1
|
Li B, Wang K, Wang X, Zhang Z, Huang G, Ma Y, Du Y, Gu X, Hui J. p16 INK4a Aggravated Sepsis-associated Cardiac Injury by Inhibiting the PI3K/AKT Pathway and Inducing Redox Imbalance. J Cardiovasc Transl Res 2025; 18:375-391. [PMID: 39809973 DOI: 10.1007/s12265-024-10588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
Severe sepsis can promote myocardial injury and cardiac dysfunction, but role of p16 in sepsis-induced myocardial injury remains undefined. PBMCs were collected from patients. Expression of inflammatory factors and NLRP3 pathway were detected by Western blotting and qPCR in WT and p16KO mice. Then detect cardiomyocyte apoptosis and ROS levels in vitro. Detailed pathways and mechanisms were revealed through quantitative proteomic analysis combined with GSEA and KEGG analysis. p16 was overexpressed in PBMCs of patient. p16 knockout alleviated cardiac dysfunction in LPS-induced mice and inhibited NLRP3 inflammasome pathway in vivo and in vitro. Quantitative proteomic analysis revealed that p16 knockout contributed to the activation of the PI3K/Akt pathway in LPS-induced cardiac injury. p16 knockout promoted activation of the PI3K/Akt pathway and ameliorated NLRP3 pathway inhibition and redox imbalance thus improving cardiac function in LPS-induced cardiomyopathy mice.
Collapse
Affiliation(s)
- Baihong Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University Suzhou, Jiangsu, 215000, China
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214000, China
| | - Kai Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Xiaoyan Wang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214000, China
| | - Zhixuan Zhang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214000, China
| | - Guangyi Huang
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214000, China
| | - Yiyi Ma
- Department of Ultrasonography, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214000, China
| | - Yingqiang Du
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215008, Jiangsu, China.
| | - Xin Gu
- Department of Cardiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214000, China.
| | - Jie Hui
- Department of Cardiology, The First Affiliated Hospital of Soochow University Suzhou, Jiangsu, 215000, China.
| |
Collapse
|
2
|
Nie Z, Duan N, Zhang X, Liu B, Bai S, Li X, Li W, Hu B. A two sample Mendelian randomized study of the association of sex hormones and behavioral and clinical risk factors with macular hole. Sci Rep 2025; 15:10212. [PMID: 40133317 PMCID: PMC11937307 DOI: 10.1038/s41598-024-83469-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 12/16/2024] [Indexed: 03/27/2025] Open
Abstract
Macular hole (MH) is a disease of the vitreoretinal interface that develops in relation to age and gender, and is 3.3 times more prevalent in females than in males. However, it remains inconclusive whether gender plays a role in the pathogenesis of MH. We adopted a two-sample Mendelian randomisation (MR) analysis to explore the relationship between free testosterone, bioavailable testosterone, oestradiol, menopause, smoking, alcohol consumption, type 2 diabetes, diastolic blood pressure, and systolic blood pressure and the risk of MH. We found that genetically predicted free testosterone levels in males were significantly associated with an increased risk of MH (IVW model: OR = 1.642; 95% CI, 1.162-2.322; P = 0.005), while genetically predicted oestradiol levels in females were significantly associated with a reduced risk of MH (IVW model: OR = 0.711; 95% CI, 0.517-0.978; P = 0.036). A sensitivity analysis verified the robustness of the causal relationship. MVMR results indicate that oestradiol in females is associated with MH risk using the IVW method (OR = 0.66; 95% CI, 0.47-0.88; P = 0.011). Our study demonstrates that the genetic risk of free testosterone in males and oestradiol in females may be correlated with MH risk.
Collapse
Affiliation(s)
- Zetong Nie
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Naxin Duan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiang Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Boshi Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Siqiong Bai
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Wenbo Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| | - Bojie Hu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
3
|
Smiriglia A, Lorito N, Bacci M, Subbiani A, Bonechi F, Comito G, Kowalik MA, Perra A, Morandi A. Estrogen-dependent activation of TRX2 reverses oxidative stress and metabolic dysfunction associated with steatotic disease. Cell Death Dis 2025; 16:57. [PMID: 39890799 PMCID: PMC11785963 DOI: 10.1038/s41419-025-07331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 02/03/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a spectrum of hepatic disorders, ranging from simple steatosis to steatohepatitis, with the most severe outcomes including cirrhosis, liver failure, and hepatocellular carcinoma. Notably, MASLD prevalence is lower in premenopausal women than in men, suggesting a potential protective role of estrogens in mitigating disease onset and progression. In this study, we utilized preclinical in vitro models-immortalized cell lines and hepatocyte-like cells derived from human embryonic stem cells-exposed to clinically relevant steatotic-inducing agents. These exposures led to lipid droplet (LD) accumulation, increased reactive oxygen species (ROS) levels, and mitochondrial dysfunction, along with decreased expression of markers associated with hepatocyte functionality and differentiation. Estrogen treatment in steatotic-induced liver cells resulted in reduced ROS levels and LD content while preserving mitochondrial integrity, mediated by the upregulation of mitochondrial thioredoxin 2 (TRX2), an antioxidant system regulated by the estrogen receptor. Furthermore, disruption of TRX2, either pharmacologically using auranofin or through genetic interference, was sufficient to counteract the protective effects of estrogens, highlighting a potential mechanism through which estrogens may prevent or slow MASLD progression.
Collapse
Affiliation(s)
- Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Marina Bacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Angela Subbiani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Francesca Bonechi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Marta Anna Kowalik
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy.
| |
Collapse
|
4
|
Tawarayama H, Uchida K, Hasegawa H, Yoshida M, Inoue-Yanagimachi M, Sato W, Himori N, Yamamoto M, Nakazawa T. Estrogen, via ESR2 receptor, prevents oxidative stress-induced Müller cell death and stimulates FGF2 production independently of NRF2, attenuating retinal degeneration. Exp Eye Res 2024; 248:110103. [PMID: 39303841 DOI: 10.1016/j.exer.2024.110103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
In this study, we aimed to investigate the effects of the deficient antioxidative gene, nuclear factor-erythroid 2-related factor 2 (Nrf2), on 17β-estradiol (E2)-mediated oxidative stress response, with a specific focus on growth factor production and cell death in Müller cells and retinal tissue. Administration of hydrogen peroxide (H2O2) reduced the viability of Müller cells derived from Nrf2 wild-type (WT) and knockout (KO) mice. However, this effect was more significant in the KO cells than in the WT cells. Pretreatment with E2 inhibited H2O2-induced cell death in both Nrf2 WT and KO Müller cell genotypes. Small interfering RNA-mediated gene silencing of estrogen receptor 2 (Esr2) attenuated the cell survival-promoting activity of E2 in Nrf2 KO Müller cells, while other identified estrogen receptors, Esr1 or G protein-coupled estrogen receptor 1 (Gper1), had no effect. Western blotting revealed higher ESR2 expression levels in Nrf2 KO cells than in WT Müller cells. Conditioned media from E2-and H2O2-treated Nrf2 WT or KO Müller cells enhanced the dissociated retinal cell viability compared with H2O2-treated cells. Both quantitative reverse-transcription polymerase chain reaction assay (qRT-PCR) and enzyme-linked immunosorbent assay exhibited a significant increase in fibroblast growth factor 2 (FGF2) expression levels in E2-and H2O2-treated Nrf2 WT and KO Müller cells compared to those in E2-treated cells. In vivo, administration of N-methyl-N-nitrosourea (MNU) reduced the thickness and cell density of the outer nuclear layer (ONL) in Nrf2 KO mice and enhanced the number of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells in the ONL. However, E2 administration attenuated these defects in MNU-treated mice. Concomitant administration of MNU and E2 enhanced FGF2 protein levels in retinal lysates of Nrf2 KO mice. In conclusion, E2 demonstrated a significant role in preventing oxidative stress-induced retinal cell death by stimulating FGF2 production in Müller cells, independent of the Nrf2 gene. Based on these findings, we anticipate that exogenous administration of estrogens or ESR2-selective agonists could aid in treating patients with oxidative stress-related retinal degenerative diseases such as age-related macular degeneration and retinitis pigmentosa.
Collapse
Affiliation(s)
- Hiroshi Tawarayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Keiko Uchida
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hirokazu Hasegawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Masaaki Yoshida
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Maki Inoue-Yanagimachi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Wataru Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Department of Aging Vision Healthcare, Tohoku University Graduate School of Biomedical Engineering, Sendai, 980-8579, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| |
Collapse
|
5
|
Yatoo MI, Bahader GA, Beigh SA, Khan AM, James AW, Asmi MR, Shah ZA. Neuroprotection or Sex Bias: A Protective Response to Traumatic Brain Injury in the Females. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:906-916. [PMID: 37592792 DOI: 10.2174/1871527323666230817102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023]
Abstract
Traumatic brain injury (TBI) is a major healthcare problem and a common cause of mortality and morbidity. Clinical and preclinical research suggests sex-related differences in short- and longterm outcomes following TBI; however, males have been the main focus of TBI research. Females show a protective response against TBI. Female animals in preclinical studies and women in clinical trials have shown comparatively better outcomes against mild, moderate, or severe TBI. This reflects a favorable protective nature of the females compared to the males, primarily attributed to various protective mechanisms that provide better prognosis and recovery in the females after TBI. Understanding the sex difference in the TBI pathophysiology and the underlying mechanisms remains an elusive goal. In this review, we provide insights into various mechanisms related to the anatomical, physiological, hormonal, enzymatic, inflammatory, oxidative, genetic, or mitochondrial basis that support the protective nature of females compared to males. Furthermore, we sought to outline the evidence of multiple biomarkers that are highly potential in the investigation of TBI's prognosis, pathophysiology, and treatment and which can serve as objective measures and novel targets for individualized therapeutic interventions in TBI treatment. Implementations from this review are important for the understanding of the effect of sex on TBI outcomes and possible mechanisms behind the favorable response in females. It also emphasizes the critical need to include females as a biological variable and in sufficient numbers in future TBI studies.
