1
|
Li J, Li J, Liu Y, Hu C, Xu H, Cao D, Zhang R, Zhang K. Nrf2 Ameliorates Sevoflurane-Induced Cognitive Deficits in Aged Mice by Inhibiting Neuroinflammation in the Hippocampus. Mol Neurobiol 2025; 62:8048-8064. [PMID: 39969679 DOI: 10.1007/s12035-025-04777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Perioperative neurocognitive disorders (PND), common complications that occur after anesthetized surgery in elderly patients, are major challenges to our rapidly growing aging population. The transcription factor known as nuclear factor erythroid-2-related factor 2 (Nrf2) is an essential component of the cellular antioxidant response, purportedly contributing to the preservation of cognitive functions such as learning and memory. Nevertheless, the function and intracellular processes involving Nrf2 in PND remain largely unknown. Therefore, we evaluate the influence and fundamental mechanism of Nrf2 on PND in aged mice. To establish the postoperative neurocognitive dysfunction (PND) model, aged mice were subjected to anesthesia via inhalation of 3% sevoflurane for a duration of 2 h. The role of Nrf2 in PND was investigated by administering microinjections of either the adeno-associated virus (AAV)-Nrf2 vector or a null virus vector into the hippocampal CA1 region of aged mice 28 days before exposure to sevoflurane. Various assays including enzyme-linked immunosorbent assay (ELISA), immunofluorescence staining, and western blotting were employed to assess levels of pro-inflammatory cytokines, microglial activation, and the oxidative stress response. Furthermore, synaptic plasticity was evaluated through long-term potentiation (LTP) recording and Golgi staining techniques. Elevated expression of Nrf2 within the hippocampal CA1 region ameliorated sevoflurane-induced cognitive deficits, synaptic plasticity anomalies, and the oxidative stress reaction in aged mice. Furthermore, the activation of microglia and the release of pro-inflammatory cytokines (including IL-6, TNF-α, and IL-1β) within the hippocampus post-sevoflurane exposure were modulated in an Nrf2-dependent fashion. Based on the findings from present research, we conclude that Nrf2 ameliorates sevoflurane-induced cognitive dysfunction by inhibiting hippocampal neuroinflammation, thereby proposing a potential therapeutic target for PND.
Collapse
Affiliation(s)
- Junhua Li
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jinfeng Li
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (the Second Clinical Medical College of Guangzhou University of Chinese Medicine), Guangzhou, China
| | - Yafang Liu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Chuwen Hu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hui Xu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Dong Cao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Rong Zhang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Kun Zhang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Nakamya MF, Hu K, Jiang C, Chong Z, Liu RM. Age- and ApoE Genotype-Dependent Transcriptomic Responses to O 3 in the Hippocampus of Mice. Int J Mol Sci 2025; 26:2407. [PMID: 40141051 PMCID: PMC11942628 DOI: 10.3390/ijms26062407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Alzheimer's disease (AD) is a leading cause of dementia in the elderly, with late-onset AD (LOAD) accounting for 95% of the cases. The etiology underlying LOAD, however, remains unclear. Using a humanized mouse model, we showed previously that exposure to ozone (O3), a potential environment risk factor, in a cyclic exposure protocol that mimics a human exposure scenario, accelerated AD-like neuropathophysiology in old humanized male ApoE3 (E3) but not ApoE4 (E4) mice. Using RNA sequencing (RNA-seq) techniques, we further demonstrate here that the ApoE genotype has the greatest influence on transcriptional changes, followed by age and O3 exposure. Notably, AD-related genes were expressed even at baseline and in young mice, but the differences in the expression levels are obvious in old age. Importantly, although both E3 and E4 mice exhibited some AD-related transcriptomic alterations, old E3 mice exposed to O3, which showed memory impairment, experienced more pronounced disruptions in the expression of genes related to redox balance, neurogenesis, neuroinflammation, and cellular senescence in the hippocampus, compared with O3-exposed old E4 mice. These results provide new insights into the molecular mechanisms underlying memory loss in O3-exposed old E3 male mice and emphasize the complexity of interactions between gene, environment, and aging in AD pathophysiology.
Collapse
Affiliation(s)
- Mary F. Nakamya
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.F.N.); (C.J.)
| | - Kaili Hu
- Department of Biomedical Informatics and Data Science, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Chunsun Jiang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.F.N.); (C.J.)
| | - Zechen Chong
- Department of Biomedical Informatics and Data Science, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Rui-Ming Liu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.F.N.); (C.J.)
