1
|
McGraw M, Christensen C, Nelson H, Li AJ, Qualls-Creekmore E. Divergent changes in social stress-induced motivation in male and female mice. Physiol Behav 2025; 291:114787. [PMID: 39710132 DOI: 10.1016/j.physbeh.2024.114787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/01/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Exposure to stressors has been shown to dysregulate motivated behaviors in a bidirectional manner over time. The relationship between stress and motivation is relevant to psychological disorders, including depression, binge eating, and substance use disorder; however, this relationship is not well characterized, especially in females, despite their increased risk of these disorders. Social defeat stress is a common model to study stress-induced motivation changes, however, historically this model excluded females due to lack of female-to-female aggression and unreliable male-to-female aggression. Additionally, changes in motivation are often assessed well after stress exposure ends, potentially missing or occluding changes to motivation during stress. Recently, the chronic non-discriminatory social defeat stress (CNSDS) model has demonstrated social defeat of male and female C57BL/6J mice by simultaneously exposing both mice to an aggressive male CD-1 mouse. Here we use this model to directly compare changes in the motivated behavior of male and female mice during and following chronic stress. We hypothesized that motivated behavioral responses would be dysregulated during stress and that the effects would worsen as the stress exposure continued. To monitor motivated behavior, mice had access to a Feeding Experimental Device.3 (FED3), a home cage device for operant responding. Operant responding was monitored prior to, during, and after stress by measuring nose pokes for sucrose pellets on a modified progressive ratio schedule of reinforcement. Our results demonstrated divergent behavioral outcomes between males and female mice in response to stress; where male mice increased motivated behavior during stress only, whereas female mice exhibited a decrease in motivation during and after stress. This study highlights the need to investigate the effects of stress-induced motivation over time, as well as the increased need to understand differences in the stress response in females.
Collapse
Affiliation(s)
- Megan McGraw
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Cooper Christensen
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Hailey Nelson
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Ai-Jun Li
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Emily Qualls-Creekmore
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA.
| |
Collapse
|
2
|
Gill H, Badulescu S, Di Vincenzo JD, Tabassum A, McKenzie A, Shah H, Amin M, Llach CD, Rosenblat JD, McIntyre RS, Mansur RB. Metabolic factors modulate effort-based decision-making in major depressive disorder. J Affect Disord 2025; 373:88-93. [PMID: 39732399 DOI: 10.1016/j.jad.2024.12.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND Abnormalities in effort-based decision-making have been consistently reported in major depressive disorder (MDD). Evidence indicates that metabolic factors, such as insulin resistance and dyslipidemia, which are highly prevalent in MDD, are independently associated with reward disturbances. Herein, we investigate the moderating effect of metabolic factors on effort-based decision-making in individuals with MDD. METHODS Forty-nine adults with MDD completed the Effort Expenditure for Rewards Task (EEfRT). Anthropometric and laboratorial parameters were assessed in all participants. We conducted a factor analysis to identify combinations of correlated metabolic variables, and reduce the number of comparisons. RESULTS Proxy markers of elevated insulin resistance (OR: 0.816, p < 0.001) and hyperglycemia (OR: 0.898, p = 0.021) were associated with a lower willingness to exert physical effort for rewards in the EEfRT. In contrast, elevated HDL (OR: 1.165, p = 0.004), and elevated non-HDL cholesterol and triglycerides (OR: 1.184, p < 0.001) were associated with increased frequency of hard task choices. These associations were independent of age, sex, depressive symptoms severity and medication use. Computational modeling revealed that the insulin resistance (β = 0.275, p = 0.035) and cholesterol factors (β = 0.565, p < 0.001) were independently associated with increased effort discounting. LIMITATIONS Post-hoc analysis using a relatively small sample of convenience. CONCLUSIONS Metabolic factors significantly and independently modulated effort-based decision-making in patients with MDD. These results have implications for our understanding of reward disturbances in MDD, and offer insights for further mechanistic investigations.
