1
|
Timofte Zorila MM, Vitiello L, Lixi F, Coppola A, Cukurova F, Pellegrino A, Giannaccare G. Photic Retinopathy: Diagnosis and Management of This Phototoxic Maculopathy. Life (Basel) 2025; 15:639. [PMID: 40283193 PMCID: PMC12028490 DOI: 10.3390/life15040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Photic retinopathy is an uncommon clinical entity characterized by retinal damage brought on by excessive exposure to light without protection. It encompasses several distinct clinical categories, including solar maculopathy, handheld laser maculopathy, arc welding maculopathy, and iatrogenic macular degeneration. These clinical entities result from exposure to diverse light sources, such as solar radiation, laser pointers, welding arcs, and operating microscopes during ophthalmic procedures. Patients typically present with bilateral but asymmetric symptoms, including reduced visual acuity, central or paracentral scotomas, photophobia, metamorphopsia, and headaches. After exposure, most people can recover on their own in a matter of weeks to six months without the need for special care. However, thanks to their anti-inflammatory properties, several clinical cases reporting the use of steroids for acute photic retinopathy have been documented in the scientific literature, together with the use of antioxidants. The purpose of this review is to provide an update on this phototoxic maculopathy, describing its different clinical entities, diagnosis, and treatment options, and also focusing on the role of optical coherence tomography for its management.
Collapse
Affiliation(s)
- Mihaela Madalina Timofte Zorila
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
- Department of Ophthalmology, Cai Ferate Clinical Hospital, 1 Garabet Ibraileanu Street, 700506 Iasi, Romania
| | - Livio Vitiello
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, Italy; (A.C.); (A.P.)
| | - Filippo Lixi
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy; (F.L.); (G.G.)
| | - Alessia Coppola
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, Italy; (A.C.); (A.P.)
| | - Feyza Cukurova
- Department of Ophthalmology, Mardin Training and Research Hospital, 47100 Mardin, Turkey;
| | - Alfonso Pellegrino
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, Italy; (A.C.); (A.P.)
| | - Giuseppe Giannaccare
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy; (F.L.); (G.G.)
| |
Collapse
|
2
|
Ren H, Yuan Y, Zhang D, Xing Y, Chen Z. The impact of circadian rhythms on retinal immunity. Chronobiol Int 2025; 42:198-212. [PMID: 39917826 DOI: 10.1080/07420528.2025.2460675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/26/2024] [Accepted: 01/24/2025] [Indexed: 03/01/2025]
Abstract
The eye is an immune-protected organ, which is driven by factors such as cytokines, chemicals, light, and mechanical stimuli. The circadian clock is an intrinsic timing mechanism that influences the immune activities, such as immune cell count and activity, as well as inflammatory responses. Recent studies have demonstrated that the eye also possesses an intrinsic circadian rhythm, and this rhythmic regulation participates in ocular immune modulation. In this review, we discuss the immunoregulatory mechanisms of the circadian clock within the eye, and reveal new perspectives for the prevention and treatment of ocular diseases.
Collapse
Affiliation(s)
- He Ren
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yilin Yuan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danlei Zhang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Chen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Françon A, Jonet L, Behar-Cohen F, Torriglia A. Repeated exposure to low doses of light induces retinal damage in vivo in a wavelength-dependent manner. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117605. [PMID: 39742645 DOI: 10.1016/j.ecoenv.2024.117605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
The exposure of the general population to artificial light at night has dramatically increased in recent decades. Current standards for domestic lighting are based on acute exposure to light and consider blue wavelengths to be responsible for phototoxicity. However, meta-analyses pointed out the role of lifelong light exposure in the onset of age-related macular degeneration, suggesting a cumulative effect of light exposure. Here, we investigate the retinal phototoxicity of a repeated exposure to light emitting diodes of different spectral compositions in 6-week-old albino rats. Rats were exposed twice a day for 15 days to retinal doses that were safe in acute exposure (0.1 and 0.2 J/cm² for blue and white lights, 0.2 J/cm² for green light and 0.05 J/cm² for red light). We show that rats repeatedly exposed to blue and white lights display irreversible retinal damage, characterized by a degradation of the global retinal structure, a significant photoreceptor loss, and an increase of stress and inflammation markers. We highlight the role of green wavelengths in the phototoxicity of white light and show the protective effect of the addition of red light to mitigate the phototoxicity of blue light. All of this points out the need to rethink the current phototoxicity standards by taking into account the cumulative effect of the exposure to light and the role of the different parts of the emission spectrum.
Collapse
Affiliation(s)
- Anaïs Françon
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université. Team: Physiopathology of Ocular Diseases: Therapeutic Innovations. 15, rue de l'école de Médecine Paris 75006, France
| | - Laurent Jonet
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université. Team: Physiopathology of Ocular Diseases: Therapeutic Innovations. 15, rue de l'école de Médecine Paris 75006, France
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université. Team: Physiopathology of Ocular Diseases: Therapeutic Innovations. 15, rue de l'école de Médecine Paris 75006, France; Assistance Publique, Hôpitaux de Paris, Hôpital Cochin, Ophtalmopole, 27, rue du Faubourg Saint-Jacques Paris 75014, France
| | - Alicia Torriglia
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université. Team: Physiopathology of Ocular Diseases: Therapeutic Innovations. 15, rue de l'école de Médecine Paris 75006, France.
| |
Collapse
|
4
|
Anitua E, Muruzabal F, Recalde S, Fernandez-Robredo P, Alkhraisat MH. Potential Use of Plasma Rich in Growth Factors in Age-Related Macular Degeneration: Evidence from a Mouse Model. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2036. [PMID: 39768916 PMCID: PMC11727663 DOI: 10.3390/medicina60122036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Background and Objectives: Age-related macular degeneration (AMD) is the leading cause of low vision and legal blindness in adults in developed countries. Wet AMD can be successfully treated using vascular endothelial growth factor (VEGF) inhibitors; however, dry AMD currently has no effective treatment. The purpose of this study is to analyze the efficacy of intraocular injection of plasma rich in growth factors (PRGF) in an AMD mouse model induced by intraperitoneal administration of sodium iodate. Materials and Methods: Intravitreal application of PRGF (experimental group) and saline (control group) was performed immediately after intraperitoneal injection of sodium iodate. Retinographies were performed at 2 and 7 days after treatment administration. The eyes were retrieved for histological and immunohistological analysis. Statistical analysis was performed to compare the outcomes between the study groups. Results: In comparison to saline solution, PRGF significantly decreased the depigmentation of the RPE, showing a more reddened retina. PRGF intravitreal treatment significantly reduced the glial fibrillary acidic protein (GFAP) stained processes, suggesting a significant reduction in the risk of scar formation. Moreover, the myofibroblast invasion into the RPE cell layer was significantly reduced in the PRGF-treated group of mice. There was a tendency for better preservation of the photoreceptors in the PRGF group. Conclusions: Within the limitations of this study, intravitreal injection of PRGF provided significant protection against the degeneration of the photoreceptors and the RPE induced by the systemic administration of NaIO3.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI Biotechnology Institute, 01005 Vitoria, Spain; (F.M.); (M.H.A.)
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Francisco Muruzabal
- BTI Biotechnology Institute, 01005 Vitoria, Spain; (F.M.); (M.H.A.)
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Sergio Recalde
- Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Patricia Fernandez-Robredo
- Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Mohammad Hamdan Alkhraisat
- BTI Biotechnology Institute, 01005 Vitoria, Spain; (F.M.); (M.H.A.)
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
- Department of Oral and Maxillofacial Surgery, Oral Medicine and Periodontology Faculty of Dentistry, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
5
|
Marchesi N, Capierri M, Pascale A, Barbieri A. Different Therapeutic Approaches for Dry and Wet AMD. Int J Mol Sci 2024; 25:13053. [PMID: 39684764 DOI: 10.3390/ijms252313053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of irreversible loss of central vision in elderly subjects, affecting men and women equally. It is a degenerative pathology that causes progressive damage to the macula, the central and most vital part of the retina. There are two forms of AMD depending on how the macula is damaged, dry AMD and wet or neovascular AMD. Dry AMD is the most common form; waste materials accumulate under the retina as old cells die, not being replaced. Wet AMD is less common, but can lead to vision loss much more quickly. Wet AMD is characterized by new abnormal blood vessels developing under the macula, where they do not normally grow. This frequently occurs in patients who already have dry AMD, as new blood vessels are developed to try to solve the problem. It is not known what causes AMD to develop; however, certain risk factors (i.e., age, smoking, genetic factors) can increase the risk of developing AMD. There are currently no treatments for dry AMD. There is evidence that not smoking, exercising regularly, eating nutritious food, and taking certain supplements can reduce the risk of acquiring AMD or slow its development. The main treatment for wet AMD is inhibitors of VEGF (vascular endothelial growth factor), a protein that stimulates the growth of new blood vessels. VEGF inhibitors can stop the growth of new blood vessels, preventing further damage to the macula and vision loss. In most patients, VEGF inhibitors can improve vision if macular degeneration is diagnosed early and treated accordingly. However, VEGF inhibitors cannot repair damage that has already occurred. Current AMD research is trying to find treatments for dry AMD and other options for wet AMD. This review provides a summary of the current evidence regarding the different treatments aimed at both forms of AMD with particular and greater attention to the dry form.
Collapse
Affiliation(s)
- Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Martina Capierri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Annalisa Barbieri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
6
|
Yeh WJ, Chien PT, Wen YT, Wu CH. A comprehensive review of experimental models for investigating blue light-induced ocular damage: Insights into parameters, limitations, and new opportunities. Exp Eye Res 2024; 249:110142. [PMID: 39490726 DOI: 10.1016/j.exer.2024.110142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/26/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Light-emitting diodes (LEDs) are widely used in modern lighting and electronic devices, including smartphones, computer monitors, tablets, televisions, and vehicle lights. Blue light (BL) hazards to eye health have received increasing attention because white LED bulbs emit higher levels of BL than traditional lighting sources. At wavelengths of 400-500 nm, BL is characterized by its high energy and risks associated with prolonged exposure, which may lead to photochemical damage and morphological alterations in the retina. Recent research has revealed that the harmful effects of BL are intricately linked to light intensity and exposure frequency, with mechanisms involving the overproduction of reactive oxygen species through photooxidative processes. This growing body of knowledge deepens our understanding of photodamage and opens avenues for exploring protective strategies for our eyes. Although current clinical trials assessing the safety of BL exposure remain limited, the development of experimental models that mimic physiological conditions has revealed BL toxicity. This review categorizes and evaluates BL-induced retinopathy in vivo, providing a comprehensive overview of the associated experimental parameters, including photosensitive fluorophores, light wavelength, illuminance, irradiance, exposure duration, animal strains, and their unique lesion patterns. Moreover, this study underscores the need for further research to evaluate photoprotective agents, which may offer valuable insights to the ongoing discussion on preserving ocular health in our increasingly illuminated digital environments.
