1
|
Lu Q, Lu S, Wang X, Huang Y, Liu J, Liang Z. Structural and functional changes of Post-Stroke Depression: A multimodal magnetic resonance imaging study. Neuroimage Clin 2025; 45:103743. [PMID: 39893709 PMCID: PMC11840514 DOI: 10.1016/j.nicl.2025.103743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/28/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
This study investigated changes in gray matter volume (GMV), white matter microstructure, and spontaneous brain activity in post-stroke depression (PSD) using multiple MRI techniques, including neurite orientation dispersion and density imaging (NODDI). Changes in GMV, neurite density index (NDI), orientation dispersion index (ODI), fraction of isotropic water (ISO), diffusion tensor imaging (DTI) parameters, and the amplitude of frequency fluctuations (ALFF) were assessed between PSD (n = 20), post-stroke without depression (n = 20), and normal control (n = 20) groups. Receiver operating characteristic (ROC) curve analysis was performed to test the classification performance of the variant parameters of each MRI modality, each single MRI modality and multiple MRI modality. Compared to patients with post-stroke without depression (non-PSD), those with PSD showed increased ODI and ISO in the widespread white matter, as well as increased ALFF in the left pallidum. No significant differences in the GMV or DTI parameters were observed between the two groups. Furthermore, the ODI of the right superior longitudinal fasciculus and NODDI showed the best classification performance for PSD at their respective comparison level (the areas under the ROC curves (AUC) = 0.917(0.000), 0.933(0.000)). The model of NODDI-derived parameters combined with non-diffusion MRI modality parameters (i.e., GMV and ALFF) showed better diagnostic performance than that of DTI-derived parameters. These findings suggest that PSD is associated with structural and functional abnormalities that may contribute to depressive symptoms. Additionally, NODDI showed its advantages in the description of structural alterations in emotion-related white matter pathways and classification performance in PSD.
Collapse
Affiliation(s)
- Qiuhong Lu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China; Department of Mental Health, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Shunzu Lu
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Xue Wang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Yanlan Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Jie Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Zhijian Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China.
| |
Collapse
|
2
|
Sasannia S, Leigh R, Bastani PB, Shin HG, van Zijl P, Knutsson L, Nyquist P. Blood-brain barrier breakdown in brain ischemia: Insights from MRI perfusion imaging. Neurotherapeutics 2025; 22:e00516. [PMID: 39709246 PMCID: PMC11840350 DOI: 10.1016/j.neurot.2024.e00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
Brain ischemia is a major cause of neurological dysfunction and mortality worldwide. It occurs not only acutely, such as in acute ischemic stroke (AIS), but also in chronic conditions like cerebral small vessel disease (cSVD). Any other conditions resulting in brain hypoperfusion can also lead to ischemia. Ischemic events can cause blood-brain barrier (BBB) disruption and, ultimately, white matter alterations, contributing to neurological deficits and long-term functional impairments. Hence, understanding the mechanisms of BBB breakdown and white matter injury across various ischemic conditions is critical for developing effective interventions and improving patient outcomes. This review discusses the proposed mechanisms of ischemia-related BBB breakdown. Moreover, magnetic resonance imaging (MRI) based perfusion-weighted imaging (PWI) techniques sensitive to BBB permeability changes are described, including dynamic contrast-enhanced (DCE-MRI) and dynamic susceptibility contrast MRI (DSC-MRI), two perfusion-weighted imaging (PWI). These PWI techniques provide valuable insights that improve our understanding of the complex early pathophysiology of brain ischemia, which can lead to better assessment and management. Finally, in this review, we explore the implications of the mentioned neuroimaging findings, which emphasize the potential of neuroimaging biomarkers to guide personalized treatment and inform novel neuroprotective strategies. This review highlights the importance of investigating BBB changes in brain ischemia and the critical role of advanced neuroimaging in improving patient care and advancing stroke research.
Collapse
Affiliation(s)
- Sarvin Sasannia
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States.
| | - Richard Leigh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Pouya B Bastani
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Hyeong-Geol Shin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Peter van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Linda Knutsson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States; Department of Medical Radiation Physics, Lund University, Lund, Sweden.
| | - Paul Nyquist
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Neurocritical Care Division, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, MD, United States; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
3
|
Kim J, Oh SW, Lee HY, Choi MH, Meyer H, Huwer S, Zhao G, Gibson E, Han D. Assessment of Deep Learning-Based Triage Application for Acute Ischemic Stroke on Brain MRI in the ER. Acad Radiol 2024; 31:4621-4628. [PMID: 38908922 DOI: 10.1016/j.acra.2024.04.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 06/24/2024]
Abstract
RATIONALE AND OBJECTIVES To assess a deep learning application (DLA) for acute ischemic stroke (AIS) detection on brain magnetic resonance imaging (MRI) in the emergency room (ER) and the effect of T2-weighted imaging (T2WI) on its performance. MATERIALS AND METHODS We retrospectively analyzed brain MRIs taken through the ER from March to October 2021 that included diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) sequences. MRIs were processed by the DLA, and sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUROC) were evaluated, with three neuroradiologists establishing the gold standard for detection performance. In addition, we examined the impact of axial T2WI, when available, on the accuracy and processing time of DLA. RESULTS The study included 947 individuals (mean age ± standard deviation, 64 years ± 16; 461 men, 486 women), with 239 (25%) positive for AIS. The overall performance of DLA was as follows: sensitivity, 90%; specificity, 89%; accuracy, 89%; and AUROC, 0.95. The average processing time was 24 s. In the subgroup with T2WI, T2WI did not significantly impact MRI assessments but did result in longer processing times (35 s without T2WI compared to 48 s with T2WI, p < 0.001). CONCLUSION The DLA successfully identified AIS in the ER setting with an average processing time of 24 s. The absence of performance acquire with axial T2WI suggests that the DLA can diagnose AIS with just axial DWI and FLAIR sequences, potentially shortening the exam duration in the ER.
Collapse
Affiliation(s)
- Jimin Kim
- Department of Radiology, Eunpyeong St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul 03312, Korea
| | - Se Won Oh
- Department of Radiology, Eunpyeong St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul 03312, Korea.
| | - Ha Young Lee
- Department of Radiology, Eunpyeong St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul 03312, Korea
| | - Moon Hyung Choi
- Department of Radiology, Eunpyeong St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul 03312, Korea
| | - Heiko Meyer
- Siemens Healthineers AG, Erlangen 91052, Germany
| | - Stefan Huwer
- Siemens Healthineers AG, Erlangen 91052, Germany
| | - Gengyan Zhao
- Siemens Medical Solutions USA, Inc., Princeton, NJ 08540
| | - Eli Gibson
- Siemens Medical Solutions USA, Inc., Princeton, NJ 08540
| | | |
Collapse
|
4
|
Virtanen P, Tomppo L, Georgiopoulos G, Brandstack N, Peltola E, Kokkonen T, Lappalainen K, Korvenoja A, Strbian D. Recanalization status and temporal evolution of early ischemic changes following stroke thrombectomy. Eur Stroke J 2024; 9:320-327. [PMID: 37991143 PMCID: PMC11318421 DOI: 10.1177/23969873231214207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023] Open
Abstract
INTRODUCTION Present-day computer tomography (CT) scanners have excellent spatial resolution and signal-to-noise ratio and are instrumental detecting early ischemic changes (EIC) in brain. We assessed the temporal changes of EIC based on the recanalization status after thrombectomy. PATIENTS AND METHODS The cohort comprises consecutive patients with acute ischemic stroke in anterior circulation treated with thrombectomy in tertiary referral hospital. All baseline and follow-up scans were screened for any ischemic changes and further classified using Alberta Stroke Program Early CT Score (ASPECTS). Generalized linear mixed models were used to analyze the impact of recanalization status using modified Thrombolysis in Cerebral Infarction (mTICI) on temporal evolution of ischemic changes. RESULTS We included 614 patients with ICA, M1, or M2 occlusions. Median ASPECTS score was 9 (IQR 7-10) at baseline and 7 (5-8) at approximately 24 h. mTICI 3 was achieved in 207 (33.8%), 2B 241 (39.3%), 2A in 77 (12.6%), and 0-1 in 88 (14.3%) patients. Compared to patients with mTICI 3, those with mTICI 0-1 and 2A had less favorable temporal changes of ASPECTS (p < 0.001). Effect of recanalization was noted in the cortical regions of ICA/M1 patients, but not in their deep structures or patients with M2 occlusions. All ischemic changes detected at baseline were also present at all follow-up images, regardless of the recanalization status. CONCLUSIONS Temporal evolution of the ischemic changes and ASPECTS are related to the success of the recanalization therapy in cortical regions of ICA/M1 patients, but not in their deep brain structures or M2 patients. In none of the patients did EIC revert in any brain region after successful recanalization.