Collapse
Affiliation(s)
- Hartej Gill
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sebastian Badulescu
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Joshua D Di Vincenzo
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Aniqa Tabassum
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Andrea McKenzie
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Hiya Shah
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Mahrus Amin
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Cristian-Daniel Llach
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Babicola L, Mancini C, Riccelli C, Di Segni M, Passeri A, Municchi D, D'Addario SL, Andolina D, Cifani C, Cabib S, Ventura R. A mouse model of the 3-hit effects of stress: Genotype controls the effects of life adversities in females. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110842. [PMID: 37611651 DOI: 10.1016/j.pnpbp.2023.110842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Helplessness is a dysfunctional coping response to stressors associated with different psychiatric conditions. The present study tested the hypothesis that early and adult adversities cumulate to produce helplessness depending on the genotype (3-hit hypothesis of psychopathology). To this aim, we evaluated whether Chronic Unpredictable Stress (CUS) differently affected coping and mesoaccumbens dopamine (DA) responses to stress challenge by adult mice of the C57BL/6J (B6) and DBA/2J (D2) inbred strains depending on early life experience (Repeated Cross Fostering, RCF). Three weeks of CUS increased the helplessness expressed in the Forced Swimming Test (FST) and the Tail Suspension Test by RCF-exposed female mice of the D2 strain. Moreover, female D2 mice with both RCF and CUS experiences showed inhibition of the stress-induced extracellular DA outflow in the Nucleus Accumbens, as measured by in vivo microdialysis, during and after FST. RCF-exposed B6 mice, instead, showed reduced helplessness and increased mesoaccumbens DA release. The present results support genotype-dependent additive effects of early experiences and adult adversities on behavioral and neural responses to stress by female mice. To our knowledge, this is the first report of a 3-hit effect in an animal model. Finally, the comparative analyses of behavioral and neural phenotypes expressed by B6 and D2 mice suggest some translationally relevant hypotheses of genetic risk factors for psychiatric disorders.
Collapse
Affiliation(s)
- Lucy Babicola
- IRCCS Fondazione Santa Lucia, Rome, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy
| | - Camilla Mancini
- University of Camerino, School of Pharmacy, Pharmacology Unit, Camerino, Italy
| | - Cristina Riccelli
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Rome, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy
| | - Alice Passeri
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy
| | - Diana Municchi
- IRCCS Fondazione Santa Lucia, Rome, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy
| | | | - Diego Andolina
- IRCCS Fondazione Santa Lucia, Rome, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy
| | - Carlo Cifani
- University of Camerino, School of Pharmacy, Pharmacology Unit, Camerino, Italy
| | - Simona Cabib
- IRCCS Fondazione Santa Lucia, Rome, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Rossella Ventura
- IRCCS Fondazione Santa Lucia, Rome, Italy; IRCCS San Raffaele, Rome, Italy.
| |
Collapse
|
4
|
Delignat-Lavaud B, Kano J, Ducrot C, Massé I, Mukherjee S, Giguère N, Moquin L, Lévesque C, Burke S, Denis R, Bourque MJ, Tchung A, Rosa-Neto P, Lévesque D, De Beaumont L, Trudeau LÉ. Synaptotagmin-1-dependent phasic axonal dopamine release is dispensable for basic motor behaviors in mice. Nat Commun 2023; 14:4120. [PMID: 37433762 PMCID: PMC10336101 DOI: 10.1038/s41467-023-39805-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
In Parkinson's disease (PD), motor dysfunctions only become apparent after extensive loss of DA innervation. This resilience has been hypothesized to be due to the ability of many motor behaviors to be sustained through a diffuse basal tone of DA; but experimental evidence for this is limited. Here we show that conditional deletion of the calcium sensor synaptotagmin-1 (Syt1) in DA neurons (Syt1 cKODA mice) abrogates most activity-dependent axonal DA release in the striatum and mesencephalon, leaving somatodendritic (STD) DA release intact. Strikingly, Syt1 cKODA mice showed intact performance in multiple unconditioned DA-dependent motor tasks and even in a task evaluating conditioned motivation for food. Considering that basal extracellular DA levels in the striatum were unchanged, our findings suggest that activity-dependent DA release is dispensable for such tasks and that they can be sustained by a basal tone of extracellular DA. Taken together, our findings reveal the striking resilience of DA-dependent motor functions in the context of a near-abolition of phasic DA release, shedding new light on why extensive loss of DA innervation is required to reveal motor dysfunctions in PD.