Collapse
Affiliation(s)
- Mohammad I Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Shuhama, Alusteng, Srinagar, 190006, Jammu and Kashmir, India
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Shafayat A Beigh
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Shuhama, Alusteng, Srinagar, 190006, Jammu and Kashmir, India
| | - Adil M Khan
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Shuhama, Alusteng, Srinagar, 190006, Jammu and Kashmir, India
| | - Antonisamy William James
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Maleha R Asmi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
6
|
Lei XL, Yang QL, Wei YZ, Qiu X, Zeng HY, Yan AM, Peng K, Li YL, Rao FQ, Chen FH, Xiang L, Wu KC. Identification of a novel ferroptosis-related gene signature associated with retinal degeneration induced by light damage in mice. Heliyon 2023; 9:e23002. [PMID: 38144322 PMCID: PMC10746433 DOI: 10.1016/j.heliyon.2023.e23002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Background Neurodegenerative retinal diseases such as retinitis pigmentosa are serious disorders that may cause irreversible visual impairment. Ferroptosis is a novel type of programmed cell death, and the involvement of ferroptosis in retinal degeneration is still unclear. This study aimed to investigate the related ferroptosis genes in a mice model of retinal degeneration induced by light damage. Methods A public dataset of GSE10528 deriving from the Gene Expression Omnibus database was analyzed to identify the differentially expressed genes (DEGs). Gene set enrichment analysis between light damage and control group was conducted. The differentially expressed ferroptosis-related genes (DE-FRGs) were subsequently identified by intersecting the DEGs with a ferroptosis genes dataset retrieved from the FerrDb database. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were further performed using the DE-FRGs. A protein-protein interaction (PPI) network was constructed to identify hub ferroptosis-related genes (HFRGs). The microRNAs (miRNAs)-HFRGs, transcription factors (TFs)-HFRGs networks as well as target drugs potentially interacting with HFRGs were analyzed utilizing bioinformatics algorithms. Results A total of 932 DEGs were identified between the light damage and control group. Among these, 25 genes were associated with ferroptosis. GO and KEGG analyses revealed that these DE-FRGs were mainly enriched in apoptotic signaling pathway, response to oxidative stress and autophagy, ferroptosis, necroptosis and cytosolic DNA-sensing pathway. Through PPI network analysis, six hub ferroptosis-related genes (Jun, Stat3, Hmox1, Atf3, Hspa5 and Ripk1) were ultimately identified. All of them were upregulated in light damage retinas, as verified by the GSE146176 dataset. Bioinformatics analyses predicated that 116 miRNAs, 23 TFs and several potential therapeutic compounds might interact with the identified HFRGs. Conclusion Our study may provide novel potential biomarkers, therapeutic targets and new insights into the ferroptosis landscape in retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin-Lan Lei
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
- Aier Eye Hospital of Wuhan University, Wuhan, China
| | - Qiao-Li Yang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yong-Zhao Wei
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
| | - Xu Qiu
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
| | - Hui-Yi Zeng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ai-Min Yan
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
| | - Kai Peng
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
| | - Ying-Lin Li
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
| | - Feng-Qin Rao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Feng-Hua Chen
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
| | - Lue Xiang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Kun-Chao Wu
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Sahin E, Orhan C, Sahin N, Padigaru M, Morde A, Lal M, Dhavan N, Erten F, Bilgic AA, Ozercan IH, Sahin K. Lutein/Zeaxanthin Isomers and Quercetagetin Combination Safeguards the Retina from Photo-Oxidative Damage by Modulating Neuroplasticity Markers and the Nrf2 Pathway. Pharmaceuticals (Basel) 2023; 16:1543. [PMID: 38004409 PMCID: PMC10675275 DOI: 10.3390/ph16111543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
Exposure to light-emitting diode (LED) light is a primary cause of retinal damage, resulting in vision loss. Several plant-derived substances, such as lutein and quercetagetin (QCG), show promise in supporting eye health. In this study, the impact of lutein/zeaxanthin (L/Z, Lutemax 2020) and QCG were evaluated individually and together in a rat model of LED-induced retinal damage. A total of 63 Wistar rats were allocated into nine groups (n = 7). For 28 days, the rats received L/Z (10 or 20 mg/kg BW), quercetin (QC, 20 mg/kg BW), QCG (10 or 20 mg/kg BW), or a mixture of different lutein and QCG dosages, after which they were exposed to LED light for 48 h. LED exposure led to a spike in serum malondialdehyde (MDA) and inflammatory cytokines, as well as an increase in retinal NF-κB, ICAM, GFAP, and MCP-1 levels (p < 0.0001 for all). It also reduced serum antioxidant enzyme activities and retinal Nrf2, HO-1, GAP43, NCAM, and outer nuclear layer (ONL) thickness (p < 0.0001 for all). However, administering L/Z and QCG, particularly a 1:1 combination of L/Z and QCG at 20 mg/kg, effectively reversed these changes. The treatment suppressed NF-κB, ICAM, GFAP, and MCP-1 while enhancing Nrf2, HO-1, GAP43, and NCAM and preventing ONL thickness reduction in LED-induced retinal damage rats. In conclusion, while LED light exposure caused retinal damage, treatment with L/Z, QC, and QCG, particularly a combined L/Z and QCG regimen, exhibited protective effects on the retina. This is possibly due to the modulation of neuroplasticity markers and nuclear transcription factors in the rats' retinal cells.
Collapse
Affiliation(s)
- Emre Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Bingol University, Bingol 12000, Turkey;
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.)
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.)
| | - Muralidhara Padigaru
- OmniActive Health Technologies Co., Ltd., Mumbai 400013, India; (M.P.); (A.M.); (M.L.); (N.D.)
| | - Abhijeet Morde
- OmniActive Health Technologies Co., Ltd., Mumbai 400013, India; (M.P.); (A.M.); (M.L.); (N.D.)
| | - Mohan Lal
- OmniActive Health Technologies Co., Ltd., Mumbai 400013, India; (M.P.); (A.M.); (M.L.); (N.D.)
| | - Nanasaheb Dhavan
- OmniActive Health Technologies Co., Ltd., Mumbai 400013, India; (M.P.); (A.M.); (M.L.); (N.D.)
| | - Fusun Erten
- Department of Veterinary Medicine, Pertek Sakine Genc Vocational School, Munzur University, Tunceli 62500, Turkey;
| | - Ahmet Alp Bilgic
- Department of Ophtalmology, Ankara Dışkapı Yıldırım Beyazıt Training and Research Hospital, University of Health Sciences, Ankara 06110, Turkey;
| | | | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.)
| |
Collapse
|
8
|
Wergenthaler N, Dick HB, Tsai T, Joachim SC. Etiology of Idiopathic Macular Holes in the Light of Estrogen Hormone. Curr Issues Mol Biol 2023; 45:6339-6351. [PMID: 37623219 PMCID: PMC10453244 DOI: 10.3390/cimb45080400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
The aim of this review was to identify a new potential explanation for the development of macular holes in relation to the female sex and to explain the possible underlying pathways. This approach was based on the evaluation of anatomical, physiological, and morphological analyses currently available in the literature. The findings showed that estrogen exerts a protective effect on the neuroretina and may influence Müller and cone cells. Both cell types are responsible for the building of the fovea structure. However, this protection may be lost due to the sudden decrease in estrogen levels during menopause. In conclusion, the fovea cones, through its sensitivity to estrogen and high energy consumption, may be very vulnerable to damage caused by a sudden changes in the concentration of estrogen in menopausal females. Such changes may result in cone degeneration, and thus a destroyed structure of the fovea, and may lead to the development of a hole in the fovea, as in the case of macular holes. This review revealed that under the decreasing influence of estrogen may cones play a key role with regard to the etiology of the development of macular holes. This aspect may be of strategic importance in prophylactic therapy for the prevention of the development of macular holes in premenopausal females or after ocular trauma.
Collapse
Affiliation(s)
- Nousal Wergenthaler
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (H.B.D.); (T.T.)
| | | | | | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (H.B.D.); (T.T.)
| |
Collapse
|
9
|
Yang R, Li J, Zhang J, Xue Q, Qin R, Wang R, Goltzman D, Miao D. 17β-estradiol plays the anti-osteoporosis role via a novel ESR1-Keap1-Nrf2 axis-mediated stress response activation and Tmem119 upregulation. Free Radic Biol Med 2023; 195:231-244. [PMID: 36592659 DOI: 10.1016/j.freeradbiomed.2022.12.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Increased oxidative stress and decreased osteoblastic bone formation contribute to estrogen deficiency-induced osteoporosis. However, the role and mechanism of estrogen-deficiency in regulating oxidative stress and osteoblastic activity remain unclear. Here, we showed that estrogen-deficient bone marrow stromal/stem cells (BMSCs) exhibited impaired capacity to combat stress, characterized by increased oxidative stress, shortened cell survival and reduced osteogenic differentiation and bone formation, which were due to a decrease of nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 re-activation induced by the pyrazinyl dithiolethione oltipraz significantly rescued the cell phenotype of estrogen-deficient BMSCs in vitro and ex vivo. Mechanistically, we found that 17β-estradiol/ESR1 (Estrogen Receptor 1) facilitated Nrf2 accumulation, and activated its target genes by competing with Nrf2 for binding to Kelch-like ECH-associated protein 1 (Keap1) via ESR1 containing a highly conserved DLL motif. Of note, oltipraz, an Nrf2 activator, rescued ovariectomy-induced osteoporosis partly by inhibiting oxidative stress and promoting osteoblastic bone formation via Nrf2-induced antioxidant signaling activation and Tmem119 (transmembrane protein 119) upregulation. Conversely, Nrf2 knockout largely blocked the bone anabolic effect of 17β-estradiol in vivo and ex vivo. This study provides insight into the mechanisms whereby estrogen prevents osteoporosis through promoting osteoblastic bone formation via Nrf2-mediated activation of antioxidant signaling and upregulation of Tmem119, and thus provides evidence for Nrf2 as a potential target for clinical prevention and treatment of menopause-related osteoporosis.
Collapse
Affiliation(s)
- Renlei Yang
- Department of Plastic Surgery, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China.
| | - Jie Li
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Department of Plastic Surgery, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qi Xue
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Ran Qin
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Rong Wang
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - David Goltzman
- Calcium Research Laboratory, McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Dengshun Miao
- Department of Plastic Surgery, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Tian X, Lou S, Shi R. From mitochondria to sarcopenia: role of 17β-estradiol and testosterone. Front Endocrinol (Lausanne) 2023; 14:1156583. [PMID: 37152937 PMCID: PMC10157222 DOI: 10.3389/fendo.2023.1156583] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Sarcopenia, characterized by a loss of muscle mass and strength with aging, is prevalent in older adults. Although the exact mechanisms underlying sarcopenia are not fully understood, evidence suggests that the loss of mitochondrial integrity in skeletal myocytes has emerged as a pivotal contributor to the complex etiology of sarcopenia. Mitochondria are the primary source of ATP production and are also involved in generating reactive oxygen species (ROS), regulating ion signals, and initiating apoptosis signals in muscle cells. The accumulation of damaged mitochondria due to age-related impairments in any of the mitochondrial quality control (MQC) processes, such as proteostasis, biogenesis, dynamics, and mitophagy, can contribute to the decline in muscle mass and strength associated with aging. Interestingly, a decrease in sex hormones (e.g., 17β-estradiol and testosterone), which occurs with aging, has also been linked to sarcopenia. Indeed, 17β-estradiol and testosterone targeted mitochondria and exhibited activities in regulating mitochondrial functions. Here, we overview the current literature on the key mechanisms by which mitochondrial dysfunction contribute to the development and progression of sarcopenia and the potential modulatory effects of 17β-estradiol and testosterone on mitochondrial function in this context. The advance in its understanding will facilitate the development of potential therapeutic agents to mitigate and manage sarcopenia.
Collapse
|
11
|
Pfeiffer RL, Jones BW. Current perspective on retinal remodeling: Implications for therapeutics. Front Neuroanat 2022; 16:1099348. [PMID: 36620193 PMCID: PMC9813390 DOI: 10.3389/fnana.2022.1099348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The retinal degenerative diseases retinitis pigmentosa and age-related macular degeneration are a leading cause of irreversible vision loss. Both present with progressive photoreceptor degeneration that is further complicated by processes of retinal remodeling. In this perspective, we discuss the current state of the field of retinal remodeling and its implications for vision-restoring therapeutics currently in development. Here, we discuss the challenges and pitfalls retinal remodeling poses for each therapeutic strategy under the premise that understanding the features of retinal remodeling in totality will provide a basic framework with which therapeutics can interface. Additionally, we discuss the potential for approaching therapeutics using a combined strategy of using diffusible molecules in tandem with other vision-restoring therapeutics. We end by discussing the potential of the retina and retinal remodeling as a model system for more broadly understanding the progression of neurodegeneration across the central nervous system.
