1
|
Murphy DP, Kolesnikov AV, Montana CL, Khaja ZM, Liu Y, Kefalov VJ, Corbo JC. Mechanisms of photoreceptor protection upon targeting the Nrl-Nr2e3 pathway. Proc Natl Acad Sci U S A 2025; 122:e2500446122. [PMID: 40397675 DOI: 10.1073/pnas.2500446122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/07/2025] [Indexed: 05/23/2025] Open
Abstract
Acute knockout of the rod photoreceptor transcription factor Nrl delays retinal degeneration in multiple mouse models of blindness, but the downstream transcriptomic changes that mediate these therapeutic effects are unknown. Here, we show that acute Nrl knockout causes upregulation of a subset of cone genes in rods as well as downregulation of rod genes, including the rod-specific transcriptional repressor Nr2e3. We hypothesized that Nr2e3 downregulation might mediate some of the therapeutic effects of Nrl knockout. Indeed, acute knockout of Nr2e3 prevents photoreceptor degeneration and preserves visual function in mice with mutations in the catalytic subunit of the rod-specific phosphodiesterase (Pde6brd10/rd10). Upregulation of Pde6c, the cone-specific paralog of Pde6b, in Nr2e3-knockout rods is required to prevent degeneration in Pde6brd10/rd10 mice, suggesting that this therapeutic effect is mediated, at least in part, by a gene-replacement mechanism. In contrast, acute Nr2e3 knockout fails to prevent degeneration caused by loss- or gain-of-function mutations in Rhodopsin (Rho-/- and RhoP23H/P23H), whereas acute Nrl knockout delays degeneration in both models. Surprisingly, the therapeutic effect of acute Nrl knockout in Pde6brd10/rd10 mice does not depend on Pde6c upregulation. These results suggest that acute Nrl knockout may exert its therapeutic effects via a mechanism independent of Nr2e3 downregulation, perhaps by downregulating other rod genes. We conclude that acute NRL knockout may be a promising gene-independent strategy for preventing photoreceptor degeneration in human patients.
Collapse
Affiliation(s)
- Daniel P Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Alexander V Kolesnikov
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92617
| | - Cynthia L Montana
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO 63110
| | - Zaid M Khaja
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
- Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Yu Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Vladimir J Kefalov
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92617
- Department of Physiology and Biophysics, University of California, Irvine, CA 92617
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
2
|
Malhotra S, Donneger F, Farrell JS, Dudok B, Losonczy A, Soltesz I. Integrating endocannabinoid signaling, CCK interneurons, and hippocampal circuit dynamics in behaving animals. Neuron 2025:S0896-6273(25)00188-6. [PMID: 40267911 DOI: 10.1016/j.neuron.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/25/2025]
Abstract
The brain's endocannabinoid signaling system modulates a diverse range of physiological phenomena and is also involved in various psychiatric and neurological disorders. The basic components of the molecular machinery underlying endocannabinoid-mediated synaptic signaling have been known for decades. However, limitations associated with the short-lived nature of endocannabinoid lipid signals had made it challenging to determine the spatiotemporal specificity and dynamics of endocannabinoid signaling in vivo. Here, we discuss how novel technologies have recently enabled unprecedented insights into endocannabinoid signaling taking place at specific synapses in behaving animals. In this review, we primarily focus on cannabinoid-sensitive inhibition in the hippocampus in relation to place cell properties to illustrate the potential of these novel methodologies. In addition, we highlight implications of these approaches and insights for the unraveling of cannabinoid regulation of synapses in vivo in other brain circuits in both health and disease.
Collapse
Affiliation(s)
- Shreya Malhotra
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
| | - Florian Donneger
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Jordan S Farrell
- Department of Neurology, Harvard Medical School, Boston, MA, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA; F.M. Kirby Neurobiology Center, Harvard Medical School, Boston, MA, USA
| | - Barna Dudok
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA; Kavli Institute for Brain Sciences, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
3
|
Silva-Llanes I, Rodríguez-López S, González-Naranjo P, Sastre ED, López MG, Páez JA, Campillo N, Lastres-Becker I. Targeting CB2 receptor with a novel antagonist reverses cognitive decline, neurodegeneration and pyroptosis in a TAU-dependent frontotemporal dementia mouse model. Brain Behav Immun 2025; 127:251-268. [PMID: 40081780 DOI: 10.1016/j.bbi.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/20/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
Frontotemporal dementia (FTD) comprises a group of disorders characterized by a progressive decline in behavior or language linked to the degeneration of the frontal and anterior temporal lobes followed by hippocampal atrophy. There are no effective treatments for FTD and for this reason, novel pharmacological targets, such as the endocannabinoid system (ECS), are being explored. Previous results from our laboratory showed a TAUP301L-dependent increase in CB2 receptor expression in hippocampal neurons of a FTD mouse model, alongside the neuroprotective impact of CB2 ablation. In this study, we evaluated the therapeutic potential of a new CB2 antagonist (PGN36) in our TAU-dependent FTD mouse model. Six-month-old mice received stereotaxic injections of an adeno-associated virus expressing human TAUP301L protein (AAV-TAUP301L) into the right hippocampus and were treated daily with PGN36 (5 mg/kg, i.p.) or vehicle for three weeks. By integrating behavioral tests, RNA-seq, qPCR expression analysis, and immunofluorescence in the AAV expressing TAU mouse model, we found that PGN36 treatment reverses key features of the neurodegenerative process triggered by TAUP301L overexpression. PGN36 treatment effectively countered TAUP301L-induced cognitive decline by reducing TAU protein expression levels and restoring markers of synaptic plasticity. Notably, we observed neuroprotection in the dentate gyrus granular layer, which we attribute to the modulation of pyroptosis. This programmed cell death pathway, is triggered by TAUP301L overexpression. PGN36 appears to modulate the pyroptotic cascade, thereby preventing the pyroptosis-induced neuronal loss. These findings collectively underscore the neuroprotective potential of this novel CB2 antagonist treatment against TAU-associated FTD.
Collapse
Affiliation(s)
- Ignacio Silva-Llanes
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid (UAM), Spain; Instituto de Investigaciones Biomédicas "Sols-Morreale" UAM-CSIC, Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Madrid, Spain.
| | - Silvia Rodríguez-López
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid (UAM), Spain; Instituto de Investigaciones Biomédicas "Sols-Morreale" UAM-CSIC, Madrid, Spain.
| | | | - Eric Del Sastre
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid 28029 Madrid, Spain.
| | - Manuela G López
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid 28029 Madrid, Spain.
| | - Juan Antonio Páez
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Nuria Campillo
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Isabel Lastres-Becker
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid (UAM), Spain; Instituto de Investigaciones Biomédicas "Sols-Morreale" UAM-CSIC, Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Madrid, Spain.
| |
Collapse
|
4
|
García-Gutiérrez MS, Torregrosa AB, Navarrete F, Navarro D, Manzanares J. A comprehensive review of the multifaceted role of cannabinoid receptor type 2 in neurodegenerative and neuropsychiatric disorders. Pharmacol Res 2025; 213:107657. [PMID: 39978657 DOI: 10.1016/j.phrs.2025.107657] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/24/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Research carried out during the last 30 years since the first identification of CB2r in 1993 has changed the landscape of this receptor's role and therapeutic utility. Initially, studies focused on elucidating the role of CB2r at the periphery since it was first characterized in spleen and lymphocytes. Later, CB2r was found in the brain not only under pathological conditions but also under basal conditions. It is now known that this receptor is expressed in different brain regions and different cell types, including neurons and microglia. Experimental studies have provided robust evidence that CB2r is involved in the modulation of the immune system, neuroinflammation, oxidative stress and neuroprotection. Besides, CB2r mediated the response to stress, anxiety, and depression. Also, CB2r plays a relevant role in modulating the reinforcing properties of different drugs of abuse, including alcohol, nicotine and cocaine. In this review, we summarize the cumulative knowledge regarding the immunomodulatory, anti-inflammatory, antioxidant, and neuroprotective properties of CB2r against the development of neurodegenerative diseases. Indeed, we cover the anxiolytic and antidepressant potential of CB2r, which raises the therapeutic interest of this receptor in different psychiatric diseases associated with anxiety and depression. Finally, we discuss the involvement of CB2r in the regulation of drug addiction. A better understanding of the properties of CB2r is essential for the pharmacological development of this receptor in different neurodegenerative, psychiatric, and addictive disorders.
Collapse
Affiliation(s)
- María S García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Abraham B Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
5
|
Cohen‐Adiv S, Amer‐Sarsour F, Berdichevsky Y, Boxer E, Goldstein O, Gana‐Weisz M, Tripathi U, Rike WA, Prag G, Gurevich T, Giladi N, Stern S, Orr‐Urtreger A, Friedmann‐Morvinski D, Ashkenazi A. TMEM16F regulates pathologic α-synuclein secretion and spread in cellular and mouse models of Parkinson's disease. Aging Cell 2025; 24:e14387. [PMID: 39487963 PMCID: PMC11822650 DOI: 10.1111/acel.14387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/14/2024] [Accepted: 10/01/2024] [Indexed: 11/04/2024] Open
Abstract
One of the main hallmarks of Parkinson's disease (PD) pathology is the spread of the aggregate-prone protein α-synuclein (α-syn), which can be detected in the plasma and cerebrospinal fluid of patients as well as in the extracellular environment of neuronal cells. The secreted α-syn can exhibit "prion-like" behavior and transmission to naïve cells can promote conformational changes and pathology. The precise role of plasma membrane proteins in the pathologic process of α-syn is yet to be fully resolved. The TMEM16 family of lipid scramblases and ion channels has been recently associated with cancer and infectious diseases but is less known for its role in aging-related diseases. To elucidate the role of TMEM16F in α-syn spread, we transduced neurons derived from TMEM16F knockout mice with a reporter system that enables the distinction between donor and recipient neurons of pathologic α-synA53T. We found that the spread of α-synA53T was reduced in neurons derived from TMEM16F-knockout mice. These findings were recapitulated in vivo in a mouse model of PD, where attenuated α-synA53T spread was observed when TMEM16F was ablated. Moreover, we identified a single nucleotide polymorphism in TMEM16F of Ashkenazi Jewish PD patients resulting in a missense Ala703Ser mutation with enhanced lipid scramblase activity. This mutation is associated with altered regulation of α-synA53T extracellular secretion in cellular models of PD. Our study highlights TMEM16F as a novel regulator of α-syn spread and as a potential therapeutic target in synucleinopathies.