Collapse
Affiliation(s)
- Wan-Ju Yeh
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Pin-Ting Chien
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Yao-Tseng Wen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 97403, Taiwan
| | - Chi-Hao Wu
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan.
| |
Collapse
|
7
|
Furujo T, Ito N, Harada K, Sakata I, Osaki T. In Vitro Efficacy of Photodynamic Antimicrobial Chemotherapy with TONS504 Using Blue Light Against Pseudomonas aeruginosa. Yonago Acta Med 2024; 67:284-292. [PMID: 39583761 PMCID: PMC11584238 DOI: 10.33160/yam.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/28/2024] [Indexed: 11/26/2024]
Abstract
Background Pseudomonas aeruginosa is an important causative agent of bacterial keratitis. This study investigates the antibacterial effect of photodynamic antimicrobial chemotherapy (PACT) with the chlorin derivative TONS504 (TONS504-PACT) and a blue light-emitting diode (LED) on P. aeruginosa in vitro. It also explores the synergistic effects of combining TONS504-PACT with EDTA, and compares the antibacterial effects of TONS504-PACT using blue light with those of previously reported red light. Methods To evaluate the antibacterial effects of TONS504-PACT using blue light on P. aeruginosa, PACT with TONS504 (0-100 mg/L) was applied using a 405 nm LED at 0-30 J/cm2 to P. aeruginosa (107-8 CFU/mL). The antibacterial effects were assessed by calculating the survival fraction. Subsequently, to compare the effects of TONS504-PACT using blue light with those of using red light, PACT with TONS504 (10 or 100 mg/L) was conducted using a 405 or 660 nm LED at 30 J/cm2 and evaluated in the same manner. Finally, to investigate the synergistic antibacterial effects of TONS504-PACT with EDTA, PACT with TONS504 (0-100 mg/L) was applied using a 405 nm LED at 5 J/cm2, both with and without EDTA (0.015 M), and its antibacterial effects were similarly assessed. Results TONS504-PACT using blue light decreased the survival of P. aeruginosa, depending on the light intensity. The greatest antibacterial effect was observed at 10 mg/L and 30 J/cm2, showing a survival fraction of 3.5 × 10-5. TONS504-PACT demonstrated a significantly greater antibacterial effect using blue light than that demonstrated using red light at 10 mg/L, though not at 100 mg/L. The combination of TONS504-PACT using blue light with EDTA significantly enhanced antibacterial effects at all concentrations. Conclusion These findings confirm the effectiveness of TONS504-PACT using blue light against P. aeruginosa and suggest its potential as a treatment for bacterial keratitis.
Collapse
Affiliation(s)
- Tomoya Furujo
- Joint Graduate School of Veterinary Sciences, Tottori University, Tottori 680-8553, Japan
| | - Norihiko Ito
- Joint Graduate School of Veterinary Sciences, Tottori University, Tottori 680-8553, Japan
| | - Kazuki Harada
- Joint Graduate School of Veterinary Sciences, Tottori University, Tottori 680-8553, Japan
| | | | - Tomohiro Osaki
- Joint Graduate School of Veterinary Sciences, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
8
|
Oh S, Kim C, Park YH. Decrease of alpha-crystallin A by miR-325-3p in retinal cells under blue light exposure. Mol Cells 2024; 47:100091. [PMID: 38997088 PMCID: PMC11342174 DOI: 10.1016/j.mocell.2024.100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
Exposure to blue light can lead to retinal degeneration, causing adverse effects on eye health. Although the loss of retinal cells due to blue light exposure has been observed, the precise molecular mechanisms underlying this process remain poorly understood. In this study, we investigate the role of alpha-crystallin A (CRYAA) in neuro-retinal degeneration and their regulation by blue light. We observed significant apoptotic cell death in both the retina of rats and the cultured neuro-retinal cells. The expressions of Cryaa mRNA and protein were significantly downregulated in the retina exposed to blue light. We identified that miR-325-3p reduces Cryaa mRNA and protein by binding to its 3'-untranslated region. Upregulation of miR-325-3p destabilized Cryaa mRNA and suppresses CRYAA, whereas downregulation of miR-325-3p increased both expressions. Blue light-induced neuro-retinal cell death was alleviated by CRYAA overexpression. These results highlight the critical role of Cryaa mRNA and miR-325-3p molecular axis in blue light-induced retinal degeneration. Consequently, targeting CRYAA and miR-325-3p presents a potential strategy for protecting against blue light-induced retinal degeneration.
Collapse
Affiliation(s)
- Subeen Oh
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Chongtae Kim
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Young-Hoon Park
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea.
| |
Collapse
|
9
|
Carozza G, Zerti D, Tisi A, Ciancaglini M, Maccarrone M, Maccarone R. An overview of retinal light damage models for preclinical studies on age-related macular degeneration: identifying molecular hallmarks and therapeutic targets. Rev Neurosci 2024; 35:303-330. [PMID: 38153807 DOI: 10.1515/revneuro-2023-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/19/2023] [Indexed: 12/30/2023]
Abstract
Age-related macular degeneration (AMD) is a complex, multifactorial disease leading to progressive and irreversible retinal degeneration, whose pathogenesis has not been fully elucidated yet. Due to the complexity and to the multiple features of the disease, many efforts have been made to develop animal models which faithfully reproduce the overall AMD hallmarks or that are able to mimic the different AMD stages. In this context, light damage (LD) rodent models of AMD represent a suitable and reliable approach to mimic the different AMD forms (dry, wet and geographic atrophy) while maintaining the time-dependent progression of the disease. In this review, we comprehensively reported how the LD paradigms reproduce the main features of human AMD. We discuss the capability of these models to broaden the knowledge in AMD research, with a focus on the mechanisms and the molecular hallmarks underlying the pathogenesis of the disease. We also critically revise the remaining challenges and future directions for the use of LD models.
Collapse
Affiliation(s)
- Giulia Carozza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Darin Zerti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Marco Ciancaglini
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Rita Maccarone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
10
|
Hung JH, Tsai PH, Aala WJF, Chen CC, Chiou SH, Wong TW, Tsai KJ, Hsu SM, Wu LW. TIMP3/Wnt axis regulates gliosis of Müller glia. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167087. [PMID: 38369214 DOI: 10.1016/j.bbadis.2024.167087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Previous studies have confirmed the expression of tissue inhibitor of metalloproteinase-3 (TIMP3) in Müller glia (MG). However, the role of TIMP3 in MG remains unknown. METHODS A mouse model of laser-induced retinal damage and gliosis was generated using wild-type C57BL/6 mice. TIMP3 and associated proteins were detected using Western blotting and immunofluorescence microscopy. RNA sequencing (GSE132140) of mouse laser-induced gliosis was utilized for pathway analysis. TIMP3 overexpression was induced in human MG. Human vitreous samples were obtained from patients with proliferative diabetic retinopathy (PDR) and healthy controls for protein analysis. RESULTS TIMP3 levels increased in mouse eyes after laser damage. Morphology and spatial location of TIMP3 indicated its presence in MG. TIMP3-overexpressing MG showed increased cellular proliferation, migration, and cell nuclei size, suggesting TIMP3-induced gliosis for retinal repair. Glial fibrillary acidic protein (GFAP) and vimentin levels were elevated in TIMP3-overexpressing MG and laser-damaged mouse retinas. RNA sequencing and Western blotting suggested a role for β-catenin in mediating TIMP3 effects on the retina. Human vitreous samples from patients with PDR showed a positive correlation between TIMP3 and GFAP levels, both of which were elevated in patients with PDR. CONCLUSIONS TIMP3 is associated with MG gliosis to enhance the repair ability of damaged retinas and is mediated by the canonical Wnt/β-catenin. Changes in TIMP3 could potentially be used to control gliosis in a range of retinal diseases However, given the multifaceted nature of TIMP3, care must be taken when developing treatments that aim solely to boost the function of TIMP3. FUNDING National Cheng Kung University Hospital, Taiwan (NCKUH-10604009 and NCKUH-11202007); the Ministry of Science and Technology (MOST 110-2314-B-006-086-MY3).
Collapse
Affiliation(s)
- Jia-Horung Hung
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wilson Jr F Aala
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Chung Chen
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Min Hsu
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Li-Wha Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Pietkiewicz P, Navarrete-Dechent C, Togawa Y, Szlązak P, Salwowska N, Marghoob AA, Leszczyńska-Pietkiewicz A, Errichetti E. Applications of Ultraviolet and Sub-ultraviolet Dermatoscopy in Neoplastic and Non-neoplastic Dermatoses: A Systematic Review. Dermatol Ther (Heidelb) 2024; 14:361-390. [PMID: 38358617 PMCID: PMC10890990 DOI: 10.1007/s13555-024-01104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Dermatoscopy is a non-invasive and cost-efficient imaging technique augmenting clinical examination in neoplastic and non-neoplastic dermatoses. Recently, novel dermatoscopic techniques based on principles of reflectance/absorption and excited fluorescence have been developed. However, comprehensive data on their applications are sparse, and terminology is inconsistent. In this systematic review, we addressed the principles of ultraviolet (UV) imaging and proposed categorization based on spectral characteristics and signal acquisition, as well as discussed documented and potential clinical applications, safety measures during examination, and limitations associated with reflectance and fluorescence dermatoscopy. A literature search was conducted in the PubMed medical database until 2 December 2023 according to PRISMA guidelines, and 28 papers fit the scope of this review, whereas additional relevant articles were included to provide broader context regarding the chosen terminology, chromophores described, safety of sub-UV/UV, and regulations for light-emitting devices. UV and sub-UV dermatoscopy, categorized into different methods on the basis of the emitted wavelength and signal acquisition process (reflectance versus fluorescence), augment conventional dermatoscopy by optimizing safety margins in melanoma, facilitating early detection of tumor recurrence, and enhancing visualization in non-neoplastic conditions, including pigmentation disorders, intertrigo, papulo-desquamative dermatoses, and beyond. The review highlights the limitations of these techniques, including difficulty in differentiating melanin from hemoglobin, challenges in evaluating uneven surfaces, and artifacts. Although UV dermatoscopy complements conventional dermatoscopy, clinicians should be aware of their peculiarities, artifacts, limitations, and safety concerns to optimize their diagnostic accuracy and ensure patient's safety.
Collapse
Affiliation(s)
- Paweł Pietkiewicz
- Zwierzyniecka Medical Center, Zwierzyniecka 30/28, 60-814, Poznań, Poland.