Collapse
|
12
|
Ye W, Fan C, Fu K, Wang X, Lin J, Nian S, Liu C, Zhou W. The SAR and action mechanisms of autophagy inhibitors that eliminate drug resistance. Eur J Med Chem 2022; 244:114846. [DOI: 10.1016/j.ejmech.2022.114846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/03/2022]
|
13
|
Huang J, Zhang Z, Hao C, Qiu Y, Tan R, Liu J, Wang X, Yang W, Qu H. Identifying Drug-Induced Liver Injury Associated With Inflammation-Drug and Drug-Drug Interactions in Pharmacologic Treatments for COVID-19 by Bioinformatics and System Biology Analyses: The Role of Pregnane X Receptor. Front Pharmacol 2022; 13:804189. [PMID: 35979235 PMCID: PMC9377275 DOI: 10.3389/fphar.2022.804189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Of the patients infected with coronavirus disease 2019 (COVID-19), approximately 14–53% developed liver injury resulting in poor outcomes. Drug-induced liver injury (DILI) is the primary cause of liver injury in COVID-19 patients. In this study, we elucidated liver injury mechanism induced by drugs of pharmacologic treatments against SARS-CoV-2 (DPTS) using bioinformatics and systems biology. Totally, 1209 genes directly related to 216 DPTS (DPTSGs) were genes encoding pharmacokinetics and therapeutic targets of DPTS and enriched in the pathways related to drug metabolism of CYP450s, pregnane X receptor (PXR), and COVID-19 adverse outcome. A network, constructed by 110 candidate targets which were the shared part of DPTSGs and 445 DILI targets, identified 49 key targets and four Molecular Complex Detection clusters. Enrichment results revealed that the 4 clusters were related to inflammatory responses, CYP450s regulated by PXR, NRF2-regualted oxidative stress, and HLA-related adaptive immunity respectively. In cluster 1, IL6, IL1B, TNF, and CCL2 of the top ten key targets were enriched in COVID-19 adverse outcomes pathway, indicating the exacerbation of COVID-19 inflammation on DILI. PXR-CYP3A4 expression of cluster 2 caused DILI through inflammation-drug interaction and drug-drug interactions among pharmaco-immunomodulatory agents, including tocilizumab, glucocorticoids (dexamethasone, methylprednisolone, and hydrocortisone), and ritonavir. NRF2 of cluster 3 and HLA targets of cluster four promoted DILI, being related to ritonavir/glucocorticoids and clavulanate/vancomycin. This study showed the pivotal role of PXR associated with inflammation-drug and drug-drug interactions on DILI and highlighted the cautious clinical decision-making for pharmacotherapy to avoid DILI in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaokang Zhang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenxia Hao
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Pharmacy, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuzhen Qiu
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruoming Tan
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jialin Liu
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoli Wang
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoli Wang, ; Wanhua Yang, ; Hongping Qu,
| | - Wanhua Yang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoli Wang, ; Wanhua Yang, ; Hongping Qu,
| | - Hongping Qu
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoli Wang, ; Wanhua Yang, ; Hongping Qu,
| |
Collapse
|
14
|
Patil C, Wagh S, Patil K, Mahajan U, Bagal P, Wadkar A, Bommanhalli B, Patil P, Goyal S, Ojha S. Phloretin-induced suppression of oxidative and nitrosative stress attenuates doxorubicin-induced cardiotoxicity in rats. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.338921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
15
|
Yu N, Qiu P, Ren Q, Wen M, Geng P, Macharia DK, Zhu M, Chen Z. Transforming a Sword into a Knife: Persistent Phototoxicity Inhibition and Alternative Therapeutical Activation of Highly-Photosensitive Phytochlorin. ACS NANO 2021; 15:19793-19805. [PMID: 34851096 DOI: 10.1021/acsnano.1c07241] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The phototoxicity of photosensitizers (PSs) is a double-edged sword with one edge beneficial for destroying tumors while the other is detrimental to normal tissues, and the conventional "OFF-ON" strategy provides temporary inhibition so that phototoxicity would come sooner or later due to the inevitable retention and transformation of PSs in vivo. We herein put forward a strategy to convert "double-edged sword" PSs into "single-edged knife" ones with simultaneously persistent phototoxicity inhibition and alternative multiple therapeutical activation. The Chlorin e6 (Ce6) as the PS model directly assembles with Cu2+ ions into nanoscale frameworks (nFs) whose Cu2+-coordination includes both carboxyl groups and a porphyrin ring of Ce6 instead of Fe3+/Mn2+-coordination with only carboxyl groups. Compared to the high phototoxicity of Ce6, the nFs exhibit efficient energy transfer due to the dual-coordination of paramagnetic Cu2+ ions and the aggregation, achieving the persistent and high phototoxicity inhibition rate of >92%. Alternatively, the nFs not only activate a high photoacoustic contrast and near-infrared (NIR)-driven photothermal efficacy (3.5-fold that of free Ce6) due to the aggregation-enhanced nonradiative transition but also initiate tumor microenvironment modulation, structure disassembly, and chemodynamic effect by Cu2+ ions. Given these merits, the nFs achieve long-term biosecurity, no retina injury under sunlight, and a higher therapeutical output than the photodynamic effect of Ce6. This work presents a possibility of converting numerous highly phototoxic porphyrins into safe and efficient ones.
Collapse
Affiliation(s)
- Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pu Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qian Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mei Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Peng Geng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Daniel K Macharia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
16
|
Oxidative Stress at Birth Is Associated with the Concentration of Iron and Copper in Maternal Serum. Nutrients 2021; 13:nu13051491. [PMID: 33924889 PMCID: PMC8145844 DOI: 10.3390/nu13051491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress (OS) in the foetal and neonatal periods leads to many disorders in newborns and in later life. The nutritional status of pregnant women is considered to be one of the key factors that triggers OS. We investigated the relationship between the concentration of selected mineral elements in the blood of pregnant women and the concentration of 3′nitrotyrosine (3′NT) as a marker of OS in the umbilical cord blood of newborns. The study group consisted of 57 pregnant women and their newborn children. The concentrations of magnesium (Mg), calcium (Ca), iron (Fe), zinc (Zn) and copper (Cu) in maternal serum (MS) were measured by the flame atomic absorption/emission spectrometry (FAAS/FAES) method. The concentration of 3′NT in umbilical cord serum (UCS) of newborns was determined by the ELISA method. A positive correlation between MS Fe and UCS 3′NT in male newborns was shown (rho = 0.392, p = 0.053). Significantly higher UCS 3′NT was demonstrated in newborns, especially males, whose mothers were characterized by MS Fe higher than 400 μg/dL compared to those of mothers with MS Fe up to 300 μg/dL (p < 0.01). Moreover, a negative correlation between the MS Cu and UCS 3′NT in male newborns was observed (rho = −0.509, p = 0.008). Results of the study showed the need to develop strategies to optimize the nutritional status of pregnant women. Implementation of these strategies could contribute to reducing the risk of pre- and neonatal OS and its adverse health effects in the offspring.
Collapse
|
17
|
Yan K, Niu L, Tian H, Su F, Chen Y. Long Noncoding RNA Maternally Expressed Gene 3 Targets miR-30b and Regulates the AKT Serine/Threonine Kinase 1/Phosphoinositide 3-Kinase Signaling Pathway of H2O2-Induced Proliferation, Apoptosis, and Oxidative Stress in Retinal Ganglion Cells. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Oxidative stress is an important factor affecting retinal ganglion cell (RGC) apoptosis. RGC apoptosis is the main pathophysiological feature of visual impairment as a result of glaucoma. Recently, it has been found that long noncoding RNA (lncRNA) and microRNAs are involved in RGC
apoptosis. Here, the function of lncRNA maternally expressed gene 3 (MEG3) and miR-30b in H2 O2-induced RGC proliferation, apoptosis, and oxidative stress was investigated. The expression levels of MEG3 and miR-30b were detected by RT-PCR; the effects of MEG3 and miR-30b
on the proliferation and apoptosis of RGCs were observed by flow cytometry; the levels of apoptosis-related proteins and AKT/PI3K signal pathway proteins were detected by protein immunoassay; and the regulation of miR-34a by pvt1 was verified by in vivo and in vitro experiments.
The expression of MEG3 and miR-30b increased and decreased significantly in RGCs treated by H2O2. MEG3 expression decreased, apoptosis level-related proteins decreased, the apoptosis rate reduced, and the activity of MDA and SOD decreased. When the expression of miR-34a
was inhibited, the proliferation rate of RGCs increased, the apoptosis rate decreased, and the level of apoptosis-related proteins decreased, which reversed MEG3’s effect on RGC apoptosis and proliferation. Furthermore, pvt1 could bind the miR-30b promoter and regulate it with in
vitro expression and in vivo expression. Besides, we found that miR-30b can regulate the AKT/PI3K signaling pathway and participate in cell apoptosis and hyperplasia in stress response. LncRNA MEG3 targets miR-30b and regulates the AKT/PI3K signaling pathway on H2 O2-induced
cell apoptosis, hyperplasia, and oxidative stress of RGCs.