Collapse
Affiliation(s)
- Stav Cohen‐Adiv
- The Department of Cell and Developmental Biology, Faculty of Medical and Health SciencesTel Aviv UniversityTel AvivIsrael
| | - Fatima Amer‐Sarsour
- The Department of Cell and Developmental Biology, Faculty of Medical and Health SciencesTel Aviv UniversityTel AvivIsrael
| | - Yevgeny Berdichevsky
- The Department of Cell and Developmental Biology, Faculty of Medical and Health SciencesTel Aviv UniversityTel AvivIsrael
| | - Emily Boxer
- The School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Orly Goldstein
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Mali Gana‐Weisz
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Utkarsh Tripathi
- Sagol Department of Neurobiology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Wote Amelo Rike
- Sagol Department of Neurobiology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Gali Prag
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
- School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Tanya Gurevich
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
- Movement Disorders Division, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
- Faculty of Medical and Health SciencesTel Aviv UniversityTel AvivIsrael
| | - Nir Giladi
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
- Faculty of Medical and Health SciencesTel Aviv UniversityTel AvivIsrael
- Brain DivisionTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Avi Orr‐Urtreger
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
- Faculty of Medical and Health SciencesTel Aviv UniversityTel AvivIsrael
| | - Dinorah Friedmann‐Morvinski
- The School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Avraham Ashkenazi
- The Department of Cell and Developmental Biology, Faculty of Medical and Health SciencesTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
6
|
Oscoz-Irurozqui M, Guardiola-Ripoll M, Almodóvar-Payá C, Guerrero-Pedraza A, Hostalet N, Carrion MI, Sarró S, Gomar JJ, Pomarol-Clotet E, Fatjó-Vilas M. Clinical and cognitive outcomes in first-episode psychosis: focus on the interplay between cannabis use and genetic variability in endocannabinoid receptors. Front Psychol 2024; 15:1414098. [PMID: 39193030 PMCID: PMC11348434 DOI: 10.3389/fpsyg.2024.1414098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/17/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction Research data show the impact of the endocannabinoid system on psychosis through its neurotransmission homeostatic functions. However, the effect of the endocannabinoid system genetic variability on the relationship between cannabis use and psychosis has been unexplored, even less in first-episode patients. Here, through a case-only design, we investigated the effect of cannabis use and the genetic variability of endocannabinoid receptors on clinical and cognitive outcomes in first-episode psychosis (FEP) patients. Methods The sample comprised 50 FEP patients of European ancestry (mean age (sd) = 26.14 (6.55) years, 76% males), classified as cannabis users (58%) or cannabis non-users. Two Single Nucleotide Polymorphisms (SNP) were genotyped at the cannabinoid receptor type 1 gene (CNR1 rs1049353) and cannabinoid receptor type 2 gene (CNR2 rs2501431). Clinical (PANSS, GAF) and neuropsychological (WAIS, WMS, BADS) assessments were conducted. By means of linear regression models, we tested the main effect of cannabis use and its interaction with the polymorphic variants on the clinical and cognitive outcomes. Results First, as regards cannabis effects, our data showed a trend towards more severe positive symptoms (PANSS, p = 0.05) and better performance in manipulative abilities (matrix test-WAIS, p = 0.041) among cannabis users compared to non-users. Second, concerning the genotypic effects, the T allele carriers of the CNR1 rs1049353 presented higher PANSS disorganization scores than CC homozygotes (p = 0.014). Third, we detected that the observed association between cannabis and manipulative abilities is modified by the CNR2 polymorphism (p = 0.022): cannabis users carrying the G allele displayed better manipulative abilities than AA genotype carriers, while the cannabis non-users presented the opposite genotype-performance pattern. Such gene-environment interaction significantly improved the overall fit of the cannabis-only model (Δ-R2 = 8.4%, p = 0.019). Discussion Despite the preliminary nature of the sample, our findings point towards the role of genetic variants at CNR1 and CNR2 genes in the severity of the disorganized symptoms of first-episode psychosis and modulating cognitive performance conditional to cannabis use. This highlights the need for further characterization of the combined role of endocannabinoid system genetic variability and cannabis use in the understanding of the pathophysiology of psychosis.
Collapse
Affiliation(s)
- Maitane Oscoz-Irurozqui
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Red de Salud Mental de Gipuzkoa, Osakidetza-Basque Health Service, Gipuzkoa, Spain
| | - Maria Guardiola-Ripoll
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Almodóvar-Payá
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Amalia Guerrero-Pedraza
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Hospital Benito Menni CASM, C/Doctor Antoni Pujadas, Barcelona, Spain
| | - Noemí Hostalet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - María Isabel Carrion
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Hospital Sant Rafael, Passeig de la Vall d’Hebron, Barcelona, Spain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - JJ Gomar
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- The Litwin-Zucker Alzheimer's Research Center, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Di Micco S, Ciaglia T, Salviati E, Michela P, Kostrzewa M, Musella S, Schiano Moriello A, Di Sarno V, Smaldone G, Di Matteo F, Capolupo I, Infantino R, Bifulco G, Pepe G, Sommella EM, Kumar P, Basilicata MG, Allarà M, Sánchez-Fernández N, Aso E, Gomez-Monterrey IM, Campiglia P, Ostacolo C, Maione S, Ligresti A, Bertamino A. Novel pyrrole based CB2 agonists: New insights on CB2 receptor role in regulating neurotransmitters' tone. Eur J Med Chem 2024; 269:116298. [PMID: 38493727 DOI: 10.1016/j.ejmech.2024.116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
The cannabinoid system is one of the most investigated neuromodulatory systems because of its involvement in multiple pathologies such as cancer, inflammation, and psychiatric diseases. Recently, the CB2 receptor has gained increased attention considering its crucial role in modulating neuroinflammation in several pathological conditions like neurodegenerative diseases. Here we describe the rational design of pyrrole-based analogues, which led to a potent and pharmacokinetically suitable CB2 full agonist particularly effective in improving cognitive functions in a scopolamine-induced amnesia murine model. Therefore, we extended our study by investigating the interconnection between CB2 activation and neurotransmission in this experimental paradigm. To this purpose, we performed a MALDI imaging analysis on mice brains, observing that the administration of our lead compound was able to revert the effect of scopolamine on different neurotransmitter tones, such as acetylcholine, serotonin, and GABA, shedding light on important networks not fully explored, so far.
Collapse
Affiliation(s)
- Simone Di Micco
- European Biomedical Research Institute (EBRIS), Via S. De Renzi 50, 84125, Salerno, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Perrone Michela
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Magdalena Kostrzewa
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Simona Musella
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Aniello Schiano Moriello
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Gerardina Smaldone
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Francesca Di Matteo
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Ilaria Capolupo
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Rosmara Infantino
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Eduardo M Sommella
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Poulami Kumar
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | | | - Marco Allarà
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Nuria Sánchez-Fernández
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131, Naples, Italy; Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain
| | - Ester Aso
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131, Naples, Italy; Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain
| | - Isabel M Gomez-Monterrey
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907, L'Hospitalet de Llobregat, Spain
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain.
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy.
| |
Collapse
|
8
|
Dell'Isola GB, Verrotti A, Sciaccaluga M, Dini G, Ferrara P, Parnetti L, Costa C. Cannabidiol: metabolism and clinical efficacy in epileptic patients. Expert Opin Drug Metab Toxicol 2024; 20:119-131. [PMID: 38465404 DOI: 10.1080/17425255.2024.2329733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION The landscape of epilepsy treatment has undergone a significant transformation with the emergence of cannabidiol as a potential therapeutic agent. Epidiolex, a pharmaceutical formulation of highly purified CBD, garnered significant attention not just for its therapeutic potential but also for being the first cannabis-derived medication to obtain approval from regulatory bodies. AREA COVERED In this narrative review the authors explore the intricate landscape of CBD as an antiseizure medication, deepening into its pharmacological mechanisms and clinical trials involving various epileptic encephalopathies. This exploration serves as a comprehensive guide, shedding light on a compound that holds promise for individuals contending with the significant challenges of drug-resistant epilepsy. EXPERT OPINION Rigorous studies highlight cannabidiol's efficacy, safety profile, and potential cognitive benefits, warranting further exploration for its approval in various drug-resistant epilepsy forms. As a promising therapeutic option, cannabidiol not only demonstrates efficacy in seizure control but also holds the potential for broader enhancements in the quality of life, especially for patients with epileptic encephalopathies.
Collapse
Affiliation(s)
| | | | - Miriam Sciaccaluga
- Section of Neurology, Laboratory of Experimental Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- "Mauro Baschirotto" Institute for Rare Diseases - BIRD Foundation Onlus, Longare, Vicenza, Italy
| | - Gianluca Dini
- Department of Pediatrics, University of Perugia, Perugia, Italy
| | - Pietro Ferrara
- Unit of Pediatrics, Campus Bio-Medico University, Rome, Italy
| | - Lucilla Parnetti
- Section of Neurology, Laboratory of Experimental Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cinzia Costa
- Section of Neurology, Laboratory of Experimental Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
9
|
Zhang J, Zhang J, Yuan R, Han W, Chang Y, Kong L, Wei C, Zheng Q, Zhu X, Liu Z, Ren W, Han J. Inhibition of cannabinoid degradation enhances hippocampal contextual fear memory and exhibits anxiolytic effects. iScience 2024; 27:108919. [PMID: 38318362 PMCID: PMC10839683 DOI: 10.1016/j.isci.2024.108919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/28/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Recent studies have demonstrated the pivotal involvement of endocannabinoids in regulating learning and memory, but the conclusions obtained from different paradigms or contexts are somewhat controversial, and the underlying mechanisms remain largely elusive. Here, we show that JZL195, a dual inhibitor of fatty acid amide hydrolase and monoacylglycerol lipase, can enhance the performance of mice in a contextual fear conditioning task and increase the time spent in open arms in the elevated zero maze (EZM). Although the effect of JZL195 on fear memory could not be inhibited by antagonists of cannabinoid receptors, the effect on the EZM seems to be mediated by CB1R. Simultaneously, hippocampal neurons are hyperactive, and theta oscillation power is significantly increased during the critical period of memory consolidation upon treatment with JZL195. These results suggest the feasibility of targeting the endocannabinoid system for the treatment of various mental disorders.
Collapse
Affiliation(s)
- Jinming Zhang
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Junmin Zhang
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Ruiqi Yuan
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Wenxin Han
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Yuan Chang
- Department of Histology and Embryology, School of Basic Medical Science, Xi’an Medical University, Xi’an 710000, China
| | - Lingyang Kong
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Chunling Wei
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Qiaohua Zheng
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Xingchao Zhu
- Heze Hospital of Traditional Chinese Medicine, Heze 274000, China
| | - Zhiqiang Liu
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Wei Ren
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
- Faculty of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Jing Han
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| |
Collapse
|
10
|
Belete TM. Recent Progress in the Development of New Antiepileptic Drugs with Novel Targets. Ann Neurosci 2023; 30:262-276. [PMID: 38020406 PMCID: PMC10662271 DOI: 10.1177/09727531231185991] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/12/2023] [Indexed: 12/01/2023] Open
Abstract
Background Epilepsy is a chronic neurological disorder that affects approximately 50-70 million people worldwide. Epilepsy has a significant economic and social burden on patients as well as on the country. The recurrent, spontaneous seizure activity caused by abnormal neuronal firing in the brain is a hallmark of epilepsy. The current antiepileptic drugs provide symptomatic relief by restoring the balance of excitatory and inhibitory neurotransmitters. Besides, about 30% of epileptic patients do not achieve seizure control. The prevalence of adverse drug reactions, including aggression, agitation, irritability, and associated comorbidities, is also prevalent. Therefore, researchers should focus on developing more effective, safe, and disease-modifying agents based on new molecular targets and signaling cascades. Summary This review overviews several clinical trials that help identify promising new targets like lactate dehydrogenase inhibitors, c-jun n-terminal kinases, high mobility group box-1 antibodies, astrocyte reactivity inhibitors, cholesterol 24-hydroxylase inhibitors, glycogen synthase kinase-3 beta inhibitors, and glycolytic inhibitors to develop a new antiepileptic drug. Key messages Approximately 30% of epileptic patients do not achieve seizure control. The current anti-seizure drugs are not disease modifying, cure or prevent epilepsy. Lactate dehydrogenase inhibitor, cholesterol 24-hydroxylase inhibitor, glycogen synthase kinase-3 beta inhibitors, and mTOR inhibitors have a promising antiepileptogenic effect.