| |
Collapse
|
3
|
Chen Y, Zheng YX, Li YZ, Jia Z, Yuan Y. GDNF facilitates cognitive function recovery following neonatal surgical-induced learning and memory impairment via activation of the RET pathway and modulation of downstream effectors PKMζ and Kalirin in rats. Brain Res Bull 2024; 217:111078. [PMID: 39270804 DOI: 10.1016/j.brainresbull.2024.111078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
OBJECTIVE The aim of this study is to elucidate the underlying mechanism through which glial cell line-derived neurotrophic factor (GDNF) improves cognitive deficits in adults resulting from neonatal surgical interventions. METHODS Newborn Sprague-Dawley rats, regardless of gender, were randomly allocated into seven groups on postnatal day 7 as follows (n=15): (1) Control group (not subjected to anesthesia, surgery, or any pharmaceutical interventions); (2) GDNF group (received intracerebroventricular injection of GDNF); (3) Surgery group (underwent right carotid artery exposure under anesthesia with 3 % sevoflurane); (4) Surgery plus GDNF group; (5) Surgery plus GDNF and type II JAK inhibitor NVP-BBT594 (BBT594) group (administered intraperitoneal injection of BBT594); (6) BBT group; and (7) Surgery plus BBT group. Starting from postnatal day 33, all rats underwent Barnes maze and fear conditioning tests, followed by decapitation under sevoflurane anesthesia for subsequent analyses. The left hemibrains underwent Golgi staining, while the right hemibrains were used for hippocampal protein extraction to assess Protein kinase Mζ (PKMζ) and Kalirin expression through western blotting. RESULTS GDNF demonstrated a mitigating effect on spatial learning and memory impairment, as well as context-related fear memory impairment, reductions in dendritic total lengths, and spinal density within the hippocampus induced by surgical intervention. Notably, all of these ameliorative effects of GDNF were reversed upon administration of the RET inhibitor BBT594. Additionally, GDNF alleviated the downregulation of protein expression of PKMζ and Kalirin in the hippocampus of rats subjected to surgery, subsequently reversed by BBT594. CONCLUSION The effective impact of GDNF on learning and memory impairment caused by surgical intervention appears to be mediated through the RET pathway. Moreover, GDNF may exert its influence by upregulating the expression of PKMζ and Kalirin, consequently enhancing the development of dendrites and dendritic spines.
Collapse
Affiliation(s)
- Yi Chen
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Yu-Xin Zheng
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Yi-Ze Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhen Jia
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuan Yuan
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
4
|
Suman A, Mahapatra A, Gupta P, Ray SS, Singh RK. Polystyrene microplastics induced disturbances in neuronal arborization and dendritic spine density in mice prefrontal cortex. CHEMOSPHERE 2024; 351:141165. [PMID: 38224746 DOI: 10.1016/j.chemosphere.2024.141165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
An increasing use of plastics in daily life leads to the accumulation of microplastics (MPs) in the environment, posing a serious threat to the ecosystem, including humans. It has been reported that MPs cause neurotoxicity, but the deleterious effect of polystyrene (PS) MPs on neuronal cytoarchitectural morphology in the prefrontal cortex (PFC) region of mice brain remains to be established. In the present study, Swiss albino male mice were orally exposed to 0.1, 1, and 10 ppm PS-MPs for 28 days. After exposure, we found a significant accumulation of PS-MPs with a decreased number of Nissl bodies in the PFC region of the entire treated group compared to the control. Morphometric analysis in the PFC neurons using Golgi-Cox staining accompanied by Sholl analysis showed a significant reduction in basal dendritic length, dendritic intersections, nodes, and number of intersections at seventh branch order in PFC neurons of 1 ppm treated PS-MPs. In neurons of 0.1 ppm treated mice, we found only decrease in the number of intersections at the seventh branch order. While 10 ppm treated neurons decreased in basal dendritic length, dendritic intersections, followed by the number of intersections at the third and seventh branch order were observed. As well, spine density on the apical secondary branches along with mRNA level of BDNF was significantly reduced in all the PS-MPs treated PFC neurons, mainly at 1 ppm versus control. These results suggest that PS-MPs exposure affects overall basal neuronal arborization, with the highest levels at 1 and 10 ppm, followed by 0.1 ppm treated neurons, which may be related to the down-regulation of BDNF expression in PFC.