Collapse
Affiliation(s)
- Kai Yan
- Department of Ophthalmology, School of Nursing, Pingdingshan Polytechnic College, Pingdingshan 467001, Henan, PR China
| | - Lin Niu
- Department of Rehabilitation, College of Medical Technology and Engineering, Zhengzhou Railway Vocational and Technical College, Zhengzhou 450000, Henan, PR China
| | - Huili Tian
- Pingdingshan Federation of Persons with Disabilities Low Vision Rehabilitation Centre, Pingdingshan 467000, Henan, PR China
| | - Fanfan Su
- Department of Ophthalmology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou 434020, Hubei, PR China
| | - Yao Chen
- Department of Ophthalmology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou 434020, Hubei, PR China
| |
Collapse
|
18
|
Potilinski MC, Tate PS, Lorenc VE, Gallo JE. New insights into oxidative stress and immune mechanisms involved in age-related macular degeneration tackled by novel therapies. Neuropharmacology 2021; 188:108513. [PMID: 33662390 DOI: 10.1016/j.neuropharm.2021.108513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022]
Abstract
The prevalence of age-related macular degeneration (AMD) has increased in the last years. Although anti-VEGF agents have improved the prognosis of exudative AMD, dry AMD has still devastating effects on elderly people vision. Oxidative stress and inflammation are mechanisms involved in AMD pathogenesis and its progression. Molecular pathways involving epidermal growth factor receptor (EGFR), bone morphogenetic protein (BMP4) and the nuclear erythroid related factor 2 (Nrf2) are behind oxidative stress in AMD due to their participation in antioxidant cellular pathways. As a consequence of the disbalance produced in the antioxidant mechanisms, there is an activation of innate and adaptative immune response with cell recruitment, changes in complement factors expression, and modification of cellular milieu. Different therapies are being studied to treat dry AMD based on the possible effects on antioxidant molecular pathways or their action on the immune response. There is a wide range of treatments presented in this review, from natural antioxidant compounds to cell and gene therapy, based on their mechanisms. Finally, we hypothesize that alpha-1-antitrypsin (AAT), an anti-inflammatory and immunomodulatory molecule that can also modulate antioxidant cellular defenses, could be a good candidate for testing in AMD. This article is part of the special ssue on 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- María Constanza Potilinski
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Pablo S Tate
- Laboratorio de Enfermedades Neurodegenerativas, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Valeria E Lorenc
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Juan E Gallo
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina; Departamento de Oftalmología, Hospital Universitario Austral, Pilar, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Xiong YC, Chen T, Yang XB, Deng CL, Ning QL, Quan R, Yu XR. 17β-Oestradiol Attenuates the Photoreceptor Apoptosis in Mice with Retinitis Pigmentosa by Regulating N-myc Downstream Regulated Gene 2 Expression. Neuroscience 2020; 452:280-294. [PMID: 33246060 DOI: 10.1016/j.neuroscience.2020.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/23/2020] [Accepted: 11/08/2020] [Indexed: 10/22/2022]
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of retinal degenerative diseases in which the final pathological feature is photoreceptor cell apoptosis. Currently, the pathogenesis of RP remains poorly understood and therapeutics are ineffective. 17β-Oestradiol (βE2) is universally acknowledged as a neuroprotective factor in neurodegenerative diseases and has manifested neuroprotective effects in a light-induced retinal degeneration model. Recently, we identified N-myc downstream regulated gene 2 (NDRG2) suppression as a molecular marker of mouse retinal photoreceptor-specific cell death. βE2 has also been reported to regulate NDRG2 in salivary acinar cells. Therefore, in this study, we investigated whether βE2 plays a protective role in RP and regulates NDRG2 in photoreceptor cells. To this end, we generated RP models and observed that βE2 not only reduced the apoptosis of photoreceptor cells, but also restored the level of NDRG2 expression in RP models. Then, we showed that siNDRG2 inhibits the anti-apoptotic effect of βE2 on photoreceptor cells in a cellular RP model. Subsequently, we used a classic oestrogen receptor (ER) antagonist to attenuate the effects of βE2, suggesting that βE2 exerted its effects on RP models via the classic ERs. In addition, we performed a bioinformatics analysis, and the results indicated that the reported oestrogen response element (ERE) sequence is present in the promoter region of the mouse NDRG2 gene. Overall, our results suggest that βE2 attenuated the apoptosis of photoreceptor cells in RP models by maintaining NDRG2 expression via a classic ER-mediated mechanism.
Collapse
Affiliation(s)
- Ye-Cheng Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Tao Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiao-Bei Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chun-Lei Deng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qi-Lan Ning
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Rui Quan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiao-Rui Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
20
|
Moyano P, García JM, García J, Anadon MJ, Naval MV, Frejo MT, Sola E, Pelayo A, Pino JD. Manganese increases Aβ and Tau protein levels through proteasome 20S and heat shock proteins 90 and 70 alteration, leading to SN56 cholinergic cell death following single and repeated treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110975. [PMID: 32678756 DOI: 10.1016/j.ecoenv.2020.110975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Manganese (Mn) produces cholinergic neuronal loss in basal forebrain (BF) region that was related to cognitive dysfunction induced after single and repeated Mn treatment. All processes that generate cholinergic neuronal loss in BF remain to be understood. Mn exposure may produce the reduction of BF cholinergic neurons by increasing amyloid beta (Aβ) and phosphorylated Tau (pTau) protein levels, altering heat shock proteins' (HSPs) expression, disrupting proteasome P20S activity and generating oxidative stress. These mechanisms, described to be altered by Mn in regions different than BF, could lead to the memory and learning process alteration produced after Mn exposure. The research performed shows that single and repeated Mn treatment of SN56 cholinergic neurons from BF induces P20S inhibition, increases Aβ and pTau protein levels, produces HSP90 and HSP70 proteins expression alteration, and oxidative stress generation, being the last two effects mediated by NRF2 pathway alteration. The increment of Aβ and pTau protein levels was mediated by HSPs and proteasome dysfunction. All these mechanisms mediated the cell decline observed after Mn treatment. Our results are relevant because they may assist to reveal the processes leading to the neurotoxicity and cognitive alterations observed after Mn exposure.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Jimena García
- Department of Pharmacolgy, Health Sciences School, Alfonso X University, 28691, Madrid, Spain
| | - María José Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - María Victoria Naval
- Department of Pharmacology, Pharmacognosy and Botany, Pharmacy School, Complutense University of Madrid, 28040, Madrid, Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Emma Sola
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
21
|
17β-Estradiol strongly inhibits azoxymethane/dextran sulfate sodium-induced colorectal cancer development in Nrf2 knockout male mice. Biochem Pharmacol 2020; 182:114279. [PMID: 33068552 DOI: 10.1016/j.bcp.2020.114279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/18/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) has dual effects on inflammation and cancer progression depending on the microenvironment. Estrogens have a protective effect on colorectal cancer (CRC) development. The aim of this study was to investigate CRC development in Nrf2 knockout (KO) mice. Azoxymethane (AOM) and dextran sulfate sodium (DSS)-treated wild-type (WT) and Nrf2 KO male mice were sacrificed at weeks 2 and 16 after AOM injection with/without 17β-estradiol (E2) treatment during week 1. Disease activity index and colon tissue damage at week 2 showed strong attenuation following E2 administration in WT mice but to a lesser extent in Nrf2 KO male mice. At week 16, E2 significantly diminished AOM/DSS-induced adenoma/cancer incidence at distal colon in the Nrf2 KO group, but not in the WT. Furthermore, mRNA or protein levels of NF-κB-related mediators (i.e., iNOS, TNF-α, and IL-1β) and Nrf2-related antioxidants (i.e., NQO1 and HO-1) were significantly lower in the Nrf2 KO group regardless of E2 treatment compared to the WT. The expression of estrogen receptor beta (ERβ) was higher in the Nrf2 KO group than in the WT. In conclusion, estrogen further inhibits CRC by upregulating ERβ-related alternate pathways in the absence of Nrf2.
Collapse
|
22
|
Zhao H, You X, Chen Q, Yang S, Ma Q, He Y, Liu C, Dun Y, Wu J, Zhang C, Yuan D. Icariin Improves Age-Related Testicular Dysfunction by Alleviating Sertoli Cell Injury via Upregulation of the ER α/Nrf2-Signaling Pathway. Front Pharmacol 2020; 11:677. [PMID: 32528279 PMCID: PMC7247842 DOI: 10.3389/fphar.2020.00677] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/24/2020] [Indexed: 01/15/2023] Open
Abstract
Sertoli cells play crucial roles in spermatogenesis and are impaired by aging. Icariin, a flavonoid from Epimedium, has been reported to exhibit anti-aging effects and improve testicular dysfunction in the clinical setting. However, whether icariin improves age-related degeneration of testicular function via protection from Sertoli cell injury remains unclear. In the present study, we evaluated the protective effect of icariin on Sertoli cell injury and explored the possible mechanism(s) in vivo and in vitro. Dietary administration of icariin for 4 months significantly ameliorated the age-related decline in testicular function by increasing testicular and epididymal weights and indices, sperm count and sperm viability, testicular testosterone and estradiol concentrations, and seminiferous tubule diameters and heights. In addition, icariin protected age-related Sertoli cells from injury as evidenced by an analysis of Sertoli cell number, ultrastructure, and function. Such changes were accompanied by upregulation of ERα and Nrf2 signaling in Sertoli cells. Parallel in vitro studies also demonstrated that icariin inhibited untoward effects on the TM4 mouse Sertoli cell line with concomitant upregulation of ERα and Nrf2 signaling. Conversely, ERα siRNA reversed icariin-mediated protection of Sertoli cell injury. Our data suggest that icariin effectively ameliorates age-related degeneration of testicular function by alleviating Sertoli cell injury via the ERα/Nrf2 signal-transduction pathway. Thus, mitigating Sertoli cell damage via the ERα/Nrf2 signaling pathway likely represents a promising strategy for the prevention of age-related testicular dysfunction.
Collapse
Affiliation(s)
- Haixia Zhao
- College of Medical Science, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Xu You
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Qian Chen
- College of Medical Science, China Three Gorges University, Yichang, China.,The Second People's Hospital of Yichang, China Three Gorges University, Yichang, China
| | - Siqi Yang
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Qiongyan Ma
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yumin He
- College of Medical Science, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Chaoqi Liu
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yaoyan Dun
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Jie Wu
- Material Analysis and Testing Center, China Three Gorges University, Yichang, China
| | - Changcheng Zhang
- College of Medical Science, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Ding Yuan
- College of Medical Science, China Three Gorges University, Yichang, China
| |
Collapse
|
23
|
Liu Y, Ma H, Yao J. ERα, A Key Target for Cancer Therapy: A Review. Onco Targets Ther 2020; 13:2183-2191. [PMID: 32210584 PMCID: PMC7073439 DOI: 10.2147/ott.s236532] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Estrogen receptor α (ERα) is closely associated with both hormone-dependent and hormone-independent tumors, and it is also essential for the development of these cancers. The functions of ERα are bi-faceted; it can contribute to cancer progression as well as cancer inhibition. Therefore, understanding ERα is vital for the treatment of those cancers that are closely associated with its expression. Here, we will elaborate on ERα based on its structure, localization, activation, modification, and mutation. Also, we will look at co-activators of ERα, elucidate the signaling pathway activated by ERα, and identify cancers related to its activation. A comprehensive understanding of ERα could help us to find new ways to treat cancers.
Collapse
Affiliation(s)
- Yanfang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Jing Yao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
24
|
Wu X, Huang J, Shen C, Liu Y, He S, Sun J, Yu B. NRF2 deficiency increases obesity susceptibility in a mouse menopausal model. PLoS One 2020; 15:e0228559. [PMID: 32045430 PMCID: PMC7012419 DOI: 10.1371/journal.pone.0228559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
The risk of metabolic abnormalities in menopausal women increases significantly due to the decline in estrogen level. Nuclear factor E2-related factor 2 (NRF2) is an important oxidative stress sensor that plays regulatory role in energy metabolism. Therefore, an ovariectomized menopausal model in Nrf2-knockout (KO) mice was applied to evaluate the effect of Nrf2 deficiency on metabolism in menopausal females. The mice were divided into four groups according to their genotypes and treatments. Blood samples and bodyweights were obtained preoperatively and in the first to ninth postoperative weeks after overnight fasting. Serum levels of triglycerides (TG), total cholesterol (T-CHO), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and glucose (GLU) were measured at postoperative weeks 0, 1, 3, 5, 7, and 9. Neurotransmitter dopamine (DA) and serotonin (5-HT) was analyzed in brain tissues after sacrifice at postoperative week 9. The results demonstrated that, compared with the corresponding wild-type (WT) mice, KO ovariectomized mice had a greater bodyweight gain (P<0.01). Serum analysis showed that the serum GLU, T-CHO, and TG were significantly lower (P<0.05) but LDL was significantly higher (P<0.05) in the KO control mice than that in WT control mice. However, different from the WT counterparts, an increase in blood GLU level (P<0.05), unchanged T-CHO, TG, and HDL levels, and a significant reduction in LDL (P<0.01) was found in the KO ovariectomized mice. In addition, the level of 5-HT was significantly reduced (P<0.05) in the KO mice after ovariectomy. In conclusion, the combination of Nrf2 deletion and a decline in estrogen level induced a significant increase in bodyweight, which may be associated with their altered glucose and LDL metabolism and decreased 5-HT levels. From a clinical perspective, women with antioxidant defense deficiency may have an increased risk of metabolic abnormalities after menopause.