- Polish Dermatoscopy Group, Poznań, Poland.
| | - Cristian Navarrete-Dechent
- Melanoma and Skin Cancer Unit, Department of Dermatology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yaei Togawa
- Department of Dermatology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Piotr Szlązak
- Polish Dermatoscopy Group, Poznań, Poland
- Dermedica, Gdansk, Poland
| | - Natalia Salwowska
- Polish Dermatoscopy Group, Poznań, Poland
- Department of Dermatology, School of Medicine, Medical University of Silesia, Katowice, Poland
| | - Ashfaq A Marghoob
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | | | - Enzo Errichetti
- Institute of Dermatology, "Santa Maria Della Misericordia" University Hospital, Udine, Italy
| |
Collapse
|
12
|
Duan H, Yan W. Visual fatigue a comprehensive review of mechanisms of occurrence, animal model design and nutritional intervention strategies. Crit Rev Food Sci Nutr 2023; 65:1631-1655. [PMID: 38153314 DOI: 10.1080/10408398.2023.2298789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
When the eyes work intensively, it is easy to have eye discomfort such as blurred vision, soreness, dryness, and tearing, that is, visual fatigue. Visual fatigue not only affects work and study efficiency, but long-term visual fatigue can also easily affect physical and mental health. In recent years, with the popularization of electronic products, although it has brought convenience to the office and study, it has also caused more frequent visual fatigue among people who use electronic devices. Moreover, studies have reported that the number of people with visual fatigue is showing a trend of increasing year by year. The range of people involved is also extensive, especially students, people who have been engaged in computer work and fine instruments (such as microscopes) for a long time, and older adults with aging eye function. More and more studies have proposed that supplementation with the proper nutrients can effectively relieve visual fatigue and promote eye health. This review discusses the physiological mechanisms of visual fatigue and the design ideas of animal experiments from the perspective of modern nutritional science. Functional food ingredients with the ability to alleviate visual fatigue are discussed in detail.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| |
Collapse
|
13
|
Huang J, Zhou F, Zhou H, Zheng X, Huo Z, Yang M, Xu Z, Liu R, Wang L, Wang X. Systematic assessment of transcriptomic and metabolic reprogramming by blue light exposure coupled with aging. PNAS NEXUS 2023; 2:pgad390. [PMID: 38059264 PMCID: PMC10697416 DOI: 10.1093/pnasnexus/pgad390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
The prevalent use of light-emitting diodes (LEDs) has caused revolutionary changes in modern life, but the potential hazards to health of blue light are poorly understood. N6-methyladenosine (m6A) is the most prevalent posttranscriptional modification in eukaryotes and can modulate diverse physiological processes by regulating mRNA fate. Here, to understand the effects and molecular mechanisms of daily low-intensity blue light exposure (BLE) and ascertain whether m6A methylation plays a role in BLE-induced phenotypes, we constructed a series of Drosophila models under different durations of daily low-intensity BLE and obtained multiomics profiles. Our results revealed that BLE could induce transcriptomic, m6A epitranscriptomic, and metabolomic reprogramming in Drosophila along with aging process. Importantly, the m6A methylation sites enriched in the 5' untranslated regions (UTRs) of Drosophila transcripts showed strong age specificity and could be altered by BLE. We experimentally validated that aging-related gene Tor and circadian rhythm-related gene per were regulated by 5' UTR-enriched m6A methylation. Overall, our study provides a systematic assessment of m6A RNA methylome reprogramming by BLE and aging in Drosophila model.
Collapse
Affiliation(s)
- Jia Huang
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China
| | - Fan Zhou
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Huanchan Zhou
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoqi Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zhengyi Huo
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Meng Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zihe Xu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Runzhou Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Luoluo Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoyun Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
14
|
Chan YJ, Hsiao G, Wan WN, Yang TM, Tsai CH, Kang JJ, Lee YC, Fang TC, Cheng YW, Li CH. Blue light exposure collapses the inner blood-retinal barrier by accelerating endothelial CLDN5 degradation through the disturbance of GNAZ and the activation of ADAM17. Fluids Barriers CNS 2023; 20:31. [PMID: 37095509 PMCID: PMC10124034 DOI: 10.1186/s12987-023-00430-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/07/2023] [Indexed: 04/26/2023] Open
Abstract
Blue light is part of the natural light spectrum that emits high energy. Currently, people are frequently exposed to blue light from 3C devices, resulting in a growing incidence of retinopathy. The retinal vasculature is complex, and retinal vessels not only serve the metabolic needs of the retinal sublayers, but also maintain electrolyte homeostasis by forming the inner blood-retinal barrier (iBRB). The iBRB, which is primarily composed of endothelial cells, has well-developed tight junctions. However, with exposure to blue light, the risks of targeting retinal endothelial cells are currently unknown. We found that endothelial claudin-5 (CLDN5) was rapidly degraded under blue light, coinciding with the activation of a disintegrin and metalloprotease 17 (ADAM17), even at non-cytotoxic lighting. An apparently broken tight junction and a permeable paracellular cleft were observed. Mice exposed to blue light displayed iBRB leakage, conferring attenuation of the electroretinogram b-wave and oscillatory potentials. Both pharmacological and genetic inhibition of ADAM17 remarkably alleviated CLDN5 degradation induced by blue light. Under untreated condition, ADAM17 is sequestered by GNAZ (a circadian-responsive, retina-enriched inhibitory G protein), whereas ADAM17 escapes from GNAZ by blue light illuminance. GNAZ knockdown led to ADAM17 hyperactivation, CLDN5 downregulation, and paracellular permeability in vitro, and retinal damage mimicked blue light exposure in vivo. These data demonstrate that blue light exposure might impair the iBRB by accelerating CLDN5 degradation through the disturbance of the GNAZ-ADAM17 axis.
Collapse
Affiliation(s)
- Yen-Ju Chan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
- School of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
| | - George Hsiao
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Wang-Nok Wan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
| | - Tsung-Min Yang
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
- School of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
| | - Chi-Hao Tsai
- Department of Ophthalmology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jaw-Jou Kang
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Te-Chao Fang
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
| | - Ching-Hao Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
15
|
Blue Light Exposure: Ocular Hazards and Prevention-A Narrative Review. Ophthalmol Ther 2023; 12:755-788. [PMID: 36808601 PMCID: PMC9938358 DOI: 10.1007/s40123-023-00675-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/01/2023] [Indexed: 02/21/2023] Open
Abstract
INTRODUCTION Exposure to blue light has seriously increased in our environment since the arrival of light emitting diodes (LEDs) and, in recent years, the proliferation of digital devices rich in blue light. This raises some questions about its potential deleterious effects on eye health. The aim of this narrative review is to provide an update on the ocular effects of blue light and to discuss the efficiency of methods of protection and prevention against potential blue light-induced ocular injury. METHODS The search of relevant English articles was conducted in PubMed, Medline, and Google Scholar databases until December 2022. RESULTS Blue light exposure provokes photochemical reactions in most eye tissues, in particular the cornea, the lens, and the retina. In vitro and in vivo studies have shown that certain exposures to blue light (depending on the wavelength or intensity) can cause temporary or permanent damage to some structures of the eye, especially the retina. However, currently, there is no evidence that screen use and LEDs in normal use are deleterious to the human retina. Regarding protection, there is currently no evidence of a beneficial effect of blue blocking lenses for the prevention of eye diseases, in particular age-related macular degeneration (AMD). In humans, macular pigments (composed of lutein and zeaxanthin) represent a natural protection by filtering blue light, and can be increased through increased intake from foods or food supplements. These nutrients are associated with lower risk for AMD and cataract. Antioxidants such as vitamins C, E, or zinc might also contribute to the prevention of photochemical ocular damage by preventing oxidative stress. CONCLUSION Currently, there is no evidence that LEDs in normal use at domestic intensity levels or in screen devices are retinotoxic to the human eye. However, the potential toxicity of long-term cumulative exposure and the dose-response effect are currently unknown.
Collapse
|
16
|
Lou L, Frishman LJ, Beach KM, Rajagopalan L, Hung LF, She Z, Smith EL, Ostrin LA. Long-term blue light rearing does not affect in vivo retinal function in young rhesus monkeys. Doc Ophthalmol 2023:10.1007/s10633-023-09931-0. [PMID: 36995437 DOI: 10.1007/s10633-023-09931-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
PURPOSE Exposure to blue light is thought to be harmful to the retina. The purpose of this study was to determine the effects of long-term exposure to narrowband blue light on retinal function in rhesus monkeys. METHODS Young rhesus monkeys were reared under short-wavelength "blue" light (n = 7; 465 nm, 183 ± 28 lx) on a 12-h light/dark cycle starting at 26 ± 2 days of age. Age-matched control monkeys were reared under broadband "white" light (n = 8; 504 ± 168 lx). Light- and dark-adapted full-field flash electroretinograms (ERGs) were recorded at 330 ± 9 days of age. Photopic stimuli were brief red flashes (0.044-5.68 cd.s/m2) on a rod-saturating blue background and the International Society for Clinical Electrophysiology of Vision (ISCEV) standard 3.0 white flash on a 30 cd/m2 white background. Monkeys were dark adapted for 20 min and scotopic stimuli were ISCEV standard white flashes of 0.01, 3.0, and 10 cd.s/m2. A-wave, b-wave, and photopic negative response (PhNR) amplitudes were measured. Light-adapted ERGs in young monkeys were compared to ERGs in adult monkeys reared in white light (n = 10; 4.91 ± 0.88 years of age). RESULTS For red flashes on a blue background, there were no significant differences in a-wave (P = 0.46), b-wave (P = 0.75), and PhNR amplitudes (P = 0.94) between white light and blue light reared monkeys for all stimulus energies. ISCEV standard light- and dark-adapted a- and b-wave amplitudes were not significantly different between groups (P > 0.05 for all). There were no significant differences in a- and b-wave implicit times between groups for all ISCEV standard stimuli (P > 0.05 for all). PhNR amplitudes of young monkeys were significantly smaller compared to adult monkeys for all stimulus energies (P < 0.05 for all). There were no significant differences in a-wave (P = 0.19) and b-wave (P = 0.17) amplitudes between young and adult white light reared monkeys. CONCLUSIONS Long-term exposure to narrowband blue light did not affect photopic or scotopic ERG responses in young monkeys. Findings suggest that exposure to 12 h of daily blue light for approximately 10 months does not result in altered retinal function.
Collapse
Affiliation(s)
- Linjiang Lou
- College of Optometry, University of Houston, Houston, TX, USA
| | | | - Krista M Beach
- College of Optometry, University of Houston, Houston, TX, USA
| | | | - Li-Fang Hung
- College of Optometry, University of Houston, Houston, TX, USA
- Brien Holden Vision Institute, Sydney, NSW, Australia
| | - Zhihui She
- College of Optometry, University of Houston, Houston, TX, USA
| | - Earl L Smith
- College of Optometry, University of Houston, Houston, TX, USA
- Brien Holden Vision Institute, Sydney, NSW, Australia
| | - Lisa A Ostrin
- College of Optometry, University of Houston, Houston, TX, USA.
| |
Collapse
|
17
|
Ziółkowska N, Lewczuk B, Szyryńska N, Rawicka A, Vyniarska A. Low-Intensity Blue Light Exposure Reduces Melanopsin Expression in Intrinsically Photosensitive Retinal Ganglion Cells and Damages Mitochondria in Retinal Ganglion Cells in Wistar Rats. Cells 2023; 12:cells12071014. [PMID: 37048087 PMCID: PMC10093228 DOI: 10.3390/cells12071014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
This study investigated the effect of low-intensity blue light on the albino Wistar rat retina, including intrinsically photosensitive retinal ganglion cells (ipRGCs). Three groups of nine albino Wistar rats were used. One group was continuously exposed to blue light (150 lx) for 2 d (STE); one was exposed to 12 h of blue light and 12 h of darkness for 10 d (LTE); one was maintained in 12 h of white light (150 lx) and 12 h of darkness for 10 d (control). Melanopsin (Opn4) was immunolabelled on retinal whole-mounts. To count and measure Opn4-positive ipRGC somas and dendrites (including Sholl profiles), Neuron J was used. Retinal cryosections were immunolabeled for glial fibrillary acid protein (GFAP) and with terminal deoxynucleotidyl transferase dUTP nick-end labelling for apoptosis detection. LTE reduced the length of Opn4-positive ipRGC dendrites (p = 0.03) and decreased Opn4-immunoreactivity in ipRGC outer stratifying dendrites. LTE and STE decreased the complexity of dendritic arborization (Sholl profile; p < 0.001, p = 0.03, respectively), increased retinal GFAP immunoreactivity (p < 0.001, p = 0.002, respectively), and caused outer segment vesiculation and outer nuclear layer apoptosis. Ultrastructural analysis showed that LTE damaged mitochondria in retinal ganglion cells and in the inner plexiform layer. Thus, LTE to low-intensity blue light harms the retinas of albino Wistar rats.