Collapse
Affiliation(s)
- Anjali Suman
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Archisman Mahapatra
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priya Gupta
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shubhendu Shekhar Ray
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rahul Kumar Singh
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Rodríguez-Quintero P, Rubio-Osornio M, Uribe E, Moreno W, Marín-Castañeda LA, Morales Z, Portila A, Vázquez D, Rubio C. Exposure to Ozone Downregulates Bcl-2 and Increases Executing Caspases-3 and -8 in the Hippocampus, Frontal Cortex, and Cerebellum of Rats. Cureus 2024; 16:e54546. [PMID: 38516464 PMCID: PMC10956716 DOI: 10.7759/cureus.54546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Ozone (O3) is one of the most prevalent atmospheric pollutants, arising from a photochemical reaction between volatile organic compounds (VOC), nitrogen oxides (NOx), and sunlight. O3 triggers oxidative stress, resulting in lipid oxidation, inflammation, alterations in metabolic and cellular signaling, and potentially initiating cell death in vulnerable brain regions. Inflammation and oxidative stress are recognized for their ability to induce cell death, primarily through the apoptosis pathway, involving various proteins that participate in this process via two pathways: intrinsic and extrinsic. Objective This study aims to identify the expression of pro-apoptotic proteins and Bcl-2 in the frontal cortex, cerebellum, and hippocampus of rats exposed to O3 acutely. Methods Two groups of 20 Wistar rodents (250-300 g) were established. The control group (n=10) was exposed to unrestricted polluted air for 12 hours, while the experimental group (n=10) was exposed to 1 ppm of O3. After exposure, the animals were sacrificed for immunofluorescence and Western blot analysis. Using a t-test, the arbitrary units of pro-apoptotic proteins and Bcl-2 were compared between the two groups. Results Significant increases in caspase-8 and caspase-3 activation were found in the O3-exposed group compared to the control group, specifically in the frontal cortex, cerebellum, and hippocampus. Additionally, notable changes in Bcl-2 expression were observed in these brain regions. The TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay further indicated significant differences in immunopositivity between the groups in the same areas. However, intrinsic apoptotic proteins such as Bax, VDAC1, and cytochrome-c did not show significant differences between the groups within these structures. Western blot analyses aligned with the immunofluorescence results, showing statistically significant concentrations of caspase-8 in the cerebellum, caspase-3 in the hippocampus, and Bcl-2 in the frontal cortex in the O3 exposed group. Conversely, proteins like Bax, cytochrome-c, and VDAC1 did not exhibit significant differences in all analyzed structures. Conclusions This study demonstrates that acute exposure to 1 ppm of ozone can trigger neuronal apoptosis in the frontal cortex, hippocampus, and cerebellum of rats, primarily through the activation of the extrinsic apoptosis pathway via caspase-8 and caspase-3. Additionally, it causes a reduction in Bcl-2 expression, an essential antiapoptotic protein. Despite not observing the activation of intrinsic pathway proteins like BAX, VDAC, or cytochrome-c, the study suggests that chronic O3 exposure might promote cell death by activating this pathway, requiring further long-term research.
Collapse
Affiliation(s)
- Paola Rodríguez-Quintero
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - Moisés Rubio-Osornio
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - Eric Uribe
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - Wilhelm Moreno
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - Luis A Marín-Castañeda
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - Zayra Morales
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - Alonso Portila
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - David Vázquez
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| | - Carmen Rubio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, MEX
| |
Collapse
|
6
|
Singh S A, Suresh S, Vellapandian C. Ozone-induced neurotoxicity: In vitro and in vivo evidence. Ageing Res Rev 2023; 91:102045. [PMID: 37652313 DOI: 10.1016/j.arr.2023.102045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Together with cities in higher-income nations, it is anticipated that the real global ozone is rising in densely populated areas of Asia and Africa. This review aims to discuss the possible neurotoxic pollutants and ozone-induced neurotoxicity: in vitro and in vivo, along with possible biomarkers to assess ozone-related oxidative stress. As a methodical and scientific strategy for hazard identification and risk characterization of human chemical exposures, toxicological risk assessment is increasingly being implemented. While traditional methods are followed by in vitro toxicology, cell culture techniques are being investigated in modern toxicology. In both human and rodent models, aging makes the olfactory circuitry vulnerable to spreading immunological responses from the periphery to the brain because it lacks the blood-brain barrier. The ozone toxicity is elusive as it shows ventral and dorsal root injury cases even in the milder dose. Its potential toxicity should be disclosed to understand further the clear mechanism insights of how it acts in cellular aspects. Human epidemiological research has confirmed the conclusions that prenatal and postnatal exposure to high levels of air pollution are linked to behavioral alterations in offspring. O3 also enhances blood circulation. It has antibacterial action, which may have an impact on the gut microbiota. It also activates immunological, anti-inflammatory, proteasome, and growth factor signaling Prolonged O3 exposure causes oxidative damage to plasma proteins and lipids and damages the structural and functional integrity of the mitochondria. Finally, various studies need to be conducted to identify the potential biomarkers associated with ozone and the brain.
Collapse
Affiliation(s)
- Ankul Singh S
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - Swathi Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, Kancheepuram, Tamil Nadu, India.
| |
Collapse
|
7
|
Rodríguez-Sánchez S, Valiente N, Seseña S, Cabrera-Pinto M, Rodríguez A, Aranda A, Palop L, Fernández-Martos CM. Ozone modified hypothalamic signaling enhancing thermogenesis in the TDP-43 A315T transgenic model of Amyotrophic Lateral Sclerosis. Sci Rep 2022; 12:20814. [PMID: 36460700 PMCID: PMC9718766 DOI: 10.1038/s41598-022-25033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), a devastating progressive neurodegenerative disease, has no effective treatment. Recent evidence supports a strong metabolic component in ALS pathogenesis. Indeed, metabolic abnormalities in ALS correlate to disease susceptibility and progression, raising additional therapeutic targets against ALS. Ozone (O3), a natural bioactive molecule, has been shown to elicit beneficial effects to reduce metabolic disturbances and improved motor behavior in TDP-43A315T mice. However, it is fundamental to determine the mechanism through which O3 acts in ALS. To characterize the association between O3 exposure and disease-associated weight loss in ALS, we assessed the mRNA and protein expression profile of molecular pathways with a main role in the regulation of the metabolic homeostasis on the hypothalamus and the brown adipose tissue (BAT) at the disease end-stage, in TDP-43A315T mice compared to age-matched WT littermates. In addition, the impact of O3 exposure on the faecal bacterial community diversity, by Illumina sequencing, and on the neuromuscular junctions (NMJs), by confocal imaging, were analysed. Our findings suggest the effectiveness of O3 exposure to induce metabolic effects in the hypothalamus and BAT of TDP-43A315T mice and could be a new complementary non-pharmacological approach for ALS therapy.
