1
|
Shan YD, Yu ZF, Lv GG, Shan YL, Li BD, Zhao JY, Li XM, Gao WJ, Zhang LM. Activation of the hippocampal CA1 astrocyte Gq and Gi G protein-coupled receptors exerts a protective effect against attention deficit hyperactivity disorder. Int Immunopharmacol 2025; 152:114382. [PMID: 40049085 DOI: 10.1016/j.intimp.2025.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is characterized by symptoms such as inattention, hyperactivity and impulsiveness, which significantly impact the healthy development of children. Our prior research demonstrated that exposure to S-Ketamine during pregnancy can lead to the development of ADHD, and existing studies have established a close association between astrocytes and the onset and progression of ADHD. The activation and inhibition of astrocytes are closely linked to neuropsychiatric dysfunction, and astrocytic NOD-like receptor protein 3 (NLRP3) has been reported to contribute to alterations in mental state and cognitive deficits. Thus, this study aims to investigate the role of astrocytes in ADHD by selectively modulating astrocyte function through Gq and Gi G protein-coupled receptors (GPCRs) and by specifically targeting the knockout of NLRP3. METHODS Pregnant C57BL/6 J mice or mice with a specific deletion of NLRP3 in astrocytes were administered intraperitoneal injections of 15 mg/kg of S-ketamine for 5 consecutive days from gestational day 14 to 18 to establish an ADHD model. To modulate astrocyte activity in the hippocampal CA1 region, we administered astrocyte-specific Gq-Adeno-associated virus (AAV) or Gi-AAV into the CA1 and maintained treatment with CNO. At 21 days postnatally, we conducted open field test (OFT), novel object recognition (NOR), elevated plus maze (EPM) and fear conditioning (FC) in the offspring mice. Additionally, on postnatal day 21, we implanted electrodes in the CA1 region of the offspring mice for neurophysiological monitoring and investigated local field potentials (LFP) during NOR on postnatal day 27. Lastly, pathological assessments were conducted after euthanasia. RESULTS Both the activation and inhibition of astrocytes in the hippocampal CA1 region improved impulsive-like behaviors and cognitive function in ADHD mice, reduced the power of theta (θ) oscillations during novel object exploration and decreased NLRP3-associated inflammatory factors, including cleaved caspase-1 and IL-18. Furthermore, compared to WT mice, astrocyte-specific NLRP3 conditional knockout mice demonstrated significantly reduced impulsive behavior and cognitive deficits, as well as a decrease in θ oscillation power and a reduction in NLRP3-associated inflammatory factors. CONCLUSIONS Our data provide compelling evidence that the activation of astrocytes alleviated impulsive-like behaviors and cognitive dysfunction, possibly by reducing NLRP3-associated pyroptosis following changes in calcium levels within the astrocytes. The activation of astrocytes can be a potential therapeutic target for ADHD.
Collapse
Affiliation(s)
- Yu-Dong Shan
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China; Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China
| | - Zhi-Fang Yu
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China; Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China
| | - Ge-Ge Lv
- The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Yong-Lin Shan
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China; Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China
| | - Bao-Dong Li
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China; Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China
| | - Jian-Yong Zhao
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China; Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research, Cangzhou, China
| | - Xiao-Ming Li
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China; Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research, Cangzhou, China
| | - Wei-Juan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li-Min Zhang
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China; Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China.
| |
Collapse
|
2
|
Abu-Labdeh R, Omoluabi T, Yuan Q. Effects of Age and Atomoxetine on Olfactory Perception and Learning and Underlying Plasticity Mechanisms in Rats. Eur J Neurosci 2025; 61:e16649. [PMID: 39726209 DOI: 10.1111/ejn.16649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/20/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
The locus coeruleus (LC) plays a vital role in cognitive function through norepinephrine release. Impaired LC neuronal health and function is linked to cognitive decline during ageing and Alzheimer's disease. This study investigates age-related alterations in olfactory detection and discrimination learning, along with its reversal, in Long-Evans rats, and examines the effects of atomoxetine (ATM), a norepinephrine uptake inhibitor, on these processes. Adult (6-9 months) and aged (22-24 months) Long-Evans rats underwent odour detection threshold experiments with saline and two doses of ATM (0.3 and 1 mg/kg). Reward-based odour discrimination learning included simple, difficult and reversal learning tasks. LC neuron density, dopamine beta-hydroxylase and norepinephrine transporter expression in the piriform cortex (PC) and orbitofrontal cortex were measured. Reversal learning and olfactory threat extinction were used to measure behavioural flexibility. Immunohistochemistry and western blotting were used to analyse phosphorylated cAMP response element binding protein (pCREB) and cFos expression and ex vivo electrophysiology assessed long-term depression (LTD) in the PC. Whereas adult and aged cohorts showed similar odour detection and discrimination learning, fewer aged rats acquired reversal learning successfully. ATM improved reward-based odour discrimination in adults but hindered learning reversal. A delayed CREB phosphorylation in the posterior PC associated with atomoxetine administration possibly underlies learning enhancement. ATM resulted in less freezing behaviour in a threat conditioning and extinction paradigm at moderate, but not at higher doses. ATM administration ex vivo prevented PC LTD. These findings highlight the intricate effects of atomoxetine, influenced by target structures, and suggest potential interactions with other neurotransmitters. Our results contribute to understanding the impact of ageing and norepinephrine enhancers on cognitive processes.