Collapse
|
18
|
Antemie RG, Samoilă OC, Clichici SV. Blue Light-Ocular and Systemic Damaging Effects: A Narrative Review. Int J Mol Sci 2023; 24:ijms24065998. [PMID: 36983068 PMCID: PMC10052719 DOI: 10.3390/ijms24065998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Light is a fundamental aspect of our lives, being involved in the regulation of numerous processes in our body. While blue light has always existed in nature, with the ever-growing number of electronic devices that make use of short wavelength (blue) light, the human retina has seen increased exposure to it. Because it is at the high-energy end of the visible spectrum, many authors have investigated the theoretical harmful effects that it poses to the human retina and, more recently, the human body, given the discovery and characterization of the intrinsically photosensitive retinal ganglion cells. Many approaches have been explored, with the focus shifting throughout the years from examining classic ophthalmological parameters, such as visual acuity, and contrast sensitivity to more complex ones seen on electrophysiological assays and optical coherence tomographies. The current study aims to gather the most recent relevant data, reveal encountered pitfalls, and suggest future directions for studies regarding local and/or systemic effects of blue light retinal exposures.
Collapse
Affiliation(s)
- Răzvan-Geo Antemie
- Department of Physiology, Faculty of Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Ovidiu Ciprian Samoilă
- Department of Ophthalmology, Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Simona Valeria Clichici
- Department of Physiology, Faculty of Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
19
|
Vaudagna M, Aiassa V, Marcotti A, Beti MFP, Constantín MF, Pérez MF, Zoppi A, Becerra MC, Silvero C MJ. Titanium Dioxide Nanoparticles in sunscreens and skin photo-damage. Development, synthesis and characterization of a novel biocompatible alternative based on their in vitro and in vivo study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
20
|
Bola S, Subramanian P, Calzia D, Dahl A, Panfoli I, Funk RHW, Roehlecke C. Analysis of Electric Field Stimulation in Blue Light Stressed 661W Cells. Int J Mol Sci 2023; 24:ijms24043433. [PMID: 36834840 PMCID: PMC9965974 DOI: 10.3390/ijms24043433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/11/2023] Open
Abstract
Though electrical stimulation is used as a therapeutic approach to treat retinal and spinal injuries, many protective mechanisms at cellular level have not been elucidated. We performed a detailed analysis of cellular events in blue light (Li) stressed 661W cells, which were subjected to direct current electric field (EF) stimulation. Our findings revealed that EF stimulation induced protective effects in 661W cells from Li-induced stress by multiple defense mechanisms, such as increase in mitochondrial activity, gain in mitochondrial potential, increase in superoxide levels, and the activation of unfolded protein response (UPR) pathways, all leading to an enhanced cell viability and decreased DNA damage. Here, our genetic screen results revealed the UPR pathway to be a promising target to ameliorate Li-induced stress by EF stimulation. Thus, our study is important for a knowledgeable transfer of EF stimulation into clinical application.
Collapse
Affiliation(s)
- Sharanya Bola
- Institute of Anatomy, TU Dresden, D-01304 Dresden, Germany
| | - Pallavi Subramanian
- Institute of Clinical Chemistry and Laboratory Medicine, TU Dresden, D-01069 Dresden, Germany
| | - Daniela Calzia
- Department of Pharmacy—DIFAR, Biochemistry and Physiology Lab., University of Genoa, 16126 Genova, Italy
| | - Andreas Dahl
- Deep Sequencing Group SFB 655, Biotechnology Center, TU Dresden, D-01069 Dresden, Germany
| | - Isabella Panfoli
- Department of Pharmacy—DIFAR, Biochemistry and Physiology Lab., University of Genoa, 16126 Genova, Italy
| | - Richard H. W. Funk
- Institute of Anatomy, TU Dresden, D-01304 Dresden, Germany
- Correspondence:
| | - Cora Roehlecke
- Institute of Anatomy, TU Dresden, D-01304 Dresden, Germany
| |
Collapse
|
21
|
Fehler N, Lingenfelder C, Hessling M, Kupferschmid S. Retinal risk of endoillumination: A comparison of different ophthalmic illumination systems. J Fr Ophtalmol 2023; 46:377-387. [PMID: 36759248 DOI: 10.1016/j.jfo.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/10/2022] [Indexed: 02/10/2023]
Abstract
OBJECTIVES In vitreoretinal surgery, there is always a conflict between bright illumination of the field of operation and retinal safety. This study aimed to investigate different light sources and light guides for their potential retinal risk due to bright illumination. METHODS Irradiances in the fovea of ex-vivo porcine eyes resulting from different light sources (halogen lamp, xenon lamp and LED) and light guides are investigated for varying distances between the illumination tip and the fovea. The results are examined with regard to their photochemical and thermal retinal hazard and the maximal exposure time. The examination is carried out with the maximum intensity setting of each light source and with normalization to its brightness. MAIN RESULTS With decreasing distance of the tip of the light source, the retinal hazard increases. The photochemical and thermal retinal hazard at maximum brightness are smallest for the halogen lamp, next for the xenon lamp and highest for the LED. Thus, the exposition time is the longest for the halogen lamp followed by the xenon lamp and the LED. Normalizing the results to the same brightness the maximum exposition time is nearly the same for xenon lamp and LED, but still higher in case of the halogen lamp. CONCLUSIONS The choice of the most suitable lamp and illumination fiber depends on the intensity and spectral distribution of the illumination system. Concerning brightness, xenon and LED lamp are relatively harmless, but the surgeon should avoid the maximum device intensity.
Collapse
Affiliation(s)
- N Fehler
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Albert-Einstein-Allee 55, 89081 Ulm, Germany.
| | - C Lingenfelder
- Pharmpur GmbH, Messerschmittring 33, 86343 Königsbrunn, Germany
| | - M Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Albert-Einstein-Allee 55, 89081 Ulm, Germany
| | - S Kupferschmid
- Clinic of Ophthalmology, Bundeswehrkrankenhaus Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| |
Collapse
|
22
|
Sirés A, Pazo-González M, López-Soriano J, Méndez A, de la Rosa EJ, de la Villa P, Comella JX, Hernández-Sánchez C, Solé M. The Absence of FAIM Leads to a Delay in Dark Adaptation and Hampers Arrestin-1 Translocation upon Light Reception in the Retina. Cells 2023; 12:cells12030487. [PMID: 36766830 PMCID: PMC9914070 DOI: 10.3390/cells12030487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The short and long isoforms of FAIM (FAIM-S and FAIM-L) hold important functions in the central nervous system, and their expression levels are specifically enriched in the retina. We previously described that Faim knockout (KO) mice present structural and molecular alterations in the retina compatible with a neurodegenerative phenotype. Here, we aimed to study Faim KO retinal functions and molecular mechanisms leading to its alterations. Electroretinographic recordings showed that aged Faim KO mice present functional loss of rod photoreceptor and ganglion cells. Additionally, we found a significant delay in dark adaptation from early adult ages. This functional deficit is exacerbated by luminic stress, which also caused histopathological alterations. Interestingly, Faim KO mice present abnormal Arrestin-1 redistribution upon light reception, and we show that Arrestin-1 is ubiquitinated, a process that is abrogated by either FAIM-S or FAIM-L in vitro. Our results suggest that FAIM assists Arrestin-1 light-dependent translocation by a process that likely involves ubiquitination. In the absence of FAIM, this impairment could be the cause of dark adaptation delay and increased light sensitivity. Multiple retinal diseases are linked to deficits in photoresponse termination, and hence, investigating the role of FAIM could shed light onto the underlying mechanisms of their pathophysiology.
Collapse
Affiliation(s)
- Anna Sirés
- Cell Signaling and Apoptosis Group, Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Mateo Pazo-González
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain
- Department of Systems Biology, Facultad de Medicina, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Joaquín López-Soriano
- Cell Signaling and Apoptosis Group, Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Ana Méndez
- Department of Physiological Sciences, School of Medicine, Campus Universitari de Bellvitge, University of Barcelona, 08907 Barcelona, Spain
- Institut de Neurociències, Campus Universitari de Bellvitge, University of Barcelona, 08907 Barcelona, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Campus Universitari de Bellvitge, University of Barcelona, 08907 Barcelona, Spain
| | - Enrique J. de la Rosa
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | - Pedro de la Villa
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain
- Department of Systems Biology, Facultad de Medicina, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Joan X. Comella
- Cell Signaling and Apoptosis Group, Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Catalina Hernández-Sánchez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | - Montse Solé
- Cell Signaling and Apoptosis Group, Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- Correspondence:
| |
Collapse
|
23
|
VISUAL OPSINS: PHYSIOLOGICAL ALTERATION PROMOTED BY LED LIGHT. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
24
|
Pfeiffer RL, Jones BW. Current perspective on retinal remodeling: Implications for therapeutics. Front Neuroanat 2022; 16:1099348. [PMID: 36620193 PMCID: PMC9813390 DOI: 10.3389/fnana.2022.1099348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The retinal degenerative diseases retinitis pigmentosa and age-related macular degeneration are a leading cause of irreversible vision loss. Both present with progressive photoreceptor degeneration that is further complicated by processes of retinal remodeling. In this perspective, we discuss the current state of the field of retinal remodeling and its implications for vision-restoring therapeutics currently in development. Here, we discuss the challenges and pitfalls retinal remodeling poses for each therapeutic strategy under the premise that understanding the features of retinal remodeling in totality will provide a basic framework with which therapeutics can interface. Additionally, we discuss the potential for approaching therapeutics using a combined strategy of using diffusible molecules in tandem with other vision-restoring therapeutics. We end by discussing the potential of the retina and retinal remodeling as a model system for more broadly understanding the progression of neurodegeneration across the central nervous system.