Collapse
Affiliation(s)
- Sara Rodríguez-Sánchez
- grid.8048.40000 0001 2194 2329Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | - Nicolas Valiente
- grid.10420.370000 0001 2286 1424Division of Terrestrial Ecosystem Research, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Susana Seseña
- grid.8048.40000 0001 2194 2329Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | - Marta Cabrera-Pinto
- grid.414883.20000 0004 1767 1847Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Ana Rodríguez
- grid.8048.40000 0001 2194 2329Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | - Alfonso Aranda
- grid.8048.40000 0001 2194 2329Faculty of Chemical Science and Technology, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Llanos Palop
- grid.8048.40000 0001 2194 2329Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | - Carmen M. Fernández-Martos
- grid.414883.20000 0004 1767 1847Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain ,grid.1009.80000 0004 1936 826XWicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania Australia
| |
Collapse
|
8
|
Zundel CG, Ryan P, Brokamp C, Heeter A, Huang Y, Strawn JR, Marusak HA. Air pollution, depressive and anxiety disorders, and brain effects: A systematic review. Neurotoxicology 2022; 93:272-300. [PMID: 36280190 PMCID: PMC10015654 DOI: 10.1016/j.neuro.2022.10.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Accumulating data suggest that air pollution increases the risk of internalizing psychopathology, including anxiety and depressive disorders. Moreover, the link between air pollution and poor mental health may relate to neurostructural and neurofunctional changes. We systematically reviewed the MEDLINE database in September 2021 for original articles reporting effects of air pollution on 1) internalizing symptoms and behaviors (anxiety or depression) and 2) frontolimbic brain regions (i.e., hippocampus, amygdala, prefrontal cortex). One hundred and eleven articles on mental health (76% human, 24% animals) and 92 on brain structure and function (11% human, 86% animals) were identified. For literature search 1, the most common pollutants examined were PM2.5 (64.9%), NO2 (37.8%), and PM10 (33.3%). For literature search 2, the most common pollutants examined were PM2.5 (32.6%), O3 (26.1%) and Diesel Exhaust Particles (DEP) (26.1%). The majority of studies (73%) reported higher internalizing symptoms and behaviors with higher air pollution exposure. Air pollution was consistently associated (95% of articles reported significant findings) with neurostructural and neurofunctional effects (e.g., increased inflammation and oxidative stress, changes to neurotransmitters and neuromodulators and their metabolites) within multiple brain regions (24% of articles), or within the hippocampus (66%), PFC (7%), and amygdala (1%). For both literature searches, the most studied exposure time frames were adulthood (48% and 59% for literature searches 1 and 2, respectively) and the prenatal period (26% and 27% for literature searches 1 and 2, respectively). Forty-three percent and 29% of studies assessed more than one exposure window in literature search 1 and 2, respectively. The extant literature suggests that air pollution is associated with increased depressive and anxiety symptoms and behaviors, and alterations in brain regions implicated in risk of psychopathology. However, there are several gaps in the literature, including: limited studies examining the neural consequences of air pollution in humans. Further, a comprehensive developmental approach is needed to examine windows of susceptibility to exposure and track the emergence of psychopathology following air pollution exposure.
Collapse
Affiliation(s)
- Clara G Zundel
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA.
| | - Patrick Ryan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Cole Brokamp
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Autumm Heeter
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA.
| | - Yaoxian Huang
- Department of Civil and Environmental Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, USA.
| | - Jeffrey R Strawn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Anxiety Disorders Research Program, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.
| | - Hilary A Marusak
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA; Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, MI, USA; Translational Neuroscience Program, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
9
|
Singh S A, Suresh S, Singh A, Chandran L, Vellapandian C. Perspectives of ozone induced neuropathology and memory decline in Alzheimer's disease: A systematic review of preclinical evidences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120136. [PMID: 36089140 DOI: 10.1016/j.envpol.2022.120136] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
This systematic review aims to discover the plausible mechanism of Ozone in A.D., to boost translational research. The main focus of our review lies in understanding the effects of ozone pollution on the human brain and causing degenerative disease. Owing to the number of works carried out as preclinical evidence in association with oxidative stress and Alzheimer's disease and the lack of systematic review or meta-analysis prompted us to initiate a study on Alzheimer's risk due to ground-level ozone. We found relevant studies from PubMed, ScienceDirect, Proquest, DOAJ, and Scopus, narrowing to animal studies and the English language without any time limit. The searches will be re-run before the final analysis. This work was registered in Prospero with Reg ID CRD42022319360, followed the PRISMA-P framework, and followed the PICO approach involving Population, Intervention/Exposure, Comparison, and Outcomes data. Bibliographic details of 16 included studies were studied for Exposure dose of ozone, duration, exposure, and frequency with control and exposure groups. Primary and secondary outcomes were assessed based on pathology significance, and results were significant in inducing Alzheimer-like pathology by ozone. In conclusion, ozone altered oxidative stress, metabolic pathway, and amyloid plaque accumulation besides endothelial stress response involving mitochondria as the critical factor in ATP degeneration, caspase pathway, and neuronal damage. Thus, ozone is a criteria pollutant to be focused on in mitigating Alzheimer's Disease pathology.