Collapse
Affiliation(s)
- Benoît Delignat-Lavaud
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
| | - Jana Kano
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
| | - Charles Ducrot
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
| | - Ian Massé
- Hôpital du Sacré-Cœur-de-Montréal, CIUSSS NIM, Université de Montréal, Montreal, QC, Canada
| | - Sriparna Mukherjee
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Nicolas Giguère
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
| | - Luc Moquin
- Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Samuel Burke
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
| | - Raphaëlle Denis
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
| | - Marie-Josée Bourque
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alex Tchung
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
| | - Pedro Rosa-Neto
- Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Daniel Lévesque
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Louis De Beaumont
- Hôpital du Sacré-Cœur-de-Montréal, CIUSSS NIM, Université de Montréal, Montreal, QC, Canada
| | - Louis-Éric Trudeau
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
5
|
Klappenbach CM, Wang Q, Jensen AL, Glodosky NC, Delevich K. Sex and timing of gonadectomy relative to puberty interact to influence weight, body composition, and feeding behaviors in mice. Horm Behav 2023; 151:105350. [PMID: 36996734 DOI: 10.1016/j.yhbeh.2023.105350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023]
Abstract
Gonadal sex steroids are important regulators of energy balance in adult rodents, and gonadectomy (GDX) has opposing effects on weight gain in sexually mature males and females. Puberty is associated with the emergence of sex differences in weight, body composition, and feeding behaviors, yet the role of gonadal hormones at puberty remains unclear. To address this, we performed GDX or sham surgery in male and female C57Bl/6 mice at postnatal day (P)25 (prepubertal) or P60 (postpubertal) timepoints and measured weight and body composition for 35 days, after which ad libitum and operant food intake was measured using Feeding Experimentation Device 3 (FED3s) in the home cage. Consistent with previous studies, postpubertal GDX caused weight gain in females and weight loss in males and increased adiposity in both sexes. However, prepubertal GDX decreased weight gain and altered body composition across the adolescent transition (P25 to P60) in males but had no effect in females. Despite the varied effects on weight, GDX decreased food intake and motivation for food as assessed in operant tasks regardless of sex or timing of surgery relative to puberty. Our findings indicate that GDX interacts with both sex and age at surgery to influence weight, body composition, and feeding behavior.
Collapse
Affiliation(s)
- Courtney M Klappenbach
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Qing Wang
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Allison L Jensen
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Nicholas C Glodosky
- Department of Psychology Washington State University, Pullman, WA 99164, USA
| | - Kristen Delevich
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
6
|
Simonsson E, Stiernman LJ, Lundquist A, Rosendahl E, Hedlund M, Lindelöf N, Boraxbekk CJ. Dopamine D2/3-receptor availability and its association with autonomous motivation to exercise in older adults: An exploratory [ 11C]-raclopride study. Front Hum Neurosci 2022; 16:997131. [PMID: 36438629 PMCID: PMC9691986 DOI: 10.3389/fnhum.2022.997131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/17/2022] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Autonomous motivation to exercise occurs when the activity is voluntary and with a perceived inherent satisfaction from the activity itself. It has been suggested that autonomous motivation is related to striatal dopamine D2/3-receptor (D2/3R) availability within the brain. In this study, we hypothesized that D2/3R availability in three striatal regions (nucleus accumbens, caudate nucleus, and putamen) would be positively associated with self-reported autonomous motivation to exercise. We also examined this relationship with additional exploratory analyses across a set of a priori extrastriatal regions of interest (ROI). METHODS Our sample comprised 49 older adults (28 females) between 64 and 78 years of age. The D2/3R availability was quantified from positron emission tomography using the non-displaceable binding potential of [11C]-raclopride ligand. The exercise-related autonomous motivation was assessed with the Swedish version of the Behavioral Regulations in Exercise Questionnaire-2. RESULTS No significant associations were observed between self-reported autonomous motivation to exercise and D2/3R availability within the striatum (nucleus accumbens, caudate nucleus, and putamen) using semi-partial correlations controlling for ROI volume on D2/3R availability. For exploratory analyses, positive associations were observed for the superior (r = 0.289, p = 0.023) and middle frontal gyrus (r = 0.330, p = 0.011), but not for the inferior frontal gyrus, orbitofrontal cortex, anterior cingulate cortex, or anterior insular cortex. CONCLUSION This study could not confirm the suggested link between striatal D2/3R availability and subjective autonomous motivation to exercise among older adults. The exploratory findings, however, propose that frontal brain regions may be involved in the intrinsic regulation of exercise-related behaviors, though this has to be confirmed by future studies using a more suitable ligand and objective measures of physical activity levels.