Collapse
Affiliation(s)
- Ruhuf Abu-Labdeh
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Tamunotonye Omoluabi
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
3
|
Cui H, Shu C, Peng Y, Wei Z, Ni X, Zheng L, Shang J, Liu F, Liu J. Long-life triclosan exposure induces ADHD-like behavior in rats via prefrontal cortex dopaminergic deficiency. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116766. [PMID: 39047361 DOI: 10.1016/j.ecoenv.2024.116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
In recent years, exposure to triclosan (TCS) has been linked to an increase in psychiatric disorders. Nonetheless, the precise mechanisms of this occurrence remain elusive. Therefore, this study developed a long-life TCS-exposed rat model, an SH-SY5Y cell model, and an atomoxetine hydrochloride (ATX) treatment model to explore and validate the neurobehavioral mechanisms of TCS from multiple perspectives. In the long-life TCS-exposed model, pregnant rats received either 0 mg/kg (control) or 50 mg/kg TCS by oral gavage throughout pregnancy, lactation, and weaning of their offspring (up to 8 weeks old). In the ATX treatment model, weanling rats received daily injections of either 0 mg/kg (control) or 3 mg/kg ATX via intraperitoneal injection until they reached 8 weeks old. Unlike the TCS model, ATX exposure only occurred after the pups were weaned. The results indicated that long-life TCS exposure led to attention-deficit hyperactivity disorder (ADHD)-like behaviors in male offspring rats accompanied by dopamine-related mRNA and protein expression imbalances in the prefrontal cortex (PFC). Moreover, in vitro experiments also confirmed these findings. Mechanistically, TCS reduced dopamine (DA) synthesis, release, and transmission, and increased reuptake in PFC, thereby reducing synaptic gap DA levels and causing dopaminergic deficits. Additional experiments revealed that increased DA concentration in PFC by ATX effectively alleviated TCS-induced ADHD-like behavior in male offspring rats. These findings suggest that long-life TCS exposure causes ADHD-like behavior in male offspring rats through dopaminergic deficits. Furthermore, ATX treatment not only reduce symptoms in the rats, but also reveals valuable insights into the neurotoxic mechanisms induced by TCS.
Collapse
Affiliation(s)
- He Cui
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Chang Shu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Yuxuan Peng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Ziyun Wei
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Xiao Ni
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Linlin Zheng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jianing Shang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Fu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jieyu Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
4
|
Jian-Min C, Zhi-Yuan W, Ke L, Cheng Z, Shi-Xuan W, Yi-Wei C, Guan-Yi L, Rui S, Xiao-Mei Z, Jin L, Ning W. Assessment of lisdexamfetamine on executive function in rats: A translational cognitive research. Exp Neurol 2024; 374:114718. [PMID: 38336285 DOI: 10.1016/j.expneurol.2024.114718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Executive function, including working memory, attention and inhibitory control, is crucial for decision making, thinking and planning. Lisdexamfetamine, the prodrug of d-amphetamine, has been approved for treating attention-deficit hyperactivity disorder and binge eating disorder, but whether it improves executive function under non-disease condition, as well as the underlying pharmacokinetic and neurochemical properties, remains unclear. Here, using trial unique non-matching to location task and five-choice serial reaction time task of rats, we found lisdexamfetamine (p.o) enhanced spatial working memory and sustained attention under various cognitive load conditions, while d-amphetamine (i.p) only improved these cognitive performances under certain high cognitive load condition. Additionally, lisdexamfetamine evoked less impulsivity than d-amphetamine, indicating lower adverse effect on inhibitory control. In vivo pharmacokinetics showed lisdexamfetamine produced a relative stable and lasting release of amphetamine base both in plasma and in brain tissue, whereas d-amphetamine injection elicited rapid increase and dramatical decrease in amphetamine base levels. Microdialysis revealed lisdexamfetamine caused lasting release of dopamine within the medial prefrontal cortex (mPFC), whereas d-amphetamine produced rapid increase followed by decline to dopamine level. Moreover, lisdexamfetamine elicited more obvious efflux of noradrenaline than that of d-amphetamine. The distinct neurochemical profiles may be partly attributed to the different action of two drugs to membranous catecholamine transporters level within mPFC, detecting by Western Blotting. Taken together, due to its certain pharmacokinetic and catecholamine releasing profiles, lisdexamfetamine produced better pharmacological action to improving executive function. Our finding provided valuable evidence on the ideal pharmacokinetic and neurochemical characteristics of amphetamine-type psychostimulants in cognition enhancement.
Collapse
Affiliation(s)
- Chen Jian-Min
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China; Department of Pharmacy, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, 46th Chongxin Road, Guilin 541000, China
| | - Wang Zhi-Yuan
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Liu Ke
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Zhang Cheng
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Wu Shi-Xuan
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Cao Yi-Wei
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Lu Guan-Yi
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Song Rui
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Zhuang Xiao-Mei
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| | - Li Jin
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Wu Ning
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| |
Collapse
|
5
|
Park K, Kong CH, Kang WC, Jeon M, Lee WH, Lee J, Kim SC, Jung SY, Ryu JH. LPC20K modified from krill oil ameliorates the scopolamine-induced cognitive impairment. Behav Brain Res 2024; 461:114836. [PMID: 38145873 DOI: 10.1016/j.bbr.2023.114836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment. It is common in the elderly. Etiologically, dysfunction of cholinergic neurotransmitter system is prominent in AD. However, disease modifying drug for AD is still unavailable. We hypothesized that krill oil and modified krill oil containing 20 % lysophosphatidylcholine-docosahexaenoic acid (LPC-DHA, LPC20K) could play a crucial role in AD by improving cognitive functions measured by several behavioral tests. We found that LPC20K could ameliorate short-term, long-term, spatial, and object recognition memory under cholinergic hypofunction states. To find the underlying mechanism involved in the effect of LPC20K on cognitive function, we investigated changes of signaling molecules using Western blotting. Expression levels of protein kinase C zeta (PKCζ) and postsynaptic density protein 95 (PSD-95), and phosphorylation levels of extracellular signal-regulated kinase (ERK), Ca2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ), and cAMP response element-binding protein (CREB) were significantly increased in LPC20K-administered group compared to those in the memory impairment group. Moreover, the expression levels of BDNF were temporally increased especially 6 or 9 h after administration of LPC20K compared with the control group. These results suggest that LPC20K could ameliorate memory impairment caused by hypocholinergic state by enhancing the expression levels of PKCζ and PSD-95, and phosphorylation levels of ERK, CaMKⅡ and CREB and increasing BDNF expression levels. Therefore, LPC20K could be used as a dietary supplement against cognitive impairment observed in diseases such as AD with a hypocholinergic state.