Collapse
Affiliation(s)
- Tafere Mulaw Belete
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia, Africa
| |
Collapse
|
11
|
Rathod SS, Agrawal YO, Nakhate KT, Meeran MFN, Ojha S, Goyal SN. Neuroinflammation in the Central Nervous System: Exploring the Evolving Influence of Endocannabinoid System. Biomedicines 2023; 11:2642. [PMID: 37893016 PMCID: PMC10604915 DOI: 10.3390/biomedicines11102642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Neuroinflammation is a complex biological process that typically originates as a protective response in the brain. This inflammatory process is triggered by the release of pro-inflammatory substances like cytokines, prostaglandins, and reactive oxygen and nitrogen species from stimulated endothelial and glial cells, including those with pro-inflammatory functions, in the outer regions. While neuronal inflammation is common in various central nervous system disorders, the specific inflammatory pathways linked with different immune-mediated cell types and the various factors influencing the blood-brain barrier significantly contribute to disease-specific characteristics. The endocannabinoid system consists of cannabinoid receptors, endogenous cannabinoids, and enzymes responsible for synthesizing and metabolizing endocannabinoids. The primary cannabinoid receptor is CB1, predominantly found in specific brain regions such as the brainstem, cerebellum, hippocampus, and cortex. The presence of CB2 receptors in certain brain components, like cultured cerebellar granular cells, Purkinje fibers, and microglia, as well as in the areas like the cerebral cortex, hippocampus, and cerebellum is also evidenced by immunoblotting assays, radioligand binding, and autoradiography studies. Both CB1 and CB2 cannabinoid receptors exhibit noteworthy physiological responses and possess diverse neuromodulatory capabilities. This review primarily aims to outline the distribution of CB1 and CB2 receptors across different brain regions and explore their potential roles in regulating neuroinflammatory processes.
Collapse
Affiliation(s)
- Sumit S. Rathod
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
- Department of Pharmacy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
| | - Yogeeta O. Agrawal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
| | - Kartik T. Nakhate
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
| | - M. F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Abu Dhabi P.O. Box 15551, United Arab Emirates;
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Abu Dhabi P.O. Box 15551, United Arab Emirates;
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.S.R.); (Y.O.A.); (K.T.N.)
| |
Collapse
|
12
|
Oddi S, Fiorenza MT, Maccarrone M. Endocannabinoid signaling in adult hippocampal neurogenesis: A mechanistic and integrated perspective. Prog Lipid Res 2023; 91:101239. [PMID: 37385352 DOI: 10.1016/j.plipres.2023.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/01/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Dentate gyrus of the hippocampus continuously gives rise to new neurons, namely, adult-born granule cells, which contribute to conferring plasticity to the mature brain throughout life. Within this neurogenic region, the fate and behavior of neural stem cells (NSCs) and their progeny result from a complex balance and integration of a variety of cell-autonomous and cell-to-cell-interaction signals and underlying pathways. Among these structurally and functionally diverse signals, there are endocannabinoids (eCBs), the main brain retrograde messengers. These pleiotropic bioactive lipids can directly and/or indirectly influence adult hippocampal neurogenesis (AHN) by modulating, both positively and negatively, multiple molecular and cellular processes in the hippocampal niche, depending on the cell type or stage of differentiation. Firstly, eCBs act directly as cell-intrinsic factors, cell-autonomously produced by NSCs following their stimulation. Secondly, in many, if not all, niche-associated cells, including some local neuronal and nonneuronal elements, the eCB system indirectly modulates the neurogenesis, linking neuronal and glial activity to regulating distinct stages of AHN. Herein, we discuss the crosstalk of the eCB system with other neurogenesis-relevant signal pathways and speculate how the hippocampus-dependent neurobehavioral effects elicited by (endo)cannabinergic medications are interpretable in light of the key regulatory role that eCBs play on AHN.
Collapse
Affiliation(s)
- Sergio Oddi
- Department of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy.
| | - Maria Teresa Fiorenza
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio Snc, 67100 L'Aquila, Italy
| |
Collapse
|
13
|
Grabon W, Rheims S, Smith J, Bodennec J, Belmeguenai A, Bezin L. CB2 receptor in the CNS: from immune and neuronal modulation to behavior. Neurosci Biobehav Rev 2023; 150:105226. [PMID: 37164044 DOI: 10.1016/j.neubiorev.2023.105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/20/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Despite low levels of cannabinoid receptor type 2 (CB2R) expression in the central nervous system in human and rodents, a growing body of evidence shows CB2R involvement in many processes at the behavioral level, through both immune and neuronal modulations. Recent in vitro and in vivo evidence have highlighted the complex role of CB2R under physiological and inflammatory conditions. Under neuroinflammatory states, its activation seems to protect the brain and its functions, making it a promising target in a wide range of neurological disorders. Here, we provide a complete and updated overview of CB2R function in the central nervous system of rodents, spanning from modulation of immune function in microglia but also in other cell types, to behavior and neuronal activity, in both physiological and neuroinflammatory contexts.
Collapse
Affiliation(s)
- Wanda Grabon
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France.
| | - Sylvain Rheims
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France; Department of Functional Neurology and Epileptology, Hospices Civils de Lyon - France
| | - Jonathon Smith
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France
| | - Jacques Bodennec
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France
| | - Amor Belmeguenai
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France
| | - Laurent Bezin
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France.
| |
Collapse
|
14
|
Uzuneser TC, Szkudlarek HJ, Jones MJ, Nashed MG, Clement T, Wang H, Ojima I, Rushlow WJ, Laviolette SR. Identification of a novel fatty acid binding protein-5-CB2 receptor-dependent mechanism regulating anxiety behaviors in the prefrontal cortex. Cereb Cortex 2023; 33:2470-2484. [PMID: 35650684 PMCID: PMC10016066 DOI: 10.1093/cercor/bhac220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/18/2023] Open
Abstract
The endocannabinoid (eCB) system represents a promising neurobiological target for novel anxiolytic pharmacotherapies. Previous clinical and preclinical evidence has revealed that genetic and/or pharmacological manipulations altering eCB signaling modulate fear and anxiety behaviors. Water-insoluble eCB lipid anandamide requires chaperone proteins for its intracellular transport to degradation, a process that requires fatty acid-binding proteins (FABPs). Here, we investigated the effects of a novel FABP-5 inhibitor, SBFI-103, on fear and anxiety-related behaviors using rats. Acute intra-prelimbic cortex administration of SBFI-103 induced a dose-dependent anxiolytic response and reduced contextual fear expression. Surprisingly, both effects were reversed when a cannabinoid-2 receptor (CB2R) antagonist, AM630, was co-infused with SBFI-103. Co-infusion of the cannabinoid-1 receptor antagonist Rimonabant with SBFI-103 reversed the contextual fear response yet showed no reversal effect on anxiety. Furthermore, in vivo neuronal recordings revealed that intra-prelimbic region SBFI-103 infusion altered the activity of putative pyramidal neurons in the basolateral amygdala and ventral hippocampus, as well as oscillatory patterns within these regions in a CB2R-dependent fashion. Our findings identify a promising role for FABP5 inhibition as a potential target for anxiolytic pharmacotherapy. Furthermore, we identify a novel, CB2R-dependent FABP-5 signaling pathway in the PFC capable of strongly modulating anxiety-related behaviors and anxiety-related neuronal transmission patterns.
Collapse
Affiliation(s)
- Taygun C Uzuneser
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Medical Sciences Building, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Hanna J Szkudlarek
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Medical Sciences Building, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Matthew J Jones
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Medical Sciences Building, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Mina G Nashed
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Medical Sciences Building, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Timothy Clement
- Institute of Chemical Biology and Drug Discoveries, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Hehe Wang
- Institute of Chemical Biology and Drug Discoveries, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Iwao Ojima
- Institute of Chemical Biology and Drug Discoveries, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Walter J Rushlow
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Medical Sciences Building, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Mental Health Care Building, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Steven R Laviolette
- Corresponding author: Department of Anatomy and Cell Biology, University of Western Ontario, 468 Medical Science Building, London, ON N6A 3K7, Canada.
| |
Collapse
|
15
|
Raymundi AM, Batista Sohn JM, Salemme BW, Cardoso NC, Silveira Guimarães F, Stern CA. Effects of delta-9 tetrahydrocannabinol on fear memory labilization and reconsolidation: A putative role of GluN2B-NMDA receptor within the dorsal hippocampus. Neuropharmacology 2023; 225:109386. [PMID: 36549374 DOI: 10.1016/j.neuropharm.2022.109386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
Cannabis preparations could be an effective reconsolidation-based treatment for post-traumatic stress disorder. However, the effects of Δ9-tetrahydrocannabinol (THC) in fear memory labilization, a critical condition for retrieval-induced reconsolidation, are undetermined. We sought to investigate the effect of a conventional and an ultra-low dose of THC in memory labilization of adult male Wistar rats submitted to contextual fear conditioning. Pretreatment with THC 0.002, but not THC 0.3 mg/kg, i. p., before memory retrieval, did not change memory expression during the retrieval but impaired reconsolidation. No treatment changed freezing expression in an unpaired context. Before retrieval, THC 0.3, but not THC 0.002, decreased GluN2A-NMDA expression and the GluN2A/GluN2B ratio in the dorsal hippocampus (DH) 24 h later. No changes were observed immediately after retrieval. Pretreatment with THC 0.3 abolished the reconsolidation-impairing effect of anisomycin injected into the DH, suggesting an impairment in memory labilization. This effect was associated with an increased freezing expression in the unpaired context and was not observed with the THC ultra-low dose. The GluN2B-NMDA antagonism increased fear generalization in the anisomycin-treated group but restored its reconsolidation-impairing effect and reduced fear generalization when animals were pretreated with THC 0.3. GluN2A-NMDA antagonism or inhibition of the ubiquitin-proteasome system in the DH did not interfere with the effects of THC 0.3. Our findings indicate that THC causes a bidirectional effect on fear memory labilization that depends on hippocampal GluN2B-NMDA receptors' involvement in fear memory generalization.
Collapse
Affiliation(s)
- Ana Maria Raymundi
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
16
|
CB2R activation ameliorates late adolescent chronic alcohol exposure-induced anxiety-like behaviors during withdrawal by preventing morphological changes and suppressing NLRP3 inflammasome activation in prefrontal cortex microglia in mice. Brain Behav Immun 2023; 110:60-79. [PMID: 36754245 DOI: 10.1016/j.bbi.2023.02.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/08/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Chronic alcohol exposure (CAE) during late adolescence increases the risk of anxiety development. Alcohol-induced prefrontal cortex (PFC) microglial activation, characterized by morphological changes and increased associations with neurons, plays a critical role in the pathogenesis of anxiety. Alcohol exposure increases NLRP3 inflammasome expression, increasing cytokine secretion by activated microglia. Cannabinoid type 2 receptor (CB2R), an essential receptor of the endocannabinoid system, regulates microglial activation and neuroinflammatory reactions. We aimed to investigate the role of CB2R activation in ameliorating late adolescent CAE-induced anxiety-like behaviors and microglial activation in C57BL/6J mice. METHODS Six-week-old C57BL/6J mice were acclimated for 7 days and then were administered alcohol by gavage (4 g/kg, 25 % w/v) for 28 days. The mice were intraperitoneally injected with the specific CB2R agonist AM1241 1 h before alcohol treatment. Anxiety-like behaviors during withdrawal were assessed by open field test and elevated plus maze test 24 h after the last alcohol administration. Microglial activation, microglia-neuron interactions, and CB2R and NLRP3 inflammasome-related molecule expression in the PFC were measured using immunofluorescence, immunohistochemical, qPCR, and Western blotting assays. Microglial morphology was evaluated by Sholl analysis and the cell body-to-total cell size index. Additionally, N9 microglia were activated by LPS in vitro, and the effects of AM1241 on NLRP3 and N9 microglial activation were investigated. RESULTS After CAE, mice exhibited severe anxiety-like behaviors during withdrawal. CAE induced obvious microglia-neuron associations, and increased expression of microglial activation markers, CB2R, and NLRP3 inflammasome-related molecules in the PFC. Microglia also showed marked filament retraction and reduction and cell body enlargement after CAE. AM1241 treatment ameliorated anxiety-like behaviors in CAE model mice, and it prevented microglial morphological changes, reduced microglial activation marker expression, and suppressed the microglial NLRP3 inflammasome activation and proinflammatory cytokine secretion induced by CAE. AM1241 suppressed the LPS-induced increase in NLRP3 inflammasome-related molecules, IL-1β release, and M1 phenotype markers (iNOS and CD86) in N9 cell, which was reversed by CB2R antagonist treatment. CONCLUSIONS CAE caused anxiety-like behaviors in late adolescent mice at least partly by inducing microglial activation and increasing microglia-neuron associations in the PFC. CB2R activation ameliorated these effects by preventing morphological changes and suppressing NLRP3 inflammasome activation in PFC microglia.