Collapse
Affiliation(s)
- Pekka Virtanen
- Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Liisa Tomppo
- Department of Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Nina Brandstack
- Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Erno Peltola
- Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tatu Kokkonen
- Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Kimmo Lappalainen
- Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Antti Korvenoja
- Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Daniel Strbian
- Department of Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Erdoğan MŞ, Arpak ES, Keles CSK, Villagra F, Işık EÖ, Afşar N, Yucesoy CA, Mur LAJ, Akanyeti O, Saybaşılı H. Biochemical, biomechanical and imaging biomarkers of ischemic stroke: Time for integrative thinking. Eur J Neurosci 2024; 59:1789-1818. [PMID: 38221768 DOI: 10.1111/ejn.16245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024]
Abstract
Stroke is one of the leading causes of adult disability affecting millions of people worldwide. Post-stroke cognitive and motor impairments diminish quality of life and functional independence. There is an increased risk of having a second stroke and developing secondary conditions with long-term social and economic impacts. With increasing number of stroke incidents, shortage of medical professionals and limited budgets, health services are struggling to provide a care that can break the vicious cycle of stroke. Effective post-stroke recovery hinges on holistic, integrative and personalized care starting from improved diagnosis and treatment in clinics to continuous rehabilitation and support in the community. To improve stroke care pathways, there have been growing efforts in discovering biomarkers that can provide valuable insights into the neural, physiological and biomechanical consequences of stroke and how patients respond to new interventions. In this review paper, we aim to summarize recent biomarker discovery research focusing on three modalities (brain imaging, blood sampling and gait assessments), look at some established and forthcoming biomarkers, and discuss their usefulness and complementarity within the context of comprehensive stroke care. We also emphasize the importance of biomarker guided personalized interventions to enhance stroke treatment and post-stroke recovery.
Collapse
Affiliation(s)
| | - Esra Sümer Arpak
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Cemre Su Kaya Keles
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
- Institute of Structural Mechanics and Dynamics in Aerospace Engineering, University of Stuttgart, Stuttgart, Germany
| | - Federico Villagra
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Wales, UK
| | - Esin Öztürk Işık
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Nazire Afşar
- Neurology, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| | - Can A Yucesoy
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Luis A J Mur
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Wales, UK
| | - Otar Akanyeti
- Department of Computer Science, Llandinam Building, Aberystwyth University, Aberystwyth, UK
| | - Hale Saybaşılı
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| |
Collapse
|
6
|
Sotardi ST, Alves CAPF, Serai SD, Beslow LA, Schwartz ES, Magee R, Vossough A. Magnetic resonance imaging protocols in pediatric stroke. Pediatr Radiol 2023; 53:1324-1335. [PMID: 36604317 DOI: 10.1007/s00247-022-05576-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/30/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023]
Abstract
Neuroimaging protocols play an important role in the timely evaluation and treatment of pediatric stroke and its mimics. MRI protocols for stroke in the pediatric population should be guided by the clinical scenario and neurologic examination, with consideration of age, suspected infarct type and underlying risk factors. Acute stroke diagnosis and causes in pediatric age groups can differ significantly from those in adult populations, and delay in stroke diagnosis among children is a common problem. An awareness of pediatric stroke presentations and risk factors among pediatric emergency physicians, neurologists, pediatricians, subspecialists and radiologists is critical to ensuring timely diagnosis. Given special considerations related to unique pediatric stroke risk factors and the need for sedation in some children, expert consensus guidelines for the imaging of suspected pediatric infarct have been proposed. In this article the authors review standard and rapid MRI protocols for the diagnosis of pediatric stroke, as well as the key differences between pediatric and adult stroke imaging.
Collapse
Affiliation(s)
- Susan T Sotardi
- Division of Neuroradiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Cesar Augusto P F Alves
- Division of Neuroradiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Suraj D Serai
- Division of Neuroradiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Lauren A Beslow
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Erin Simon Schwartz
- Division of Neuroradiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ralph Magee
- Division of Neuroradiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Arastoo Vossough
- Division of Neuroradiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Pavilla A, Gambarota G, Signaté A, Arrigo A, Saint-Jalmes H, Mejdoubi M. Intravoxel incoherent motion and diffusion kurtosis imaging at 3T MRI: Application to ischemic stroke. Magn Reson Imaging 2023; 99:73-80. [PMID: 36669596 DOI: 10.1016/j.mri.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND PURPOSE The DKI-IVIM model that incorporates DKI (diffusional kurtosis imaging) into the IVIM (Intravoxel Incoherent Motion) concept was investigated to assess its utility for both enhanced diffusion characterization and perfusion measurements in ischemic stroke at 3 T. METHODS Fifteen stroke patients (71 ± 11 years old) were enrolled and DKI-IVIM analysis was performed using 9 b-values from 0 to 1500 s/mm2 chosen with the Cramer-Rao-Lower-Bound optimization approach. Pseudo-diffusion coefficient D*, perfusion fraction f, blood flow-related parameter fD*, the diffusion coefficient D and an additional parameter, the kurtosis, K were determined in the ischemic lesion and controlateral normal tissue based on a region of interest approach. The apparent diffusion coefficient (ADC) and arterial spin labelling (ASL) cerebral blood flow (CBF) parameters were also assessed and parametric maps were obtained for all parameters. RESULTS Significant differences were observed for all diffusion parameters with a significant decrease for D (p < 0.0001), ADC (p < 0.0001), and a significant increase for K (p < 0.0001) in the ischemic lesions of all patients. f decreased significantly in these regions (p = 0.0002). The fD* increase was not significant (p = 0.56). The same significant differences were found with a motion correction except for fD* (p = 0.47). CBF significantly decreased in the lesions. ADC was significantly positively correlated with D (p < 0.0001) and negatively with K (p = 0.0002); K was also negatively significantly correlated with D (p = 0.01). CONCLUSIONS DKI-IVIM model enables for simultaneous cerebral perfusion and enhanced diffusion characterization in an acceptable clinically acquisition time for the ischemic stroke diagnosis with the additional kurtosis factor estimation, that may better reflect the microstructure heterogeneity.
Collapse
Affiliation(s)
- Aude Pavilla
- Univ-Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France; Département de Neuroradiologie, CHU Martinique, F-97261 Fort de France, France.
| | | | - Aissatou Signaté
- Département de Neuroradiologie, CHU Martinique, F-97261 Fort de France, France
| | - Alessandro Arrigo
- Département de Neuroradiologie, CHU Martinique, F-97261 Fort de France, France
| | | | - Mehdi Mejdoubi
- Département de Neuroradiologie, CHU Martinique, F-97261 Fort de France, France
| |
Collapse
|
8
|
Fritz V, Martirosian P, Machann J, Thorwarth D, Schick F. Soy lecithin: A beneficial substance for adjusting the ADC in aqueous solutions to the values of biological tissues. Magn Reson Med 2023; 89:1674-1683. [PMID: 36458695 DOI: 10.1002/mrm.29543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022]
Abstract
PURPOSE To test soy lecithin as a substance added to water for the construction of MRI phantoms with tissue-like diffusion coefficients. The performance of soy lecithin was assessed for the useable range of adjustable ADC values, the degree of non-Gaussian diffusion, simultaneous effects on relaxation times, and spectral signal properties. METHODS Aqueous soy lecithin solutions of different concentrations (0%, 0.5%, 1%, 2%, 3% …, 10%) and soy lecithin-agar gels were prepared and examined on a 3 Tesla clinical scanner at 18.5° ± 0.5°C. Echoplanar sequences (b values: 0-1000/3000 s/mm2 ) were applied for ADC measurements. Quantitative relaxometry and MRS were performed for assessment of T1 , T2 , and detectable spectral components. RESULTS The presence of soy lecithin significantly restricts the diffusion of water molecules and mimics the nearly Gaussian nature of diffusion observed in tissue (for b values <1000 s/mm2 ). ADC values ranged from 2.02 × 10-3 mm2 /s to 0.48 × 10-3 mm2 /s and cover the entire physiological range reported on biological tissue. Measured T1 /T2 values of pure lecithin solutions varied from 2685/2013 to 668/133 ms with increasing concentration. No characteristic signals of soy lecithin were observed in the MR spectrum. The addition of agar to the soy lecithin solutions allowed T2 values to be well adjusted to typical values found in parenchymal tissue without affecting the soy lecithin-controlled ADC value. CONCLUSION Soy lecithin is a promising substance for the construction of diffusion phantoms with tissue-like ADC values. It provides several advantages over previously proposed substances, in particular a wide range of adjustable ADC values, the lack of additional 1 H-signals, and the possibility to adjust ADC and T2 values (by adding agar) almost independently of each other.
Collapse
Affiliation(s)
- Victor Fritz
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - Petros Martirosian
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - Jürgen Machann
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Fritz Schick
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
A Preliminary Study of Alterations in Iron Disposal and Neural Activity in Ischemic Stroke. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4552568. [PMID: 35971446 PMCID: PMC9375706 DOI: 10.1155/2022/4552568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Purpose The study aimed to evaluate the postrehabilitation changes in deep gray matter (DGM) nuclei, corticospinal tract (CST), and motor cortex area, involved in motor tasks in patients with ischemic stroke. Methods Three patients participated in this study, who had experienced an ischemic stroke on the left side of the brain. They underwent a standard rehabilitation program for four consecutive weeks, including transcranial direct current stimulation (tDCS), neuromuscular electrical stimulation (NMES), and occupational therapy. The patients' motor ability was evaluated by Fugl-Meyer assessment-upper extremity (FMA-UE) and Wolf motor function test (WMFT). Multimodal magnetic resonance imaging (MRI) was acquired from the patients by a 3 Tesla machine before and after the rehabilitation. The magnetic susceptibility changes were examined in DGM nuclei including the bilateral caudate (CA), putamen (PT), globus pallidus (GP), and thalamus (TH) using quantitative susceptibility mapping (QSM). Functional MRI (fMRI) in the motor cortex areas was acquired to evaluate the postrehab functional motor activity. The three-dimensional corticospinal tract (CST) was reconstructed using diffusion-weighted imaging (DWI) and diffusion tensor tractography (DTT), and the fractional anisotropy (FA) was measured along the tract. Ultimately, the relationship between the structural and functional changes was evaluated in CST and motor cortex. Results Postrehabilitation FMA-UE and WMFT scores increased for all patients compared to the prerehabilitation. QSM analysis revealed increasing in susceptibility values in GP and CA in all patients at the ipsilesional hemisphere. By fMRI analysis, the ipsilesional hemisphere demonstrated an increase in functional activity in motor areas for all 3 patients. In the ipsilesional hemisphere, the fractional anisotropy (FA) was increased in CST in two patients, while the mean diffusivity (MD) was decreased in CA in a patient, in PT and TH in another patient, and in PT in two patients. Conclusion This preliminary study demonstrates that the magnetic susceptibility may decrease at some ipsilesional DGM nuclei after tDCS, NMES, and occupational therapy for patients with ischemic stroke, suggesting a drop in the level of iron deposition, which may be associated with an increase in the level of activity in motor cortex after rehabilitation.