Collapse
|
25
|
Ziółkowska N, Lewczuk B. Profiles of Rho, Opn4, c-Fos, and Birc5 mRNA expression in Wistar rat retinas exposed to white or monochromatic light. Front Neuroanat 2022; 16:956000. [PMID: 36059433 PMCID: PMC9434339 DOI: 10.3389/fnana.2022.956000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
Despite concern over potential retinal damage linked to exposure to light-emitting-diode (LED) light (particularly blue light), it remains unknown how exposure to low-intensity monochromatic LED light affects the expression of rhodopsin (Rho, a photopigment that mediates light-induced retinal degeneration), melanopsin (Opn4, a blue-light sensitive photopigment), c-Fos (associated with retinal damage/degeneration), and Birc5 (anti-apoptotic). This study investigated the mRNA expression profiles of these genes under exposure to white and monochromatic light (blue, red, green) in the retinas of albino rats under a cycle of 12 h of light and 12 h of darkness. In each group, 32 Wistar rats were exposed to one type of monochromatic-LED or white-fluorescent light for 7 day (150 lx). Retinal samples were taken for qPCR analysis and light and electron microscopy. Blue and green light exposure markedly decreased expression of Rho and Opn4 mRNA and increased expression of Birc5 and c-Fos mRNA (P < 0.05). In retinas from the blue-light group, loss and vesiculation of photoreceptor outer segments were visible, but not in retinas from the red-light and control group. Measurements of the photoreceptor inner and outer segments length revealed, that this length was significantly decreased in the blue- and green-light exposure groups (P < 0.02), but not in the red-light exposure group. Increased expression of Birc5 and decreased expression of Rho and Opn4 after exposure to blue and green light may be early responses that help to reduce light-induced retinal damage.
Collapse
Affiliation(s)
- Natalia Ziółkowska
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | |
Collapse
|
26
|
Downregulation of Inflammatory Response via Nrf2/Trx1/TXNIP Axis in Oxidative Stress-Induced ARPE-19 Cells and Mouse Model of AMD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1497813. [PMID: 35993020 PMCID: PMC9391142 DOI: 10.1155/2022/1497813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022]
Abstract
Aim Chronic inflammation is crucial for age-related macular degeneration (AMD) pathogenesis. However, the mechanism involved in activating inflammation remains unclear. This study is aimed at investigating whether nuclear factor erythrocyte-associated factor 2 (Nrf2) negatively regulated the Nod-like receptor protein 3 (NLRP3) inflammasomes through the thioredoxin 1 (Trx1)/thioredoxin interaction protein (TXNIP) complex. Methods We determined the optimal hydrogen peroxide (H2O2) concentration, time, and changes in reactive oxygen species (ROS) levels. We also constructed animal models using blue LED irradiation. Then, the expression of Nrf2, TXNIP, Trx1, NLRP3, and inflammation-related factors and proteins, along with the changes in retinal thickness and functional status, was analyzed. Results The oxidative stress model was established after 1 h intervention with 100 μM H2O2. Nrf2 reduced ROS production, protected the ultrastructure of mitochondria, increased the thickness of the ONL layer, and increased the amplitude of a- and b-wave amplitudes in ERG. Trx1 knockdown increased the production of ROS, damaged the ultrastructure of mitochondria, reduced the thickness of the other ONL layer, and reduced the amplitudes of a- and b-waves in the electroretinogram (ERG). Thus, TXNIP in the cytoplasm activated the inflammasomes. Conclusions Nrf2 showed antioxidant and anti-inflammatory activity in the H2O2-induced cell stress model and blue LED-induced retinal light damage model. TXNIP transferred from the nucleus to the cytoplasm, activated NLRP3, and aggravated the retinal injury in both the cell stress model and the animal blue LED model. In contrast, Trx1 knockout promoted this process. This study revealed the possible role of the thioredoxin system in developing AMD while also providing newer insights for the future treatment of AMD.
Collapse
|
27
|
Ji S, Ye L, Zhang L, Xu D, Dai J. Retinal neurodegeneration in a mouse model of green-light-induced myopia. Exp Eye Res 2022; 223:109208. [DOI: 10.1016/j.exer.2022.109208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/23/2022] [Accepted: 07/31/2022] [Indexed: 11/15/2022]
|
28
|
Wong NA, Bahmani H. A review of the current state of research on artificial blue light safety as it applies to digital devices. Heliyon 2022; 8:e10282. [PMID: 36042717 PMCID: PMC9420367 DOI: 10.1016/j.heliyon.2022.e10282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/13/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Light is necessary for human health and well-being. As we spend more time indoors, we are being increasingly exposed to artificial light. The development of artificial lighting has allowed us to control the brightness, colour, and timing of our light exposure. Yet, the widespread use of artificial light has raised concerns about the impact of altering our light environment on our health. The widespread adoption of personal digital devices over the past decade has exposed us to yet another source of artificial light. We spend a significant amount of time using digital devices with light-emitting screens, including smartphones and tablets, at close range. The light emitted from these devices, while appearing white, has an emission spectrum with a peak in the blue range. Blue light is often characterised as hazardous as its photon energy is higher than that of other wavelengths of visible light. Under certain conditions, visible blue light can cause harm to the retina and other ocular structures. Blue light can also influence the circadian rhythm and processes mediated by melanopsin-expressing intrinsically photosensitive retinal ganglion cells. While the blue component of sunlight is necessary for various physiological processes, whether the low-illuminance artificial blue light emitted from digital devices presents a risk to our health remains an ongoing area of debate. As technological advancements continue, it is relevant to understand how new devices may influence our well-being. This review examines the existing research on artificial blue light safety and the eye, visual performance, and circadian functions.
Collapse
Affiliation(s)
| | - Hamed Bahmani
- Dopavision GmbH, Berlin, Germany.,Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| |
Collapse
|
29
|
Baur F, Jüstel T. Weiße Leuchtdioden als moderne Leuchtmittel. CHEM UNSERER ZEIT 2022. [DOI: 10.1002/ciuz.202000055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Florian Baur
- FH Münster Fachbereich Chemieingenieurwesen Stegerwaldstr. 39 D‐48565 Steinfurt
| | | |
Collapse
|
30
|
Zhu S, Li X, Dang B, Wu F, Gou K, Wang C, Lin C. Hydrogen sulfide protects retina from blue light-induced photodamage and degeneration via inhibiting ROS-mediated ER stress-CHOP apoptosis signal. Redox Rep 2022; 27:100-110. [PMID: 35482945 PMCID: PMC9067965 DOI: 10.1080/13510002.2022.2069534] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Hydrogen sulfide (H2S) is a small reducing gas molecule with various biological functions such as anti-oxidative, anti-apoptotic and anti-inflammatory activities. In this study, we investigated the therapeutic effects of exogenous H2S in the experimental models of retinal photodamage in vivo and in vitro. Methods: Rats with open eyelids were pretreated with H2S (80~120 μmol/kg) for 10 days and then continuously exposed to blue light (435~445nm, 11.2W/m2) for 8 h to establish in vivo experimental model. ARPE-19 cells were pretreated with H2S and then exposed to blue light to establish in vitro experimental model. Results: In vivo experiments, H2S significantly ameliorated blue light-induced retinal oxidative stress, apoptosis and degeneration. Moreover, H2S inhibited the activation of blue light-induced endoplasmic reticulum (ER) stress CHOP apoptotic signaling. In vitro experiments, H2S improved blue light-induced oxidative stress and oxidative damage. H2S inhibited ROS-mediated activation of ER stress CHOP apoptotic signaling. H2S alleviated blue light-induced apoptosis and increases cell viability. The ER stress inhibitor 4-PBA alleviated blue light-induced apoptosis and increases cell viability. Conclusion: Taken together, these results indicate that H2S can inhibit ROS-mediated ER stress-CHOP apoptosis signal, thereby alleviating blue light-triggered retinal apoptosis and degeneration.
Collapse
Affiliation(s)
- Sen Zhu
- School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Xuan Li
- Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Bingrong Dang
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou, People's Republic of China
| | - Fen Wu
- School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Kexin Gou
- School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Chunming Wang
- School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Changjun Lin
- School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
31
|
The Molecular Mechanism of Retina Light Injury Focusing on Damage from Short Wavelength Light. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8482149. [PMID: 35498134 PMCID: PMC9042598 DOI: 10.1155/2022/8482149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/31/2022] [Indexed: 12/30/2022]
Abstract
Natural visible light is an electromagnetic wave composed of a spectrum of monochromatic wavelengths, each with a characteristic color. Photons are the basic units of light, and their wavelength correlates to the energy of light; short-wavelength photons carry high energy. The retina is a fragile neuronal tissue that senses light and generates visual signals conducted to the brain. However, excessive and intensive light exposure will cause retinal light damage. Within the visible spectrum, short-wavelength light, such as blue light, carries higher energy, and thus the retinal injury, is more significant when exposed to these wavelengths. The damage mechanism triggered by different short-wavelength light varies due to photons carrying different energy and being absorbed by different photosensitive molecules in the retinal neurons. However, photooxidation might be a common molecular step to initiate cell death. Herein, we summarize the historical understanding of light, the key molecular steps related to retinal light injury, and the death pathways of photoreceptors to further decipher the molecular mechanism of retinal light injury and explore potential neuroprotective strategies.
Collapse
|
32
|
Benthal MC, McKeown AS, Kraft TW. Cone Photoreceptor Loss in Light-Damaged Albino Rats. Int J Mol Sci 2022; 23:3978. [PMID: 35409336 PMCID: PMC8999964 DOI: 10.3390/ijms23073978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
We investigated the etiology of decreased cone-driven vision in a light damage (LD) model of retinal degeneration. To induce slow, moderate degeneration, albino rats underwent low-intensity light exposure for 10 days. Electroretinography was utilized to assess physiologic function of the rod- and cone-driven retinal function in LD and control rats. Immunohistochemistry targeting cone arrestin allowed for quantification of cone density and for comparison of the decline in function. Photoreceptor loss was quantified by outer nuclear layer thickness decreases, as observed by optical coherence tomography and histology. The LD rats showed decreased rod- and cone-driven function with partial recovery 30 days after cessation of light exposure. In addition, LD rats showed decreased cone photoreceptor densities in the central retinal region compared to control rats. Our results demonstrate that the loss of cone-driven visual function induced by light damage is at least partially due to the death of cone photoreceptors.
Collapse
Affiliation(s)
- Molly C. Benthal
- Department of Optometry, University of Alabama at Birmingham, 1720 2nd Ave South, Birmingham, AL 35294, USA;
| | - Alex S. McKeown
- Department of Vision Sciences, University of Alabama at Birmingham, 1720 2nd Ave South, Birmingham, AL 35294, USA;
| | - Timothy W. Kraft
- Department of Vision Sciences, University of Alabama at Birmingham, 1720 2nd Ave South, Birmingham, AL 35294, USA;
| |
Collapse
|
33
|
Evaluation of Changes in Psychophysical Performance during the Afternoon Drop off in Work Capacity after the Exposure to Specific Color of Light. ENERGIES 2022. [DOI: 10.3390/en15010350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of the study was to define whether changes in psychophysical performance will occur after the exposure to light of a specific color during the early afternoon decrease in work capacity. The evaluation of psychophysical performance was carried out on a group of 50 subjects using the following tools: Grandjean Scale, Attention and Perceptiveness Test (TUS), and GONOGO test. The study was performed for exposure to reference light, white light enriched by blue light (WBL), and white light enriched by red light (WRL). The analysis of psychophysical performance results indicates the positive influence of a specific color of light on different factors of psychophysical performance. Exposure to WRL among participants from the 22–34 subgroup contributed to an increase in the number of correct tests and the speed of work as well as a decrease in the number of mistakes, less boredom, and higher performance. The exposure to WBL among participants from the 55+ subgroup decreased the number of mistakes and reduced the response time. The results are consistent with the outcomes of previous research carried out on an international level, confirming that blue and red light are effective at increasing psychophysical performance. It was demonstrated that the psychophysical performance increases also when blue or red light is a significant component in the spectrum of white light.