Collapse
Affiliation(s)
- Ankul Singh S
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, SRM Nagar, Kattankulathur, Kancheepuram, 603 203, Tamil Nadu, India.
| | - Swathi Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, SRM Nagar, Kattankulathur, Kancheepuram, 603 203, Tamil Nadu, India
| | - Anuragh Singh
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, SRM Nagar, Kattankulathur, Kancheepuram, 603 203, Tamil Nadu, India
| | - Lakshmi Chandran
- Department of Pharmacy Practice, SRM College of Pharmacy, SRMIST, SRM Nagar, Kattankulathur, Kancheepuram, 603 203, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, SRM Nagar, Kattankulathur, Kancheepuram, 603 203, Tamil Nadu, India.
| |
Collapse
|
10
|
Rivas-Arancibia S, Hernández-Orozco E, Rodríguez-Martínez E, Valdés-Fuentes M, Cornejo-Trejo V, Pérez-Pacheco N, Dorado-Martínez C, Zequeida-Carmona D, Espinosa-Caleti I. Ozone Pollution, Oxidative Stress, Regulatory T Cells and Antioxidants. Antioxidants (Basel) 2022; 11:antiox11081553. [PMID: 36009272 PMCID: PMC9405302 DOI: 10.3390/antiox11081553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 12/06/2022] Open
Abstract
Ozone pollution, is a serious health problem worldwide. Repeated exposure to low ozone doses causes a loss of regulation of the oxidation–reduction systems, and also induces a chronic state of oxidative stress. This fact is of special importance for the regulation of different systems including the immune system and the inflammatory response. In addition, the oxidation–reduction balance modulates the homeostasis of these and other complex systems such as metabolism, survival capacity, cell renewal, and brain repair, etc. Likewise, it has been widely demonstrated that in chronic degenerative diseases, an alteration in the oxide-reduction balance is present, and this alteration causes a chronic loss in the regulation of the immune response and the inflammatory process. This is because reactive oxygen species disrupt different signaling pathways. Such pathways are related to the role of regulatory T cells (Treg) in inflammation. This causes an increase in chronic deterioration in the degenerative disease over time. The objective of this review was to study the relationship between environmental ozone pollution, the chronic state of oxidative stress and its effect on Treg cells, which causes the loss of regulation in the inflammatory response as well as the role played by antioxidant systems in various pathologies.
Collapse
|
11
|
Bello-Medina PC, Corona-Cervantes K, Zavala Torres NG, González A, Pérez-Morales M, González-Franco DA, Gómez A, García-Mena J, Díaz-Cintra S, Pacheco-López G. Chronic-Antibiotics Induced Gut Microbiota Dysbiosis Rescues Memory Impairment and Reduces β-Amyloid Aggregation in a Preclinical Alzheimer's Disease Model. Int J Mol Sci 2022; 23:8209. [PMID: 35897785 PMCID: PMC9331718 DOI: 10.3390/ijms23158209] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial pathology characterized by β-amyloid (Aβ) deposits, Tau hyperphosphorylation, neuroinflammatory response, and cognitive deficit. Changes in the bacterial gut microbiota (BGM) have been reported as a possible etiological factor of AD. We assessed in offspring (F1) 3xTg, the effect of BGM dysbiosisdysbiosis in mothers (F0) at gestation and F1 from lactation up to the age of 5 months on Aβ and Tau levels in the hippocampus, as well as on spatial memory at the early symptomatic stage of AD. We found that BGM dysbiosisdysbiosis with antibiotics (Abx) treatment in F0 was vertically transferred to their F1 3xTg mice, as observed on postnatal day (PD) 30 and 150. On PD150, we observed a delay in spatial memory impairment and Aβ deposits, but not in Tau and pTau protein in the hippocampus at the early symptomatic stage of AD. These effects are correlated with relative abundance of bacteria and alpha diversity, and are specific to bacterial consortia. Our results suggest that this specific BGM could reduce neuroinflammatory responses related to cerebral amyloidosis and cognitive deficit and activate metabolic pathways associated with the biosynthesis of triggering or protective molecules for AD.