Collapse
Affiliation(s)
- Xunwei Wu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Huang
- Department of Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cong Shen
- Third Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Yeling Liu
- Third Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Shengjie He
- Third Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Junquan Sun
- Third Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- * E-mail:
| |
Collapse
|
25
|
Solar Fernandez V, Cipolletti M, Ascenzi P, Marino M, Fiocchetti M. Neuroglobin As Key Mediator in the 17β-Estradiol-Induced Antioxidant Cell Response to Oxidative Stress. Antioxid Redox Signal 2020; 32:217-227. [PMID: 31686530 DOI: 10.1089/ars.2019.7870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aims: Nuclear factor (erythroid-derived 2)-like-2 factor (NRF-2) is a transcription factor well known to provide an advantage for cancer growth and survival regulating the cellular redox pathway. In breast cancer cells, we recently identified the monomeric heme-globin neuroglobin (NGB) as part of a new mechanism induced by the steroid hormone 17β-estradiol (E2) against oxidative stress. While there is mounting evidence suggesting a critical role of NGB as a sensor of oxidative stress, scarce information is available about its involvement in NRF-2 pathway activation in breast cancer cells. Results: Although NGB is not involved in the rapid E2-induced NRF-2 stability, E2 loses the capacity to regulate the expression of NRF-2-dependent genes in NGB-depleted MCF-7 cells. These data strongly sustain a role of NGB as a compensatory protein in the E2-activated intracellular pathway devoted to the increase of cancer cells tolerance to reactive oxygen species (ROS) generation in stressing conditions acting as key regulator of NRF-2 pathway activity in a time-dependent manner. Innovation: In this study, we identified a new role of NGB in the cell response to oxidative stress. Conclusion: Altogether, reported results open new insights on the NGB effect in regulating intracellular pathways related to cell adaptive response to stress and, as consequence, to cell survival, beyond its direct effect as ROS scavenger, opening new prospective in cancer therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, University Roma Tre, Roma, Italy
| | - Maria Marino
- Department of Science, University Roma Tre, Roma, Italy
| | | |
Collapse
|
26
|
Aronia melanocarpa Prevents Alcohol-Induced Chronic Liver Injury via Regulation of Nrf2 Signaling in C57BL/6 Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4054520. [PMID: 31998436 PMCID: PMC6970495 DOI: 10.1155/2020/4054520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/28/2019] [Accepted: 11/09/2019] [Indexed: 02/07/2023]
Abstract
Aronia melanocarpa (AM), which is rich in anthocyanins and procyanidins, has been reported to exert antioxidative and anti-inflammatory effects. This study aimed to systematically analyze the components of AM and explore its effects on alcohol-induced chronic liver injury in mice. A component analysis of AM revealed 17 types of fatty acids, 17 types of amino acids, 8 types of minerals, and 3 types of nucleotides. Chronic alcohol-induced liver injury was established in mice via gradient alcohol feeding over a period of 6 months, with test groups orally receiving AM in the last 6 weeks. AM administration yielded potential hepatoprotective effects by alleviating weight gain and changes in organ indexes, decreasing the ratio of alanine aminotransferase/aspartate aminotransferase, reducing lipid peroxidation, enhancing antioxidant activities, decreasing oxidation-related factor levels, and regulating inflammatory cytokine levels. Histological analyses suggest that AM treatment markedly prevented organ damage in alcohol-exposed mice. Furthermore, AM activated nuclear factor erythroid 2-like 2 (Nrf2) by downregulating the expression of Kelch-like ECH-associated protein 1, resulting in elevated downstream antioxidative enzyme levels. AM activated Nrf2 via modulation of the phosphatidylinositol-3-hydroxykinase/protein kinase B signaling pathway. Altogether, AM prevented alcohol-induced liver injury, potentially by suppressing oxidative stress via the Nrf2 signaling pathway.
Collapse
|
27
|
Duncan KA. Estrogen Formation and Inactivation Following TBI: What we Know and Where we Could go. Front Endocrinol (Lausanne) 2020; 11:345. [PMID: 32547495 PMCID: PMC7272601 DOI: 10.3389/fendo.2020.00345] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/04/2020] [Indexed: 01/27/2023] Open
Abstract
Traumatic brain injury (TBI) is responsible for various neuronal and cognitive deficits as well as psychosocial dysfunction. Characterized by damage inducing neuroinflammation, this response can cause an acute secondary injury that leads to widespread neurodegeneration and loss of neurological function. Estrogens decrease injury induced neuroinflammation and increase cell survival and neuroprotection and thus are a potential target for use following TBI. While much is known about the role of estrogens as a neuroprotective agent following TBI, less is known regarding their formation and inactivation following damage to the brain. Specifically, very little is known surrounding the majority of enzymes responsible for the production of estrogens. These estrogen metabolizing enzymes (EME) include aromatase, steroid sulfatase (STS), estrogen sulfotransferase (EST/SULT1E1), and some forms of 17β-hydroxysteroid dehydrogenase (HSD17B) and are involved in both the initial conversion and interconversion of estrogens from precursors. This article will review and offer new prospective and ideas on the expression of EMEs following TBI.
Collapse
|
28
|
Binding partners of NRF2: Functions and regulatory mechanisms. Arch Biochem Biophys 2019; 678:108184. [PMID: 31733215 DOI: 10.1016/j.abb.2019.108184] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/09/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022]
Abstract
NRF2 is a redox-sensitive transcription factor that plays an important role in protecting organisms against diverse types of electrophiles or oxidants. The level of NRF2 is maintained low in normal cells, but highly elevated in cancer provoking chemoresistance or radioresistance. It is now recognized that NRF2 does not merely maintain the redox balance, but also plays significant roles in autophagy, apoptosis, cell cycle progression, and stem cell differentiation, all of which could be possibly attributable to the existence of multiple binding proteins. In the present manuscript, we summarize direct binding partners of NRF2 and illustrate how they bind to NRF2 and regulate its stability or activity.
Collapse
|
29
|
Moyano P, Sanjuan J, García JM, Anadon MJ, Lobo M, Pelayo A, García J, Frejo MT, Del Pino J. Primary hippocampal estrogenic dysfunction induces synaptic proteins alteration and neuronal cell death after single and repeated paraquat exposure. Food Chem Toxicol 2019; 136:110961. [PMID: 31715309 DOI: 10.1016/j.fct.2019.110961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 01/12/2023]
Abstract
The extensively utilized herbicide Paraquat (PQ) was reported to generate cognitive disorders and hippocampal neuronal cell death after unique and extended exposure. Although, most of the mechanisms that mediate these actions remain unknown. We researched whether PQ induces synaptic protein disruption, Tau and amyloid beta protein formation, oxidative stress generation, and hippocampal neuronal cell loss through anti-estrogen action in primary hippocampal neurons, after day and two weeks PQ treatment, as a probable mechanism of such learning and memory impairment. Our results reveal that PQ did not alter estrogen receptors (ERα and ERβ) gene expression, yet it decreased ER activation, which led to synaptic proteins disruption and amyloid beta proteins generation and Tau proteins hyperphosphorylation. Estrogenic signaling disruption induced by PQ also downregulated the NRF2 pathway leading to oxidative stress generation. Finally, PQ exposure induced cell death mediated by ER dysfunction partially through oxidative stress and amyloid beta proteins generation and Tau proteins hyperphosphorylation. The results presented provide a therapeutic strategy to protect against PQ toxic effects, possibly giving an explanation for the learning and memory impairment generated following PQ exposure.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Javier Sanjuan
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - María José Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Margarita Lobo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Jimena García
- Department of Pharmacology, Health Sciences School, Alfonso X University, 28691, Madrid, Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
30
|
Rashid K, Akhtar-Schaefer I, Langmann T. Microglia in Retinal Degeneration. Front Immunol 2019; 10:1975. [PMID: 31481963 PMCID: PMC6710350 DOI: 10.3389/fimmu.2019.01975] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022] Open
Abstract
The retina is a complex tissue with multiple cell layers that are highly ordered. Its sophisticated structure makes it especially sensitive to external or internal perturbations that exceed the homeostatic range. This necessitates the continuous surveillance of the retina for the detection of noxious stimuli. This task is mainly performed by microglia cells, the resident tissue macrophages which confer neuroprotection against transient pathophysiological insults. However, under sustained pathological stimuli, microglial inflammatory responses become dysregulated, often worsening disease pathology. In this review, we provide an overview of recent studies that depict microglial responses in diverse retinal pathologies that have degeneration and chronic immune reactions as key pathophysiological components. We also discuss innovative immunomodulatory therapy strategies that dampen the detrimental immunological responses to improve disease outcome.
Collapse
Affiliation(s)
- Khalid Rashid
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Isha Akhtar-Schaefer
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Cologne, Germany
| |
Collapse
|
31
|
De Cillà S, Vezzola D, Farruggio S, Vujosevic S, Clemente N, Raina G, Mary D, Casini G, Rossetti L, Avagliano L, Martinelli C, Bulfamante G, Grossini E. The subthreshold micropulse laser treatment of the retina restores the oxidant/antioxidant balance and counteracts programmed forms of cell death in the mice eyes. Acta Ophthalmol 2019; 97:e559-e567. [PMID: 30585429 DOI: 10.1111/aos.13995] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/16/2018] [Indexed: 01/21/2023]
Abstract
PURPOSE Subthreshold micropulse laser (SMPL) has been increasingly used for the treatment of different retinal and choroidal macular disorders. However, the exact mechanisms of action have not yet been clearly defined. Therefore, we aimed to examine the role of SMPL treatment in the modulation of oxidant/antioxidant systems, apoptosis and autophagy in the mice eyes. METHODS A specific laser contact lens for retina was positioned on the cornea of 40 mice (20 young and 20 old) in order to focus the laser on the eye fundus for SMPL treatment. Within 6 months, 20 animals received one treatment only, whereas the others were treated three times. Eye specimens underwent histological analysis and were used for thiobarbituric acid reactive substances (TBARS) and glutathione (GSH) quantification, as well as for the superoxide dismutase 1 (SOD1) and the selenoprotein thioredoxin reductase 1 (TrxR1) expression evaluation. Western blot was performed for nitric oxide synthase (NOS) subtypes detection and to examine changes in apoptotic/autophagy proteins expression. RESULTS SMPL treatment reduced TBARS and increased GSH and SOD1 in the mice eyes. It also reduced cytochrome c, caspase 3 expression and activity and cleaved caspase 9, and increased Beclin 1, p62 and LC3β. The effects were more relevant in the elderly animals. CONCLUSION Our results showed that SMPL therapy restored the oxidant/antioxidant balance within retinal layers and modulated programmed forms of cell death. Further studies may confirm these data and could evaluate their relevance in clinical practice.