Collapse
Affiliation(s)
- Keontae Park
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Mijin Jeon
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Won Hyung Lee
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Juyeon Lee
- Croda Korea Ltd., Seongnam-si, Gyeonggi-do 13636, the Republic of Korea
| | - Sang Chul Kim
- Croda Korea Ltd., Seongnam-si, Gyeonggi-do 13636, the Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea.
| |
Collapse
|
6
|
Ugarte G, Piña R, Contreras D, Godoy F, Rubio D, Rozas C, Zeise M, Vidal R, Escobar J, Morales B. Attention Deficit-Hyperactivity Disorder (ADHD): From Abnormal Behavior to Impairment in Synaptic Plasticity. BIOLOGY 2023; 12:1241. [PMID: 37759640 PMCID: PMC10525904 DOI: 10.3390/biology12091241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Attention deficit-hyperactivity disorder (ADHD) is a neurodevelopmental disorder with high incidence in children and adolescents characterized by motor hyperactivity, impulsivity, and inattention. Magnetic resonance imaging (MRI) has revealed that neuroanatomical abnormalities such as the volume reduction in the neocortex and hippocampus are shared by several neuropsychiatric diseases such as schizophrenia, autism spectrum disorder and ADHD. Furthermore, the abnormal development and postnatal pruning of dendritic spines of neocortical neurons in schizophrenia, autism spectrum disorder and intellectual disability are well documented. Dendritic spines are dynamic structures exhibiting Hebbian and homeostatic plasticity that triggers intracellular cascades involving glutamate receptors, calcium influx and remodeling of the F-actin network. The long-term potentiation (LTP)-induced insertion of postsynaptic glutamate receptors is associated with the enlargement of spine heads and long-term depression (LTD) with spine shrinkage. Using a murine model of ADHD, a delay in dendritic spines' maturation in CA1 hippocampal neurons correlated with impaired working memory and hippocampal LTP has recently reported. The aim of this review is to summarize recent evidence that has emerged from studies focused on the neuroanatomical and genetic features found in ADHD patients as well as reports from animal models describing the molecular structure and remodeling of dendritic spines.
Collapse
Affiliation(s)
- Gonzalo Ugarte
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - Ricardo Piña
- Department of Biology, Faculty of Sciences, Metropolitan University of Education Sciences, Santiago 7760197, Chile;
- Department of Human Sciences, Faculty of Human Science, Bernardo O’Higgins University, Santiago 8370854, Chile
| | - Darwin Contreras
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - Felipe Godoy
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - David Rubio
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - Carlos Rozas
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - Marc Zeise
- School of Psychology, Faculty of Humanities, University of Santiago of Chile, Santiago 9170022, Chile;
| | - Rodrigo Vidal
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile;
| | - Jorge Escobar
- Institute of Chemistry, Pontifical Catholic University of Valparaíso, Valparaíso 2340000, Chile
| | - Bernardo Morales
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| |
Collapse
|
7
|
Kuś J, Saramowicz K, Czerniawska M, Wiese W, Siwecka N, Rozpędek-Kamińska W, Kucharska-Lusina A, Strzelecki D, Majsterek I. Molecular Mechanisms Underlying NMDARs Dysfunction and Their Role in ADHD Pathogenesis. Int J Mol Sci 2023; 24:12983. [PMID: 37629164 PMCID: PMC10454781 DOI: 10.3390/ijms241612983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, although the aetiology of ADHD is not yet understood. One proposed theory for developing ADHD is N-methyl-D-aspartate receptors (NMDARs) dysfunction. NMDARs are involved in regulating synaptic plasticity and memory function in the brain. Abnormal expression or polymorphism of some genes associated with ADHD results in NMDAR dysfunction. Correspondingly, NMDAR malfunction in animal models results in ADHD-like symptoms, such as impulsivity and hyperactivity. Currently, there are no drugs for ADHD that specifically target NMDARs. However, NMDAR-stabilizing drugs have shown promise in improving ADHD symptoms with fewer side effects than the currently most widely used psychostimulant in ADHD treatment, methylphenidate. In this review, we outline the molecular and genetic basis of NMDAR malfunction and how it affects the course of ADHD. We also present new therapeutic options related to treating ADHD by targeting NMDAR.