Collapse
|
17
|
Cannabidiol attenuates fear memory expression in female rats via hippocampal 5-HT 1A but not CB1 or CB2 receptors. Neuropharmacology 2023; 223:109316. [PMID: 36334768 DOI: 10.1016/j.neuropharm.2022.109316] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Growing evidence from male rodent and human studies suggests that cannabidiol (CBD) modulates the expression of aversive memories and anxiety-related responses. The limited data on whether and how CBD influences these aspects in females could have therapeutic implications given the increased susceptibility of women to anxiety- and stress-related disorders relative to men. Female studies are also essential to examine inherent aspects that potentially contribute to differences in responsiveness to CBD. Here we addressed these questions in adult female rats. Contextually fear-conditioned animals acutely treated with CBD (1.0-10 mg/kg) were tested 45 min later. In subsequent experiments, we investigated the estrous cycle effects and the contribution of dorsal hippocampus (DH) serotonin 1A (5-HT1A) and cannabinoid types 1 (CB1) and 2 (CB2) receptors to CBD-induced effects on memory retrieval/expression. The effects of pre-retrieval systemic or intra-DH CBD administration on subsequent fear extinction were also assessed. Lastly, we evaluated the open arms avoidance and stretched-attend postures in females exposed to the elevated plus-maze after systemic CBD treatment. CBD 3.0 and 10 mg/kg administered before conditioned context exposure reduced females' freezing. This action remained unchanged across the estrous cycle and involved DH 5-HT1A receptors activation. Pre-retrieval CBD impaired memory reconsolidation and lowered fear during early extinction. CBD applied directly to the DH was sufficient to reproduce the effects of systemic CBD treatment. CBD 3.0 and 10 mg/kg reduced anxiety-related responses scored in the elevated plus-maze. Our findings demonstrate that CBD attenuates the behavioral manifestation of learned fear and anxiety in female rats.
Collapse
|
18
|
Miranda-Cortés A, Mota-Rojas D, Crosignani-Outeda N, Casas-Alvarado A, Martínez-Burnes J, Olmos-Hernández A, Mora-Medina P, Verduzco-Mendoza A, Hernández-Ávalos I. The role of cannabinoids in pain modulation in companion animals. Front Vet Sci 2023; 9:1050884. [PMID: 36686189 PMCID: PMC9848446 DOI: 10.3389/fvets.2022.1050884] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
The use of cannabinoids in both veterinary and human medicine is controversial for legal and ethical reasons. Nonetheless, the availability and therapeutic use of naturally occurring or synthetic phytocannabinoids, such as Δ9-tetrahydrocannabidiol and cannabidiol, have been the focus of attention in studies regarding their medical uses. This review aims to examine the role of cannabinoids in pain modulation by analyzing scientific findings regarding the signaling pathways of the endocannabinoid system and discussing the analgesic effects of synthetic cannabinoids compared to cannabinoid extracts and the extent and involvement of their receptors. In animals, studies have shown the analgesic properties of these substances and the role of the cannabinoid binding -1 (CB1) and cannabinoid binding -2 (CB2) receptors in the endocannabinoid system to modulate acute, chronic and neuropathic pain. This system consists of three main components: endogenous ligands (anandamide and 2-arachidonoylglycerol), G protein-coupled receptors and enzymes that degrade and recycle the ligands. Evidence suggests that their interaction with CB1 receptors inhibits signaling in pain pathways and causes psychoactive effects. On the other hand, CB2 receptors are associated with anti-inflammatory and analgesic reactions and effects on the immune system. Cannabis extracts and their synthetic derivatives are an effective therapeutic tool that contributes to compassionate pain care and participates in its multimodal management. However, the endocannabinoid system interacts with different endogenous ligands and neurotransmitters, thus offering other therapeutic possibilities in dogs and cats, such is the case of those patients who suffer from seizures or epilepsy, contact and atopic dermatitis, degenerative myelopathies, asthma, diabetes and glaucoma, among other inflammatory diseases. Moreover, these compounds have been shown to possess antineoplastic, appetite-stimulating, and antiemetic properties. Ultimately, the study of the endocannabinoid system, its ligands, receptors, mechanism of action, and signaling, has contributed to the development of research that shows that hemp-derived and their synthetic derivatives are an effective therapeutic alternative in the multimodal management of pain in dogs and cats due to their ability to prevent peripheral and central sensitization.
Collapse
Affiliation(s)
- Agatha Miranda-Cortés
- Department of Biological Science, Clinical Pharmacology and Veterinary Anesthesia, Universidad Nacional Autónoma de México (UNAM), FESC, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Universidad Autónoma Metropolitana, (UAM), Mexico City, Mexico
| | - Nadia Crosignani-Outeda
- Department of Clinics and Veterinary Hospital, School of Veterinary, University of Republic, Montevideo, Uruguay
| | - Alejandro Casas-Alvarado
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Universidad Autónoma Metropolitana, (UAM), Mexico City, Mexico
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Tamaulipas, Mexico
| | - Adriana Olmos-Hernández
- Department Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Calzada México Xochimilco, Mexico City, Mexico
| | - Patricia Mora-Medina
- Livestock Science Department, Universidad Nacional Autónoma de México (UNAM), FESC, Mexico City, Mexico
| | - Antonio Verduzco-Mendoza
- Department Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Calzada México Xochimilco, Mexico City, Mexico
| | - Ismael Hernández-Ávalos
- Department of Biological Science, Clinical Pharmacology and Veterinary Anesthesia, Universidad Nacional Autónoma de México (UNAM), FESC, Mexico City, Mexico
| |
Collapse
|
19
|
Vecchiarelli HA, Joers V, Tansey MG, Starowicz K. Editorial: Cannabinoids in neuroinflammation, neurodegeneration and pain: Focus on non-neuronal cells. Front Neurosci 2022; 16:1114775. [PMID: 36605549 PMCID: PMC9808392 DOI: 10.3389/fnins.2022.1114775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Haley A. Vecchiarelli
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada,*Correspondence: Haley A. Vecchiarelli ✉
| | - Valerie Joers
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States,Valerie Joers ✉
| | - Malú Gámez Tansey
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States,Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States,Malú Gámez Tansey ✉
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology PAS, Kraków, Poland,Katarzyna Starowicz ✉
| |
Collapse
|
20
|
Marinelli S, Marrone MC, Di Domenico M, Marinelli S. Endocannabinoid signaling in microglia. Glia 2022; 71:71-90. [PMID: 36222019 DOI: 10.1002/glia.24281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Microglia, the innate immune cells of the central nervous system (CNS), execute their sentinel, housekeeping and defense functions through a panoply of genes, receptors and released cytokines, chemokines and neurotrophic factors. Moreover, microglia functions are closely linked to the constant communication with other cell types, among them neurons. Depending on the signaling pathway and type of stimuli involved, the outcome of microglia operation can be neuroprotective or neurodegenerative. Accordingly, microglia are increasingly becoming considered cellular targets for therapeutic intervention. Among signals controlling microglia activity, the endocannabinoid (EC) system has been shown to exert a neuroprotective role in many neurological diseases. Like neurons, microglia express functional EC receptors and can produce and degrade ECs. Interestingly, boosting EC signaling leads to an anti-inflammatory and neuroprotective microglia phenotype. Nonetheless, little evidence is available on the microglia-mediated therapeutic effects of EC compounds. This review focuses on the EC signals acting on the CNS microglia in physiological and pathological conditions, namely on the CB1R, CB2R and TRPV1-mediated regulation of microglia properties. It also provides new evidence, which strengthens the understanding of mechanisms underlying the control of microglia functions by ECs. Given the broad expression of the EC system in glial and neuronal cells, the resulting picture is the need for in vivo studies in transgenic mouse models to dissect the contribution of EC microglia signaling in the neuroprotective effects of EC-derived compounds.
Collapse
Affiliation(s)
- Sara Marinelli
- CNR-National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Maria Cristina Marrone
- EBRI-Fondazione Rita Levi Montalcini, Rome, Italy.,Ministry of University and Research, Mission Unity for Recovery and Resilience Plan, Rome, Italy
| | - Marina Di Domenico
- EBRI-Fondazione Rita Levi Montalcini, Rome, Italy.,Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| | | |
Collapse
|
21
|
Ferranti AS, Foster DJ. Cannabinoid type-2 receptors: An emerging target for regulating schizophrenia-relevant brain circuits. Front Neurosci 2022; 16:925792. [PMID: 36033626 PMCID: PMC9403189 DOI: 10.3389/fnins.2022.925792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Although the cannabinoid type-2 receptor (CB2) is highly expressed in the immune system, emerging evidence points to CB2 playing a key role in regulating neuronal function in the central nervous system. Recent anatomical studies, combined with electrophysiological studies, indicate that CB2 receptors are expressed in specific dopaminergic and glutamatergic brain circuits that are hyperactive in schizophrenia patients. The ability of CB2 receptors to inhibit dopaminergic and hippocampal circuits, combined with the anti-inflammatory effects of CB2 receptor activation, make this receptor an intriguing target for treating schizophrenia, a disease where novel interventions that move beyond dopamine receptor antagonists are desperately needed. The development of new CB2-related pharmacological and genetic tools, including the first small molecule positive allosteric modulator of CB2 receptors, has greatly advanced our understanding of this receptor. While more work is needed to further elucidate the translational value of selectively targeting CB2 receptors with respect to schizophrenia, the studies discussed below could suggest that CB2 receptors are anatomically located in schizophrenia-relevant circuits, where the physiological consequence of CB2 receptor activation could correct circuit-based deficits commonly associated with positive and cognitive deficits.
Collapse
Affiliation(s)
- Anthony S. Ferranti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Daniel J. Foster
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
22
|
Pinto R, Magalhães A, Sousa M, Melo L, Lobo A, Barros P, Gomes JR. Bridging the Transient Intraluminal Stroke Preclinical Model to Clinical Practice: From Improved Surgical Procedures to a Workflow of Functional Tests. Front Neurol 2022; 13:846735. [PMID: 35359638 PMCID: PMC8963503 DOI: 10.3389/fneur.2022.846735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
Acute ischemic stroke (AIS) remains a leading cause of mortality, despite significant advances in therapy (endovascular thrombectomy). Failure in developing novel effective therapies is associated with unsuccessful translation from preclinical studies to clinical practice, associated to inconsistent and highly variable infarct areas and lack of relevant post-stroke functional evaluation in preclinical research. To outreach these limitations, we optimized the intraluminal transient middle cerebral occlusion, a widely used mouse stroke model, in two key parameters, selection of appropriate occlusion filaments and time of occlusion, which show a significant variation in the literature. We demonstrate that commercially available filaments with short coating length (1–2 mm), together with 45-min occlusion, results in a consistent affected brain region, similar to what is observed in most patients with AIS. Importantly, a dedicated post-stroke care protocol, based on clinical practice applied to patients who had stroke, resulted in lower mortality and improved mice welfare. Finally, a battery of tests covering relevant fine motor skills, sensory functions, and learning/memory behaviors revealed a significant effect of tMCAO brain infarction, which is parallel to patient symptomatology as measured by relevant clinical scales (NIH Stroke Scale, NIHSS and modified Rankin Scale, mRS). Thus, in order to enhance translation to clinical practice, future preclinical stroke research must consider the methodology described in this study, which includes improved reproducible surgical procedure, postoperative care, and the battery of functional tests. This will be a major step s closing the gap from bench to bedside, rendering the development of novel effective therapeutic approaches.