Collapse
Affiliation(s)
- Stefano De Cillà
- Ophthalmology Unit Department of Health Sciences Azienda Ospedaliera Universitaria Maggiore della Carità University of East Piedmont Novara Italy
| | - Diego Vezzola
- Lab. Physiology/Experimental Surgery Department of Translational Medicine University of East Piedmont Novara Italy
| | - Serena Farruggio
- Lab. Physiology/Experimental Surgery Department of Translational Medicine University of East Piedmont Novara Italy
- AGING Project Department of Translational Medicine University of Eastern Piedmont Novara Italy
| | - Stela Vujosevic
- Ophthalmology Unit Department of Health Sciences Azienda Ospedaliera Universitaria Maggiore della Carità University of East Piedmont Novara Italy
| | - Nausicaa Clemente
- Lab. Immunology IRCAD Department of Health Sciences University East Piedmont Novara Italy
| | - Giulia Raina
- Lab. Physiology/Experimental Surgery Department of Translational Medicine University of East Piedmont Novara Italy
- AGING Project Department of Translational Medicine University of Eastern Piedmont Novara Italy
| | - David Mary
- Lab. Physiology/Experimental Surgery Department of Translational Medicine University of East Piedmont Novara Italy
- AGING Project Department of Translational Medicine University of Eastern Piedmont Novara Italy
| | - Giamberto Casini
- Department of Surgical Medical, Molecular and Critical Area Pathology University of Pisa Pisa Italy
| | - Luca Rossetti
- Eye Clinic San Paolo Hospital University of Milan Milan Italy
| | - Laura Avagliano
- Pathological Anatomy Department of Health Sciences San Paolo Hospital University of Milan Milan Italy
| | - Carla Martinelli
- Pathological Anatomy Department of Health Sciences San Paolo Hospital University of Milan Milan Italy
| | - Gaetano Bulfamante
- Pathological Anatomy Department of Health Sciences San Paolo Hospital University of Milan Milan Italy
| | - Elena Grossini
- Lab. Physiology/Experimental Surgery Department of Translational Medicine University of East Piedmont Novara Italy
- AGING Project Department of Translational Medicine University of Eastern Piedmont Novara Italy
| |
Collapse
|
32
|
Ishii T, Warabi E. Mechanism of Rapid Nuclear Factor-E2-Related Factor 2 (Nrf2) Activation via Membrane-Associated Estrogen Receptors: Roles of NADPH Oxidase 1, Neutral Sphingomyelinase 2 and Epidermal Growth Factor Receptor (EGFR). Antioxidants (Basel) 2019; 8:antiox8030069. [PMID: 30889865 PMCID: PMC6466580 DOI: 10.3390/antiox8030069] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Membrane-associated estrogen receptors (ER)-α36 and G protein-coupled estrogen receptor (GPER) play important roles in the estrogen’s rapid non-genomic actions including stimulation of cell proliferation. Estrogen via these receptors induces rapid activation of transcription factor nuclear factor-E2-related factor 2 (Nrf2), a master regulator of detoxification and antioxidant systems, playing a key role in the metabolic reprogramming to support cell proliferation. This review highlights the possible mechanism underlying rapid Nrf2 activation via membrane-associated estrogen receptors by estrogen and phytoestrogens. Stimulation of ER-α36-GPER signaling complex rapidly induces Src-mediated transactivation of epidermal growth factor receptor (EGFR) leading to a kinase-mediated signaling cascade. We propose a novel hypothesis that ER-α36-GPER signaling initially induces rapid and temporal activation of NADPH oxidase 1 to generate superoxide, which subsequently activates redox-sensitive neutral sphingomyelinase 2 generating the lipid signaling mediator ceramide. Generation of ceramide is required for Ras activation and ceramide-protein kinase C ζ-casein kinase 2 (CK2) signaling. Notably, CK2 enhances chaperone activity of the Cdc37-Hsp90 complex supporting activation of various signaling kinases including Src, Raf and Akt (protein kinase B). Activation of Nrf2 may be induced by cooperation of two signaling pathways, (i) Nrf2 stabilization by direct phosphorylation by CK2 and (ii) EGFR-Ras-PI 3 kinase (PI3K)-Akt axis which inhibits glycogen synthase kinase 3β leading to enhanced nuclear transport and stability of Nrf2.
Collapse
Affiliation(s)
- Tetsuro Ishii
- Faculty of Medicine, University of Tsukuba, Tsukuba Ibaraki 305-8575, Japan.
| | - Eiji Warabi
- Faculty of Medicine, University of Tsukuba, Tsukuba Ibaraki 305-8575, Japan.
| |
Collapse
|
33
|
Pan JS, Sheikh-Hamad D. Mitochondrial dysfunction in acute kidney injury and sex-specific implications. MEDICAL RESEARCH ARCHIVES 2019; 7. [PMID: 31276028 DOI: 10.18103/mra.v7i2.1898] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The kidney is one of the most energy-demanding organs in the human body, and the maintenance of mitochondrial homeostasis is central to kidney function. Recent advances have led to a greater appreciation of how mitochondrial dysfunction contributes to the pathogenesis of AKI, from decreased ATP production, to enhanced mitochondrial oxidative stress, cell necrosis and apoptosis. Accumulating evidence suggests sexual dimorphism in the response to AKI with males demonstrating greater risk for developing ischemia-reperfusion and sepsis-induced kidney injury. In contrast, females may be more susceptible to nephrotoxic-AKI. There are important sex-related differences in mitochondrial respiration, biogenesis and dynamics that likely contribute to the observed sexual dimorphism in AKI. Sex hormones mediate many of these differences with multiple preclinical studies demonstrating the renoprotective actions of estrogen in many rodent models of AKI. Estrogenic control of mitochondrial biogenesis, function and reactive oxygen species (ROS) generation is discussed. Furthermore, the potential role for sex chromosomes in mediating sex differences in AKI is examined. Novel animal models such as the "four core genotypes" (FCG) mouse model provide us with important tools to study sex chromosome effects in kidney health and disease. By understanding the influences of sexual dimorphism or sex hormones on mitochondrial homeostasis and disease manifestations, we may be able to identify novel therapeutic targets and improve existing treatment options for AKI.
Collapse
Affiliation(s)
- Jenny S Pan
- Section of Nephrology and Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.,Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - David Sheikh-Hamad
- Section of Nephrology and Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.,Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
34
|
Kitakaze T, Makiyama A, Samukawa Y, Jiang S, Yamashita Y, Ashida H. A physiological concentration of luteolin induces phase II drug-metabolizing enzymes through the ERK1/2 signaling pathway in HepG2 cells. Arch Biochem Biophys 2019; 663:151-159. [PMID: 30641047 DOI: 10.1016/j.abb.2019.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/06/2019] [Accepted: 01/10/2019] [Indexed: 12/20/2022]
Abstract
The flavon luteolin has various health-promoting activities including cardiovascular protection, anti-inflammatory activity and anticancer activity. A serum concentration of about 100 nM luteolin is reached by dietary habit. However, little is known about the function of luteolin over its physiological concentration range. In this study, we investigated whether a physiological concentration of luteolin could activate nuclear factor-erythroid-2-related factor 2 (Nrf2)-mediated expression of phase II drug-metabolizing enzymes in human hepatoma HepG2 cells. Interestingly, less than 1 nM of luteolin could induce phase II drug-metabolizing enzymes, such as GSTs, HO-1, and NQO1. Both 1 and 100 nM luteolin increased expression and activity of ALDH2, which metabolized toxic acetaldehyde into nontoxic acetic acid. Luteolin increased nuclear accumulation of Nrf2 and enhanced the ARE-binding complex through increasing the stability of the Nrf2 protein. Luteolin increased phosphorylation of Nrf2 at Ser40, and MEK inhibitors (U0126 and PD98059) canceled luteolin-induced phosphorylation of Nrf2. Furthermore, luteolin increased modified Keap1. In conclusion, a physiological concentration of luteolin induces the expression of phase II drug-metabolizing enzymes by enhancement of Nrf2 nuclear accumulation through MEK1/2-ERK1/2-mediated phosphorylation of Nrf2, increasing Nrf2 stability and inducing a conformational change of Keap1.
Collapse
Affiliation(s)
- Tomoya Kitakaze
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Atsushi Makiyama
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Yumi Samukawa
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Songyan Jiang
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan.
| |
Collapse
|
35
|
Notoginsenoside R1 Protects db/db Mice against Diabetic Nephropathy via Upregulation of Nrf2-Mediated HO-1 Expression. Molecules 2019; 24:molecules24020247. [PMID: 30634720 PMCID: PMC6359411 DOI: 10.3390/molecules24020247] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/15/2018] [Accepted: 01/03/2019] [Indexed: 01/08/2023] Open
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal failure, and no effective treatment is available. Notoginsenoside R1 (NGR1) is a novel saponin that is derived from Panax notoginseng, and our previous studies showed the cardioprotective and neuroprotective effects of NGR1. However, its role in protecting against DN remains unexplored. Herein, we established an experimental model in db/db mice and HK-2 cells exposed to advanced glycation end products (AGEs). The in vivo investigation showed that NGR1 treatment increased serum lipid, β2-microglobulin, serum creatinine, and blood urea nitrogen levels of db/db mice. NGR1 attenuated histological abnormalities of kidney, as evidenced by reducing the glomerular volume and fibrosis in diabetic kidneys. In vitro, NGR1 treatment was further found to decrease AGE-induced mitochondria injury, limit an increase in reactive oxygen species (ROS), and reduce apoptosis in HK-2 cells. Mechanistically, NGR1 promoted nucleus nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expressions to eliminate ROS that induced apoptosis and transforming growth factor beta (TGF-β) signaling. In summary, these observations demonstrate that NGR1 exerts renoprotective effects against DN through the inhibition of apoptosis and renal fibrosis caused by oxidative stress. NGR1 might be a potential therapeutic medicine for the treatment of DN.
Collapse
|
36
|
Czogalla B, Kahaly M, Mayr D, Schmoeckel E, Niesler B, Kolben T, Burges A, Mahner S, Jeschke U, Trillsch F. Interaction of ERα and NRF2 Impacts Survival in Ovarian Cancer Patients. Int J Mol Sci 2018; 20:ijms20010112. [PMID: 30597961 PMCID: PMC6337731 DOI: 10.3390/ijms20010112] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 11/16/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) regulates cytoprotective antioxidant processes. In this study, the prognostic potential of NRF2 and its interactions with the estrogen receptor α (ERα) in ovarian cancer cells was investigated. NRF2 and ERα protein expression in ovarian cancer tissue was analyzed as well as mRNA expression of NRF2 (NFE2L2) and ERα (ESR1) in four ovarian cancer and one benign cell line. NFE2L2 silencing was carried out to evaluate a potential interplay between NRF2 and ERα. Cytoplasmic NRF2 expression as inactive form had significantly higher expression in patients with low-grade histology (p = 0.03). In the serous cancer subtype, high cytoplasmic NRF2 expression (overall survival (OS), median 50.6 vs. 29.3 months; p = 0.04) and high ERα expression (OS, median 74.5 vs. 27.1 months; p = 0.002) was associated with longer overall survival as well as combined expression of both inactive cytoplasmic NRF2 and ERα in the whole cohort (median 74.5 vs. 37.7 months; p = 0.04). Cytoplasmic NRF2 expression showed a positive correlation with ERα expression (p = 0.004). NFE2L2 was found to be highly expressed in the ovarian cancer cell lines OVCAR3, UWB1.289, and TOV112D. Compared with the benign cell line HOSEpiC, ESR1 expression was reduced in all ovary cancer cell lines (all p < 0.001). Silencing of NFE2L2 induced a higher mRNA expression of ESR1 in the NFE2L2 downregulated cancer cell lines OVCAR3 (p = 0.003) and ES2 (p < 0.001), confirming genetic interactions of NRF2 and ERα. In this study, both inactive cytoplasmic NRF2 and high ERα expression were demonstrated to be associated with improved survival in ovarian cancer patients. Further understanding of interactions within the estradiol⁻ERα⁻NRF2 pathway could better predict the impact of endocrine therapy in ovarian cancer.