Collapse
Affiliation(s)
- Justyna Kuś
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Kamil Saramowicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Maria Czerniawska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Wojciech Wiese
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Aleksandra Kucharska-Lusina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechoslowacka 8/10, 92-216 Lodz, Poland;
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| |
Collapse
|
8
|
Suto T, Kato D, Koibuchi I, Arai Y, Ohta J, Hiroki T, Obata H, Saito S. Rat model of attention-deficit hyperactivity disorder exhibits delayed recovery from acute incisional pain due to impaired descending noradrenergic inhibition. Sci Rep 2023; 13:5526. [PMID: 37016045 PMCID: PMC10073110 DOI: 10.1038/s41598-023-32512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/28/2023] [Indexed: 04/06/2023] Open
Abstract
Chronic pain and attention-deficit hyperactivity disorder (ADHD) frequently coexist. However, the common pathology is still unclear. Attenuated noradrenergic endogenous analgesia can produce acute pain chronification, and dysfunction of noradrenergic systems in the nervous system is relevant to ADHD symptoms. Noxious stimuli-induced analgesia (NSIA) is measured to estimate noradrenergic endogenous analgesia in spontaneously hypertensive rats (SHR) as an ADHD model and control. Recovery of pain-related behaviors after paw incision was assessed. Contributions of noradrenergic systems were examined by in vivo microdialysis and immunohistochemistry. The SHR showed attenuated NSIA and needed a more extended period for recovery from acute pain. These results suggest ADHD patients exhibit acute pain chronification due to pre-existing attenuated noradrenergic endogenous analgesia. Immunohistochemistry suggests abnormal noradrenaline turnover and downregulation of the target receptor (alpha2a adrenoceptor). Standard ADHD treatment with atomoxetine restored NSIA and shortened the duration of hypersensitivity after the surgery in the SHR. NSIA protocol activated the locus coeruleus, the origin of spinal noradrenaline, of both strains, but only the control exhibited an increase in spinal noradrenaline. This result suggests dysfunction in the noradrenaline-releasing process and can be recognized as a novel mechanism of attenuation of noradrenergic endogenous analgesia.
Collapse
Affiliation(s)
- Takashi Suto
- Department of Anesthesiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Daiki Kato
- Department of Anesthesiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Ikuya Koibuchi
- Department of Anesthesiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Yuki Arai
- Department of Anesthesiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Jo Ohta
- Department of Anesthesiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tadanao Hiroki
- Department of Anesthesiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hideaki Obata
- Department of Anesthesiology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, 350-8550, Japan
| | - Shigeru Saito
- Department of Anesthesiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
9
|
Sifeddine W, Ba-M'hamed S, Landry M, Bennis M. Effect of atomoxetine on ADHD-pain hypersensitization comorbidity in 6-OHDA lesioned mice. Pharmacol Rep 2023; 75:342-357. [PMID: 36787018 DOI: 10.1007/s43440-023-00459-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Methylphenidate and atomoxetine are used for the treatment of attention-deficit/hyperactivity disorder (ADHD). Our previous studies established the validity of the 6-hydroxydopamine (6-OHDA) mouse model of ADHD and demonstrated hypersensitivity to pain, in line with clinical reports in ADHD patients. Acute methylphenidate treatment reduces hyperactivity and increases attention, but does not affect pain behaviors in this mouse model. Whereas atomoxetine has been shown to be effective against some symptoms of ADHD, nothing is known about its possible action on comorbid pain hypersensitivity. The objectives of the present research are (1) to investigate the effects of acute and chronic treatment with atomoxetine on ADHD-like symptoms and nociceptive thresholds, and (2) to explore the catecholaminergic systems underlying these effects. METHODS Sham and 6-OHDA cohorts of male mice were tested for hyperactivity (open field), attention and impulsivity (5-choice serial reaction time task test), and thermal (hot plate test) and mechanical (von Frey test) thresholds after acute or repeated treatment with vehicle or atomoxetine (1, 3 or 10 mg/kg). RESULTS Acute administration of atomoxetine (10 mg/kg) reduced the hyperactivity and impulsivity displayed by 6-OHDA mice, without affecting attention or nociception. However, atomoxetine administered at 3 mg/kg/day for 7 days alleviated the ADHD-like core symptoms and attenuated the hyperalgesic responses. Furthermore, hyperlocomotion and anti-hyperalgesic activity were antagonized with phentolamine, propranolol, and sulpiride pre-treatments. CONCLUSION These findings demonstrated that when administered chronically, atomoxetine has a significant effect on ADHD-associated pain hypersensitization, likely mediated by both α- and β-adrenergic and D2/D3 dopaminergic receptors, and suggest new indications for atomoxetine that will need to be confirmed by well-designed clinical trials.
Collapse
Affiliation(s)
- Wahiba Sifeddine
- Laboratory of Pharmacology, Neurobiology, Anthropobiology, and Environment, Faculty of Sciences, Cadi Ayyad University, Avenue Prince My Abdellah, B.P. 2390, 40000, Marrakesh, Morocco
| | - Saadia Ba-M'hamed
- Laboratory of Pharmacology, Neurobiology, Anthropobiology, and Environment, Faculty of Sciences, Cadi Ayyad University, Avenue Prince My Abdellah, B.P. 2390, 40000, Marrakesh, Morocco
| | - Marc Landry
- University of Bordeaux, CNRS, Institute of Neurodegenerative Diseases, UMR 5293, Bordeaux, France.,University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, UMS 3420, US 4, Bordeaux, France
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology, Anthropobiology, and Environment, Faculty of Sciences, Cadi Ayyad University, Avenue Prince My Abdellah, B.P. 2390, 40000, Marrakesh, Morocco.