Collapse
|
34
|
Ziólkowska N, Chmielewska-Krzesinska M, Vyniarska A, Sienkiewicz W. Exposure to Blue Light Reduces Melanopsin Expression in Intrinsically Photoreceptive Retinal Ganglion Cells and Damages the Inner Retina in Rats. Invest Ophthalmol Vis Sci 2022; 63:26. [PMID: 35060997 PMCID: PMC8787613 DOI: 10.1167/iovs.63.1.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Purpose The purpose of this study was to investigative the effects of blue light on intrinsically photoreceptive retinal ganglion cells (ipRGCs). Methods Brown Norway rats were used. Nine rats were continuously exposed to blue light (light emitting diodes [LEDs]: 463 nm; 1000 lx) for 2 days (acute exposure [AE]); 9 rats were exposed to 12 hours of blue light and 12 hours of darkness for 10 days (long-term exposure [LTE]); 6 control rats were exposed to 12 hours of white fluorescent light (1000 lx) and 12 hours of darkness for 10 days. Whole-mount retinas were immunolabelled with melanopsin antibodies; melanopsin-positive (MP) ipRGC somas and processes were counted and measured with Neuron J. To detect apoptosis, retinal cryo-sections were stained with terminal deoxynucleotidyl transferase dUTP nick-end labeling. Ultra-thin sections were visualized with transmission electron microscopy. Results The number of MP ipRGC somas was significantly lower in retinas from AE and LTE rats than in those from control rats (P < 0.001 and = 0.002, respectively). The mean length of MP areas of processes was significantly lower in AE rats (P < 0.001). AE rats had severe retinal damage and massive apoptosis in the outer nuclear layer; their mitochondria were damaged in the axons and dendrites of the nerve fiber layer and the inner plexiform layer. Retinal ganglion cells (RGCs) in AE rats appeared to have reduced amounts of free ribosomes and rough endoplasmic reticulum. Conclusions AE to blue light reduces melanopsin expression and damages RGCs, likely including ipRGCs. Changes in the axons and dendrites of RGCs suggest possible disruption of intraretinal and extraretinal signal transmission.
Collapse
Affiliation(s)
- Natalia Ziólkowska
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Malgorzata Chmielewska-Krzesinska
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Alla Vyniarska
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Stepan Gzhytskyi National University of Veterinary and Biotechnologies, Lviv, Ukraine
| | - Waldemar Sienkiewicz
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
35
|
Kaidzu S, Okuno T, Tanito M, Ohira A. Structural and Functional Change in Albino Rat Retina Induced by Various Visible Light Wavelengths. Int J Mol Sci 2021; 23:309. [PMID: 35008736 PMCID: PMC8745104 DOI: 10.3390/ijms23010309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 11/16/2022] Open
Abstract
The effects of visible light, from short to long wavelengths, on the retina were investigated functionally and histologically. The left eyes of Sprague-Dawley albino rats (6-weeks old, n = 6 for each wavelength) were exposed to seven narrow-band wavelengths (central wavelengths, 421, 441, 459, 501, 541, 581, and 615 nm) with bandwidths of 16 to 29 nm (half bandwidth, ±8-14.5 nm) using a xenon lamp source with bandpass filters at the retinal radiant exposures of 340 and 680 J/cm2. The right unexposed eyes served as controls. Seven days after exposure, flash electroretinograms (ERGs) were recorded, and the outer nuclear layer (ONL) thickness was measured. Compared to the unexposed eyes, significant reductions in the a- and b-wave ERG amplitudes were seen in eyes exposed to 460-nm or shorter wavelengths of light. The ONL thickness near the optic nerve head also tended to decrease with exposure to shorter wavelengths. The decreased ERG amplitudes and ONL thicknesses were most prominent in eyes exposed to 420-nm light at both radiant exposures. When the wavelengths were the same, the higher the amount of radiant exposure and the stronger the damage. Compared to the unexposed eyes, the a- and b-waves did not decrease significantly in eyes exposed to 500-nm or longer wavelength light. The results indicate that the retinal damage induced by visible light observed in albino rats depends on the wavelength and energy level of the exposed light.
Collapse
Affiliation(s)
- Sachiko Kaidzu
- Department of Ophthalmology, Faculty of Medicine, Shimane University, Izumo 693-8501, Shimane, Japan; (T.O.); (M.T.); (A.O.)
| | - Tsutomu Okuno
- Department of Ophthalmology, Faculty of Medicine, Shimane University, Izumo 693-8501, Shimane, Japan; (T.O.); (M.T.); (A.O.)
- Occupational Ergonomics Research Group, National Institute of Occupational Safety and Health, Tama-ku, Kawasaki 214-8585, Kanagawa, Japan
| | - Masaki Tanito
- Department of Ophthalmology, Faculty of Medicine, Shimane University, Izumo 693-8501, Shimane, Japan; (T.O.); (M.T.); (A.O.)
| | - Akihiro Ohira
- Department of Ophthalmology, Faculty of Medicine, Shimane University, Izumo 693-8501, Shimane, Japan; (T.O.); (M.T.); (A.O.)
| |
Collapse
|
36
|
Retinal Protection from LED-Backlit Screen Lights by Short Wavelength Absorption Filters. Cells 2021; 10:cells10113248. [PMID: 34831470 PMCID: PMC8618415 DOI: 10.3390/cells10113248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/26/2023] Open
Abstract
(1) Background: Ocular exposure to intense light or long-time exposure to low-intensity short-wavelength lights may cause eye injury. Excessive levels of blue light induce photochemical damage to the retinal pigment and degeneration of photoreceptors of the outer segments. Currently, people spend a lot of time watching LED screens that emit high proportions of blue light. This study aims to assess the effects of light emitted by LED tablet screens on pigmented rat retinas with and without optical filters. (2) Methods: Commercially available tablets were used for exposure experiments on three groups of rats. One was exposed to tablet screens, the other was exposed to the tablet screens with a selective filter and the other was a control group. Structure, gene expression (including life/death, extracellular matrix degradation, growth factors, and oxidative stress related genes), and immunohistochemistry in the retina were compared among groups. (3) Results: There was a reduction of the thickness of the external nuclear layer and changes in the genes involved in cell survival and death, extracellular matrix turnover, growth factors, inflammation, and oxidative stress, leading decrease in cell density and retinal damage in the first group. Modulation of gene changes was observed when the LED light of screens was modified with an optical filter. (4) Conclusions: The use of short-wavelength selective filters on the screens contribute to reduce LED light-induced damage in the rat retina.
Collapse
|
37
|
Rong R, Yang R, Li H, You M, Liang Z, Zeng Z, Zhou R, Xia X, Ji D. The roles of mitochondrial dynamics and NLRP3 inflammasomes in the pathogenesis of retinal light damage. Ann N Y Acad Sci 2021; 1508:78-91. [PMID: 34741555 DOI: 10.1111/nyas.14716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022]
Abstract
With the widespread popularity of electronic products and the diversification of lighting equipment, ocular photochemical damage caused by light has attracted research attention. Although such equipment mainly cause damage to the retina, the specific pathogenesis has not been systematically elucidated. Thus, the goal of this study was to explore the relationship between mitochondrial dysfunction and the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome in retinal cell death caused by light damage. We used a white light-emitting diode source to establish a mouse model of retinal light damage and observed significant changes of retinal structure and an impairment of visual function. Further experiments revealed that dynamin-related protein 1 (Drp1)-mediated excessive mitochondrial fission induced overproduction of reactive oxygen species in the retinal cells, leading to apoptosis, activation of microglia, and formation of the NLRP3 inflammasome. This, in turn, triggered a series of inflammatory cascade reactions, leading to pyroptosis. We also carried out red light and Drp1 inhibitor treatment and found that retinal damage and the decline in visual function caused by white light could be partially ameliorated. In conclusion, this study clarified the association between mitochondrial dynamics and the NLRP3 inflammasome in retinal light damage and provides opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Rongliang Yang
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Haibo Li
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Mengling You
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Zhuotao Liang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhou Zeng
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Dan Ji
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| |
Collapse
|
38
|
Kim YJ, Kim SW, Lee JR, Um SH, Joung YK, Bhang SH. Comparing the cytotoxic effect of light-emitting and organic light-emitting diodes based light therapy on human adipose-derived stem cells. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Kramer AC, Gurdziel K, Thummel R. A Comparative Analysis of Gene and Protein Expression Throughout a Full 28-Day Retinal Regeneration Time-Course in Adult Zebrafish. Front Cell Dev Biol 2021; 9:741514. [PMID: 34790663 PMCID: PMC8591265 DOI: 10.3389/fcell.2021.741514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
Following photoreceptors ablation by intense light exposure, adult zebrafish are capable of complete regeneration due to the ability of their Müller glia (MG) to re-enter the cell cycle, creating progenitors that differentiate into new photoreceptors. The majority of previous reports on retinal regeneration focused on the first few days of the regenerative response, which include MG cell-cycle re-entry and progenitor cell proliferation. With this study, we analyzed the full 28-day time-course of regeneration by pairing a detailed morphological/immunological analysis with RNA-seq transcriptional profiling at 8 key time points during retinal regeneration. We observed several novel findings. First, we provide evidence for two separate peaks of MG gliosis, with the secondary gliotic peak occurring after MG cell-cycle re-entry. Second, we highlight a distinct transcriptional shift between 5- and 10-days post lesion that highlights the transition from progenitor proliferation to differentiation into new photoreceptors. Third, we show distinctly different patterns of transcriptional recovery of the photoreceptor opsins at 28 days post lesion. Finally, using differential gene expression analysis, we revealed that the established functional recovery of the retina at 28 days post lesion does not, in fact, return to an undamaged transcriptional state, potentially redefining what the field considers complete regeneration. Together, to our knowledge, this work represents the first histological and transcriptomic map of a 28-day time-course of retinal regeneration in adult zebrafish.