Collapse
|
10
|
Fukushima K, Sano K, Machida H, Kariyasu T, Yoshioka T, Takahashi S, Nakanishi A, Kusahara H, Yokoyama K. Effect of an Ultrahigh b Value of 3000 s/mm 2 and the Minimal Echo-time on Image Quality and the T2 Shine-through Effect in Diffusion-weighted Imaging of the Liver at 3T: Phantom and Clinical Pilot Studies. Magn Reson Med Sci 2022; 22:232-240. [PMID: 35545549 PMCID: PMC10086399 DOI: 10.2463/mrms.mp.2021-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To assess the effect of an ultrahigh b value of 3000 s/mm2 and the minimal TE of 53 ms on image quality and T2 shine-through effect in liver diffusion-weighted imaging (DWI) using a 3-Tesla MRI scanner with a peak gradient of 100 mT/m. METHODS At b values of 1000 and 3000 s/mm2 and at the minimal (44-53 ms) and routine TEs (70 ms), DWI of our original phantom and liver DWI in 10 healthy volunteers and 26 patients with 35 hepatic hemangiomas were acquired with this scanner, and the quantified SNR of the phantom and the hepatic parenchyma in the volunteers and the contrast-to-noise ratio (CNR) of the hepatic hemangiomas were calculated; two independent readers qualitatively graded the overall image quality in the volunteers and determined the presence or absence of the T2 shine-through effect related to the hemangiomas in the patients. We compared the SNR and subjective overall image quality between the minimal and routine TEs and the CNR and incidence of the T2 shine-through effect between b values of 1000 and 3000 s/mm2. Inter-reader agreement was also evaluated. RESULTS The SNR at both b values was significantly higher, and the subjective overall image quality at a b value of 3000 s/mm2 was significantly better at the minimal TE than at the routine TE (P < 0.05 for all). The CNR at both TEs and the incidence of the T2 shine-through effect at the minimal TE were significantly lower at a b value of 3000 s/mm2 than at a b value of 1000 s/mm2 (P < 0.05 for all). Inter-reader agreement was excellent. CONCLUSION Liver DWI at the ultrahigh b value can reduce the T2 shine-through effect with improvement of image quality using the minimal TE.
Collapse
Affiliation(s)
| | - Katsuhiro Sano
- Department of Radiology, Faculty of Medicine, Kyorin University.,Department of Radiology, Juntendo University
| | - Haruhiko Machida
- Department of Radiology, Faculty of Medicine, Kyorin University.,Department of Radiology, Tokyo Women's Medical University Adachi Medical Center
| | - Toshiya Kariyasu
- Department of Radiology, Faculty of Medicine, Kyorin University.,Department of Radiology, Tokyo Women's Medical University Adachi Medical Center
| | | | | | | | | | | |
Collapse
|
11
|
Ma Z, Zhao X, Wang X, Ren Q, Zhang S, Lu L, Wang K, Lv Q, Cheng J. Evaluation of crossed cerebellar diaschisis after cerebral infarction in MCAO rats based on DKI. Eur J Clin Invest 2022; 52:e13716. [PMID: 34846725 DOI: 10.1111/eci.13716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/06/2021] [Accepted: 11/13/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To observe the expression of N-methyl-D-aspartate (NMDA), apoptosis and the effect on neurological function recovery in rat model with middle cerebral artery occlusion (MCAO). Diffusion kurtosis imaging (DKI) was used to evaluate crossed cerebellar diaschisis (CCD) and to provide experimental and theoretical basis for the clinical treatment. MATERIALS AND METHODS The MCAO models were established in rats. Eighty-four rats were randomly and evenly divided into 7 groups, including control group, 6-h group, 12-h group, 24-h group, 48-h group, 7-day group and 14-day group. The rats were scanned by MRI at the above time points. Then, rats were sacrificed for H&E staining, immunohistochemical staining and TUNEL staining to detect the expression of NMDA in the core infarct area and cerebellum. At the end, the discussion of relationships between molecular biology and MRI parameters (ADC derived from DWI, and MD, MK and FA derived from DKI) was performed. RESULTS The values of MD, ADC and FA in MCAO rats were all lower than those in the control group. All MRI parameters of the contralateral cerebellum were lower than those of the ipsilateral cerebellum (p < .05). The parameters reached the lowest value at 12 h, except that the MK reached the highest at 12 h. The expression of NMDA showed a fluctuation along time in the MCAO group. Overall, it is higher in the MCAO group than in the control group, reaching the maximum at 24 h (p < .05). At the same time, the expression of NMDA in the contralateral cerebellum was higher than in the ipsilateral cerebellum. CONCLUSION It is found that NMDA and DKI of CCD have the same changing trend, which indicates that the intervention of NMDA receptor apoptosis may become a new target for the treatment of cerebral infarction, and MRI parameters can predict the occurrence and development of CCD.
Collapse
Affiliation(s)
- Zhen Ma
- Department of Medical Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Zhao
- Department of Medical Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Ren
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Zhang
- Department of Medical Imaging, The 988 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Zhengzhou, China
| | - Lin Lu
- Department of Medical Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaiyu Wang
- GE Healthcare, MR Research China, Beijing, China
| | - Qingqing Lv
- Department of Medical Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Peters DM, Fridriksson J, Richardson JD, Stewart JC, Rorden C, Bonilha L, Middleton A, Fritz SL. Upper and Lower Limb Motor Function Correlates with Ipsilesional Corticospinal Tract and Red Nucleus Structural Integrity in Chronic Stroke: A Cross-Sectional, ROI-Based MRI Study. Behav Neurol 2021; 2021:3010555. [PMID: 34804258 PMCID: PMC8601844 DOI: 10.1155/2021/3010555] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/27/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Structural integrity of the ipsilesional corticospinal tract (CST) is important for upper limb motor recovery after stroke. However, additional neuromechanisms associated with motor function poststroke are less well understood, especially regarding the lower limb. OBJECTIVE To investigate the neural basis of upper/lower limb motor deficits poststroke by correlating measures of motor function with diffusion tensor imaging-derived indices of white matter integrity (fractional anisotropy (FA), mean diffusivity (MD)) in primary and secondary motor tracts/structures. METHODS Forty-three individuals with chronic stroke (time poststroke, 64.4 ± 58.8 months) underwent a comprehensive motor assessment and MRI scanning. Correlation and multiple regression analyses were performed to examine relationships between FA/MD in a priori motor tracts/structures and motor function. RESULTS FA in the ipsilesional CST and red nucleus (RN) was positively correlated with motor function of both the affected upper and lower limb (r = 0.36-0.55, p ≤ 0.01), while only ipsilesional RN FA was associated with gait speed (r = 0.50). Ipsilesional CST FA explained 37.3% of the variance in grip strength (p < 0.001) and 31.5% of the variance in Arm Motricity Index (p = 0.004). Measures of MD were not predictors of motor performance. CONCLUSIONS Microstructural integrity of the ipsilesional CST is associated with both upper and lower limb motor function poststroke, but appears less important for gait speed. Integrity of the ipsilesional RN was also associated with motor performance, suggesting increased contributions from secondary motor areas may play a role in supporting chronic motor function and could become a target for interventions.
Collapse
Affiliation(s)
- Denise M. Peters
- Department of Rehabilitation and Movement Science, University of Vermont, 106 Carrigan Dr., Burlington, VT, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, 915 Greene St., Columbia, SC, USA
| | - Jessica D. Richardson
- Department of Speech and Hearing Sciences, University of New Mexico, 1700 Lomas Blvd., Albuquerque, NM, USA
| | - Jill C. Stewart
- Department of Exercise Science, Physical Therapy Program, University of South Carolina, 921 Assembly St., Columbia, SC, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, 1512 Pendleton St., Columbia, SC, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC, USA
| | - Addie Middleton
- New England Geriatric Research Education and Clinical Center, VA Boston Healthcare System, 150 South Huntington Ave., Jamaica Plain, MA, USA
| | - Stacy L. Fritz
- Department of Exercise Science, Physical Therapy Program, University of South Carolina, 921 Assembly St., Columbia, SC, USA
| |
Collapse
|
13
|
Cho J, Zhang J, Spincemaille P, Zhang H, Hubertus S, Wen Y, Jafari R, Zhang S, Nguyen TD, Dimov AV, Gupta A, Wang Y. QQ-NET - using deep learning to solve quantitative susceptibility mapping and quantitative blood oxygen level dependent magnitude (QSM+qBOLD or QQ) based oxygen extraction fraction (OEF) mapping. Magn Reson Med 2021; 87:1583-1594. [PMID: 34719059 DOI: 10.1002/mrm.29057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/01/2021] [Accepted: 10/07/2021] [Indexed: 01/17/2023]
Abstract
PURPOSE To improve accuracy and speed of quantitative susceptibility mapping plus quantitative blood oxygen level-dependent magnitude (QSM+qBOLD or QQ) -based oxygen extraction fraction (OEF) mapping using a deep neural network (QQ-NET). METHODS The 3D multi-echo gradient echo images were acquired in 34 ischemic stroke patients and 4 healthy subjects. Arterial spin labeling and diffusion weighted imaging (DWI) were also performed in the patients. NET was developed to solve the QQ model inversion problem based on Unet. QQ-based OEF maps were reconstructed with previously introduced temporal clustering, tissue composition, and total variation (CCTV) and NET. The results were compared in simulation, ischemic stroke patients, and healthy subjects using a two-sample Kolmogorov-Smirnov test. RESULTS In the simulation, QQ-NET provided more accurate and precise OEF maps than QQ-CCTV with 150 times faster reconstruction speed. In the subacute stroke patients, OEF from QQ-NET had greater contrast-to-noise ratio (CNR) between DWI-defined lesions and their unaffected contralateral normal tissue than with QQ-CCTV: 1.9 ± 1.3 vs 6.6 ± 10.7 (p = 0.03). In healthy subjects, both QQ-CCTV and QQ-NET provided uniform OEF maps. CONCLUSION QQ-NET improves the accuracy of QQ-based OEF with faster reconstruction.