| |
Collapse
|
10
|
Long-term potentiation and depression regulatory microRNAs were highlighted in Bisphenol A induced learning and memory impairment by microRNA sequencing and bioinformatics analysis. PLoS One 2023; 18:e0279029. [PMID: 36656826 PMCID: PMC9851566 DOI: 10.1371/journal.pone.0279029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/28/2022] [Indexed: 01/20/2023] Open
Abstract
The mechanisms of Bisphenol A (BPA) induced learning and memory impairment have still not been fully elucidated. MicroRNAs (miRNAs) are endogenous non-coding small RNA molecules involved in the process of toxicant-induced neurotoxicity. To investigate the role of miRNAs in BPA-induced learning and memory impairment, we analyzed the impacts of BPA on miRNA expression profile by high-throughput sequencing in mice hippocampus. Results showed that mice treated with BPA displayed impairments of spatial learning and memory and changes in the expression of miRNAs in the hippocampus. Seventeen miRNAs were significantly differentially expressed after BPA exposure, of these, 13 and 4 miRNAs were up- and downregulated, respectively. Bioinformatic analysis of Gene Ontology (GO) and pathway suggests that BPA exposure significantly triggered transcriptional changes of miRNAs associated with learning and memory; the top five affected pathways involved in impairment of learning and memory are: 1) Long-term depression (LTD); 2) Thyroid hormone synthesis; 3) GnRH signaling pathway; 4) Long-term potentiation (LTP); 5) Serotonergic synapse. Eight BPA-responsive differentially expressed miRNAs regulating LTP and LTD were further screened to validate the miRNA sequencing data using Real-Time PCR. The deregulation expression levels of proteins of five target genes (CaMKII, MEK1/2, IP3R, AMPAR1 and PLCβ4) were investigated via western blot, for further verifying the results of gene target analysis. Our results showed that LTP and LTD related miRNAs and their targets could contribute to BPA-induced impairment of learning and memory. This study provides valuable information for novel miRNA biomarkers to detect changes in impairment of learning and memory induced by BPA exposure.
Collapse
|
11
|
Contreras D, Piña R, Carvallo C, Godoy F, Ugarte G, Zeise M, Rozas C, Morales B. Methylphenidate Restores Behavioral and Neuroplasticity Impairments in the Prenatal Nicotine Exposure Mouse Model of ADHD: Evidence for Involvement of AMPA Receptor Subunit Composition and Synaptic Spine Morphology in the Hippocampus. Int J Mol Sci 2022; 23:ijms23137099. [PMID: 35806103 PMCID: PMC9266648 DOI: 10.3390/ijms23137099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
In ADHD treatment, methylphenidate (MPH) is the most frequently used medication. The present work provides evidence that MPH restored behavioral impairments and neuroplasticity due to changes in AMPAR subunit composition and distribution, as well as maturation of dendritic spines, in a prenatal nicotine exposure (PNE) ADHD mouse model. PNE animals and controls were given a single oral dose of MPH (1 mg/kg), and their behavior was tested for attention, hyperactivity, and working memory. Long-term potentiation (LTP) was induced and analyzed at the CA3/CA1 synapse in hippocampal slices taken from the same animals tested behaviorally, measuring fEPSPs and whole-cell patch-clamp EPSCs. By applying crosslinking and Western blots, we estimated the LTP effects on AMPAR subunit composition and distribution. The density and types of dendritic spines were quantified by using the Golgi staining method. MPH completely restored the behavioral impairments of PNE mice. Reduced LTP and AMPA-receptor-mediated EPSCs were also restored. EPSC amplitudes were tightly correlated with numbers of GluA1/GluA1 AMPA receptors at the cell surface. Finally, we found a lower density of dendritic spines in hippocampal pyramidal neurons in PNE mice, with a higher fraction of thin-type immature spines and a lower fraction of mushroom mature spines; the latter effect was also reversed by MPH.
Collapse
Affiliation(s)
- Darwin Contreras
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, University of Santiago de Chile, Alameda 3363, Santiago 9170022, Chile; (D.C.); (F.G.); (G.U.)
| | - Ricardo Piña
- Departamento de Biología, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago 7760197, Chile;
- Departamento de Ciencias Pedagógicas, Facultad de Educación, Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Claudia Carvallo
- Centro de investigación e innovación en Gerontología Aplicada (CIGAP), Facultad de Salud, Universidad Santo Tomás, Santiago 8370003, Chile;
| | - Felipe Godoy
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, University of Santiago de Chile, Alameda 3363, Santiago 9170022, Chile; (D.C.); (F.G.); (G.U.)
| | - Gonzalo Ugarte
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, University of Santiago de Chile, Alameda 3363, Santiago 9170022, Chile; (D.C.); (F.G.); (G.U.)
| | - Marc Zeise
- School of Psychology, Faculty of Humanities, University of Santiago de Chile, Santiago 9170022, Chile;
| | - Carlos Rozas
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, University of Santiago de Chile, Alameda 3363, Santiago 9170022, Chile; (D.C.); (F.G.); (G.U.)
- Correspondence: (C.R.); (B.M.)
| | - Bernardo Morales
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, University of Santiago de Chile, Alameda 3363, Santiago 9170022, Chile; (D.C.); (F.G.); (G.U.)
- Correspondence: (C.R.); (B.M.)
| |
Collapse
|
12
|
Sanchez EO, Bangasser DA. The effects of early life stress on impulsivity. Neurosci Biobehav Rev 2022; 137:104638. [PMID: 35341796 DOI: 10.1016/j.neubiorev.2022.104638] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023]
Abstract
Elevated impulsivity is a symptom shared by various psychiatric disorders such as substance use disorder, bipolar disorder, and attention-deficit/hyperactivity disorder. However, impulsivity is not a unitary construct and impulsive behaviors fall into two subcategories: impulsive action and impulsive choice. Impulsive choice refers to the tendency to prefer immediate, small rewards over delayed, large rewards, whereas impulsive action involves difficulty inhibiting rash, premature, or mistimed behaviors. These behaviors are mediated by the mesocorticolimbic dopamine (DA) system, which consists of projections from the ventral tegmental area to the nucleus accumbens and prefrontal cortex. Early life stress (ELS) alters both impulsive choice and impulsive action in rodents. ELS also changes DA receptor expression, transmission, and activity within the mesocorticolimbic system. This review integrates the dopamine, impulsivity, and ELS literature to provide evidence that ELS alters impulsivity via inducing changes in the mesocorticolimbic DA system. Understanding how ELS affects brain circuits associated with impulsivity can help advance treatments aimed towards reducing impulsivity symptoms in a variety of psychiatric disorders.