Collapse
Affiliation(s)
- Emma Simonsson
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Lars Jonasson Stiernman
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Statistics, Umeå School of Business, Economics and Statistics, Umeå University, Umeå, Sweden
| | - Erik Rosendahl
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| | - Mattias Hedlund
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| | - Nina Lindelöf
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| | - Carl-Johan Boraxbekk
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Department of Neurology, Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
- Faculty of Medical and Health Sciences, Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Delevich K, Hoshal B, Zhou LZ, Zhang Y, Vedula S, Lin WC, Chase J, Collins AGE, Wilbrecht L. Activation, but not inhibition, of the indirect pathway disrupts choice rejection in a freely moving, multiple-choice foraging task. Cell Rep 2022; 40:111129. [PMID: 35905722 PMCID: PMC10481643 DOI: 10.1016/j.celrep.2022.111129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/25/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
The dorsomedial striatum (DMS) plays a key role in action selection, but less is known about how direct and indirect pathway spiny projection neurons (dSPNs and iSPNs, respectively) contribute to choice rejection in freely moving animals. Here, we use pathway-specific chemogenetic manipulation during a serial choice foraging task to test the role of dSPNs and iSPNs in learned choice rejection. We find that chemogenetic activation, but not inhibition, of iSPNs disrupts rejection of nonrewarded choices, contrary to predictions of a simple "select/suppress" heuristic. Our findings suggest that iSPNs' role in stopping and freezing does not extend in a simple fashion to choice rejection in an ethological, freely moving context. These data may provide insights critical for the successful design of interventions for addiction or other conditions in which it is desirable to strengthen choice rejection.
Collapse
Affiliation(s)
- Kristen Delevich
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Benjamin Hoshal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lexi Z Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yuting Zhang
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Satya Vedula
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wan Chen Lin
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Juliana Chase
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Anne G E Collins
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
8
|
Legget KT, Wylie KP, Cornier MA, Berman BD, Tregellas JR. Altered between-network connectivity in individuals prone to obesity. Physiol Behav 2021; 229:113242. [PMID: 33157075 PMCID: PMC7775284 DOI: 10.1016/j.physbeh.2020.113242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Investigating intrinsic brain functional connectivity may help identify the neurobiology underlying cognitive patterns and biases contributing to obesity propensity. To address this, the current study used a novel whole-brain, data-driven approach to examine functional connectivity differences in large-scale network interactions between obesity-prone (OP) and obesity-resistant (OR) individuals. METHODS OR (N = 24) and OP (N = 25) adults completed functional magnetic resonance imaging (fMRI) during rest. Large-scale brain networks were identified using independent component analysis (ICA). Voxel-specific between-network connectivity analysis assessed correlations between ICA component time series' and individual voxel time series, identifying regions strongly connected to many networks, i.e., "hubs". RESULTS Significant group differences in between-network connectivity (OP vs. OR; FDR-corrected) were observed in bilateral basal ganglia (left: q = 0.009; right: q = 0.010) and right dorsolateral prefrontal cortex (dlPFC; q = 0.026), with OP>OR. Basal ganglia differences were largely driven by a more strongly negative correlation with a lateral sensorimotor network in OP, with dlPFC differences driven by a more strongly negative correlation with an inferior visual network in OP. CONCLUSIONS Greater between-network connectivity was observed in the basal ganglia and dlPFC in OP, driven by stronger associations with lateral sensorimotor and inferior visual networks, respectively. This may reflect a disrupted balance between goal-directed and habitual control systems and between internal/external monitoring processes.