Collapse
Affiliation(s)
- Junghun Cho
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Jinwei Zhang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Hang Zhang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Simon Hubertus
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Yan Wen
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Ramin Jafari
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Shun Zhang
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Alexey V Dimov
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
14
|
Dünger L, Seidlitz A, Jentsch C, Platzek I, Kotzerke J, Beuthien-Baumann B, Baumann M, Krause M, Troost EGC, Raschke F. Reduced diffusion in white matter after radiotherapy with photons and protons. Radiother Oncol 2021; 164:66-72. [PMID: 34537290 DOI: 10.1016/j.radonc.2021.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Radio(chemo)therapy is standard in the adjuvant treatment of glioblastoma. Inevitably, brain tissue surrounding the target volume is also irradiated, potentially causing acute and late side-effects. Diffusion imaging has been shown to be a sensitive method to detect early changes in the cerebral white matter (WM) after radiation. The aim of this work was to assess possible changes in the mean diffusivity (MD) of WM after radio(chemo)therapy using Diffusion-weighted imaging (DWI) and to compare these effects between patients treated with proton and photon irradiation. MATERIALS AND METHODS 70 patients with glioblastoma underwent adjuvant radio(chemo)therapy with protons (n = 20) or photons (n = 50) at the University Hospital Dresden. MRI follow-ups were performed at three-monthly intervals and in this study were evaluated until 33 months after the end of therapy. Relative white matter MD changes between baseline and all follow-up visits were calculated in different dose regions. RESULTS We observed a significant decrease of MD (p < 0.05) in WM regions receiving more than 20 Gy. MD reduction was progressive with dose and time after radio(chemo)therapy (maximum: -7.9 ± 1.2% after 24 months, ≥50 Gy). In patients treated with photons, significant reductions of MD in the entire WM (p < 0.05) were seen at all time points. Conversely, in proton patients, whole brain MD did not change significantly. CONCLUSIONS Irradiation leads to measurable MD reduction in white matter, progressing with both increasing dose and time. Treatment with protons reduces this effect most likely due to a lower total dose in the surrounding white matter. Further investigations are needed to assess whether those MD changes correlate with known radiation induced side-effects.
Collapse
Affiliation(s)
- L Dünger
- ABX-CRO Advanced Pharmaceutical Services Forschungsgesellschaft mbH, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - A Seidlitz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - C Jentsch
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - I Platzek
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - J Kotzerke
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - M Baumann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Heidelberg, Germany
| | - M Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - E G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - F Raschke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
15
|
Wu D, Zhou Y, Cho J, Shen N, Li S, Qin Y, Zhang G, Yan S, Xie Y, Zhang S, Zhu W, Wang Y. The Spatiotemporal Evolution of MRI-Derived Oxygen Extraction Fraction and Perfusion in Ischemic Stroke. Front Neurosci 2021; 15:716031. [PMID: 34483830 PMCID: PMC8415351 DOI: 10.3389/fnins.2021.716031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose This study aimed to assess the spatiotemporal evolution of oxygen extraction fraction (OEF) in ischemic stroke with a newly developed cluster analysis of time evolution (CAT) for a combined quantitative susceptibility mapping and quantitative blood oxygen level-dependent model (QSM + qBOLD, QQ). Method One hundred and fifteen patients in different ischemic stroke phases were retrospectively collected for measurement of OEF of the infarcted area defined on diffusion-weighted imaging (DWI). Clinical severity was assessed using the National Institutes of Health Stroke Scale (NIHSS). Of the 115 patients, 11 underwent two longitudinal MRI scans, namely, three-dimensional (3D) multi-echo gradient recalled echo (mGRE) and 3D pseudo-continuous arterial spin labeling (pCASL), to evaluate the reversal region (RR) of the initial diffusion lesion (IDL) that did not overlap with the final infarct (FI). The temporal evolution of OEF and the cerebral blood flow (CBF) in the IDL, the RR, and the FI were assessed. Results Compared to the contralateral mirror area, the OEF of the infarcted region was decreased regardless of stroke phases (p < 0.05) and showed a declining tendency from the acute to the chronic phase (p = 0.022). Five of the 11 patients with longitudinal scans showed reversal of the IDL. Relative oxygen extraction fraction (rOEF, compared to the contralateral mirror area) of the RR increased from the first to the second MRI (p = 0.044). CBF was about 1.5-fold higher in the IDL than in the contralateral mirror area in the first MRI. Two patients showed penumbra according to the enlarged FI volume. The rOEF of the penumbra fluctuated around 1.0 at earlier scan times and then decreased, while the CBF decreased continuously. Conclusion The spatiotemporal evolution of OEF and perfusion in ischemic lesions is heterogeneous, and the CAT-based QQ method is feasible to capture cerebral oxygen metabolic information.
Collapse
Affiliation(s)
- Di Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiran Zhou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junghun Cho
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States.,Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Nanxi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shihui Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guiling Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States.,Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
16
|
Gyori NG, Clark CA, Alexander DC, Kaden E. On the potential for mapping apparent neural soma density via a clinically viable diffusion MRI protocol. Neuroimage 2021; 239:118303. [PMID: 34174390 PMCID: PMC8363942 DOI: 10.1016/j.neuroimage.2021.118303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
B-tensor encoding enables estimation of spherical cellular structures in the brain. Spherical compartments may provide markers for apparent neural soma density. Model parameters can be estimated in a fast and robust way using deep learning. Practical acquisition times are achievable on widely available clinical scanners.
Diffusion MRI is a valuable tool for probing tissue microstructure in the brain noninvasively. Today, model-based techniques are widely available and used for white matter characterisation where their development is relatively mature. Conversely, tissue modelling in grey matter is more challenging, and no generally accepted models exist. With advances in measurement technology and modelling efforts, a clinically viable technique that reveals salient features of grey matter microstructure, such as the density of quasi-spherical cell bodies and quasi-cylindrical cell projections, is an exciting prospect. As a step towards capturing the microscopic architecture of grey matter in clinically feasible settings, this work uses a biophysical model that is designed to disentangle the diffusion signatures of spherical and cylindrical structures in the presence of orientation heterogeneity, and takes advantage of B-tensor encoding measurements, which provide additional sensitivity compared to standard single diffusion encoding sequences. For the fast and robust estimation of microstructural parameters, we leverage recent advances in machine learning and replace conventional fitting techniques with an artificial neural network that fits complex biophysical models within seconds. Our results demonstrate apparent markers of spherical and cylindrical geometries in healthy human subjects, and in particular an increased volume fraction of spherical compartments in grey matter compared to white matter. We evaluate the extent to which spherical and cylindrical geometries may be interpreted as correlates of neural soma and neural projections, respectively, and quantify parameter estimation errors in the presence of various departures from the modelling assumptions. While further work is necessary to translate the ideas presented in this work to the clinic, we suggest that biomarkers focussing on quasi-spherical cellular geometries may be valuable for the enhanced assessment of neurodevelopmental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Noemi G Gyori
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.
| | - Christopher A Clark
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Enrico Kaden
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
17
|
Cho J, Spincemaille P, Nguyen TD, Gupta A, Wang Y. Temporal clustering, tissue composition, and total variation for mapping oxygen extraction fraction using QSM and quantitative BOLD. Magn Reson Med 2021; 86:2635-2646. [PMID: 34110656 DOI: 10.1002/mrm.28875] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To improve the accuracy of quantitative susceptibility mapping plus quantitative blood oxygen level-dependent magnitude (QSM+qBOLD or QQ) based mapping of oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2 ) using temporal clustering, tissue composition, and total variation (CCTV). METHODS Three-dimensional multi-echo gradient echo and arterial spin labeling images were acquired from 11 healthy subjects and 33 ischemic stroke patients. Diffusion-weighted imaging (DWI) was also obtained from patients. The CCTV mapping was developed for incorporating tissue-type information into clustering of the previous cluster analysis of time evolution (CAT) and applying total variation (TV). The QQ-based OEF and CMRO2 were reconstructed with CAT, CAT+TV (CATV), and the proposed CCTV, and results were compared using region-of-interest analysis, Kruskal-Wallis test, and post hoc Wilcoxson rank sum test. RESULTS In simulation, CCTV provided more accurate and precise OEF than CAT or CATV. In healthy subjects, QQ-based OEF was less noisy and more uniform with CCTV than CAT. In subacute stroke patients, OEF with CCTV had a greater contrast-to-noise ratio between DWI-defined lesions and the unaffected contralateral side than with CAT or CATV: 1.9 ± 1.3 versus 1.1 ± 0.7 (P = .01) versus 0.7 ± 0.5 (P < .001). CONCLUSION The CCTV mapping significantly improves the robustness of QQ-based OEF against noise.
