes have been reported. No clear genotype-phenotype correlation has been determined yet. We present a child with a de novo interstitial 1p31.1p31.3 deletion, identified by array CGH, associated with intellectual disability and severe language impairment. The deleted region contains 20 OMIM genes, but we focused on GADD45A (MIM 126335; growth arrest- and DNA damage-inducible gene), LRRC7 (MIM 614453; leucine-rich repeat-containing protein 7), and NEGR1 (MIM 613173; neuronal growth regulator 1). We discuss whether these genes play a role in determining the phenotype of our patient in order to investigate the possibility of a genotype-phenotype correlation.
Collapse
|
21
|
Matsunaga E, Nambu S, Oka M, Tanaka M, Taoka M, Iriki A. Periostin, a neurite outgrowth-promoting factor, is expressed at high levels in the primate cerebral cortex. Dev Growth Differ 2015; 57:200-8. [PMID: 25703431 DOI: 10.1111/dgd.12194] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/23/2014] [Accepted: 12/23/2014] [Indexed: 01/31/2023]
Abstract
Periostin (POSTN or osteoblast specific factor) is an extracellular matrix protein originally identified as a protein highly expressed in osteoblasts. Recently, periostin has been reported to function in axon regeneration and neuroprotection. In the present study, we focused on periostin function in cortical evolution. We performed a comparative gene expression analysis of periostin between rodents (mice) and primates (marmosets and macaques). Periostin was expressed at higher levels in the primate cerebral cortex compared to the mouse cerebral cortex. Furthermore, we performed overexpression experiments of periostin in vivo and in vitro. Periostin exhibited neurite outgrowth activity in cortical neurons. These results suggested the possibility that prolonged and increased periostin expression in the primate cerebral cortex enhances the cortical plasticity of the mammalian cerebral cortex.
Collapse
Affiliation(s)
- Eiji Matsunaga
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Japan
| | | | | | | | | | | |
Collapse
|