Collapse
Affiliation(s)
- Raquel Pinto
- Molecular Neurobiology Unit, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana Magalhães
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Addiction Biology Unit, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Mafalda Sousa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Advanced Light Microscopy Unit, I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Lúcia Melo
- Molecular Neurobiology Unit, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Andrea Lobo
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Addiction Biology Unit, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Pedro Barros
- Neurology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal.,Stroke Unit, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - João R Gomes
- Molecular Neurobiology Unit, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
23
|
Morcuende A, García-Gutiérrez MS, Tambaro S, Nieto E, Manzanares J, Femenia T. Immunomodulatory Role of CB2 Receptors in Emotional and Cognitive Disorders. Front Psychiatry 2022; 13:866052. [PMID: 35492718 PMCID: PMC9051035 DOI: 10.3389/fpsyt.2022.866052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Emotional behavior, memory, and learning have been associated with alterations in the immune system in neuropsychiatric and neurodegenerative diseases. In recent years, several studies pointed out the involvement of the cannabinoid receptor 2 (CB2r) in the immune system and the regulation of inflammation. This receptor is widely distributed in different tissues and organs with higher expression in spleen and immune system cells. However, CB2r has also been detected in several brain areas and different brain cell types, such as neurons and glia. These findings suggest that CB2r may closely relate the immune system and the brain circuits regulating inflammation, mood, and cognitive functions. Therefore, we review the studies that may help elucidate the molecular bases of CB2r in regulating inflammation in different brain cells and its role in the pathophysiology of psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Alvaro Morcuende
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante, Alicante, Spain
| | - Simone Tambaro
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Elena Nieto
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante, Alicante, Spain
| | - Teresa Femenia
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain
| |
Collapse
|
24
|
Li Y, Dong Y, Yang L, Tucker L, Zong X, Brann D, Hamblin MR, Vazdarjanova A, Zhang Q. Photobiomodulation prevents PTSD-like memory impairments in rats. Mol Psychiatry 2021; 26:6666-6679. [PMID: 33859360 PMCID: PMC8760076 DOI: 10.1038/s41380-021-01088-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
A precise fear memory encoding a traumatic event enables an individual to avoid danger and identify safety. An impaired fear memory (contextual amnesia), however, puts the individual at risk of developing posttraumatic stress disorder (PTSD) due to the inability to identify a safe context when encountering trauma-associated cues later in life. Although it is gaining attention that contextual amnesia is a critical etiologic factor for PTSD, there is no treatment currently available that can reverse contextual amnesia, and whether such treatment can prevent the development of PTSD is unknown. Here, we report that (I) a single dose of transcranial photobiomodulation (PBM) applied immediately after tone fear conditioning can reverse contextual amnesia. PBM treatment preserved an appropriately high level of contextual fear memory in rats revisiting the "dangerous" context, while control rats displayed memory impairment. (II) A single dose of PBM applied after memory recall can reduce contextual fear during both contextual and cued memory testing. (III) In a model of complex PTSD with repeated trauma, rats given early PBM interventions efficiently discriminated safety from danger during cued memory testing and, importantly, these rats did not develop PTSD-like symptoms and comorbidities. (IV) Finally, we report that fear extinction was facilitated when PBM was applied in the early intervention window of memory consolidation. Our results demonstrate that PBM treatment applied immediately after a traumatic event or its memory recall can protect contextual fear memory and prevent the development of PTSD-like psychopathological fear in rats.
Collapse
Affiliation(s)
- Yong Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lorelei Tucker
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Xuemei Zong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Darrell Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Almira Vazdarjanova
- Charlie Norwood VA Medical Center, Augusta, GA, USA.
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
25
|
Visvanathar R, Papanikolaou M, Nôga DA, Pádua-Reis M, Tort ABL, Blunder M. Hippocampal Cb 2 receptors: an untold story. Rev Neurosci 2021; 33:413-426. [PMID: 34717053 DOI: 10.1515/revneuro-2021-0109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
The field of cannabinoid research has been receiving ever-growing interest. Ongoing debates worldwide about the legislation of medical cannabis further motivates research into cannabinoid function within the central nervous system (CNS). To date, two well-characterized cannabinoid receptors exist. While most research has investigated Cb1 receptors (Cb1Rs), Cb2 receptors (Cb2Rs) in the brain have started to attract considerable interest in recent years. With indisputable evidence showing the wide-distribution of Cb2Rs in the brain of different species, they are no longer considered just peripheral receptors. However, in contrast to Cb1Rs, the functionality of central Cb2Rs remains largely unexplored. Here we review recent studies on hippocampal Cb2Rs. While conflicting results about their function have been reported, we have made significant progress in understanding the involvement of Cb2Rs in modulating cellular properties and network excitability. Moreover, Cb2Rs have been shown to be expressed in different subregions of the hippocampus, challenging our prior understanding of the endocannabinoid system. Although more insight into their functional roles is necessary, we propose that targeting hippocampal Cb2Rs may offer novel therapies for diseases related to memory and adult neurogenesis deficits.
Collapse
Affiliation(s)
- Robin Visvanathar
- Behavioral Neurophysiology, Department of Neuroscience, Biomedical Center, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Maria Papanikolaou
- Behavioral Neurophysiology, Department of Neuroscience, Biomedical Center, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Diana Aline Nôga
- Behavioral Neurophysiology, Department of Neuroscience, Biomedical Center, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Marina Pádua-Reis
- Behavioral Neurophysiology, Department of Neuroscience, Biomedical Center, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | | | - Martina Blunder
- Behavioral Neurophysiology, Department of Neuroscience, Biomedical Center, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| |
Collapse
|
26
|
Murkar A, De Koninck J, Merali Z. Cannabinoids: Revealing their complexity and role in central networks of fear and anxiety. Neurosci Biobehav Rev 2021; 131:30-46. [PMID: 34487746 DOI: 10.1016/j.neubiorev.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022]
Abstract
The first aim of the present review is to provide an in-depth description of the cannabinoids and their known effects at various neuronal receptors. It reveals that cannabinoids are highly diverse, and recent work has highlighted that their effects on the central nervous system (CNS) are surprisingly more complex than previously recognized. Cannabinoid-sensitive receptors are widely distributed throughout the CNS where they act as primary modulators of neurotransmission. Secondly, we examine the role of cannabinoid receptors at key brain sites in the control of fear and anxiety. While our understanding of how cannabinoids specifically modulate these networks is mired by their complex interactions and diversity, a plausible framework(s) for their effects is proposed. Finally, we highlight some important knowledge gaps in our understanding of the mechanism(s) responsible for their effects on fear and anxiety in animal models and their use as therapeutic targets in humans. This is particularly important for our understanding of the phytocannabinoids used as novel clinical interventions.
Collapse
Affiliation(s)
- Anthony Murkar
- University of Ottawa Institute of Mental Health Research (IMHR), Ottawa, ON, Canada; School of Psychology, University of Ottawa, Ottawa, ON, Canada.
| | - Joseph De Koninck
- University of Ottawa Institute of Mental Health Research (IMHR), Ottawa, ON, Canada; School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Zul Merali
- School of Psychology, University of Ottawa, Ottawa, ON, Canada; Brain and Mind Institute, Aga Khan University, Nairobi, Kenya; Carleton University, Neuroscience Department, Ottawa, ON, Canada
| |
Collapse
|
27
|
Ji X, Zeng Y, Wu J. The CB 2 Receptor as a Novel Therapeutic Target for Epilepsy Treatment. Int J Mol Sci 2021; 22:ijms22168961. [PMID: 34445666 PMCID: PMC8396521 DOI: 10.3390/ijms22168961] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 02/05/2023] Open
Abstract
Epilepsy is characterized by repeated spontaneous bursts of neuronal hyperactivity and high synchronization in the central nervous system. It seriously affects the quality of life of epileptic patients, and nearly 30% of individuals are refractory to treatment of antiseizure drugs. Therefore, there is an urgent need to develop new drugs to manage and control refractory epilepsy. Cannabinoid ligands, including selective cannabinoid receptor subtype (CB1 or CB2 receptor) ligands and non-selective cannabinoid (synthetic and endogenous) ligands, may serve as novel candidates for this need. Cannabinoid appears to regulate seizure activity in the brain through the activation of CB1 and CB2 cannabinoid receptors (CB1R and CB2R). An abundant series of cannabinoid analogues have been tested in various animal models, including the rat pilocarpine model of acquired epilepsy, a pentylenetetrazol model of myoclonic seizures in mice, and a penicillin-induced model of epileptiform activity in the rats. The accumulating lines of evidence show that cannabinoid ligands exhibit significant benefits to control seizure activity in different epileptic models. In this review, we summarize the relationship between brain CB2 receptors and seizures and emphasize the potential mechanisms of their therapeutic effects involving the influences of neurons, astrocytes, and microglia cells. The unique features of CB2Rs, such as lower expression levels under physiological conditions and high inducibility under epileptic conditions, make it an important target for future research on drug-resistant epilepsy.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Brain Function and Disease Laboratory, Shantou University Medical College, Xin-Ling Road #22, Shantou 515041, China;
| | - Yang Zeng
- Medical Education Assessment and Research Center, Shantou University Medical College, Xin-Ling Road #22, Shantou 515041, China;
| | - Jie Wu
- Brain Function and Disease Laboratory, Shantou University Medical College, Xin-Ling Road #22, Shantou 515041, China;
- Correspondence: or
| |
Collapse
|
28
|
Komorowska-Müller JA, Ravichandran KA, Zimmer A, Schürmann B. Cannabinoid receptor 2 deletion influences social memory and synaptic architecture in the hippocampus. Sci Rep 2021; 11:16828. [PMID: 34413398 PMCID: PMC8376893 DOI: 10.1038/s41598-021-96285-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Although the cannabinoid receptor 2 (CB2R) is often thought to play a role mainly outside the brain several publications unequivocally showed the presence of CB2R on hippocampal principal neurons. Activation of CB2R produced a long-lasting membrane potential hyperpolarization, altered the input/output function of CA2/3 principal neurons and produced alterations in gamma oscillations. However, other cellular, molecular and behavioral consequences of hippocampal CB2R signaling have not been studied in detail. Here we demonstrate that the deletion of CB2 leads to a highly significant increase in hippocampal synapsin-I expression levels and particle density, as well as increased vesicular GABA transporter (vGAT) levels. This phenotype was restricted to females and not observed in males. Furthermore, we demonstrate an impairment of social memory in CB2 deficient mice. Our results thus demonstrate that the lack of CB2R leads to changes in the hippocampal synaptic landscape and reveals an important sex-specific difference in endocannabinoid signaling. This study supports a significant role of the CB2R in modulation of different types of memory despite its low expression levels in the brain and provides more insight into a sex-specific role of CB2R in synaptic architecture.