Collapse
Affiliation(s)
- Junghun Cho
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
18
|
Zheng YQ, Li XM. Comparison of Diagnostic Effects of T2-Weighted Imaging, DWI, SWI, and DTI in Acute Cerebral Infarction. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2021. [DOI: 10.15212/cvia.2021.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective: To achieve precision medicine, the use of imaging methods to help the clinical detection of cerebral infarction is conducive to the clinical development of a treatment plan and increase of the cure rate and improvement of the prognosis of patients.Methods:
In this work, T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), susceptibility-weighted imaging (SWI), and diffusion tensor imaging (DTI) examinations were performed on 34 patients with clinically diagnosed cerebral infarction to measure the difference in signal intensity between
the lesion and its mirror area and make a comparative analysis by means of the Student-Newman-Keuls method.Results: The detection rate of T2WI was 79% (27/34), the detection rate of DWI was 97% (33/34), the detection rate of SWI was 88% (30/34), and the detection rate of DTI was
94% (32/34).Conclusion: The imaging performance was in the order DWI > DTI > SWI > T2WI for the diagnosis of cerebral infarction, and combined imaging is better than single imaging.
Collapse
Affiliation(s)
- Yu-quan Zheng
- School of Biomedical Engineering, Xinhua College of Sun Yat-Sen University, Guangzhou, 510520, China
| | - Xiao-mei Li
- School of Biomedical Engineering, Xinhua College of Sun Yat-Sen University, Guangzhou, 510520, China
| |
Collapse
|
19
|
Witzmann K, Raschke F, Troost EGC. MR Image Changes of Normal-Appearing Brain Tissue after Radiotherapy. Cancers (Basel) 2021; 13:cancers13071573. [PMID: 33805542 PMCID: PMC8037886 DOI: 10.3390/cancers13071573] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/13/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Radiotherapy is one of the most important treatment options against cancer. Irradiation of cancerous tissue either directly destroys the cancer cells or damages them such that they cannot reproduce. One side-effect of radiotherapy is that tumor-surrounding normal tissue is inevitably also irradiated, albeit at a lower dose. The resulting long-term damage can significantly affect cognitive performance and quality of life. Many studies investigated the effect of irradiation on normal-appearing brain tissues and some of these correlated imaging findings with functional outcome. This article provides an overview of the examination of radiation-induced injuries using conventional and enhanced MRI methods and summarizes conclusions about the underlying tissue changes. Radiation-induced morphologic, microstructural, vascular, and metabolic tissue changes have been observed, in which the effect of irradiation was evident in terms of decreased perfusion and neuronal health as well as increased diffusion and atrophy. Abstract Radiotherapy is part of the standard treatment of most primary brain tumors. Large clinical target volumes and physical characteristics of photon beams inevitably lead to irradiation of surrounding normal brain tissue. This can cause radiation-induced brain injury. In particular, late brain injury, such as cognitive dysfunction, is often irreversible and progressive over time, resulting in a significant reduction in quality of life. Since 50% of patients have survival times greater than six months, radiation-induced side effects become more relevant and need to be balanced against radiation treatment given with curative intent. To develop adequate treatment and prevention strategies, the underlying cause of radiation-induced side-effects needs to be understood. This paper provides an overview of radiation-induced changes observed in normal-appearing brains measured with conventional and advanced MRI techniques and summarizes the current findings and conclusions. Brain atrophy was observed with anatomical MRI. Changes in tissue microstructure were seen on diffusion imaging. Vascular changes were examined with perfusion-weighted imaging and susceptibility-weighted imaging. MR spectroscopy revealed decreasing N-acetyl aspartate, indicating decreased neuronal health or neuronal loss. Based on these findings, multicenter prospective studies incorporating advanced MR techniques as well as neurocognitive function tests should be designed in order to gain more evidence on radiation-induced sequelae.
Collapse
Affiliation(s)
- Katharina Witzmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, Dresden, Germany; (K.W.); (F.R.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Felix Raschke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, Dresden, Germany; (K.W.); (F.R.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Esther G. C. Troost
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, Dresden, Germany; (K.W.); (F.R.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden of the German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Correspondence:
| |
Collapse
|
20
|
Sun C, Zhang AD, Chen HH, Bian J, Liu ZJ. Magnet-targeted delivery of bone marrow-derived mesenchymal stem cells improves therapeutic efficacy following hypoxic-ischemic brain injury. Neural Regen Res 2021; 16:2324-2329. [PMID: 33818519 PMCID: PMC8354132 DOI: 10.4103/1673-5374.310942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Stem cell transplantation may represent a feasible therapeutic option for the recovery of neurological function in children with hypoxic-ischemic brain injury; however, the therapeutic efficacy of bone marrow-derived mesenchymal stem cells largely depends on the number of cells that are successfully transferred to the target. Magnet-targeted drug delivery systems can use a specific magnetic field to attract the drug to the target site, increasing the drug concentration. In this study, we found that the double-labeling using superparamagnetic iron oxide nanoparticle and poly-L-lysine (SPIO-PLL) of bone marrow-derived mesenchymal stem cells had no effect on cell survival but decreased cell proliferation 48 hours after labeling. Rat models of hypoxic-ischemic brain injury were established by ligating the left common carotid artery. One day after modeling, intraventricular and caudal vein injections of 1 × 105 SPIO-PLL-labeled bone marrow-derived mesenchymal stem cells were performed. Twenty-four hours after the intraventricular injection, magnets were fixed to the left side of the rats’ heads for 2 hours. Intravoxel incoherent motion magnetic resonance imaging revealed that the perfusion fraction and the diffusion coefficient of rat brain tissue were significantly increased in rats treated with SPIO-PLL-labeled cells through intraventricular injection combined with magnetic guidance, compared with those treated with SPIO-PLL-labeled cells through intraventricular or tail vein injections without magnetic guidance. Hematoxylin-eosin and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining revealed that in rats treated with SPIO-PLL-labeled cells through intraventricular injection under magnetic guidance, cerebral edema was alleviated, and apoptosis was decreased. These findings suggest that targeted magnetic guidance can be used to improve the therapeutic efficacy of bone marrow-derived mesenchymal stem cell transplantation for hypoxic-ischemic brain injury. This study was approved by the Animal Care and Use Committee of The Second Hospital of Dalian Medical University, China (approval No. 2016-060) on March 2, 2016.
Collapse
Affiliation(s)
- Chuang Sun
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Ao-Dan Zhang
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Hong-Hai Chen
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Jie Bian
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Zheng-Juan Liu
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
21
|
Zhang S, Cho J, Nguyen TD, Spincemaille P, Gupta A, Zhu W, Wang Y. Initial Experience of Challenge-Free MRI-Based Oxygen Extraction Fraction Mapping of Ischemic Stroke at Various Stages: Comparison With Perfusion and Diffusion Mapping. Front Neurosci 2020; 14:535441. [PMID: 33041755 PMCID: PMC7525031 DOI: 10.3389/fnins.2020.535441] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023] Open
Abstract
MRI-based oxygen extraction fraction imaging has a great potential benefit in the selection of clinical strategies for ischemic stroke patients. This study aimed to evaluate the performance of a challenge-free oxygen extraction fraction (OEF) mapping in a cohort of acute and subacute ischemic stroke patients. Consecutive ischemic stroke patients (a total of 30 with 5 in the acute stage, 19 in the early subacute stage, and 6 in the late subacute stage) were recruited. All subjects underwent MRI including multi-echo gradient echo (mGRE), diffusion weighted imaging (DWI), and 3D-arterial spin labeling (ASL). OEF maps were generated from mGRE phase + magnitude data, which were processed using quantitative susceptibility mapping (QSM) + quantitative blood oxygen level-dependent (qBOLD) imaging with cluster analysis of time evolution. Cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) maps were reconstructed from 3D-ASL and DWI, respectively. Further, cerebral metabolic rate of oxygen (CMRO2) was calculated as the product of CBF and OEF. OEF, CMRO2, CBF, and ADC values in the ischemic cores (absolute values) and their contrasts to the contralateral regions (relative values) were evaluated. One-way analysis of variance (ANOVA) was used to compare OEF, CMRO2, CBF, and ADC values and their relative values among different stroke stages. The OEF value of infarct core showed a trend of decrease from acute, to early subacute, and to late subacute stages of ischemic stroke. Significant differences among the three stroke stages were only observed in the absolute OEF (F = 6.046, p = 0.005) and relative OEF (F = 5.699, p = 0.009) values of the ischemic core, but not in other measurements (absolute and relative CMRO2, CBF, ADC values, all values of p > 0.05). In conclusion, the challenge-free QSM + qBOLD-generated OEF mapping can be performed on stroke patients. It can provide more information on tissue viability that was not available with CBF and ADC and, thus, may help to better manage ischemic stroke patients.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junghun Cho
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
22
|
Novel proton exchange rate MRI presents unique contrast in brains of ischemic stroke patients. J Neurosci Methods 2020; 346:108926. [PMID: 32896540 DOI: 10.1016/j.jneumeth.2020.108926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND To map and quantify the proton exchange rate (kex) of brain tissues using improved omega plots in ischemic stroke patients and to investigate whether kex can serve as a potential endogenous surrogate imaging biomarker for detecting the metabolic state and the pathologic changes due to ischemic stroke. NEW METHOD Three sets of Z-spectra were acquired from seventeen ischemic stroke patients using a spin echo-echo planar imaging sequence with pre-saturation chemical exchange saturation transfer (CEST) pulse at B1 of 1.5, 2.5, and 3.5 μT, respectively. Pixel-wise kex was calculated from improved omega plot of water direct saturation (DS)-removed Z-spectral signals. RESULTS The derived kex maps can differentiate infarcts from contralateral normal brain tissues with significantly increased signal (893 ± 52 s-1vs. 739 ± 34 s-1, P < 0.001). COMPARISON WITH EXISTING METHOD(S) The kex maps were found to be different from conventional contrasts from diffusion-weighted imaging (DWI), CEST, and semi-solid magnetization transfer (MT) MRI. In brief, kex MRI showed larger lesion areas than DWI with different degrees and different lesion contrast compared to CEST and MT. CONCLUSIONS In this preliminary translational research, the kex MRI based on DS-removed omega plots has been demonstrated for in vivo imaging of clinical ischemic stroke patients. As a noninvasive and unique MRI contrast, kex MRI at 3 T may serve as a potential surrogate imaging biomarker for the metabolic changes of stroke and help for monitoring the evolution and the treatment of stroke.