Collapse
Affiliation(s)
- Kristina T Legget
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States; Research Service, Rocky Mountain Regional VA Medical Center, Aurora, CO, United States.
| | - Korey P Wylie
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States
| | - Marc-Andre Cornier
- Research Service, Rocky Mountain Regional VA Medical Center, Aurora, CO, United States; Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States; Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Division of Geriatric Medicine, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States
| | - Brian D Berman
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States; Department of Neurology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States; Neurology Section, Rocky Mountain Regional VA Medical Center, Aurora, CO, United States
| | - Jason R Tregellas
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States; Research Service, Rocky Mountain Regional VA Medical Center, Aurora, CO, United States
| |
Collapse
|
9
|
Matikainen-Ankney BA, Earnest T, Ali M, Casey E, Wang JG, Sutton AK, Legaria AA, Barclay KM, Murdaugh LB, Norris MR, Chang YH, Nguyen KP, Lin E, Reichenbach A, Clarke RE, Stark R, Conway SM, Carvalho F, Al-Hasani R, McCall JG, Creed MC, Cazares V, Buczynski MW, Krashes MJ, Andrews ZB, Kravitz AV. An open-source device for measuring food intake and operant behavior in rodent home-cages. eLife 2021; 10:66173. [PMID: 33779547 PMCID: PMC8075584 DOI: 10.7554/elife.66173] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/26/2021] [Indexed: 01/26/2023] Open
Abstract
Feeding is critical for survival, and disruption in the mechanisms that govern food intake underlies disorders such as obesity and anorexia nervosa. It is important to understand both food intake and food motivation to reveal mechanisms underlying feeding disorders. Operant behavioral testing can be used to measure the motivational component to feeding, but most food intake monitoring systems do not measure operant behavior. Here, we present a new solution for monitoring both food intake and motivation in rodent home-cages: the Feeding Experimentation Device version 3 (FED3). FED3 measures food intake and operant behavior in rodent home-cages, enabling longitudinal studies of feeding behavior with minimal experimenter intervention. It has a programmable output for synchronizing behavior with optogenetic stimulation or neural recordings. Finally, FED3 design files are open-source and freely available, allowing researchers to modify FED3 to suit their needs.
Collapse
Affiliation(s)
| | - Thomas Earnest
- Department of Psychiatry, Washington University in St. LouisSt. LouisUnited States
| | - Mohamed Ali
- National Institute of Diabetes and Digestive and Kidney DiseasesBethesdaUnited States,Department of Bioengineering, University of MarylandCollege ParkUnited States
| | - Eric Casey
- Department of Psychiatry, Washington University in St. LouisSt. LouisUnited States
| | - Justin G Wang
- Department of Neuroscience, Washington University in St. LouisSt. LouisUnited States
| | - Amy K Sutton
- National Institute of Diabetes and Digestive and Kidney DiseasesBethesdaUnited States
| | - Alex A Legaria
- Department of Neuroscience, Washington University in St. LouisSt. LouisUnited States
| | - Kia M Barclay
- Department of Neuroscience, Washington University in St. LouisSt. LouisUnited States
| | - Laura B Murdaugh
- Department of Neuroscience, Virginia Polytechnic and State UniversityBlacksburgUnited States
| | - Makenzie R Norris
- Department of Neuroscience, Washington University in St. LouisSt. LouisUnited States,Center for Clinical Pharmacology, University of Health Sciences and PharmacySt. LouisUnited States
| | - Yu-Hsuan Chang
- Department of Neuroscience, Washington University in St. LouisSt. LouisUnited States
| | - Katrina P Nguyen
- National Institute of Diabetes and Digestive and Kidney DiseasesBethesdaUnited States
| | - Eric Lin
- Department of Psychiatry, Washington University in St. LouisSt. LouisUnited States
| | | | | | - Romana Stark
- Department of Physiology, Monash UniversityClaytonAustralia
| | - Sineadh M Conway
- Center for Clinical Pharmacology, University of Health Sciences and PharmacySt. LouisUnited States,Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
| | | | - Ream Al-Hasani
- Center for Clinical Pharmacology, University of Health Sciences and PharmacySt. LouisUnited States,Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
| | - Jordan G McCall
- Center for Clinical Pharmacology, University of Health Sciences and PharmacySt. LouisUnited States,Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
| | - Meaghan C Creed