Collapse
Affiliation(s)
- Evelyn Ordoñes Sanchez
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA.
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
13
|
Stanford SC. Animal Models of ADHD? Curr Top Behav Neurosci 2022; 57:363-393. [PMID: 35604570 DOI: 10.1007/7854_2022_342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To describe animals that express abnormal behaviors as a model of Attention-Deficit Hyperactivity Disorder (ADHD) implies that the abnormalities are analogous to those expressed by ADHD patients. The diagnostic features of ADHD comprise inattentiveness, impulsivity, and hyperactivity and so these behaviors are fundamental for validation of any animal model of this disorder. Several experimental interventions such as neurotoxic lesion of neonatal rats with 6-hydroxydopamine (6-OHDA), genetic alterations, or selective inbreeding of rodents have produced animals that express each of these impairments to some extent. This article appraises the validity of claims that these procedures have produced a model of ADHD, which is essential if they are to be used to investigate the underlying cause(s) of ADHD and its abnormal neurobiology.
Collapse
Affiliation(s)
- S Clare Stanford
- Department of Neuroscience Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
14
|
Webler RD, Berg H, Fhong K, Tuominen L, Holt DJ, Morey RA, Lange I, Burton PC, Fullana MA, Radua J, Lissek S. The neurobiology of human fear generalization: meta-analysis and working neural model. Neurosci Biobehav Rev 2021; 128:421-436. [PMID: 34242718 DOI: 10.1016/j.neubiorev.2021.06.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/04/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Fear generalization to stimuli resembling a conditioned danger-cue (CS+) is a fundamental dynamic of classical fear-conditioning. Despite the ubiquity of fear generalization in human experience and its known pathogenic contribution to clinical anxiety, neural investigations of human generalization have only recently begun. The present work provides the first meta-analysis of this growing literature to delineate brain substrates of conditioned fear-generalization and formulate a working neural model. Included studies (K = 6, N = 176) reported whole-brain fMRI results and applied generalization-gradient methodology to identify brain activations that gradually strengthen (positive generalization) or weaken (negative generalization) as presented stimuli increase in CS+ resemblance. Positive generalization was instantiated in cingulo-opercular, frontoparietal, striatal-thalamic, and midbrain regions (locus coeruleus, periaqueductal grey, ventral tegmental area), while negative generalization was implemented in default-mode network nodes (ventromedial prefrontal cortex, hippocampus, middle temporal gyrus, angular gyrus) and amygdala. Findings are integrated within an updated neural account of generalization centering on the hippocampus, its modulation by locus coeruleus and basolateral amygdala, and the excitation of threat- or safety-related loci by the hippocampus.
Collapse
Affiliation(s)
- Ryan D Webler
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN, 55455, USA
| | - Hannah Berg
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN, 55455, USA
| | - Kimberly Fhong
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN, 55455, USA
| | - Lauri Tuominen
- The Royal's Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Ontario, K1Z 7K4, Canada
| | - Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Rajendra A Morey
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, Duke University Medical Center, Durham, NC, 27710, USA; VA Mid-Atlantic Mental Illness Research Education and Clinical Center, 508 Fulton Street, Durham VAMC, Durham, VA Medical Center, Durham, NC, 27705, USA; Duke-UNC Brain Imaging and Analysis Center, Duke University, 40 Duke Medicine Circle, Durham, NC, USA
| | - Iris Lange
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, Duboisdomein 30, 6229 GT, Maastricht, the Netherlands
| | - Philip C Burton
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN, 55455, USA
| | - Miquel Angel Fullana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Campus Casanova, Casanova, 143, 08036, Barcelona, Spain; Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clínic, Casanovas 143, 08036, Barcelona, Spain
| | - Joaquim Radua
- Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clínic, Casanovas 143, 08036, Barcelona, Spain; Early Psychosis: Interventions and Clinical-detection (EPIC) Laboratory, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK; Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Shmuel Lissek
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN, 55455, USA.
| |
Collapse
|
15
|
Lanshakov DA, Sukhareva EV, Bulygina VV, Bannova AV, Shaburova EV, Kalinina TS. Single neonatal dexamethasone administration has long-lasting outcome on depressive-like behaviour, Bdnf, Nt-3, p75ngfr and sorting receptors (SorCS1-3) stress reactive expression. Sci Rep 2021; 11:8092. [PMID: 33854153 PMCID: PMC8046778 DOI: 10.1038/s41598-021-87652-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
Elevated glucocorticoid level in the early postnatal period is associated with glucocorticoid therapy prescribed at preterm delivery most often has severe long-lasting neurodevelopmental and behavioural effects. Detailed molecular mechanisms of such programming action of antenatal glucocorticoids on behaviour are still poorly understood. To address this question we studied neurotrophins: Bdnf, Nt-3, Ngf and their receptors: p75ngfr, Sorcs3 expression changes after subcutaneous dexamethasone (DEX) 0.2 mg/kg injection to P2 rat pups. Neurotrophins expression level was studied in the hippocampus (HPC). Disturbances in these brain regions have been implicated in the emergence of multiple psychopathologies. p75ngfr and Sorcs3 expression was studied in the brainstem—region where monoamine neurons are located. Immunohistochemically P75NTR protein level changes after DEX were investigated in the brainstem Locus Coereleus norepinephrine neurons (NE). In the first hours after DEX administration elevation of neurotrophins expression in HPC and decline of receptor’s expression in the NE brainstem neurons were observed. Another critical time point during maturation is adolescence. Impact of elevated glucocorticoid level in the neonatal period and unpredictable stress (CMUS) at the end of adolescence on depressive-like behaviour was studied. Single neonatal DEX injection leads to decrease in depressive-like behaviour, observed in FST, independently from chronic stress. Neonatal DEX administration decreased Ntf3 and SorCS1 expression in the brainstem. Also Bdnf mRNA level in the brainstem of these animals didn’t decrease after FST. CMUS at the end of adolescence changed p75ngfr and SorCS3 expression in the brainstem in the animals that received single neonatal DEX administration.