Collapse
Affiliation(s)
- Paola C. Bello-Medina
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| | - Karina Corona-Cervantes
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Zacatenco, Mexico City 07360, Mexico; (K.C.-C.); (N.G.Z.T.)
| | - Norma Gabriela Zavala Torres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Zacatenco, Mexico City 07360, Mexico; (K.C.-C.); (N.G.Z.T.)
| | - Antonio González
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| | - Marcel Pérez-Morales
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| | - Diego A. González-Franco
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| | - Astrid Gómez
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Zacatenco, Mexico City 07360, Mexico; (K.C.-C.); (N.G.Z.T.)
| | - Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Gustavo Pacheco-López
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| |
Collapse
|
12
|
Knaden M, Anderson P, Andersson MN, Hill SR, Sachse S, Sandgren M, Stensmyr MC, Löfstedt C, Ignell R, Hansson BS. Human Impacts on Insect Chemical Communication in the Anthropocene. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.791345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The planet is presently undergoing dramatic changes caused by human activities. We are living in the era of the Anthropocene, where our activities directly affect all living organisms on Earth. Insects constitute a major part of the world’s biodiversity and currently, we see dwindling insect biomass but also outbreaks of certain populations. Most insects rely on chemical communication to locate food, mates, and suitable oviposition sites, but also to avoid enemies and detrimental microbes. Emissions of, e.g., CO2, NOx, and ozone can all affect the chemical communication channel, as can a rising temperature. Here, we present a review of the present state of the art in the context of anthropogenic impact on insect chemical communication. We concentrate on present knowledge regarding fruit flies, mosquitoes, moths, and bark beetles, as well as presenting our views on future developments and needs in this emerging field of research. We include insights from chemical, physiological, ethological, and ecological directions and we briefly present a new international research project, the Max Planck Centre for Next Generation Insect Chemical Ecology (nGICE), launched to further increase our understanding of the impact of human activities on insect olfaction and chemical communication.
Collapse
|
13
|
Mu L, Cai J, Gu B, Yu L, Li C, Liu QS, Zhao L. Treadmill Exercise Prevents Decline in Spatial Learning and Memory in 3×Tg-AD Mice through Enhancement of Structural Synaptic Plasticity of the Hippocampus and Prefrontal Cortex. Cells 2022; 11:244. [PMID: 35053360 PMCID: PMC8774241 DOI: 10.3390/cells11020244] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 01/08/2022] [Indexed: 01/27/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by deficits in learning and memory. A pathological feature of AD is the alterations in the number and size of synapses, axon length, dendritic complexity, and dendritic spine numbers in the hippocampus and prefrontal cortex. Treadmill exercise can enhance synaptic plasticity in mouse or rat models of stroke, ischemia, and dementia. The aim of this study was to examine the effects of treadmill exercise on learning and memory, and structural synaptic plasticity in 3×Tg-AD mice, a mouse model of AD. Here, we show that 12 weeks treadmill exercise beginning in three-month-old mice improves spatial working memory in six-month-old 3×Tg-AD mice, while non-exercise six-month-old 3×Tg-AD mice exhibited impaired spatial working memory. To investigate potential mechanisms for the treadmill exercise-induced improvement of spatial learning and memory, we examined structural synaptic plasticity in the hippocampus and prefrontal cortex of six-month-old 3×Tg-AD mice that had undergone 12 weeks of treadmill exercise. We found that treadmill exercise led to increases in synapse numbers, synaptic structural parameters, the expression of synaptophysin (Syn, a presynaptic marker), the axon length, dendritic complexity, and the number of dendritic spines in 3×Tg-AD mice and restored these parameters to similar levels of non-Tg control mice without treadmill exercise. In addition, treadmill exercise also improved these parameters in non-Tg control mice. Strengthening structural synaptic plasticity may represent a potential mechanism by which treadmill exercise prevents decline in spatial learning and memory and synapse loss in 3×Tg-AD mice.
Collapse
Affiliation(s)
- Lianwei Mu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Jiajia Cai
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
| | - Boya Gu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
| | - Laikang Yu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
| | - Cui Li
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
- School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou 450001, China
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Li Zhao
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
| |
Collapse
|
14
|
Xu J, Guo Y, Li J, Lv X, Zhang J, Zhang J, Hu Q, Wang K, Tian Y. Progressive cortical and sub-cortical alterations in patients with anti-N-methyl-D-aspartate receptor encephalitis. J Neurol 2022; 269:389-398. [PMID: 34297178 DOI: 10.1007/s00415-021-10643-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Advanced structural analyses are increasingly being highly valued to uncover pathophysiological understanding of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. Therefore, we aimed to explore whether and how antibody-mediated NMDAR dysfunction affected cortical and sub-cortical brain morphology and their relationship with clinical symptoms. METHODS We performed surface-based morphometry analyses, hippocampal segmentation, and correlational analyses in 24 patients with anti-NMDAR encephalitis after acute disease stage and 30 normal controls (NC) in this case-control study. RESULTS Patients showed significantly decreased cortical alterations mainly in language network (LN) and default mode network (DMN), as well as decreased gray matter volume in left cornu ammonis 1 (CA1) body of hippocampus. Further correlation analyses showed that the decreased cortical thickness in the right superior frontier gyrus was associated with decreased cognitive scores, the decreased cortical volume in the right pars triangulari and decreased surface area in the right pars operculari were associated with decreased memory scores, whereas decreased gray matter volume in the left CA1 body was significantly correlated with longer time between first symptom and imaging in the patients. CONCLUSION These results suggested that cognitive impairments resulted from long-term sequelae of the encephalitis were mainly associated with cortical alterations in LN and DMN and sub-cortical atrophy of left CA1 body, which can be served as effective features to assess disease progression in clinical routine examination.