Collapse
Affiliation(s)
- Joanna Agnieszka Komorowska-Müller
- Institute for Molecular Psychiatry, Medical Faculty, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, Bldg. 76, 53127, Bonn, Germany
| | - Kishore Aravind Ravichandran
- Institute for Molecular Psychiatry, Medical Faculty, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, Bldg. 76, 53127, Bonn, Germany
| | - Andreas Zimmer
- Institute for Molecular Psychiatry, Medical Faculty, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, Bldg. 76, 53127, Bonn, Germany.
| | - Britta Schürmann
- Institute for Molecular Psychiatry, Medical Faculty, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, Bldg. 76, 53127, Bonn, Germany
| |
Collapse
|
29
|
Morris G, Walder K, Kloiber S, Amminger P, Berk M, Bortolasci CC, Maes M, Puri BK, Carvalho AF. The endocannabinoidome in neuropsychiatry: Opportunities and potential risks. Pharmacol Res 2021; 170:105729. [PMID: 34119623 DOI: 10.1016/j.phrs.2021.105729] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system (ECS) comprises two cognate endocannabinoid receptors referred to as CB1R and CB2R. ECS dysregulation is apparent in neurodegenerative/neuro-psychiatric disorders including but not limited to schizophrenia, major depressive disorder and potentially bipolar disorder. The aim of this paper is to review mechanisms whereby both receptors may interact with neuro-immune and neuro-oxidative pathways, which play a pathophysiological role in these disorders. CB1R is located in the presynaptic terminals of GABAergic, glutamatergic, cholinergic, noradrenergic and serotonergic neurons where it regulates the retrograde suppression of neurotransmission. CB1R plays a key role in long-term depression, and, to a lesser extent, long-term potentiation, thereby modulating synaptic transmission and mediating learning and memory. Optimal CB1R activity plays an essential neuroprotective role by providing a defense against the development of glutamate-mediated excitotoxicity, which is achieved, at least in part, by impeding AMPA-mediated increase in intracellular calcium overload and oxidative stress. Moreover, CB1R activity enables optimal neuron-glial communication and the function of the neurovascular unit. CB2R receptors are detected in peripheral immune cells and also in central nervous system regions including the striatum, basal ganglia, frontal cortex, hippocampus, amygdala as well as the ventral tegmental area. CB2R upregulation inhibits the presynaptic release of glutamate in several brain regions. CB2R activation also decreases neuroinflammation partly by mediating the transition from a predominantly neurotoxic "M1" microglial phenotype to a more neuroprotective "M2" phenotype. CB1R and CB2R are thus novel drug targets for the treatment of neuro-immune and neuro-oxidative disorders including schizophrenia and affective disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Stefan Kloiber
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Ursula Franklin Street, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Amminger
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
30
|
Galán-Ganga M, Rodríguez-Cueto C, Merchán-Rubira J, Hernández F, Ávila J, Posada-Ayala M, Lanciego JL, Luengo E, Lopez MG, Rábano A, Fernández-Ruiz J, Lastres-Becker I. Cannabinoid receptor CB2 ablation protects against TAU induced neurodegeneration. Acta Neuropathol Commun 2021; 9:90. [PMID: 34001284 PMCID: PMC8130522 DOI: 10.1186/s40478-021-01196-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Tauopathies are a group of neurodegenerative diseases characterized by the alteration/aggregation of TAU protein, for which there is still no effective treatment. Therefore, new pharmacological targets are being sought, such as elements of the endocannabinoid system (ECS). We analysed the occurrence of changes in the ECS in tauopathies and their implication in the pathogenesis. By integrating gene expression analysis, immunofluorescence, genetic and adeno-associated virus expressing TAU mouse models, we found a TAU-dependent increase in CB2 receptor expression in hippocampal neurons, that occurs as an early event in the pathology and was maintained until late stages. These changes were accompanied by alterations in the endocannabinoid metabolism. Remarkably, CB2 ablation in mice protects from neurodegeneration induced by hTAUP301L overexpression, corroborated at the level of cognitive behaviour, synaptic plasticity, and aggregates of insoluble TAU. At the level of neuroinflammation, the absence of CB2 did not produce significant changes in concordance with a possible neuronal location rather than its classic glial expression in these models. These findings were corroborated in post-mortem samples of patients with Alzheimer's disease, the most common tauopathy. Our results show that neurons with accumulated TAU induce the expression of the CB2 receptor, which enhances neurodegeneration. These results are important for our understanding of disease mechanisms, providing a novel therapeutic strategy to be investigated in tauopathies.
Collapse
|
31
|
Mizuno I, Matsuda S. The role of endocannabinoids in consolidation, retrieval, reconsolidation, and extinction of fear memory. Pharmacol Rep 2021; 73:984-1003. [PMID: 33954935 DOI: 10.1007/s43440-021-00246-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 12/19/2022]
Abstract
Endocannabinoids are involved in various physiological functions, including synaptic plasticity and memory, and some psychiatric disorders, such as posttraumatic stress disorder (PTSD), through the activation of cannabinoid (CB) receptors. Patients with PTSD often show excessive fear memory and impairment of fear extinction (FE). It has been reported that the stability of acquired fear memory is altered through multiple memory stages, such as consolidation and reconsolidation. FE also affects the stability of fear memory. Each stage of fear memory formation and FE are regulated by different molecular mechanisms, including the CB system. However, to the best of our knowledge, no review summarizes the role of the CB system during each stage of fear memory formation and FE. In this review, we summarize the roles of endocannabinoids in fear memory formation and FE. Moreover, based on the summary, we propose a new hypothesis for the role of endocannabinoids in fear regulation, and discuss treatment for PTSD using CB system-related drugs.
Collapse
Affiliation(s)
- Ikumi Mizuno
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, 3-3165, Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Shingo Matsuda
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, 3-3165, Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan. .,Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba, Chiba, 260-8670, Japan. .,Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
32
|
Song B, Kang CY, Han JH, Kano M, Konnerth A, Bae S. In vivo genome editing in single mammalian brain neurons through CRISPR-Cas9 and cytosine base editors. Comput Struct Biotechnol J 2021; 19:2477-2485. [PMID: 34025938 PMCID: PMC8113754 DOI: 10.1016/j.csbj.2021.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 10/31/2022] Open
Abstract
Gene manipulation is a useful approach for understanding functions of genes and is important for investigating basic mechanisms of brain function on the level of single neurons and circuits. Despite the development and the wide range of applications of CRISPR-Cas9 and base editors (BEs), their implementation for an analysis of individual neurons in vivo remained limited. In fact, conventional gene manipulations are generally achieved only on the population level. Here, we combined either CRISPR-Cas9 or BEs with the targeted single-cell electroporation technique as a proof-of-concept test for gene manipulation in single neurons in vivo. Our assay consisted of CRISPR-Cas9- or BEs-induced gene knockout in single Purkinje cells in the cerebellum. Our results demonstrate the feasibility of both gene editing and base editing in single cells in the intact brain, providing a tool through which molecular perturbations of individual neurons can be used for analysis of circuits and, ultimately, behaviors.
Collapse
Affiliation(s)
- Beomjong Song
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Chan Young Kang
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, South Korea
| | - Jun Hee Han
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, South Korea
| | - Masanobu Kano
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Arthur Konnerth
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany.,Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| | - Sangsu Bae
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
33
|
Song CG, Kang X, Yang F, Du WQ, Zhang JJ, Liu L, Kang JJ, Jia N, Yue H, Fan LY, Wu SX, Jiang W, Gao F. Endocannabinoid system in the neurodevelopment of GABAergic interneurons: implications for neurological and psychiatric disorders. Rev Neurosci 2021; 32:803-831. [PMID: 33781002 DOI: 10.1515/revneuro-2020-0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/20/2021] [Indexed: 02/07/2023]
Abstract
In mature mammalian brains, the endocannabinoid system (ECS) plays an important role in the regulation of synaptic plasticity and the functioning of neural networks. Besides, the ECS also contributes to the neurodevelopment of the central nervous system. Due to the increase in the medical and recreational use of cannabis, it is inevitable and essential to elaborate the roles of the ECS on neurodevelopment. GABAergic interneurons represent a group of inhibitory neurons that are vital in controlling neural network activity. However, the role of the ECS in the neurodevelopment of GABAergic interneurons remains to be fully elucidated. In this review, we provide a brief introduction of the ECS and interneuron diversity. We focus on the process of interneuron development and the role of ECS in the modulation of interneuron development, from the expansion of the neural stem/progenitor cells to the migration, specification and maturation of interneurons. We further discuss the potential implications of the ECS and interneurons in the pathogenesis of neurological and psychiatric disorders, including epilepsy, schizophrenia, major depressive disorder and autism spectrum disorder.
Collapse
Affiliation(s)
- Chang-Geng Song
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China.,Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Xin Kang
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Fang Yang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Wan-Qing Du
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Jia-Jia Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Long Liu
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Jun-Jun Kang
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Ning Jia
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Hui Yue
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Lu-Yu Fan
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Sheng-Xi Wu
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Fang Gao
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| |
Collapse
|
34
|
Jenkins BW, Khokhar JY. Cannabis Use and Mental Illness: Understanding Circuit Dysfunction Through Preclinical Models. Front Psychiatry 2021; 12:597725. [PMID: 33613338 PMCID: PMC7892618 DOI: 10.3389/fpsyt.2021.597725] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/11/2021] [Indexed: 12/27/2022] Open
Abstract
Patients with a serious mental illness often use cannabis at higher rates than the general population and are also often diagnosed with cannabis use disorder. Clinical studies reveal a strong association between the psychoactive effects of cannabis and the symptoms of serious mental illnesses. Although some studies purport that cannabis may treat mental illnesses, others have highlighted the negative consequences of use for patients with a mental illness and for otherwise healthy users. As epidemiological and clinical studies are unable to directly infer causality or examine neurobiology through circuit manipulation, preclinical animal models remain a valuable resource for examining the causal effects of cannabis. This is especially true considering the diversity of constituents in the cannabis plant contributing to its effects. In this mini-review, we provide an updated perspective on the preclinical evidence of shared neurobiological mechanisms underpinning the dual diagnosis of cannabis use disorder and a serious mental illness. We present studies of cannabinoid exposure in otherwise healthy rodents, as well as rodent models of schizophrenia, depression, and bipolar disorder, and the resulting impact on electrophysiological indices of neural circuit activity. We propose a consolidated neural circuit-based understanding of the preclinical evidence to generate new hypotheses and identify novel therapeutic targets.
Collapse
Affiliation(s)
| | - Jibran Y. Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
35
|
Vecchini Rodríguez CM, Escalona Meléndez Y, Flores-Otero J. Cannabinoid Receptors and Ligands: Lessons from CNS Disorders and the Quest for Novel Treatment Venues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1297:43-64. [PMID: 33537936 PMCID: PMC8502072 DOI: 10.1007/978-3-030-61663-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The potential use of cannabinoids for therapeutic purposes is at the forefront of cannabinoid research which aims to develop innovative strategies to prevent, manage and treat a broad spectrum of human diseases. This chapter briefly reviews the pivotal role of the endocannabinoid system in modulating the central nervous system and its roles on neurodegenerative diseases and brain disorders. Ligand-induced modulation of cannabinoid 1 and 2 receptors to modulate immune response, decrease neurodegeneration and pain are aspects that are also discussed.
Collapse
Affiliation(s)
- Clara M Vecchini Rodríguez
- Department of Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR, USA
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, USA
| | | | - Jacqueline Flores-Otero
- Department of Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR, USA.
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, USA.
| |
Collapse
|
36
|
Komorowska-Müller JA, Schmöle AC. CB2 Receptor in Microglia: The Guardian of Self-Control. Int J Mol Sci 2020; 22:E19. [PMID: 33375006 PMCID: PMC7792761 DOI: 10.3390/ijms22010019] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Microglia are key to maintaining the homeostasis of the brain. These immune cells of the brain can be our biggest ally in fighting infections, but can worsen pathology or hinder recovery when uncontrolled. Thus, understanding how microglia contribute to neuroinflammatory processes and how their activity can be controlled is of great importance. It is known that activation of endocannabinoid system, and especially the cannabinoid type 2 receptor (CB2R), decreases inflammation. Alongside its non-psychoactive effect, it makes the CB2R receptor a perfect target for treating diseases accompanied by neuroinflammation including neurodegenerative diseases. However, the exact mechanisms by which CB2R regulates microglial activity are not yet understood. Here, we review the current knowledge on the roles of microglial CB2R from in vitro and in vivo studies. We look into CB2R function under physiological and pathological conditions and focus on four different disease models representing chronic and acute inflammation. We highlight open questions and controversies and provide an update on the latest discoveries that were enabled by the development of novel technologies. Also, we discuss the recent findings on the role of microglia CB2R in cognition and its role in neuron-microglia communication.