Collapse
|
23
|
Wijerathne H, Witek MA, Baird AE, Soper SA. Liquid biopsy markers for stroke diagnosis. Expert Rev Mol Diagn 2020; 20:771-788. [PMID: 32500751 PMCID: PMC8157911 DOI: 10.1080/14737159.2020.1777859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION There is a short time window (4.5 h) for the effective treatment of acute ischemic stroke (AIS), which uses recombinant tissue plasminogen activator (rt-PA). Unfortunately, this short therapeutic timeframe is a contributing factor to the relatively small number of patients (~7%) that receive rt-PA. While neuroimaging is the major diagnostic for AIS, more timely decisions could be made using a molecular diagnostic. AREAS COVERED In this review, we survey neuroimaging techniques used to diagnose stroke and their limitations. We also highlight the potential of various molecular/cellular biomarkers, especially peripheral blood-based (i.e. liquid biopsy) biomarkers, for diagnosing stroke to allow for precision decisions on managing stroke in a timely manner. Both protein and nucleic acid molecular biomarkers are reviewed. In particular, mRNA markers are discussed for AIS and hemorrhagic stroke diagnosis sourced from both cells and extracellular vesicles. EXPERT OPINION While there are a plethora of molecular markers for stroke diagnosis that have been reported, they have yet to be FDA-cleared. Possible reasons include the inability for these markers to appear in sufficient quantities for highly sensitive clinical decisions within the rt-PA therapeutic time.
Collapse
Affiliation(s)
- Harshani Wijerathne
- Department of Chemistry, The University of Kansas, Lawrence, KS, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS, USA
| | - Malgorzata A. Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS, USA
- Department of Cancer Biology and KU Cancer Center, University of Kansas Medical Center, Cancer Center, Kansas City, KS, USA
| | - Alison E. Baird
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Steven A. Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS, USA
- Department of Cancer Biology and KU Cancer Center, University of Kansas Medical Center, Cancer Center, Kansas City, KS, USA
- Bio Engineering Program, The University of Kansas, Lawrence, KS, USA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS, USA
- Biofluidica, Inc, San Diego, CA, USA
| |
Collapse
|
24
|
Topographic evaluation of medullary infarcts from the radiologist's point of view. Neuroradiology 2020; 62:947-953. [PMID: 32193583 DOI: 10.1007/s00234-020-02398-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/06/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Despite considerable published information about the clinical-radiological correlation of medullary infarcts, no study has determined whether topographic evaluations are performed accurately among researchers. Our purpose in this study was twofold: to evaluate the topographic pattern of medullary infarcts on diffusion-weighted imaging by their radiological aspect, and to assess interobserver agreement on the topographic pattern. METHODS We retrospectively reviewed our imaging and clinical database for patients admitted to our radiology department between January 2014 and September 2019. Two radiologists evaluated the imaging studies independently. Consensus data were used in the analysis. RESULTS The retrospective review yielded 92 patients with medullary infarction. The affected vascular territories were lateral (n = 58), anteromedial (n = 28), posterior (n = 3), and anterolateral (n = 1). Two patients had hemimedullary infarction. The rostrocaudal levels of the medullary infarct were superior (n = 34), middle (n = 31), inferior (n = 4), superior-middle (n = 13), and middle-inferior (n = 10). The medullary infarcts were divided into two types: lateral (n = 62) and medial (n = 28). The affected vascular territories differed with rostrocaudal topography of medullary infarct (p = 0.003). Excellent interobserver agreement was found for type of medullary infarct, compared with moderate for vascular territory and fair for rostrocaudal topography. The anterolateral and posterior territories were the most often misdiagnosed, while the level with the most disagreements in rostrocaudal topography was middle. CONCLUSION The accurate topographic evaluation of a medullary infarct can be an important basis for investigating stroke etiology. However, correct topographic evaluation may not always be available and smaller territories such as anterolateral and posterior should be assessed carefully.
Collapse
|
25
|
Bang OY, Li W. Applications of diffusion-weighted imaging in diagnosis, evaluation, and treatment of acute ischemic stroke. PRECISION AND FUTURE MEDICINE 2019. [DOI: 10.23838/pfm.2019.00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
26
|
Raschke F, Wesemann T, Wahl H, Appold S, Krause M, Linn J, Troost EGC. Reduced diffusion in normal appearing white matter of glioma patients following radio(chemo)therapy. Radiother Oncol 2019; 140:110-115. [PMID: 31265941 DOI: 10.1016/j.radonc.2019.06.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/04/2019] [Accepted: 06/14/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND PURPOSE Standard treatment of high grade gliomas includes gross tumour resection followed by radio(chemo)therapy. Radiotherapy inevitably leads to irradiation of normal brain tissue. The goal of this prospective, longitudinal study was to use MRI to quantify normal appearing white and grey matter changes following radiation treatment as a function of dose and time after radiotherapy. MATERIALS AND METHODS Pre-radiotherapy (proton or photon therapy) MRI and follow-up MRIs collected in 3 monthly intervals thereafter were analysed for 22 glioma patients and included diffusion tensor imaging, quantitative T1, T2* and proton density mapping. Abnormal tissue was excluded from analysis. MR signal changes were quantified within different dose bin regions for grey and white matter and subsequently for whole brain white matter. RESULTS We found significant reductions in mean diffusivity, radial diffusivity, axial diffusivity and T2* in normal appearing white matter regions receiving a radiation dose as low as 10-20 Gy within the observational period of up to 18 months. The magnitude of these changes increased with the received radiation dose and progressed with time after radiotherapy. Whole brain white matter also showed a significant reduction in radial diffusivity as a function of radiation dose and time after radiotherapy. No significant changes were observed in grey matter. CONCLUSION Diffusion tensor imaging and T2* imaging revealed normal appearing white matter changes following radiation treatment. The changes were dose dependant and progressed over time. Further work is needed to understand the underlying tissue changes and to correlate the observed diffusion changes with late brain malfunctions.
Collapse
Affiliation(s)
- F Raschke
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden -Rossendorf (HZDR), Dresden, Germany.
| | - T Wesemann
- Institute of Neuroradiology, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität, Dresden, Germany
| | - H Wahl
- Institute of Neuroradiology, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität, Dresden, Germany
| | - S Appold
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - M Krause
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden -Rossendorf (HZDR), Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - J Linn
- Institute of Neuroradiology, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität, Dresden, Germany
| | - E G C Troost
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden -Rossendorf (HZDR), Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
27
|
Wang Z, Zhang S, Liu C, Yao Y, Shi J, Zhang J, Qin Y, Zhu W. A study of neurite orientation dispersion and density imaging in ischemic stroke. Magn Reson Imaging 2019; 57:28-33. [DOI: 10.1016/j.mri.2018.10.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/25/2018] [Accepted: 10/27/2018] [Indexed: 01/11/2023]
|
28
|
Huang R, Chen Y, Li W, Zhang X. An evidence-based approach to assess the accuracy of diffusion kurtosis imaging in characterization of gliomas. Medicine (Baltimore) 2018; 97:e13068. [PMID: 30383687 PMCID: PMC6221635 DOI: 10.1097/md.0000000000013068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Accurate and noninvasive pathologic grading of glioma patients before surgery was crucial to guiding clinicians to select appropriate treatment and improve patient prognosis. This study was performed to investigate the potential diagnostic value of diffusion kurtosis imaging (DKI) to distinguish high-grade gliomas (HGGs) from low-grade gliomas (LGGs) based on an evidence-based approach. METHODS Relevant articles that used DKI to distinguish HGG from LGG in Embase, PubMed, China Knowledge Resource Integrated database (CNKI), Web of Knowledge, and Cochrane Libraries databases were electronically searched to April 31, 2018 by 2 reviewers. All analysis was performed by using Meta-disc1.4 and Stata. Influence factors on the diagnostic accuracy were evaluated using meta-regression analysis. RESULTS Five eligible studies were included in this meta-analysis. The pooled sensitivity (SEN) and specificity (SPE) was 91% (confidence interval [CI]: 0.78-0.96; P = .02) and 91% (CI: 0.80-0.97; P = .01). The pooled data showed that diagnostic odds ratio (DOR) of DKI was 79.75 (CI: 31.57-201.45). The area under the curve (AUC) of summary receiver operating characteristic curve was 0.96. There is no evidence that our research has a threshold effect (Spearman correlation coefficient: 0.300, P = .624) and publication bias. Meta regression analysis identified that country, language, field strength, and parameter of magnetic resonance imaging had no significant effect on diagnostic performance. CONCLUSION The present meta-analysis shows that the mean kurtosis values derived from DKI may be useful in characterization of gliomas with high sensitivity and specificity. Taken into consideration the small sample of this study, we need to be cautious when interpreting the results of this study.