Collapse
Affiliation(s)
- Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 10068 Xueyuan Road, Shenzhen, Guangdong Province, China
| | - Yuanyuan Guo
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, China
| | - Jiaying Li
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 10068 Xueyuan Road, Shenzhen, Guangdong Province, China
| | - Xinyi Lv
- Department of Neurology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China
| | - Juanjuan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, China
| | - Jinhuan Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 10068 Xueyuan Road, Shenzhen, Guangdong Province, China
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 10068 Xueyuan Road, Shenzhen, Guangdong Province, China.
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, China.
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China.
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China.
| |
Collapse
|
15
|
Long-term effect of neonatal antagonism of ionotropic glutamate receptors on dendritic spines and cognitive function in rats. J Chem Neuroanat 2021; 119:102054. [PMID: 34839003 DOI: 10.1016/j.jchemneu.2021.102054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
Glutamate is the most abundant excitatory neurotransmitter in the hippocampus where mediates its actions by activating glutamate receptors. The activation of these receptors is essential for the maintenance and dynamics of dendritic spines and plasticity that correlate with learning and memory processes during neurodevelopment and adulthood. We studied in adults the effect of blocking ionotropic glutamate receptors (NMDAR, AMPAR, and KAR) functions at neonatal age (PD1-PD15) with their respective antagonists D-AP5, GYKI-53655 and UBP-302. We first evaluated memory using a new object recognition test in adults. Second, we evaluated the levels of glial fibrillary acidic protein, synaptophysin and actin with immunohistochemistry in the CA1, CA3, and dentate gyrus regions of the hippocampus and, finally, the number of dendritic spines and their dynamics using Golgi-Cox staining. We found that ionotropic glutamate receptor function blockade at neonatal age causes a reduction in short and long-term memory in adulthood and a reduction in the expression of synaptophysin and actin protein levels in the hippocampus regions studied. This blockade also reduced the number of dendritic spines and modified dendritic dynamics in the CA1 region. The antagonism of the three types of ionotropic glutamate receptors reduced the mushrooms and bifurcated types of spines and increased the thin spines. The number of stubby spines was reduced by D-AP5, increased by UPB-302, and not affected by GYKI-53655. Our results indicate that the blockade of neonatal ionotropic glutamate receptors produces alterations that persist until adulthood.
Collapse
|
16
|
Liu RM, Chong Z, Chen JC. Ozone and Particulate Matter Exposure and Alzheimer's Disease: A Review of Human and Animal Studies. J Alzheimers Dis 2021; 76:807-824. [PMID: 32568209 DOI: 10.3233/jad-200435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), an aging-related neurodegenerative disease, is a major cause of dementia in the elderly. Although the early-onset (familial) AD is attributed to mutations in the genes coding for amyloid-β protein precursor (AβPP) and presenilin1/presenilin 2 (PS1/PS2), the cause for the late-onset AD (LOAD), which accounts for more than 95% of AD cases, remains unclear. Aging is the greatest risk factor for LOAD, whereas the apolipo protein E4 allele (APOEɛ4) is believed to be a major genetic risk factor in acquiring LOAD, with female APOEɛ4 carriers at highest risk. Nonetheless, not all the elderly, even older female APOEɛ4 carriers, develop LOAD, suggesting that other factors, including environmental exposure, must play a role. This review summarizes recent studies that show a potential role of environmental exposure, especially ozone and particulate matter exposure, in the development of AD. Interactions between environmental exposure, genetic risk factor (APOEɛ4), and sex in AD pathophysiology are also discussed briefly. Identification of environmental risk factor(s) and elucidation of the complex interactions between genetic and environmental risk factors plus aging and female sex in the onset of AD will be a key to our understanding of the etiology and pathogenesis of AD and the development of the strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zechen Chong
- Department of Genetics, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jiu-Chiuan Chen
- Department of Biostatistics and Data Science, The University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Bello-Medina PC, Hernández-Quiroz F, Pérez-Morales M, González-Franco DA, Cruz-Pauseno G, García-Mena J, Díaz-Cintra S, Pacheco-López G. Spatial Memory and Gut Microbiota Alterations Are Already Present in Early Adulthood in a Pre-clinical Transgenic Model of Alzheimer's Disease. Front Neurosci 2021; 15:595583. [PMID: 33994914 PMCID: PMC8116633 DOI: 10.3389/fnins.2021.595583] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
The irreversible and progressive neurodegenerative Alzheimer's disease (AD) is characterized by cognitive decline, extracellular β-amyloid peptide accumulation, and tau neurofibrillary tangles in the cortex and hippocampus. The triple-transgenic (3xTg) mouse model of AD presents memory impairment in several behavioral paradigms and histopathological alterations from 6 to 16 months old. Additionally, it seems that dysbiotic gut microbiota is present in both mouse models and patients of AD at the cognitive symptomatic stage. The present study aimed to assess spatial learning, memory retention, and gut microbiota alterations in an early adult stage of the 3xTg-AD mice as well as to explore its sexual dimorphism. We evaluated motor activity, novel-object localization training, and retention test as well as collected fecal samples to characterize relative abundance, alpha- and beta-diversity, and linear discriminant analysis (LDA) effect size (LEfSe) analysis in gut microbiota in both female and male 3xTg-AD mice, and controls [non-transgenic mice (NoTg)], at 3 and 5 months old. We found spatial memory deficits in female and male 3xTg-AD but no alteration neither during training nor in motor activity. Importantly, already at 3 months old, we observed decreased relative abundances of Actinobacteria and TM7 in 3xTg-AD compared to NoTg mice, while the beta diversity of gut microbiota was different in female and male 3xTg-AD mice in comparison to NoTg. Our results suggest that gut microbiota modifications in 3xTg-AD mice anticipate and thus could be causally related to cognitive decline already at the early adult age of AD. We propose that microbiota alterations may be used as an early and non-invasive diagnostic biomarker of AD.