Collapse
Affiliation(s)
- Joanna Agnieszka Komorowska-Müller
- Institute for Molecular Psychiatry, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
- International Max Planck Research School for Brain and Behavior, University of Bonn, 53175 Bonn, Germany
| | - Anne-Caroline Schmöle
- Institute for Molecular Psychiatry, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
| |
Collapse
|
37
|
Vaseghi S, Nasehi M, Zarrindast MR. How do stupendous cannabinoids modulate memory processing via affecting neurotransmitter systems? Neurosci Biobehav Rev 2020; 120:173-221. [PMID: 33171142 DOI: 10.1016/j.neubiorev.2020.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022]
Abstract
In the present study, we wanted to review the role of cannabinoids in learning and memory in animal models, with respect to their interaction effects with six principal neurotransmitters involved in learning and memory including dopamine, glutamate, GABA (γ-aminobutyric acid), serotonin, acetylcholine, and noradrenaline. Cannabinoids induce a wide-range of unpredictable effects on cognitive functions, while their mechanisms are not fully understood. Cannabinoids in different brain regions and in interaction with different neurotransmitters, show diverse responses. Previous findings have shown that cannabinoids agonists and antagonists induce various unpredictable effects such as similar effect, paradoxical effect, or dualistic effect. It should not be forgotten that brain neurotransmitter systems can also play unpredictable roles in mediating cognitive functions. Thus, we aimed to review and discuss the effect of cannabinoids in interaction with neurotransmitters on learning and memory. In addition, we mentioned to the type of interactions between cannabinoids and neurotransmitter systems. We suggested that investigating the type of interactions is a critical neuropharmacological issue that should be considered in future studies.
Collapse
Affiliation(s)
- Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Butler K, Le Foll B. Novel therapeutic and drug development strategies for tobacco use disorder: endocannabinoid modulation. Expert Opin Drug Discov 2020; 15:1065-1080. [DOI: 10.1080/17460441.2020.1767581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Kevin Butler
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
- Acute Care Program, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Sanchez-Marin L, Gavito AL, Decara J, Pastor A, Castilla-Ortega E, Suarez J, de la Torre R, Pavon FJ, Rodriguez de Fonseca F, Serrano A. Impact of intermittent voluntary ethanol consumption during adolescence on the expression of endocannabinoid system and neuroinflammatory mediators. Eur Neuropsychopharmacol 2020; 33:126-138. [PMID: 32057593 DOI: 10.1016/j.euroneuro.2020.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/09/2020] [Accepted: 01/22/2020] [Indexed: 01/14/2023]
Abstract
The adolescent brain displays high vulnerability to the deleterious effects of ethanol, including greater risk of developing alcohol use disorder later in life. Here, we characterized the gene expression of the endocannabinoid system (ECS) and relevant signaling systems associated with neuroinflammation and emotional behaviors in the brain of young adult control and ethanol-exposed (EtOH) rats. We measured mRNA levels of candidate genes using quantitative real time PCR in the medial prefrontal cortex (mPFC), amygdala and hippocampus. EtOH rats were generated by maintenance on an intermittent and voluntary ethanol consumption during adolescence using the two-bottle choice paradigm (4 days/week for 4 weeks) followed by 2 week-withdrawal, a time-point of withdrawal with no physical symptoms. Mean differences and effect sizes were calculated using t-test and Cohen's d values. In the mPFC and hippocampus, EtOH rats had significantly higher mRNA expression of endocannabinoid-signaling (mPFC: Ppara, Dagla, Daglb and Napepld; and hippocampus: Cnr2, Dagla and Mgll) and neuroinflammation-associated genes (mPFC: Gfap; and hippocampus: Aif1) than in controls. Moreover, EtOH rats had significantly higher mRNA expression of neuropeptide Y receptor genes (Npy1r, Npy2r and Npy5r) in the hippocampus. Finally, EtOH rats also displayed higher plasma endocannabinoid levels than controls. In conclusion, these results suggest that adolescent ethanol exposure can lead to long-term alterations in the gene expression of the ECS and other signaling systems involved in neuroinflammation and regulation of emotional behaviors in key brain areas for the development of addiction.
Collapse
Affiliation(s)
- L Sanchez-Marin
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - A L Gavito
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - J Decara
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - A Pastor
- Programa de Neurociencias, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - E Castilla-Ortega
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - J Suarez
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - R de la Torre
- Programa de Neurociencias, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - F J Pavon
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain; Unidad Gestión Clínica del Corazón, IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - F Rodriguez de Fonseca
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain.
| | - A Serrano
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain.
| |
Collapse
|
40
|
Navarrete F, García-Gutiérrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, Manzanares J. Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Front Psychiatry 2020; 11:315. [PMID: 32395111 PMCID: PMC7197485 DOI: 10.3389/fpsyt.2020.00315] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
The high heterogeneity of psychiatric disorders leads to a lack of diagnostic precision. Therefore, the search of biomarkers is a fundamental aspect in psychiatry to reach a more personalized medicine. The endocannabinoid system (ECS) has gained increasing interest due to its involvement in many different functional processes in the brain, including the regulation of emotions, motivation, and cognition. This article reviews the role of the main components of the ECS as biomarkers in certain psychiatric disorders. Studies carried out in rodents evaluating the effects of pharmacological and genetic manipulation of cannabinoid receptors or endocannabinoids (eCBs) degrading enzymes were included. Likewise, the ECS-related alterations occurring at the molecular level in animal models reproducing some behavioral and/or neuropathological aspects of psychiatric disorders were reviewed. Furthermore, clinical studies evaluating gene or protein alterations in post-mortem brain tissue or in vivo blood, plasma, and cerebrospinal fluid (CSF) samples were analyzed. Also, the results from neuroimaging studies using positron emission tomography (PET) or functional magnetic resonance (fMRI) were included. This review shows the close involvement of cannabinoid receptor 1 (CB1r) in stress regulation and the development of mood disorders [anxiety, depression, bipolar disorder (BD)], in post-traumatic stress disorder (PTSD), as well as in the etiopathogenesis of schizophrenia, attention deficit hyperactivity disorder (ADHD), or eating disorders (i.e. anorexia and bulimia nervosa). On the other hand, recent results reveal the potential therapeutic action of the endocannabinoid tone manipulation by inhibition of eCBs degrading enzymes, as well as by the modulation of cannabinoid receptor 2 (CB2r) activity on anxiolytic, antidepressive, or antipsychotic associated effects. Further clinical research studies are needed; however, current evidence suggests that the components of the ECS may become promising biomarkers in psychiatry to improve, at least in part, the diagnosis and pharmacological treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rosa Jurado-Barba
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Psicología, Facultad de Educación y Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Gabriel Rubio
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.,Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Psychiatry, Complutense University of Madrid, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
41
|
Galán-Ganga M, Del Río R, Jiménez-Moreno N, Díaz-Guerra M, Lastres-Becker I. Cannabinoid CB 2 Receptor Modulation by the Transcription Factor NRF2 is Specific in Microglial Cells. Cell Mol Neurobiol 2020; 40:167-177. [PMID: 31385133 PMCID: PMC11449021 DOI: 10.1007/s10571-019-00719-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a pleiotropic transcription factor that has neuroprotective and anti-inflammatory effects, regulating more than 250 genes. As NRF2, cannabinoid receptor type 2 (CB2) is also implicated in the preservation of neurons against glia-driven inflammation. To this concern, little is known about the regulation pathways implicated in CB2 receptor expression. In this study, we analyze whether NRF2 could modulate the transcription of CB2 in neuronal and microglial cells. Bioinformatics analysis revealed an antioxidant response element in the promoter sequence of the CB2 receptor gene. Further analysis by chemical and genetic manipulations of this transcription factor demonstrated that NRF2 is not able to modulate the expression of CB2 in neurons. On the other hand, at the level of microglia, the expression of CB2 is NRF2-dependent. These results are related to the differential levels of expression of both genes regarding the brain cell type. Since modulation of CB2 receptor signaling may represent a promising therapeutic target with minimal psychotropic effects that can be used to modulate endocannabinoid-based therapeutic approaches and to reduce neurodegeneration, our findings will contribute to disclose the potential of CB2 as a novel target for treating different pathologies.
Collapse
Affiliation(s)
- M Galán-Ganga
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas "Alberto Sols", UAM-CSIC, C/Arturo Duperier, 4, 28029, Madrid, Spain
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - R Del Río
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - N Jiménez-Moreno
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol, UK
| | - M Díaz-Guerra
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - I Lastres-Becker
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas "Alberto Sols", UAM-CSIC, C/Arturo Duperier, 4, 28029, Madrid, Spain.
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
42
|
Microglia-neuron crosstalk: Signaling mechanism and control of synaptic transmission. Semin Cell Dev Biol 2019; 94:138-151. [PMID: 31112798 DOI: 10.1016/j.semcdb.2019.05.017] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/17/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022]
Abstract
The continuous crosstalk between microglia and neurons is required for microglia housekeeping functions and contributes to brain homeostasis. Through these exchanges, microglia take part in crucial brain functions, including development and plasticity. The alteration of neuron-microglia communication contributes to brain disease states with consequences, ranging from synaptic function to neuronal survival. This review focuses on the signaling pathways responsible for neuron-microglia crosstalk, highlighting their physiological roles and their alteration or specific involvement in disease. In particular, we discuss studies, establishing how these signaling allow microglial cells to control relevant physiological functions during brain development, including synaptic formation and circuit refinement. In addition, we highlight how microglia and neurons interact functionally to regulate highly dynamical synaptic functions. Microglia are able to release several signaling molecules involved in the regulation of synaptic activity and plasticity. On the other side, molecules of neuronal origin control microglial processes motility in an activity-dependent manner. Indeed, the continuous crosstalk between microglia and neurons is required for the sensing and housekeeping functions of microglia and contributes to the maintenance of brain homeostasis and, particularly, to the sculpting of neuronal connections during development. These interactions lay on the delicate edge between physiological processes and homeostasis alteration in pathology and are themselves altered during neuroinflammation. The full description of these processes could be fundamental for understanding brain functioning in health and disease.
Collapse
|
43
|
Cao JK, Kaplan J, Stella N. ABHD6: Its Place in Endocannabinoid Signaling and Beyond. Trends Pharmacol Sci 2019; 40:267-277. [PMID: 30853109 PMCID: PMC6445269 DOI: 10.1016/j.tips.2019.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/18/2022]
Abstract
The endocannabinoid (eCB) signaling system modulates neurotransmission and inflammation, among other physiological functions. Its newest member, α/β-hydrolase domain-containing 6 (ABHD6), has emerged as a promising therapeutic target to treat several devastating diseases, including epilepsy. Here, we review the molecular mechanisms that mediate and control eCB signaling and, within it, the specific role of ABHD6. We also discuss how ABHD6 controls the abundance of additional lipids and the trafficking of ionotropic receptors to plasma membranes. We finish with several unexplored questions regarding this novel enzyme. Our current understanding of the molecular mechanism and biological function of ABHD6 provides a strong foundation for the development of small-molecule therapeutics to treat devastating diseases.
Collapse
Affiliation(s)
- Jessica K Cao
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Joshua Kaplan
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
44
|
Sarne Y. Beneficial and deleterious effects of cannabinoids in the brain: the case of ultra-low dose THC. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2019; 45:551-562. [PMID: 30864864 DOI: 10.1080/00952990.2019.1578366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This article reviews the neurocognitive advantages and drawbacks of cannabinoid substances, and discusses the possible physiological mechanisms that underlie their dual activity. The article further reviews the neurocognitive effects of ultra-low doses of ∆9-tetrahydrocannabinol (THC; 3-4 orders of magnitude lower than the conventional doses) in mice, and proposes such low doses of THC as a possible remedy for various brain injuries and for the treatment of age-related cognitive decline.