Collapse
Affiliation(s)
- Ruiyu Huang
- Department of MRI, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine
| | - Yanni Chen
- Department of Radiology, XianYang Rainbow Hospital, XianYang, Shaanxi
| | - Wenfei Li
- Department of Radiology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Xvfeng Zhang
- Department of Radiology, XianYang Rainbow Hospital, XianYang, Shaanxi
| |
Collapse
|
29
|
Collier Q, Veraart J, Jeurissen B, Vanhevel F, Pullens P, Parizel PM, den Dekker AJ, Sijbers J. Diffusion kurtosis imaging with free water elimination: A bayesian estimation approach. Magn Reson Med 2018; 80:802-813. [PMID: 29393531 PMCID: PMC5947598 DOI: 10.1002/mrm.27075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 01/29/2023]
Abstract
PURPOSE Diffusion kurtosis imaging (DKI) is an advanced magnetic resonance imaging modality that is known to be sensitive to changes in the underlying microstructure of the brain. Image voxels in diffusion weighted images, however, are typically relatively large making them susceptible to partial volume effects, especially when part of the voxel contains cerebrospinal fluid. In this work, we introduce the "Diffusion Kurtosis Imaging with Free Water Elimination" (DKI-FWE) model that separates the signal contributions of free water and tissue, where the latter is modeled using DKI. THEORY AND METHODS A theoretical study of the DKI-FWE model, including an optimal experiment design and an evaluation of the relative goodness of fit, is carried out. To stabilize the ill-conditioned estimation process, a Bayesian approach with a shrinkage prior (BSP) is proposed. In subsequent steps, the DKI-FWE model and the BSP estimation approach are evaluated in terms of estimation error, both in simulation and real data experiments. RESULTS Although it is shown that the DKI-FWE model parameter estimation problem is ill-conditioned, DKI-FWE was found to describe the data significantly better compared to the standard DKI model for a large range of free water fractions. The acquisition protocol was optimized in terms of the maximally attainable precision of the DKI-FWE model parameters. The BSP estimator is shown to provide reliable DKI-FWE model parameter estimates. CONCLUSION The combination of the DKI-FWE model with BSP is shown to be a feasible approach to estimate DKI parameters, while simultaneously eliminating free water partial volume effects. Magn Reson Med 80:802-813, 2018. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Collapse
Affiliation(s)
- Quinten Collier
- imec‐Vision Lab, Department of PhysicsUniversity of AntwerpAntwerpBelgium
| | - Jelle Veraart
- imec‐Vision Lab, Department of PhysicsUniversity of AntwerpAntwerpBelgium
- Center for Biomedical Imaging, Department of RadiologyNew York University School of MedicineNew YorkNew YorkUSA
| | - Ben Jeurissen
- imec‐Vision Lab, Department of PhysicsUniversity of AntwerpAntwerpBelgium
| | - Floris Vanhevel
- Department of RadiologyUniversity of Antwerp, Antwerp University HospitalEdegemBelgium
| | - Pim Pullens
- Department of RadiologyUniversity of Antwerp, Antwerp University HospitalEdegemBelgium
| | - Paul M. Parizel
- Department of RadiologyUniversity of Antwerp, Antwerp University HospitalEdegemBelgium
| | - Arnold J. den Dekker
- imec‐Vision Lab, Department of PhysicsUniversity of AntwerpAntwerpBelgium
- Delft Center for Systems and ControlDelft University of TechnologyDelftThe Netherlands
| | - Jan Sijbers
- imec‐Vision Lab, Department of PhysicsUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
30
|
Jensen JH, Helpern JA. Characterizing intra-axonal water diffusion with direction-averaged triple diffusion encoding MRI. NMR IN BIOMEDICINE 2018; 31:e3930. [PMID: 29727508 PMCID: PMC9007177 DOI: 10.1002/nbm.3930] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/20/2018] [Accepted: 03/11/2018] [Indexed: 05/07/2023]
Abstract
For large diffusion weightings, the direction-averaged diffusion MRI (dMRI) signal from white matter is typically dominated by the contribution of water confined to axons. This fact can be exploited to characterize intra-axonal diffusion properties, which may be valuable for interpreting the biophysical meaning of diffusion changes associated with pathology. However, using just the classic Stejskal-Tanner pulse sequence, it has proven challenging to obtain reliable estimates for both the intrinsic intra-axonal diffusivity and the intra-axonal water fraction. Here we propose to apply a modification of the Stejskal-Tanner sequence designed for achieving such estimates. The key feature of the sequence is the addition of a set of extra diffusion encoding gradients that are orthogonal to the direction of the primary gradients, which corresponds to a specific type of triple diffusion encoding (TDE) MRI sequence. Given direction-averaged dMRI data for this TDE sequence, it is shown how the intra-axonal diffusivity and the intra-axonal water fraction can be determined by applying simple, analytic formulae. The method is illustrated with numerical simulations, which suggest that it should be accurate for b-values of about 4000 s/mm2 or higher.
Collapse
Affiliation(s)
- Jens H. Jensen
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina, USA
- Corresponding Author: Jens H. Jensen, Ph.D., Department of Neuroscience, Medical University of South Carolina, Basic Science Building, MSC 510, 173 Ashley Avenue, Suite 403, Charleston, SC 29425, Tel: (843)876-2467,
| | - Joseph A. Helpern
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
31
|
Nørhøj Jespersen S. White matter biomarkers from diffusion MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:127-140. [PMID: 29705041 DOI: 10.1016/j.jmr.2018.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/14/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
As part of an issue celebrating 2 decades of Joseph Ackerman editing the Journal of Magnetic Resonance, this paper reviews recent progress in one of the many areas in which Ackerman and his lab has made significant contributions: NMR measurement of diffusion in biological media, specifically in brain tissue. NMR diffusion signals display exquisite sensitivity to tissue microstructure, and have the potential to offer quantitative and specific information on the cellular scale orders of magnitude below nominal image resolution when combined with biophysical modeling. Here, I offer a personal perspective on some recent advances in diffusion imaging, from diffusion kurtosis imaging to microstructural modeling, and the connection between the two. A new result on the estimation accuracy of axial and radial kurtosis with axially symmetric DKI is presented. I moreover touch upon recently suggested generalized diffusion sequences, promising to offer independent microstructural information. We discuss the need and some methods for validation, and end with an outlook on some promising future directions.
Collapse
Affiliation(s)
- Sune Nørhøj Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
32
|
An DA, Chen BH, Rui-Wu, Shi RY, Bu J, Ge H, Hu J, Xu JR, Wu LM. Diagnostic performance of intravoxel incoherent motion diffusion-weighted imaging in the assessment of the dynamic status of myocardial perfusion. J Magn Reson Imaging 2018; 48:1602-1609. [PMID: 29734489 DOI: 10.1002/jmri.26179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/16/2018] [Indexed: 11/08/2022] Open
Affiliation(s)
- Dong-Aolei An
- Department of Radiology; Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai China
| | - Bing-Hua Chen
- Department of Radiology; Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai China
| | - Rui-Wu
- Department of Radiology; Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai China
| | - Ruo-Yang Shi
- Department of Radiology; Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai China
| | - Jun Bu
- Department of Cardiology; Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai China
| | - Heng Ge
- Department of Cardiology; Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai China
| | - Jiani Hu
- Department of Radiology; Wayne State University; Detroit Michigan USA
| | - Jian-Rong Xu
- Department of Radiology; Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai China
| | - Lian-Ming Wu
- Department of Radiology; Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai China
| |
Collapse
|
33
|
|
34
|
Arab A, Wojna-Pelczar A, Khairnar A, Szabó N, Ruda-Kucerova J. Principles of diffusion kurtosis imaging and its role in early diagnosis of neurodegenerative disorders. Brain Res Bull 2018; 139:91-98. [PMID: 29378223 DOI: 10.1016/j.brainresbull.2018.01.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 11/19/2022]
Abstract
Pathology of neurodegenerative diseases can be correlated with intra-neuronal as well as extracellular changes which lead to neuronal degeneration. The central nervous system (CNS) is a complex structure comprising of many biological barriers. These microstructural barriers might be affected by a variety of pathological processes. Specifically, changes in the brain tissue's microstructure affect the diffusion of water which can be assessed non-invasively by diffusion weighted (DW) magnetic resonance imaging (MRI) techniques. Diffusion tensor imaging (DTI) is a diffusion MRI technique that considers diffusivity as a Gaussian process, i.e. does not account for any diffusion hindrance. However, environment of the brain tissues is characterized by a non-Gaussian diffusion. Therefore, diffusion kurtosis imaging (DKI) was developed as an extension of DTI method in order to quantify the non-Gaussian distribution of water diffusion. This technique represents a promising approach for early diagnosis of neurodegenerative diseases when the neurodegenerative process starts. Hence, the purpose of this article is to summarize the ongoing clinical and preclinical research on Parkinson's, Alzheimer's and Huntington diseases, using DKI and to discuss the role of this technique as an early stage biomarker of neurodegenerative conditions.