Collapse
Affiliation(s)
- D A Lanshakov
- Laboratory of Postgenomics Neurobiology, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090.
| | - E V Sukhareva
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation, 630090
| | - V V Bulygina
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090
| | - A V Bannova
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090
| | - E V Shaburova
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation, 630090
| | - T S Kalinina
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation, 630090
| |
Collapse
|
16
|
Park D, Mabunga DFN, Adil KJ, Ryu O, Valencia S, Kim R, Kim HJ, Cheong JH, Kwon KJ, Kim HY, Han SH, Jeon SJ, Shin CY. Synergistic efficacy and diminished adverse effect profile of composite treatment of several ADHD medications. Neuropharmacology 2021; 187:108494. [PMID: 33587920 DOI: 10.1016/j.neuropharm.2021.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/05/2021] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
Although attention-deficit/hyperactivity disorder (ADHD) is widely studied, problems regarding the adverse effect risks and non-responder problems still need to be addressed. Combination pharmacotherapy using standard dose regimens of existing medication is currently being practiced mainly to augment the therapeutic efficacy of each drug. The idea of combining different pharmacotherapies with different molecular targets to alleviate the symptoms of ADHD and its comorbidities requires scientific evidence, necessitating the investigation of their therapeutic efficacy and the mechanisms underlying the professed synergistic effects. Here, we injected male ICR mice with MK-801 to induce ADHD behavioral condition. We then modeled a "combined drug" using sub-optimal doses of methylphenidate, atomoxetine, and fluoxetine and investigated the combined treatment effects in MK-801-treated mice. No sub-optimal dose monotherapy alleviated ADHD behavioral condition in MK-801-treated mice. However, treatment with the combined drug attenuated the impaired behavior of MK-801-treated animals. Growth impediment, sleep disturbances, or risk of substance abuse were not observed in mice treated subchronically with the combined drugs. Finally, we observed that the combined ADHD drug rescued alterations in p-AKT and p-ERK1/2 levels in the prefrontal cortex and hippocampus, respectively, of MK-801-treated mice. Our results provide experimental evidence of a possible new pharmacotherapy option in ameliorating the ADHD behavioral condition without the expected adverse effects. The detailed mechanism of action underlying the synergistic therapeutic efficacy and reduced adverse reaction by combinatorial drug treatment should be investigated further in future studies.
Collapse
Affiliation(s)
- Donghyun Park
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Darine Froy N Mabunga
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Keremkleroo Jym Adil
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Onjeon Ryu
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Schley Valencia
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ryeongeun Kim
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Kyung Ja Kwon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hahn Young Kim
- Department of Neurology, Konkuk University Medical Center, Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, 05029, Republic of Korea
| | - Seol-Heui Han
- Department of Neurology, Konkuk University Medical Center, Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, 05029, Republic of Korea
| | - Se Jin Jeon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea; TriNeuro Inc., 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea; TriNeuro Inc., 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
17
|
Alamri FF, Al Shoyaib A, Syeara N, Paul A, Jayaraman S, Karamyan ST, Arumugam TV, Karamyan VT. Delayed atomoxetine or fluoxetine treatment coupled with limited voluntary running promotes motor recovery in mice after ischemic stroke. Neural Regen Res 2021; 16:1244-1251. [PMID: 33318401 PMCID: PMC8284259 DOI: 10.4103/1673-5374.301031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Currently, there is an unmet need for treatments promoting post-stroke functional recovery. The aim of this study was to evaluate and compare the dose-dependent effect of delayed atomoxetine or fluoxetine therapy (starting on post-stroke day 5), coupled with limited physical exercise (2 hours daily voluntary wheel running; post-stroke days 9 to 42), on motor recovery of adult male mice after photothrombotic stroke. These drugs are selective norepinephrine or serotonin reuptake inhibitors indicated for disorders unrelated to stroke. The predetermined primary end-point for this study was motor function measured in two tasks of spontaneous motor behaviors in grid-walking and cylinder tests. Additionally, we quantified the running distance and speed throughout the study, the number of parvalbumin-positive neurons in the medial agranular cortex and infarct volumes. Both sensorimotor tests revealed that neither limited physical exercise nor a drug treatment alone significantly facilitated motor recovery in mice after stroke. However, combination of physical exercise with either of the drugs promoted restoration of motor function by day 42 post-stroke, with atomoxetine being a more potent drug. This was accompanied by a significant decrease in parvalbumin-positive inhibitory interneurons in the ipsilateral medial agranular cortex of mice with recovering motor function, while infarct volumes were comparable among experimental groups. If further validated in larger studies, our observations suggest that add-on atomoxetine or fluoxetine therapy coupled with limited, structured physical rehabilitation could offer therapeutic modality for stroke survivors who have difficulty to engage in early, high-intensity physiotherapy. Furthermore, in light of the recently completed Assessment oF FluoxetINe In sTroke recoverY (AFFINITY) and Efficacy oF Fluoxetine-a randomisEd Controlled Trial in Stroke (EFFECTS) trials, our observations call for newly designed studies where fluoxetine or atomoxetine pharmacotherapy is evaluated in combination with structured physical rehabilitation rather than alone. This study was approved by the Texas Tech University Health Sciences Center Institutional Animal Care and Use Committee (protocol # 16019).