Collapse
Affiliation(s)
- Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Maja Kahaly
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Doris Mayr
- Institute of Pathology, Faculty of Medicine, 81377 LMU Munich, Germany.
| | - Elisa Schmoeckel
- Institute of Pathology, Faculty of Medicine, 81377 LMU Munich, Germany.
| | - Beate Niesler
- Institute of Human Genetics, Department of Human Molecular Genetics, University of Heidelberg, 69120 Heidelberg, Germany.
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| |
Collapse
|
37
|
Tang W, Ma J, Gu R, Lei B, Ding X, Xu G. Light-Induced Lipocalin 2 Facilitates Cellular Apoptosis by Positively Regulating Reactive Oxygen Species/Bim Signaling in Retinal Degeneration. ACTA ACUST UNITED AC 2018; 59:6014-6025. [PMID: 30574656 DOI: 10.1167/iovs.18-25213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Wenyi Tang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Jun Ma
- Research Center, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Ruiping Gu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Boya Lei
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Xinyi Ding
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Song S, Wu S, Wang Y, Wang Z, Ye C, Song R, Song D, Ruan Y. 17β-estradiol inhibits human umbilical vascular endothelial cell senescence by regulating autophagy via p53. Exp Gerontol 2018; 114:57-66. [PMID: 30399406 DOI: 10.1016/j.exger.2018.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022]
Abstract
Vascular endothelial cell (VEC) senescence is an initiating factor in numerous cardiovascular diseases. Recent studies showed that 17β-estradiol (17β-E2), an estrogen with numerous biological activities such as inhibition of atherosclerosis, protects VECs from senescence. However, the effects of 17β-E2 on human umbilical VECs (HUVECs) remain unknown. This study investigated the anti-senescent effect of 17β-E2 on HUVECs and explored the underlying mechanism with respect to autophagy and p53 activity. First, rapamycin and 3-methyladenine were used to clarify the relationship between autophagy and senescence in HUVECs, and an inverse relationship was demonstrated. Next, the effect of 17β-E2 on H2O2-induced senescence of HUVECs was examined. Increased autophagy induced by 17β-E2 inhibited H2O2-induced senescence of HUVECs, increased cell viability, and maintained HUVEC morphology. 17β-E2 pre-treatment also decreased cell cycle arrest, decreased the dephosphorylation of Rb, decreased the production of ET-1, and increased the production of NO. Most importantly, 17β-E2 pre-treatment increased autophagy by activating p53 and its downstream effector p53-upregulated modulator of apoptosis (PUMA). Overall, our data indicate the critical role of autophagy in the anti-senescent effect of 17β-E2 on HUVECs.
Collapse
Affiliation(s)
- Shicong Song
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Saizhu Wu
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuyan Wang
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiwei Wang
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changxiong Ye
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Song
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongqing Song
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunjun Ruan
- Department of Gerontology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
39
|
Wei Q, Liang X, Peng Y, Yu D, Zhang R, Jin H, Fan J, Cai W, Ren C, Yu J. 17β-estradiol ameliorates oxidative stress and blue light-emitting diode-induced retinal degeneration by decreasing apoptosis and enhancing autophagy. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2715-2730. [PMID: 30233136 PMCID: PMC6129027 DOI: 10.2147/dddt.s176349] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purpose This study aimed to assess the effects of 17β-estradiol (βE2) on blue light-emitting diode (LED)-induced retinal degeneration (RD) in rats and hydrogen peroxide (H2O2)-induced retinal pigment epithelium cell injury in humans and elucidate the protective mechanism of βE2 underlying these processes. Methods Female ovariectomized (OVX) rats were intravitreally injected with βE2 before blue LED exposure (3,000 lux, 2 hours). Retinal function and morphology were assayed via electroretinogram (ERG) and H&E, respectively. Cell viability was assayed using the Cell Counting Kit-8. Cell ROS were measured using dichlorofluorescein fluorescence. Apoptosis was evaluated by TUNEL and Annexin V/propidium iodide staining. Gene expression and protein expression were quantified using quantitative real-time RT-PCR, Western blotting, and immunohistochemistry. Autophagosomes were examined by electron microscopy. Results Female OVX rats were exposed to blue LED, inducing RD. βE2 significantly prevented the reduction in the a- and b-wave ERG amplitudes and the disruption of retinal structure, the loss of photoreceptor cells, and the decrease in the thickness of the outer nuclear layer caused by blue LED exposure. βE2 also decreased cell apoptosis in the retina in blue LED-induced RD. Additionally, βE2 reduced ROS levels and apoptosis in H2O2-treated human retinal pigment epithelial (ARPE-19) cells. Furthermore, βE2 increased the protein expression of p-Akt and Bcl-2 and decreased the protein expression of cleaved caspase-3 and Bax during blue LED-induced retinal damage and in H2O2-treated ARPE-19 cells. βE2 also increased the number of autopha-gosomes and upregulated the expression of LC3-II/LC3-I and Beclin 1 in these processes. Conclusion βE2 protects against blue LED-induced RD and H2O2-induced oxidative stress by acting as an antioxidant, and its protective mechanism might occur by reducing apoptosis and enhancing autophagy; βE2 may be a novel and effective therapy for age-related macular degeneration.
Collapse
Affiliation(s)
- Qingquan Wei
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, ,
| | - Xiuwei Liang
- Department of Ophthalmology, Nanchang University, Nanchang, People's Republic of China
| | - Ye Peng
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China
| | - Donghui Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, ,
| | - Ruiling Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, ,
| | - Huizi Jin
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, ,
| | - Jiaqi Fan
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, ,
| | - Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, ,
| | - Chengda Ren
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, ,
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, , .,Department of Ophthalmology, Ninghai First Hospital, Zhejiang, People's Republic of China,
| |
Collapse
|
40
|
Sun Y, Zhang J, Song W, Shan A. Vitamin E alleviates phoxim-induced toxic effects on intestinal oxidative stress, barrier function, and morphological changes in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26682-26692. [PMID: 30003487 DOI: 10.1007/s11356-018-2666-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Phoxim is an organic phosphorus pesticide that remains easily in the environment, such as human food and animal feed. The objective of this study was to explore the effect of vitamin E on phoxim-induced oxidative stress in the intestinal tissues of Sprague-Dawley (SD) rats. Forty-eight Sprague-Dawley rats were randomly assigned to a control group and three treatment groups: treatment group 1 (phoxim: 20 mg/kg·BW), treatment group 2 (phoxim: 180 mg/kg·BW), and treatment 3 (vitamin E + phoxim: 200 mg/kg·BW + 180 mg/kg·BW). Phoxim was given by gavage administration once a day for 28 days. The results showed that phoxim significantly reduced jejunum villus height in rats (P < 0.05), and decreased the mRNA expression of junction protein genes of rats, including Occlidin and Claudin-4 (P < 0.05). Phoxim reduced GSH content and T-AOC level in the intestinal mucosa (P < 0.05). The mRNA expression levels of oxidative stress-related genes (Nrf2 and GPx2) were decreased. The mRNA expression of SOD was significantly increased. In addition, phoxim increased the level of interleukin-6 (IL-6) in jejunum mucosa and significantly reduced the level of IL-8 in ileum mucosas, while significantly increased TNF-α secretion. The mRNA expression levels of IL-1β, IL-6, and IL-8 were significantly decreased, and mRNA expression of TNF-α was significantly increased (P < 0.05). Phoxim also increased the DNA expression of total cecal bacteria and Escherichia coli, inhibited the DNA expression of Lactobacillus and destroyed the intestinal barrier. Two hundred milligrams per kilogram BW vitamin E reduced the effect of phoxim on intestinal structure, alleviated the oxidative stress in intestinal tissue, and decreased the level of TNF-α. The mRNA expressions of antioxidative stress genes (SOD and GPx2) were significantly increased. The DNA expression level of Lactobacillus was significantly increased. In conclusion, vitamin E helped reduce the toxicity of organophosphate pesticides, such as phoxim on rat intestinal tissue.
Collapse
Affiliation(s)
- Yuecheng Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wentao Song
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
41
|
Hu Y, Yu C, Yao M, Wang L, Liang B, Zhang B, Huang X, Zhang A. The PKCδ-Nrf2-ARE signalling pathway may be involved in oxidative stress in arsenic-induced liver damage in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:79-87. [PMID: 29986281 DOI: 10.1016/j.etap.2018.05.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/24/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Arsenic poisoning is a worldwide endemic disease that affects thousands of people. Growing evidence from animal, cell, and human studies indicates that arsenic has deleterious effects on the liver. Oxidative stress is considered the primary mechanism for arsenic toxicity in liver damage. However, the mechanisms remain unclear. In light of this fact, the main objective of this study was to investigate the effects of the protein kinase C delta-nuclear factor E2-related factor 2-antioxidant response element (PKCδ-Nrf2-ARE) signalling pathway on oxidative stress in liver damage. In the present study, we used a model of liver damage induced by coal-burning arsenic in rats, which was set up by our research group. The oxidative stress index and the transcription and protein expression levels of PKCδ, Nrf2, Keap1, SOD1, and GPx1 were detected, and then their correlation analyses were carried out. The results demonstrated that coal-burning arsenic can cause oxidative stress liver damage in rats, which may be related to the PKCδ-Nrf2-ARE signalling pathway. This study may provide a new pathway for studies of the mechanisms of arsenism.
Collapse
Affiliation(s)
- Yong Hu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Chun Yu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Maolin Yao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Lei Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Bing Liang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Bixia Zhang
- Forty-fourth Hospital of PLA, Guiyang, 550025, Guizhou, China
| | - Xiaoxin Huang
- Forty-fourth Hospital of PLA, Guiyang, 550025, Guizhou, China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
42
|
Pardue MT, Allen RS. Neuroprotective strategies for retinal disease. Prog Retin Eye Res 2018; 65:50-76. [PMID: 29481975 PMCID: PMC6081194 DOI: 10.1016/j.preteyeres.2018.02.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 12/20/2022]
Abstract
Diseases that affect the eye, including photoreceptor degeneration, diabetic retinopathy, and glaucoma, affect 11.8 million people in the US, resulting in vision loss and blindness. Loss of sight affects patient quality of life and puts an economic burden both on individuals and the greater healthcare system. Despite the urgent need for treatments, few effective options currently exist in the clinic. Here, we review research on promising neuroprotective strategies that promote neuronal survival with the potential to protect against vision loss and retinal cell death. Due to the large number of neuroprotective strategies, we restricted our review to approaches that we had direct experience with in the laboratory. We focus on drugs that target survival pathways, including bile acids like UDCA and TUDCA, steroid hormones like progesterone, therapies that target retinal dopamine, and neurotrophic factors. In addition, we review rehabilitative methods that increase endogenous repair mechanisms, including exercise and electrical stimulation therapies. For each approach, we provide background on the neuroprotective strategy, including history of use in other diseases; describe potential mechanisms of action; review the body of research performed in the retina thus far, both in animals and in humans; and discuss considerations when translating each treatment to the clinic and to the retina, including which therapies show the most promise for each retinal disease. Despite the high incidence of retinal diseases and the complexity of mechanisms involved, several promising neuroprotective treatments provide hope to prevent blindness. We discuss attractive candidates here with the goal of furthering retinal research in critical areas to rapidly translate neuroprotective strategies into the clinic.