Collapse
Affiliation(s)
- Ashley C. Kramer
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Katherine Gurdziel
- Genome Sciences Core, Wayne State University, Detroit, MI, United States
| | - Ryan Thummel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
40
|
Miralles de Imperial-Ollero JA, Gallego-Ortega A, Ortín-Martínez A, Villegas-Pérez MP, Valiente-Soriano FJ, Vidal-Sanz M. Animal Models of LED-Induced Phototoxicity. Short- and Long-Term In Vivo and Ex Vivo Retinal Alterations. Life (Basel) 2021; 11:life11111137. [PMID: 34833013 PMCID: PMC8617611 DOI: 10.3390/life11111137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
Phototoxicity animal models have been largely studied due to their degenerative communalities with human pathologies, e.g., age-related macular degeneration (AMD). Studies have documented not only the effects of white light exposure, but also other wavelengths using LEDs, such as blue or green light. Recently, a blue LED-induced phototoxicity (LIP) model has been developed that causes focal damage in the outer layers of the superior-temporal region of the retina in rodents. In vivo studies described a progressive reduction in retinal thickness that affected the most extensively the photoreceptor layer. Functionally, a transient reduction in a- and b-wave amplitude of the ERG response was observed. Ex vivo studies showed a progressive reduction of cones and an involvement of retinal pigment epithelium cells in the area of the lesion and, in parallel, an activation of microglial cells that perfectly circumscribe the damage in the outer retinal layer. The use of neuroprotective strategies such as intravitreal administration of trophic factors, e.g., basic fibroblast growth factor (bFGF), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) or pigment epithelium-derived factor (PEDF) and topical administration of the selective alpha-2 agonist (Brimonidine) have demonstrated to increase the survival of the cone population after LIP.
Collapse
Affiliation(s)
- Juan A. Miralles de Imperial-Ollero
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
| | - Alejandro Gallego-Ortega
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
| | - Arturo Ortín-Martínez
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada;
| | - María Paz Villegas-Pérez
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
| | - Francisco J. Valiente-Soriano
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
- Correspondence: (F.J.V.-S.); (M.V.-S.); Tel.: +34-868-88-4503 (F.J.V-S.); +34-868-88-4330 (M.V.-S.)
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
- Correspondence: (F.J.V.-S.); (M.V.-S.); Tel.: +34-868-88-4503 (F.J.V-S.); +34-868-88-4330 (M.V.-S.)
| |
Collapse
|
41
|
Wang Y, Zhao X, Gao M, Wan X, Guo Y, Qu Y, Chen Y, Li T, Liu H, Jiang M, Wang F, Sun X. Myosin 1f-mediated activation of microglia contributes to the photoreceptor degeneration in a mouse model of retinal detachment. Cell Death Dis 2021; 12:926. [PMID: 34628463 PMCID: PMC8502177 DOI: 10.1038/s41419-021-03983-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/14/2022]
Abstract
Photoreceptor death and neurodegeneration is the leading cause of irreversible vision loss. The inflammatory response of microglia plays an important role in the process of neurodegeneration. In this study, we chose retinal detachment as the model of photoreceptor degeneration. We found Myosin 1f was upregulated after retinal detachment, and it was specifically expressed in microglia. Deficiency of myosin 1f protected against photoreceptor apoptosis by inhibiting microglia activation. The elimination of microglia can abolish the protective effect of myosin 1f deficiency. After stimulation by LPS, microglia with myosin 1f deficiency showed downregulation of the MAPK and AKT pathways. Our results demonstrated that myosin 1f plays a crucial role in microglia-induced neuroinflammation after retinal injury and photoreceptor degeneration by regulating two classic inflammatory pathways and thereby decreasing the expression of inflammatory cytokines. Knockout of myosin 1f reduces the intensity of the immune response and prevents cell death of photoreceptor, suggesting that myosin 1f can be inhibited to prevent a decline in visual acuity after retinal detachment.
Collapse
Affiliation(s)
- Yimin Wang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xiaohuan Zhao
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Min Gao
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Wan
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Yinong Guo
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Yingying Qu
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Translational Medicine Center, Shanghai General Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Tong Li
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
| | - Haiyun Liu
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
| | - Mei Jiang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Disease, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Feng Wang
- Shanghai Institute of Immunology, Translational Medicine Center, Shanghai General Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaodong Sun
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Clinical Research Center for Eye Disease, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
| |
Collapse
|
42
|
Miralles de Imperial-Ollero JA, Gallego-Ortega A, Norte-Muñoz M, Di Pierdomenico J, Bernal-Garro JM, Valiente-Soriano FJ, Vidal-Sanz M. Short- and Long-Term Study of the Impact of Focal Blue Light-Emitting Diode-Induced Phototoxicity in Adult Albino Rats. Int J Mol Sci 2021; 22:ijms22189742. [PMID: 34575905 PMCID: PMC8466789 DOI: 10.3390/ijms22189742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/28/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Background: In adult rats we study the short- and long-term effects of focal blue light-emitting diode (LED)-induced phototoxicity (LIP) on retinal thickness and Iba-1+ activation. Methods: The left eyes of previously dark-adapted Sprague Dawley (SD) rats were photoexposed to a blue LED (20 s, 200 lux). In vivo longitudinal monitoring of retinal thickness, fundus images, and optical retinal sections was performed from 1 to 30 days (d) after LIP with SD-OCT. Ex vivo, we analysed the population of S-cone and Iba-1+ cells within a predetermined fixed-size circular area (PCA) centred on the lesion. Results: LIP resulted in a circular focal lesion readily identifiable in vivo by fundus examination, which showed within the PCAs a progressive thinning of the outer retinal layer, and a diminution of the S-cone population to 19% by 30 d. In parallel to S-cone loss, activated Iba-1+ cells delineated the lesioned area and acquired an ameboid morphology with peak expression at 3 d after LIP. Iba-1+ cells adopted a more relaxed-branched morphology at 7 d and by 14–30 d their morphology was fully branched. Conclusion: LIP caused a progressive reduction of the outer retina with loss of S cones and a parallel dynamic activation of microglial cells in the lesioned area.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Manuel Vidal-Sanz
- Correspondence: (F.J.V.-S.); (M.V.-S.); Tel.: +34-868-88-4503 (F.J.V.-S.); +34-868-88-4330 (M.V.-S.)
| |
Collapse
|
43
|
Miralles de Imperial-Ollero JA, Gallego-Ortega A, Norte-Muñoz M, Di Pierdomenico J, Valiente-Soriano FJ, Vidal-Sanz M. An in vivo model of focal light emitting diode-induced cone photoreceptor phototoxicity in adult pigmented mice: Protection with bFGF. Exp Eye Res 2021; 211:108746. [PMID: 34450185 DOI: 10.1016/j.exer.2021.108746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE To develop a model of focal injury by blue light-emitting diode (LED)-induced phototoxicity (LIP) in pigmented mouse retinas and to study the effects on cone, Iba-1+ cells and retinal pigment epithelium (RPE) cell populations after administration of basic fibroblast growth factor (bFGF) and minocycline, alone or combined. METHODS In anesthetized dark-adapted adult female pigmented C57BL/6 mice, left pupils were dilated and the eye exposed to LIP (500 lux, 45 s). The retina was monitored longitudinally in vivo with SD-OCT for 7 days (d). Ex vivo, the effects of LIP and its protection with bFGF (0.5 μg) administered alone or combined with minocycline (45 mg/kg) were studied in immunolabeled arrestin-cone outer segments (a+OS) and quantified within a predetermined fixed-size circular area (PCA) centered on the lesion in flattened retinas at 1, 3, 5 or 7d. Moreover, Iba-1+ cells and RPE cell morphology were analysed with Iba-1 and ZO-1 antibodies, respectively. RESULTS LIP caused a focal lesion within the superior-temporal retina with retinal thinning, particularly the outer retinal layers (116.5 ± 2.9 μm to 36.8 ± 6.3 μm at 7d), and with progressive diminution of a+OS within the PCA reaching minimum values at 7d (6218 ± 342 to 3966 ± 311). Administration of bFGF alone (4519 ± 320) or in combination with minocycline (4882 ± 446) had a significant effect on a+OS survival at 7d and Iba-1+ cell activation was attenuated in the groups treated with minocycline. In parallel, the RPE cell integrity was progressively altered after LIP and administration of neuroprotective components had no restorative effect at 7d. CONCLUSIONS LIP resulted in progressive outer retinal damage affecting the OS cone population and RPE. Administration of bFGF increased a+OS survival but did not prevent RPE deterioration.
Collapse
Affiliation(s)
- Juan A Miralles de Imperial-Ollero
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca. Campus de CC de la Salud, 30120, El Palmar, Murcia, Spain
| | - Alejandro Gallego-Ortega
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca. Campus de CC de la Salud, 30120, El Palmar, Murcia, Spain
| | - María Norte-Muñoz
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca. Campus de CC de la Salud, 30120, El Palmar, Murcia, Spain
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca. Campus de CC de la Salud, 30120, El Palmar, Murcia, Spain
| | - Francisco J Valiente-Soriano
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca. Campus de CC de la Salud, 30120, El Palmar, Murcia, Spain.
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca. Campus de CC de la Salud, 30120, El Palmar, Murcia, Spain.
| |
Collapse
|
44
|
Plasma Rich in Growth Factors Promotes Autophagy in ARPE19 Cells in Response to Oxidative Stress Induced by Blue Light. Biomolecules 2021; 11:biom11070954. [PMID: 34203504 PMCID: PMC8301887 DOI: 10.3390/biom11070954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022] Open
Abstract
Age-related macular degeneration (AMD) causes the degeneration of photoreceptors and retinal cells leading to vision loss in older subjects. Among possible exogenous risk factors, it has been recently proposed that long-term exposure to blue light could aggravate the course of AMD. In the search for therapeutic options, plasma rich in growth factors (PRGF) has been shown to enhance cell antioxidant pathways and protect photoreceptors against the harm produced by blue light, although its mechanism of action remains unknown. One possible mechanism, autophagy, is one of the most conservative cell renewal systems used in eukaryotes to destroy cellular components that have been damaged by some kind of insult. The oxidative stress of exposure to blue light is known to induce cell autophagy. In this study, we examined the combined effects on autophagy of blue light and PRGF in a retinal cell line, ARPE19. In response to treatment with both PRGF and blue light, we detected the modulated expression of autophagy markers such as NF-kB, p62/sqstm1, Atg5, LC3 and Beclin1, and inflammatory markers such as IL1B and IL18. Our findings suggest that PRGF promotes cell autophagy in response to exposure to blue light.
Collapse
|
45
|
Trotta MC, Gharbia S, Herman H, Mladin B, Hermenean A, Balta C, Cotoraci C, Peteu VE, Gesualdo C, Petrillo F, Galdiero M, Alfano R, Gherghiceanu M, D’Amico M, Rossi S, Hermenean A. Sex and Age-Related Differences in Neuroinflammation and Apoptosis in Balb/c Mice Retina Involve Resolvin D1. Int J Mol Sci 2021; 22:6280. [PMID: 34208040 PMCID: PMC8230628 DOI: 10.3390/ijms22126280] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022] Open
Abstract
(1) Background: The pro-resolving lipid mediator Resolvin D1 (RvD1) has already shown protective effects in animal models of diabetic retinopathy. This study aimed to investigate the retinal levels of RvD1 in aged (24 months) and younger (3 months) Balb/c mice, along with the activation of macro- and microglia, apoptosis, and neuroinflammation. (2) Methods: Retinas from male and female mice were used for immunohistochemistry, immunofluorescence, transmission electron microscopy, Western blotting, and enzyme-linked immunosorbent assays. (3) Results: Endogenous retinal levels of RvD1 were reduced in aged mice. While RvD1 levels were similar in younger males and females, they were markedly decreased in aged males but less reduced in aged females. Both aged males and females showed a significant increase in retinal microglia activation compared to younger mice, with a more marked reactivity in aged males than in aged females. The same trend was shown by astrocyte activation, neuroinflammation, apoptosis, and nitrosative stress, in line with the microglia and Müller cell hypertrophy evidenced in aged retinas by electron microscopy. (4) Conclusions: Aged mice had sex-related differences in neuroinflammation and apoptosis and low retinal levels of endogenous RvD1.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Section of Pharmacology, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (M.C.T.); (M.G.)
| | - Sami Gharbia
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310144 Arad, Romania; (S.G.); (H.H.); (B.M.); (C.B.); (A.H.)