- Department of Psychiatry, Washington University in St. LouisSt. LouisUnited States,Department of Neuroscience, Washington University in St. LouisSt. LouisUnited States,Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
| | - Victor Cazares
- Department of Psychology, Williams CollegeWilliamstownUnited States
| | - Matthew W Buczynski
- Department of Neuroscience, Virginia Polytechnic and State UniversityBlacksburgUnited States
| | - Michael J Krashes
- National Institute of Diabetes and Digestive and Kidney DiseasesBethesdaUnited States
| | - Zane B Andrews
- Department of Physiology, Monash UniversityClaytonAustralia
| | - Alexxai V Kravitz
- Department of Psychiatry, Washington University in St. LouisSt. LouisUnited States,Department of Neuroscience, Washington University in St. LouisSt. LouisUnited States,Department of Anesthesiology, Washington University in St. LouisSt. LouisUnited States
| |
Collapse
|
10
|
Augustin SM, Loewinger GC, O'Neal TJ, Kravitz AV, Lovinger DM. Dopamine D2 receptor signaling on iMSNs is required for initiation and vigor of learned actions. Neuropsychopharmacology 2020; 45:2087-2097. [PMID: 32811899 PMCID: PMC7547091 DOI: 10.1038/s41386-020-00799-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
Striatal dopamine D2 receptors (D2Rs) are important for motor output. Selective deletion of D2Rs from indirect pathway-projecting medium spiny neurons (iMSNs) impairs locomotor activities in a task-specific manner. However, the role of D2Rs in the initiation of motor actions in reward seeking and taking is not fully understood, and there is little information about how receptors contribute under different task demands and with different outcome types. The iMSN-D2Rs modulate neuronal activity and synaptic transmission, exerting control on circuit functions that may play distinct roles in action learning and performance. Selective deletion of D2Rs on iMSNs resulted in slower action initiation and response rate in an instrumental conditioning task, but only when performance demand was increased. The iMSN-Drd2KO mice were also slower to initiate swimming in a T-maze procedural learning task but were unimpaired in cognitive function and behavioral flexibility. In contrast, in a Pavlovian discrimination learning task, iMSN-Drd2KO mice exhibited normal acquisition and extinction of rewarded responding. The iMSN-Drd2KO mice showed performance deficits at all phases of rotarod skill learning. These findings reveal that dopamine modulation through iMSN-D2Rs influences the ability to self-initiate actions, as well as the willingness and/or vigor with which these responses are performed. However, these receptors seem to have little influence on simple associative learning or on stimulus-driven responding. The loss of normal D2R roles may contribute to disorders in which impaired dopamine signaling leads to hypokinesia or impaired initiation of specific voluntary actions.
Collapse
Affiliation(s)
- Shana M Augustin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Gabriel C Loewinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| | - Timothy J O'Neal
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Graduate Program in Neuroscience and Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington, 98195, USA
| | - Alexxai V Kravitz
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Departments of Psychiatry, Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA.
| |
Collapse
|
11
|
The Dorsal Striatum Energizes Motor Routines. Curr Biol 2020; 30:4362-4372.e6. [PMID: 32946750 DOI: 10.1016/j.cub.2020.08.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/22/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
The dorsal striatum (dS) has been implicated in storing procedural memories and controlling movement kinematics. Since procedural memories are expressed through movements, the exact nature of the dS function has proven difficult to delineate. Here, we challenged rats in complementary locomotion-based tasks designed to alleviate this confound. Surprisingly, dS lesions did not impair the rats' ability to remember the procedure for the successful completion of motor routines. However, the speed and initiation of the reward-oriented phase of the routines were irreversibly altered by the dS lesion. Further behavioral analyses, combined with modeling in the optimal control framework, indicated that these kinematic alterations were well explained by an increased sensitivity to effort. Our work provides evidence supporting a primary role of the dS in modulating the kinematics of reward-oriented actions, a function that may be related to the optimization of the energetic costs of moving.
Collapse
|