Collapse
Affiliation(s)
- Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332, USA.
| | - Rachael S Allen
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA
| |
Collapse
|
43
|
Rashid K, Wolf A, Langmann T. Microglia Activation and Immunomodulatory Therapies for Retinal Degenerations. Front Cell Neurosci 2018; 12:176. [PMID: 29977192 PMCID: PMC6021747 DOI: 10.3389/fncel.2018.00176] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/05/2018] [Indexed: 01/05/2023] Open
Abstract
A chronic pro-inflammatory environment is a hallmark of retinal degenerative diseases and neurological disorders that affect vision. Inflammatory responses during retinal pathophysiology are orchestrated by microglial cells which constitute the resident immune cell population. Following activation, microglia cells lose their ramified protrusions, proliferate and rapidly migrate to the damaged areas and resolve tissue damage. However, sustained presence of tissue stress primes microglia to become overreactive and results in the excessive production of pro-inflammatory mediators that favor retinal degenerative changes. Consequently, interventions aimed at overriding microglial pro-inflammatory and pro-oxidative properties may attenuate photoreceptor demise and preserve retinal integrity. We highlight the positive effects of ligands for the translocator protein 18 kDa (TSPO) and the cytokine interferon beta (IFN-β) in modulating microgliosis during retinal pathologies and discuss their plausible mechanisms of action.
Collapse
Affiliation(s)
- Khalid Rashid
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
44
|
Lavoie JC, Tremblay A. Sex-Specificity of Oxidative Stress in Newborns Leading to a Personalized Antioxidant Nutritive Strategy. Antioxidants (Basel) 2018; 7:49. [PMID: 29584624 PMCID: PMC5946115 DOI: 10.3390/antiox7040049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Oxidative stress is a critical process that triggers several diseases observed in premature infants. Growing recognition of the detriment of oxidative stress in newborns warrants the use of an antioxidant strategy that is likely to be nutritional in order to restore redox homeostasis. It appears essential to have a personalized approach that will take into account the age of gestation at birth and the sex of the infant. However, the link between sex and oxidative stress remains unclear. The aim of this study was to find a common denominator explaining the discrepancy between studies related to sex-specific effects of oxidative stress. Results highlight a specificity of sex in the levels of oxidative stress markers linked to the metabolism of glutathione, as measured in the intracellular compartments. Levels of all sex-dependent oxidative stress markers are greater and markers associated to a better antioxidant defense are lower in boys compared to girls during the neonatal period. This sex-specific discrepancy is likely to be related to estrogen metabolism, which is more active in baby-girls and promotes the activation of glutathione metabolism. CONCLUSION our observations suggest that nutritive antioxidant strategies need to target glutathione metabolism and, therefore, should be personalized considering, among others, the sex specificity.
Collapse
Affiliation(s)
- Jean-Claude Lavoie
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Sainte-Justine Hospital, Montréal, QC H3T 1C5, Canada.
| | - André Tremblay
- Department Obstetrics & Gynecology, and department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Sainte-Justine Hospital, Montréal, QC H3T 1C5, Canada.
| |
Collapse
|
45
|
Torihata Y, Asanuma K, Iijima K, Mikami T, Hamada S, Asano N, Koike T, Imatani A, Masamune A, Shimosegawa T. Estrogen-Dependent Nrf2 Expression Protects Against Reflux-Induced Esophagitis. Dig Dis Sci 2018; 63:345-355. [PMID: 29282639 DOI: 10.1007/s10620-017-4885-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Gastroesophageal reflux disease is more common in males than in females. The enhanced antioxidative capacity of estrogen in females might account for the gender difference. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in the host defense mechanism against oxidative stress. AIMS This study aimed to clarify the role of Nrf2 in reflux-induced esophageal inflammation, focusing on the gender difference and nitric oxide. METHODS Gastroesophageal reflux was surgically induced in male and female rats. Nitrite and ascorbic acid were administered for 1 week to provoke nitric oxide in the esophageal lumen. Male rats with gastroesophageal reflux were supplemented with 17β-estradiol or tert-butylhydroquinone, an Nrf2-inducing reagent. Esophageal squamous cell carcinoma KYSE30 cells were treated with 17β-estradiol. Nrf2 expression was examined by Western blotting and quantitative real-time PCR. Antioxidant gene expression profiles were examined by a PCR array. RESULTS In the presence of nitric oxide, reflux-induced esophageal damage was less evident, whereas esophageal expression of Nrf2 and its target genes such as Nqo1 was more evident in female or male rats supplemented with 17β-estradiol than in male rats. 17β-Estradiol increased nuclear Nrf2 expression in KYSE30 cells. tert-Butylhydroquinone increased tissue Nqo1 mRNA expression, leading to a reduction in reflux-induced esophageal damage. CONCLUSIONS Estrogen-dependent Nrf2 expression might contribute to protection against the development of gastroesophageal reflux disease in females.
Collapse
Affiliation(s)
- Yudai Torihata
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kiyotaka Asanuma
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Katsunori Iijima
- Department of Gastroenterology and Neurology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Tetsuhiko Mikami
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Naoki Asano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Tomoyuki Koike
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Akira Imatani
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
46
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2018. [PMID: 29311911 DOI: 10.3389/fnagi.2017.00430/xml/nlm] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
47
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2017; 9:430. [PMID: 29311911 PMCID: PMC5743731 DOI: 10.3389/fnagi.2017.00430] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
48
|
Pajarillo E, Johnson J, Kim J, Karki P, Son DS, Aschner M, Lee E. 17β-estradiol and tamoxifen protect mice from manganese-induced dopaminergic neurotoxicity. Neurotoxicology 2017; 65:280-288. [PMID: 29183790 DOI: 10.1016/j.neuro.2017.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 01/14/2023]
Abstract
Chronic exposure to manganese (Mn) causes neurotoxicity, referred to as manganism, with common clinical features of parkinsonism. 17β-estradiol (E2) and tamoxifen (TX), a selective estrogen receptor modulator (SERM), afford neuroprotection in several neurological disorders, including Parkinson's disease (PD). In the present study, we tested if E2 and TX attenuate Mn-induced neurotoxicity in mice, assessing motor deficit and dopaminergic neurodegeneration. We implanted E2 and TX pellets in the back of the neck of ovariectomized C57BL/6 mice two weeks prior to a single injection of Mn into the striatum. One week later, we assessed locomotor activity and molecular mechanisms by immunohistochemistry, real-time quantitative PCR, western blot and enzymatic biochemical analyses. The results showed that both E2 and TX attenuated Mn-induced motor deficits and reversed the Mn-induced loss of dopaminergic neurons in the substantia nigra. At the molecular level, E2 and TX reversed the Mn-induced decrease of (1) glutamate aspartate transporter (GLAST) and glutamate transporter 1 (GLT-1) mRNA and protein levels; (2) transforming growth factor-α (TGF-α) and estrogen receptor-α (ER-α) protein levels; and (3) catalase (CAT) activity and glutathione (GSH) levels, and Mn-increased (1) malondialdehyde (MDA) levels and (2) the Bax/Bcl-2 ratio. These results indicate that E2 and TX afford protection against Mn-induced neurotoxicity by reversing Mn-reduced GLT1/GLAST as well as Mn-induced oxidative stress. Our findings may offer estrogenic agents as potential candidates for the development of therapeutics to treat Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, United States
| | - James Johnson
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, United States
| | - Judong Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, United States
| | - Pratap Karki
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, United States
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College Nashville, TN 37208, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Bronx, NY 10461, United States
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, United States.
| |
Collapse
|
49
|
Wang B, Hu C, Yang X, Du F, Feng Y, Li H, Zhu C, Yu X. Inhibition of GSK-3β Activation Protects SD Rat Retina Against N-Methyl-N-Nitrosourea-Induced Degeneration by Modulating the Wnt/β-Catenin Signaling Pathway. J Mol Neurosci 2017; 63:233-242. [PMID: 28929374 DOI: 10.1007/s12031-017-0973-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/08/2017] [Indexed: 01/01/2023]
Abstract
Retinal degenerative diseases are characterized by photoreceptor cell loss. Photoreceptor cell loss leading to retinal degeneration can be induced by N-methyl-N-nitrosourea (MNU), which was widely used to mimic the pathology. However, the mechanism by which MNU induces photoreceptor cell loss is still largely unknown. The purpose of the present study was to investigate whether phosphorylation of glycogen synthase kinase-3β (p-GSK-3β) is a potent mediator of MNU-induced retinal degeneration and how p-GSK-3β affects the process. MNU-induced photoreceptor cell loss was evaluated in Sprague-Dawley (SD) rat retinas. GSK-3β and Akt expression levels did not change during MNU-induced retinal degeneration but the phosphorylation of GSK-3β and Akt was decreased by MNU treatment. Lithium chloride (LiCl), which increases p-GSK-3β level and active-β-catenin level, reversed retinal degeneration induced by MNU treatment. These results suggest that GSK-3β activation is closely related to photoreceptor cell loss and that the application of the GSK-3β inhibitor LiCl could activate Wnt/β-catenin signaling pathway and reduce photoreceptor cell loss induced by MNU. Our findings indicate that inhibition of GSK-3β activation may be a potential therapeutic target for retinal degeneration induced by photoreceptor cell loss.
Collapse
Affiliation(s)
- Baoying Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Chenghu Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Xiaobei Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Fangying Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yan Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Hongbo Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Chunhui Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiaorui Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China. .,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
50
|
Raghava N, Das BC, Ray SK. Neuroprotective effects of estrogen in CNS injuries: insights from animal models. ACTA ACUST UNITED AC 2017; 6:15-29. [PMID: 28845391 PMCID: PMC5567743 DOI: 10.2147/nan.s105134] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among the estrogens that are biosynthesized in the human body, 17β-estradiol (estradiol or E2) is the most common and the best estrogen for neuroprotection in animal models of the central nervous system (CNS) injuries such as spinal cord injury (SCI), traumatic brain injury (TBI), and ischemic brain injury (IBI). These CNS injuries are not only serious health problems, but also enormous economic burden on the patients, their families, and the society at large. Studies from animal models of these CNS injuries provide insights into the multiple neuroprotective mechanisms of E2 and also suggest the possibility of translating the therapeutic efficacy of E2 in the treatment SCI, TBI, and IBI in humans in the near future. The pathophysiology of these injuries includes loss of motor function in the limbs, arms and their extremities, cognitive deficit, and many other serious consequences including life-threatening paralysis, infection, and even death. The potential application of E2 therapy to treat the CNS injuries may become a trend as the results are showing significant therapeutic benefits of E2 for neuroprotection when administered into the animal models of SCI, TBI, and IBI. This article describes the plausible mechanisms how E2 works with or without the involvement of estrogen receptors and provides an overview of the known neuroprotective effects of E2 in these three CNS injuries in different animal models. Because activation of estrogen receptors has profound implications in maintaining and also affecting normal physiology, there are notable impediments in translating E2 therapy to the clinics for neuroprotection in CNS injuries in humans. While E2 may not yet be the sole molecule for the treatment of CNS injuries due to the controversies surrounding it, the neuroprotective effects of its metabolite and derivative or combination of E2 with another therapeutic agent are showing significant impacts in animal models that can potentially shape the new treatment strategies for these CNS injuries in humans.
Collapse
Affiliation(s)
- Narayan Raghava
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Bhaskar C Das
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|