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310144 Arad, Romania; (S.G.); (H.H.); (B.M.); (C.B.); (A.H.)
| | - Bianca Mladin
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310144 Arad, Romania; (S.G.); (H.H.); (B.M.); (C.B.); (A.H.)
| | - Andrei Hermenean
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Av., 050474 Bucharest, Romania; (A.H.); (M.G.)
| | - Cornel Balta
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310144 Arad, Romania; (S.G.); (H.H.); (B.M.); (C.B.); (A.H.)
| | - Coralia Cotoraci
- Faculty of Medicine, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310144 Arad, Romania;
| | - Victor Eduard Peteu
- Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei Av., 050096 Bucharest, Romania;
| | - Carlo Gesualdo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 6, 80138 Naples, Italy; (C.G.); (S.R.)
| | - Francesco Petrillo
- Department of Ophthalmology, University of Catania, P.zza Università 2, 95131 Catania, Italy;
| | - Marilena Galdiero
- Section of Pharmacology, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (M.C.T.); (M.G.)
| | - Roberto Alfano
- Department of Advanced Medical and Surgical Sciences “DAMSS”, University of Campania “Luigi Vanvitelli”, P.zza L. Miraglia 2, 80138 Naples, Italy;
| | - Mihaela Gherghiceanu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Av., 050474 Bucharest, Romania; (A.H.); (M.G.)
- Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei Av., 050096 Bucharest, Romania;
| | - Michele D’Amico
- Section of Pharmacology, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (M.C.T.); (M.G.)
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 6, 80138 Naples, Italy; (C.G.); (S.R.)
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310144 Arad, Romania; (S.G.); (H.H.); (B.M.); (C.B.); (A.H.)
- Faculty of Medicine, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310144 Arad, Romania;
| |
Collapse
|
46
|
Neuroprotective Effect of siRNA Entrapped in Hyaluronic Acid-Coated Lipoplexes by Intravitreal Administration. Pharmaceutics 2021; 13:pharmaceutics13060845. [PMID: 34200993 PMCID: PMC8226864 DOI: 10.3390/pharmaceutics13060845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/19/2022] Open
Abstract
Since the possibility of silencing specific genes linked to retinal degeneration has become a reality with the use of small interfering RNAs (siRNAs), this technology has been widely studied to promote the treatment of several ocular diseases. Despite recent advances, the clinical success of gene silencing in the retina is significantly reduced by inherent anatomical and physiological ocular barriers, and new strategies are required to achieve intraocular therapeutic effectiveness. In this study, we developed lipoplexes, prepared with sodium alginate as an adjuvant and strategically coated with hyaluronic acid (HA-LIP), and investigated the potential neuroprotective effect of these systems in a retinal light damage model. Successful functionalization of the lipoplexes with hyaluronic acid was indicated in the dynamic light scattering and transmission electron microscopy results. Moreover, these HA-LIP nanoparticles were able to protect and deliver siRNA molecules targeting caspase-3 into the retina. After retinal degeneration induced by high light exposure, in vitro and in vivo quantitative reverse transcription-PCR (RT-qPCR) assays demonstrated significant inhibition of caspase-3 expression by HA-LIP. Furthermore, these systems were shown to be safe, as no evidence of retinal toxicity was observed by electroretinography, clinical evaluation or histology.
Collapse
|
47
|
Blue Light from Cell Phones Can Cause Chronic Retinal Light Injury: The Evidence from a Clinical Observational Study and a SD Rat Model. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3236892. [PMID: 34055970 PMCID: PMC8147535 DOI: 10.1155/2021/3236892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/07/2021] [Accepted: 04/21/2021] [Indexed: 11/18/2022]
Abstract
Background To investigate the chronic photodamage induced by the low-intensity blue light of phones, we carried out a clinical pilot study and established an animal model by irradiating SD rats with a homemade illuminator. Methods Clinical investigation: A total of 25 clinical medical workers in our hospital were selected and divided into a control group and an observation group according to the daily video terminal use time. Multifocal electrophysiological system (Mf-ERG) was used for retinal functional examination. Animal experiment: A total of sixty SD rats were randomly divided into a control group (n = 6) and an experimental group (n = 54). The experimental rats were divided into nine groups, which were exposed to the blue light illuminator of the simulated cell phone array for different time. The visual electrophysiology of the rats was tested, and changes in structure were observed by H&E staining and transmission electron microscopy. Results In clinical investigation, macular centers near the concave area retinal photoreceptor cells have reduced amplitude. In animal experiments, the amplitude of photoreceptor cells decreased, the peak time was delayed, and the amplitudes were lower in the experimental groups. H&E staining and transmission electron microscope showed retinal tissue structure and functional damage in experimental groups. Conclusions Long-term exposure to low-illuminance blue light can cause retinal tissue structure and functional damage, and the chronic damage due to low-illuminance light warrants attention. The clinical registration number is 2018-KY-KS-LHL.
Collapse
|
48
|
Maurya M, Nag TC, Kumar P, Roy TS. Expression patterns of iron regulatory proteins after intense light exposure in a cone-dominated retina. Mol Cell Biochem 2021; 476:3483-3495. [PMID: 33983563 DOI: 10.1007/s11010-021-04175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Iron is implicated in ocular diseases such as in age-related macular degeneration. Light is also considered as a pathological factor in this disease. Earlier, two studies reported the influence of constant light environment on the pattern of expressions of iron-handling proteins. Here, we aimed to see the influence of light in 12-h light-12-h dark (12L:12D) cycles on the expression of iron-handling proteins in chick retina. Chicks were exposed to 400 lx (control) and 5000 lx (experimental) light at 12L:12D cycles and sacrificed at variable timepoints. Retinal ferrous ion (Fe2+) level, ultrastructural changes, lipid peroxidation level, immunolocalization and expression patterns of iron-handling proteins were analysed after light exposure. Both total Fe2+ level (p = 0.0004) and lipid peroxidation (p = 0.002) significantly increased at 12-, 48- and 168-h timepoint (for Fe2+) and 48- and 168-h timepoint (for lipid peroxidation), and there were degenerative retinal changes after 168 h of light exposure. Intense light exposure led to an increase in the levels of transferrin and transferrin receptor-1 (at 168-h) and ferroportin-1, whereas the levels of ferritins, hephaestin, (at 24-, 48- and 168-h timepoint) and ceruloplasmin (at 168-h timepoint) were decreased. These changes in iron-handling proteins after light exposure are likely due to a disturbance in the iron storage pool evident from decreased ferritin levels, which would result in increased intracellular Fe2+ levels. To counteract this, Fe2+ is released into the extracellular space, an observation supported by increased expression of ferroportin-1. Ceruloplasmin was able to convert Fe2+ into Fe3+ until 48 h of light exposure, but its decreased expression with time (at 168-h timepoint) resulted in increased extracellular Fe2+ that might have caused oxidative stress and retinal cell damage.
Collapse
Affiliation(s)
- Meenakshi Maurya
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Pankaj Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Tara Sankar Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
49
|
Blue Light Irradiation Induces Human Keratinocyte Cell Damage via Transient Receptor Potential Vanilloid 1 (TRPV1) Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8871745. [PMID: 33381275 PMCID: PMC7758139 DOI: 10.1155/2020/8871745] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022]
Abstract
Although blue light has been reported to affect skin cells negatively, little is known about its action mechanisms in skin cells. Therefore, we investigated the role of the transient receptor potential vanilloid 1 (TRPV1) in blue light-induced effects on human keratinocytes and its underlying mechanisms. Blue light decreased cell proliferation and upregulated TRPV1 expression. Blue light also suppressed the epidermal growth factor receptor- (EGFR-) mediated signaling pathway by reducing the protein levels of EGFR and suppressing the EGFR/PI3K/AKT/GSK3β/FoxO3a pathway. The blue light-induced effect in cell proliferation was reversed by TRPV1 siRNA, but not capsazepine, a TRPV1-specific antagonist. In addition, blue light irradiation increased the production of reactive oxygen species (ROS) and tumor necrosis factor-α (TNF-α). Blue light irradiation also increased both phosphorylation levels of TRPV1 and calcium influx. The blue light-induced increase in production of ROS and TNF-α was reversed by capsazepine. Furthermore, the blue light-induced increase in production of TNF-α was attenuated by SP600125 or PDTC. These findings show that blue light regulates cell survival and production of ROS and TNF-α; its effects are mediated via TRPV1. Specifically, the effects of blue light on cell proliferation are mediated by upregulating TRPV1, a negative regulator of EGFR-FoxO3a signaling. Blue light-induced production of ROS and TNF-α is also mediated through increased calcium influx via TRPV1 activation.
Collapse
|
50
|
Touitou Y, Point S. Effects and mechanisms of action of light-emitting diodes on the human retina and internal clock. ENVIRONMENTAL RESEARCH 2020; 190:109942. [PMID: 32758719 DOI: 10.1016/j.envres.2020.109942] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 05/11/2023]
Abstract
White light-emitting diodes (LEDs) will likely become the most used lighting devices worldwide in the future because of their very low prices over the course of their long lifespans which can be up to several tens of thousands of hours. The expansion of LED use in both urban and domestic lighting has prompted questions regarding their possible health effects, because the light that they provide is potentially high in the harmful blue band (400-500 nm) of the visible light spectrum. Research on the potential effects of LEDs and their blue band on human health has followed three main directions: 1) examining their retinal phototoxicity; 2) examining disruption of the internal clock, i.e., an out-of-sync clock, in shift workers and night workers, including the accompanying health issues, most concerningly an increased relative risk of cancer; and 3) examining risky, inappropriate late-night use of smartphones and consoles among children and adolescents. Here, we document the recognized or potential health issues associated with LED lighting together with their underlying mechanisms of action. There is so far no evidence that LED lighting is deleterious to human retina under normal use. However, exposure to artificial light at night is a new source of pollution because it affects the circadian clock. Blue-rich light, including cold white LEDs, should be considered a new endocrine disruptor, because it affects estrogen secretion and has unhealthful consequences in women, as demonstrated to occur via a complex mechanism.
Collapse
Affiliation(s)
- Yvan Touitou
- Unité de Chronobiologie, Fondation A. de Rothschild, 75019, Paris, France.
| | | |
Collapse
|