Collapse
Affiliation(s)
- Yosef Sarne
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
45
|
Jordan CJ, Xi ZX. Progress in brain cannabinoid CB 2 receptor research: From genes to behavior. Neurosci Biobehav Rev 2019; 98:208-220. [PMID: 30611802 PMCID: PMC6401261 DOI: 10.1016/j.neubiorev.2018.12.026] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/12/2018] [Accepted: 12/22/2018] [Indexed: 01/01/2023]
Abstract
The type 2 cannabinoid receptor (CB2R) was initially regarded as a peripheral cannabinoid receptor. However, recent technological advances in gene detection, alongside the availability of transgenic mouse lines, indicate that CB2Rs are expressed in both neurons and glial cells in the brain under physiological and pathological conditions, and are involved in multiple functions at cellular and behavioral levels. Brain CB2Rs are inducible and neuroprotective via up-regulation in response to various insults, but display species differences in gene and receptor structures, CB2R expression, and receptor responses to various CB2R ligands. CB2R transcripts also differ between the brain and spleen. In the brain, CB2A is the major transcript isoform, while CB2A and CB2B transcripts are present at higher levels in the spleen. These new findings regarding brain versus spleen CB2R isoforms may in part explain why early studies failed to detect brain CB2R gene expression. Here, we review evidence supporting the expression and function of brain CB2R from gene and receptor levels to cellular functioning, neural circuitry, and animal behavior.
Collapse
Affiliation(s)
- Chloe J Jordan
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA.
| |
Collapse
|
46
|
Neuron-Derived Estrogen Regulates Synaptic Plasticity and Memory. J Neurosci 2019; 39:2792-2809. [PMID: 30728170 PMCID: PMC6462452 DOI: 10.1523/jneurosci.1970-18.2019] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/28/2018] [Accepted: 01/18/2019] [Indexed: 01/27/2023] Open
Abstract
17β-estradiol (E2) is produced from androgens via the action of the enzyme aromatase. E2 is known to be made in neurons in the brain, but its precise functions in the brain are unclear. Here, we used a forebrain-neuron-specific aromatase knock-out (FBN-ARO-KO) mouse model to deplete neuron-derived E2 in the forebrain of mice and thereby elucidate its functions. FBN-ARO-KO mice showed a 70–80% decrease in aromatase and forebrain E2 levels compared with FLOX controls. Male and female FBN-ARO-KO mice exhibited significant deficits in forebrain spine and synaptic density, as well as hippocampal-dependent spatial reference memory, recognition memory, and contextual fear memory, but had normal locomotor function and anxiety levels. Reinstating forebrain E2 levels via exogenous in vivo E2 administration was able to rescue both the molecular and behavioral defects in FBN-ARO-KO mice. Furthermore, in vitro studies using FBN-ARO-KO hippocampal slices revealed that, whereas induction of long-term potentiation (LTP) was normal, the amplitude was significantly decreased. Intriguingly, the LTP defect could be fully rescued by acute E2 treatment in vitro. Mechanistic studies revealed that FBN-ARO-KO mice had compromised rapid kinase (AKT, ERK) and CREB-BDNF signaling in the hippocampus and cerebral cortex. In addition, acute E2 rescue of LTP in hippocampal FBN-ARO-KO slices could be blocked by administration of a MEK/ERK inhibitor, further suggesting a key role for rapid ERK signaling in neuronal E2 effects. In conclusion, the findings provide evidence of a critical role for neuron-derived E2 in regulating synaptic plasticity and cognitive function in the male and female brain. SIGNIFICANCE STATEMENT The steroid hormone 17β-estradiol (E2) is well known to be produced in the ovaries in females. Intriguingly, forebrain neurons also express aromatase, the E2 biosynthetic enzyme, but the precise functions of neuron-derived E2 is unclear. Using a novel forebrain-neuron-specific aromatase knock-out mouse model to deplete neuron-derived E2, the current study provides direct genetic evidence of a critical role for neuron-derived E2 in the regulation of rapid AKT-ERK and CREB-BDNF signaling in the mouse forebrain and demonstrates that neuron-derived E2 is essential for normal expression of LTP, synaptic plasticity, and cognitive function in both the male and female brain. These findings suggest that neuron-derived E2 functions as a novel neuromodulator in the forebrain to control synaptic plasticity and cognitive function.
Collapse
|
47
|
Loss of Sfrp2 contributes to the neurological disorders related with morphine withdrawal via Wnt/β-catenin signaling. Behav Brain Res 2019; 359:609-618. [PMID: 30291843 DOI: 10.1016/j.bbr.2018.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/19/2018] [Accepted: 10/03/2018] [Indexed: 11/23/2022]
Abstract
Morphine administration is a medical problem characterized by compulsive opioid use that causes terrible negative consequences. The exact mechanisms of morphine-induced dependence and morphine withdrawal symptoms remain unclear. Recent studies have revealed that the upregulation of Wnt/β-catenin signaling plays important roles in morphine exposure and morphine withdrawal. Secreted frizzled-related protein 2 (Sfrp2) can prevent the activation of Wnt/β-catenin signaling by competing with the Frizzled receptor for Wnt ligands. We conducted this study aimed to evaluate the effect of iatrogenic trauma induced by stereotactic surgery and the protective effect of stereotaxic Sfrp2 injection on morphine withdrawal symptoms in Male Sprague Dawley (SD) rats. Many techniques including western blot analysis and immunoprecipitation were used. Anxiety-related behaviors, morphine withdrawal syndrome, and dendritic spines were also examined in male SD rats after morphine treatment and stereotaxic injection of Sfrp2. Western blot results suggested that Wnt signaling was activated in the nucleus accumbens of SD rats suffering from morphine withdrawal and that Sfrp2 attenuated the overexpression of Wnt signaling. Similarly, the withdrawal-like symptoms of morphine dependent rats were abrogated by intracerebral Sfrp2 injection. The iatrogenic trauma induced by stereotactic surgery showed no influence on the Wnt signaling and withdrawal-like symptoms. Moreover, the results of Golgi-cox staining and DiI staining indicated that the damage on proximal spine density caused by morphine treatment was restored by intracerebral Sfrp2 injection. Together, the data presented here indicated that Sfrp2 abrogated the neurological disorders and loss of proximal spine related with morphine withdrawal via Wnt/β-catenin signaling.
Collapse
|
48
|
Rajchgot T, Thomas SC, Wang JC, Ahmadi M, Balood M, Crosson T, Dias JP, Couture R, Claing A, Talbot S. Neurons and Microglia; A Sickly-Sweet Duo in Diabetic Pain Neuropathy. Front Neurosci 2019; 13:25. [PMID: 30766472 PMCID: PMC6365454 DOI: 10.3389/fnins.2019.00025] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Abstract
Diabetes is a common condition characterized by persistent hyperglycemia. High blood sugar primarily affects cells that have a limited capacity to regulate their glucose intake. These cells include capillary endothelial cells in the retina, mesangial cells in the renal glomerulus, Schwann cells, and neurons of the peripheral and central nervous systems. As a result, hyperglycemia leads to largely intractable complications such as retinopathy, nephropathy, hypertension, and neuropathy. Diabetic pain neuropathy is a complex and multifactorial disease that has been associated with poor glycemic control, longer diabetes duration, hypertension, advanced age, smoking status, hypoinsulinemia, and dyslipidemia. While many of the driving factors involved in diabetic pain are still being investigated, they can be broadly classified as either neuron -intrinsic or -extrinsic. In neurons, hyperglycemia impairs the polyol pathway, leading to an overproduction of reactive oxygen species and reactive nitrogen species, an enhanced formation of advanced glycation end products, and a disruption in Na+/K+ ATPase pump function. In terms of the extrinsic pathway, hyperglycemia leads to the generation of both overactive microglia and microangiopathy. The former incites a feed-forward inflammatory loop that hypersensitizes nociceptor neurons, as observed at the onset of diabetic pain neuropathy. The latter reduces neurons' access to oxygen, glucose and nutrients, prompting reductions in nociceptor terminal expression and losses in sensation, as observed in the later stages of diabetic pain neuropathy. Overall, microglia can be seen as potent and long-lasting amplifiers of nociceptor neuron activity, and may therefore constitute a potential therapeutic target in the treatment of diabetic pain neuropathy.
Collapse
Affiliation(s)
- Trevor Rajchgot
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Sini Christine Thomas
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jo-Chiao Wang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Maryam Ahmadi
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Mohammad Balood
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Théo Crosson
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jenny Pena Dias
- Johns Hopkins University School of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, United States
| | - Réjean Couture
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Audrey Claing
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Sébastien Talbot
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
49
|
Bukiya AN. Physiology of the Endocannabinoid System During Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1162:13-37. [PMID: 31332732 DOI: 10.1007/978-3-030-21737-2_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The endocannabinoid (eCB) system comprises endogenously produced cannabinoids (CBs), enzymes of their production and degradation, and CB-sensing receptors and transporters. The eCB system plays a critical role in virtually all stages of animal development. Studies on eCB system components and their physiological role have gained increasing attention with the rising legalization and medical use of marijuana products. The latter represent exogenous interventions that target the eCB system. This chapter summarizes knowledge in the field of CB contribution to gametogenesis, fertilization, embryo implantation, fetal development, birth, and adolescence-equivalent periods of ontogenesis. The material is complemented by the overview of data from our laboratory documenting the functional presence of the eCB system within cerebral arteries of baboons at different stages of development.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
50
|
Hermes DJ, Xu C, Poklis JL, Niphakis MJ, Cravatt BF, Mackie K, Lichtman AH, Ignatowska-Jankowska BM, Fitting S. Neuroprotective effects of fatty acid amide hydrolase catabolic enzyme inhibition in a HIV-1 Tat model of neuroAIDS. Neuropharmacology 2018; 141:55-65. [PMID: 30114402 DOI: 10.1016/j.neuropharm.2018.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/20/2018] [Accepted: 08/12/2018] [Indexed: 12/16/2022]
Abstract
The HIV-1 transactivator of transcription (Tat) is a neurotoxin involved in the pathogenesis of HIV-1 associated neurocognitive disorders (HAND). The neurotoxic effects of Tat are mediated directly via AMPA/NMDA receptor activity and indirectly through neuroinflammatory signaling in glia. Emerging strategies in the development of neuroprotective agents involve the modulation of the endocannabinoid system. A major endocannabinoid, anandamide (N-arachidonoylethanolamine, AEA), is metabolized by fatty acid amide hydrolase (FAAH). Here we demonstrate using a murine prefrontal cortex primary culture model that the inhibition of FAAH, using PF3845, attenuates Tat-mediated increases in intracellular calcium, neuronal death, and dendritic degeneration via cannabinoid receptors (CB1R and CB2R). Live cell imaging was used to assess Tat-mediated increases in [Ca2+]i, which was significantly reduced by PF3845. A time-lapse assay revealed that Tat potentiates cell death while PF3845 blocks this effect. Additionally PF3845 blocked the Tat-mediated increase in activated caspase-3 (apoptotic marker) positive neurons. Dendritic degeneration was characterized by analyzing stained dendritic processes using Imaris and Tat was found to significantly decrease the size of processes while PF3845 inhibited this effect. Incubation with CB1R and CB2R antagonists (SR141716A and AM630) revealed that PF3845-mediated calcium effects were dependent on CB1R, while reduced neuronal death and degeneration was CB2R-mediated. PF3845 application led to increased levels of AEA, suggesting the observed effects are likely a result of increased endocannabinoid signaling at CB1R/CB2R. Our findings suggest that modulation of the endogenous cannabinoid system through inhibition of FAAH may be beneficial in treatment of HAND.
Collapse
Affiliation(s)
- Douglas J Hermes
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Changqing Xu
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Justin L Poklis
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Micah J Niphakis
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Benjamin F Cravatt
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ken Mackie
- Department of Psychological & Brain Science, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Aron H Lichtman
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|