Collapse
Affiliation(s)
- Paola C. Bello-Medina
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| | - Fernando Hernández-Quiroz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional (IPN), Unidad Zacatenco, Ciudad de México, Mexico
| | - Marcel Pérez-Morales
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| | - Diego A. González-Franco
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| | - Guadalupe Cruz-Pauseno
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional (IPN), Unidad Zacatenco, Ciudad de México, Mexico
| | - Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Gustavo Pacheco-López
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| |
Collapse
|
18
|
Effects of neonatal isoflurane anesthesia exposure on learning-specific and sensory systems in adults. Sci Rep 2020; 10:13832. [PMID: 32796946 PMCID: PMC7429916 DOI: 10.1038/s41598-020-70818-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Millions of children undergo general anesthesia each year, and animal and human studies have indicated that exposure to anesthesia at an early age can impact neuronal development, leading to behavioral and learning impairments that manifest later in childhood and adolescence. Here, we examined the effects of isoflurane, a commonly-used general anesthetic, which was delivered to newborn rabbits. Trace eyeblink classical conditioning was used to assess the impact of neonatal anesthesia exposure on behavioral learning in adolescent subjects, and a variety of MRI techniques including fMRI, MR volumetry, spectroscopy and DTI captured functional, metabolic, and structural changes in key regions of the learning and sensory systems associated with anesthesia-induced learning impairment. Our results demonstrated a wide array of changes that were specific to anesthesia-exposed subjects, which supports previous studies that have pointed to a link between early anesthesia exposure and the development of learning and behavioral deficiencies. These findings point to the need for caution in avoiding excessive use of general anesthesia in young children and neonates.
Collapse
|
19
|
Zhang JJ, Wei Y, Fang Z. Ozone Pollution: A Major Health Hazard Worldwide. Front Immunol 2019; 10:2518. [PMID: 31736954 PMCID: PMC6834528 DOI: 10.3389/fimmu.2019.02518] [Citation(s) in RCA: 307] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
Oxides of nitrogen (NOx) and volatile organic compounds (VOCs) released into the atmosphere can react in the presence of solar irradiation, leading to ozone formation in the troposphere. Historically, before clean air regulations were implemented to control NOx and VOCs, ozone concentrations were high enough to exert acute effects such as eye and nose irritation, respiratory disease emergencies, and lung function impairment. At or above current regulatory standards, day-to-day variations in ozone concentrations have been positively associated with asthma incidence and daily non-accidental mortality rate. Emerging evidence has shown that both short-term and long-term exposures to ozone, at concentrations below the current regulatory standards, were associated with increased mortality due to respiratory and cardiovascular diseases. The pathophysiology to support the epidemiologic associations between mortality and morbidity and ozone centers at the chemical and toxicological property of ozone as a strong oxidant, being able to induce oxidative damages to cells and the lining fluids of the airways, and immune-inflammatory responses within and beyond the lung. These new findings add substantially to the existing challenges in controlling ozone pollution. For example, in the United States in 2016, 90% of non-compliance to the national ambient air quality standards was due to ozone whereas only 10% was due to particulate matter and other regulated pollutants. Climate change, through creating atmospheric conditions favoring ozone formation, has been and will continue to increase ozone concentrations in many parts of world. Worldwide, ozone is responsible for several hundreds of thousands of premature deaths and tens of millions of asthma-related emergency room visits annually. To combat ozone pollution globally, more aggressive reductions in fossil fuel consumption are needed to cut NOx and VOCs as well as greenhouse gas emissions. Meanwhile, preventive and therapeutic strategies are needed to alleviate the detrimental effects of ozone especially in more susceptible individuals. Interventional trials in humans are needed to evaluate the efficacy of antioxidants and ozone-scavenging compounds that have shown promising results in animal studies.
Collapse
Affiliation(s)
- Junfeng Jim Zhang
- Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, NC, United States.,Global Health Research Center, Duke Kunshan University, Kunshan, China.,Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhangfu Fang
- Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|