Collapse
Affiliation(s)
- Faisal F Alamri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Current address: College of Sciences and Health Profession, King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical, Research Center, Jeddah, Saudi Arabia
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Nausheen Syeara
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Anisha Paul
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Srinidhi Jayaraman
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Serob T Karamyan
- Department of Pharmacology, Faculty of Pharmacy, Yerevan State Medical University, Yerevan, Armenia
| | - Thiruma V Arumugam
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences; Center for Blood Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
18
|
Fu D, Wu DD, Guo HL, Hu YH, Xia Y, Ji X, Fang WR, Li YM, Xu J, Chen F, Liu QQ. The Mechanism, Clinical Efficacy, Safety, and Dosage Regimen of Atomoxetine for ADHD Therapy in Children: A Narrative Review. Front Psychiatry 2021; 12:780921. [PMID: 35222104 PMCID: PMC8863678 DOI: 10.3389/fpsyt.2021.780921] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Atomoxetine, a selective norepinephrine (NE) reuptake inhibitor, was approved for attention deficit/hyperactivity disorder (ADHD) treatment in children, adolescents and adults. We searched the database PubMed/MEDLINE (2000 to October 1, 2021). Only publications in English were considered. Atomoxetine inhibits the presynaptic norepinephrine transporter (NET), preventing the reuptake of NE throughout the brain along with inhibiting the reuptake of dopamine in specific brain regions such as the prefrontal cortex (PFC). The novel mechanism of atomoxetine also includes several new brain imaging studies and animal model studies. It is mainly metabolized by the highly polymorphic drug metabolizing enzyme cytochrome P450 2D6 (CYP2D6). Atomoxetine is effective and generally well tolerated. ADHD is often accompanied by multiple comorbidities. A series of studies have been published suggesting that atomoxetine is effective in the treatment of ADHD symptoms for children with various types of comorbidity. In some cases, it is possible that atomoxetine may have a positive influence on the symptoms of comorbidities. Atomoxetine can be administered either as a single daily dose or split into two evenly divided doses, and has a negligible risk of abuse or misuse. The latest guideline updated that clinical dose selection of atomoxetine was recommended based on both CYP2D6 genotype and the peak concentration. To have a more comprehensive understanding of atomoxetine, this review sets the focus on the mechanism, clinical efficacy and dosage regimen in detail, and also touches on those studies regarding adverse reactions of atomoxetine.
Collapse
Affiliation(s)
- Di Fu
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China.,School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Dan-Dan Wu
- Department of Children Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Li Guo
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Hui Hu
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Xia
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xing Ji
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei-Rong Fang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yun-Man Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Xu
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qian-Qi Liu
- Department of Children Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Li HH, Yue XJ, Wang CX, Feng JY, Wang B, Jia FY. Serum Levels of Vitamin A and Vitamin D and Their Association With Symptoms in Children With Attention Deficit Hyperactivity Disorder. Front Psychiatry 2020; 11:599958. [PMID: 33329153 PMCID: PMC7719622 DOI: 10.3389/fpsyt.2020.599958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/30/2020] [Indexed: 01/18/2023] Open
Abstract
Objective: To measure levels of vitamin A (VA) and vitamin D (VD) and the symptomatic association of their co-deficiencies on attention deficit hyperactivity disorder (ADHD) in Chinese children (6-9 years). Methods: Eighty-two children (69 boys and 13 girls; mean age = 7.1 ± 0.9 years at the time of the diagnosis) with ADHD were recruited as ADHD group. A total of 106 healthy children were recruited as the healthy control (HC) group. Serum levels of retinol and 25-hydroxyvitamin D (25(OH)D) of all children were evaluated using high-performance liquid chromatography (HPLC) and HPLC-tandem mass spectrometry. The Swanson, Nolan, and Pelham IV Rating Scale (SNAP-IV) was employed to assess the clinical symptoms of ADHD. Results: Children suffering from ADHD had significantly reduced serum levels of retinol and 25(OH)D compared with those of HCs, and the prevalence of VA deficiency and VD deficiency were higher in children suffering from ADHD. Serum concentrations of 25(OH)D and retinol were linked closely with the presence or absence of ADHD after adjustment for age, body mass index, season of blood sampling, and sun exposure. Serum concentrations of 25(OH)D and retinol showed a negative correlation with the total scores of SNAP-IV. Children with ADHD as well as VA and VD co-deficiency had increased SNAP-IV total scores and ADHD inattention subscale scores. Conclusion: VA deficiency and VD deficiency in children with ADHD were increased in comparison with that in HCs. VA and VD co-deficiency associated with ADHD symptom severity. Attention should be paid to regular testing of VA levels and VD levels. However, the mechanism of VA and VD in ADHD needs to be further studied. Interventional studies on VA and VD supplementation are recommended to further verify the relationship between VA and VD co-deficiency and ADHD.
Collapse
Affiliation(s)
- Hong-Hua Li
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Xiao-Jing Yue
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Cheng-Xin Wang
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Jun-Yan Feng
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Bing Wang
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Fei-Yong Jia
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, China.,Pediatric Research Institute of Jilin Province, Changchun, China
| |
Collapse
|