Collapse
Affiliation(s)
- Anas Arab
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Anna Wojna-Pelczar
- Research group Multimodal and Functional Neuroimaging, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujrat, India.
| | - Nikoletta Szabó
- Research group Multimodal and Functional Neuroimaging, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
35
|
Peters DM, Fridriksson J, Stewart JC, Richardson JD, Rorden C, Bonilha L, Middleton A, Gleichgerrcht E, Fritz SL. Cortical disconnection of the ipsilesional primary motor cortex is associated with gait speed and upper extremity motor impairment in chronic left hemispheric stroke. Hum Brain Mapp 2017; 39:120-132. [PMID: 28980355 DOI: 10.1002/hbm.23829] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Advances in neuroimaging have enabled the mapping of white matter connections across the entire brain, allowing for a more thorough examination of the extent of white matter disconnection after stroke. To assess how cortical disconnection contributes to motor impairments, we examined the relationship between structural brain connectivity and upper and lower extremity motor function in individuals with chronic stroke. Forty-three participants [mean age: 59.7 (±11.2) years; time poststroke: 64.4 (±58.8) months] underwent clinical motor assessments and MRI scanning. Nonparametric correlation analyses were performed to examine the relationship between structural connectivity amid a subsection of the motor network and upper/lower extremity motor function. Standard multiple linear regression analyses were performed to examine the relationship between cortical necrosis and disconnection of three main cortical areas of motor control [primary motor cortex (M1), premotor cortex (PMC), and supplementary motor area (SMA)] and motor function. Anatomical connectivity between ipsilesional M1/SMA and the (1) cerebral peduncle, (2) thalamus, and (3) red nucleus were significantly correlated with upper and lower extremity motor performance (P ≤ 0.003). M1-M1 interhemispheric connectivity was also significantly correlated with gross manual dexterity of the affected upper extremity (P = 0.001). Regression models with M1 lesion load and M1 disconnection (adjusted for time poststroke) explained a significant amount of variance in upper extremity motor performance (R2 = 0.36-0.46) and gait speed (R2 = 0.46), with M1 disconnection an independent predictor of motor performance. Cortical disconnection, especially of ipsilesional M1, could significantly contribute to variability seen in locomotor and upper extremity motor function and recovery in chronic stroke. Hum Brain Mapp 39:120-132, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Denise M Peters
- Department of Exercise Science, Physical Therapy Program, University of South Carolina, 921 Assembly Street, Columbia, South Carolina
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, 915 Greene Street, Columbia, South Carolina
| | - Jill C Stewart
- Department of Exercise Science, Physical Therapy Program, University of South Carolina, 921 Assembly Street, Columbia, South Carolina
| | - Jessica D Richardson
- Department of Communication Sciences and Disorders, University of South Carolina, 915 Greene Street, Columbia, South Carolina
| | - Chris Rorden
- Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, South Carolina
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, South Carolina
| | - Addie Middleton
- Department of Exercise Science, Physical Therapy Program, University of South Carolina, 921 Assembly Street, Columbia, South Carolina
| | - Ezequiel Gleichgerrcht
- Department of Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, South Carolina
| | - Stacy L Fritz
- Department of Exercise Science, Physical Therapy Program, University of South Carolina, 921 Assembly Street, Columbia, South Carolina
| |
Collapse
|
36
|
Walter SS, Liu W, Stemmer A, Martirosian P, Nikolaou K, Notohamiprodjo M, Gatidis S. Combination of integrated dynamic shimming and readout-segmented echo planar imaging for diffusion weighted MRI of the head and neck region at 3 Tesla. Magn Reson Imaging 2017; 42:32-36. [DOI: 10.1016/j.mri.2017.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/04/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
|
37
|
Weber RA, Chan CH, Nie X, Maggioncalda E, Valiulis G, Lauer A, Hui ES, Jensen JH, Adkins DL. Sensitivity of diffusion MRI to perilesional reactive astrogliosis in focal ischemia. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3717. [PMID: 28272771 PMCID: PMC5759343 DOI: 10.1002/nbm.3717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/04/2017] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
Reactive astrogliosis is a response to injury in the central nervous system that plays an essential role in inflammation and tissue repair. It is characterized by hypertrophy of astrocytes, alterations in astrocyte gene expression and astrocyte proliferation. Reactive astrogliosis occurs in multiple neuropathologies, including stroke, traumatic brain injury and Alzheimer's disease, and it has been proposed as a possible source of the changes in diffusion magnetic resonance imaging (dMRI) metrics observed with these diseases. In this study, the sensitivity of dMRI to reactive astrogliosis was tested in an animal model of focal acute and subacute ischemia induced by the vasoconstricting peptide, endothelin-1. Reactive astrogliosis in perilesional cortex was quantified by calculating the astrocyte surface density as determined with a glial fibrillary acidic protein (GFAP) antibody, whereas perilesional diffusion changes were measured in vivo with diffusional kurtosis imaging. We found substantial changes in the surface density of GFAP-positive astrocyte processes and modest changes in dMRI metrics in the perilesional motor cortex following stroke. Although there are time point-specific correlations between dMRI and histological measures, there is no definitive evidence for a causal relationship.
Collapse
Affiliation(s)
- Rachel A. Weber
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Clifford H. Chan
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina, USA
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Xingju Nie
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Emily Maggioncalda
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Grace Valiulis
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Abigail Lauer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Edward S. Hui
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jens H. Jensen
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina, USA
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA
| | - DeAnna L. Adkins
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Health Science and Research, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
38
|
Wang S, Peterson DJ, Wang Y, Wang Q, Grabowski TJ, Li W, Madhyastha TM. Empirical Comparison of Diffusion Kurtosis Imaging and Diffusion Basis Spectrum Imaging Using the Same Acquisition in Healthy Young Adults. Front Neurol 2017; 8:118. [PMID: 28424656 PMCID: PMC5372828 DOI: 10.3389/fneur.2017.00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/14/2017] [Indexed: 11/20/2022] Open
Abstract
As diffusion tensor imaging gains widespread use, many researchers have been motivated to go beyond the tensor model and fit more complex diffusion models, to gain a more complete description of white matter microstructure and associated pathology. Two such models are diffusion kurtosis imaging (DKI) and diffusion basis spectrum imaging (DBSI). It is not clear which DKI parameters are most closely related to DBSI parameters, so in the interest of enabling comparisons between DKI and DBSI studies, we conducted an empirical survey of the interrelation of these models in 12 healthy volunteers using the same diffusion acquisition. We found that mean kurtosis is positively associated with the DBSI fiber ratio and negatively associated with the hindered ratio. This was primarily driven by the radial component of kurtosis. The axial component of kurtosis was strongly and specifically correlated with the restricted ratio. The joint spatial distributions of DBSI and DKI parameters are tissue-dependent and stable across healthy individuals. Our contribution is a better understanding of the biological interpretability of the parameters generated by the two models in healthy individuals.
Collapse
Affiliation(s)
- Sijia Wang
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Radiology, University of Washington, Seattle, WA, USA
| | | | - Yong Wang
- Department of Obstetrics and Gynecology, Washington University, St. Louis, MO, USA.,Department of Radiology, Washington University, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Qing Wang
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Thomas J Grabowski
- Department of Radiology, University of Washington, Seattle, WA, USA.,Department of Neurology, University of Washington, Seattle, WA, USA
| | - Wenbin Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | |
Collapse
|
39
|
Dietrich O, Geith T, Reiser MF, Baur-Melnyk A. Diffusion imaging of the vertebral bone marrow. NMR IN BIOMEDICINE 2017; 30:e3333. [PMID: 26114411 DOI: 10.1002/nbm.3333] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/27/2015] [Accepted: 05/04/2015] [Indexed: 06/04/2023]
Abstract
Diffusion-weighted MRI (DWI) of the vertebral bone marrow is a clinically important tool for the characterization of bone-marrow pathologies and, in particular, for the differentiation of benign (osteoporotic) and malignant vertebral compression fractures. DWI of the vertebral bone marrow is, however, complicated by some unique MR and tissue properties of vertebral bone marrow. Due to both the spongy microstructure of the trabecular bone and the proximity of the lungs, soft tissue, or large vessels, substantial magnetic susceptibility variations occur, which severely reduce the magnetic field homogeneity as well as the transverse relaxation time T*2 , and thus complicate MRI in particular with echoplanar imaging (EPI) techniques. Therefore, alternative diffusion-weighting pulse sequence types such as single-shot fast-spin-echo sequences or segmented EPI techniques became important alternatives for quantitative DWI of the vertebral bone marrow. This review first describes pulse sequence types that are particularly important for DWI of the vertebral bone marrow. Then, data from 24 studies that made diffusion measurements of normal vertebral bone marrow are reviewed; summarizing all results, the apparent diffusion coefficient (ADC) of normal vertebral bone marrow is typically found to be between 0.2 and 0.6 × 10-3 mm2 /s. Finally, DWI of vertebral compression fractures is discussed. Numerous studies demonstrate significantly greater ADCs in osteoporotic fractures (typically between 1.2 and 2.0 × 10-3 mm2 /s) than in malignant fractures or lesions (typically 0.7-1.3 × 10-3 mm2 /s). Alternatively, several studies used the (qualitative) image contrast of diffusion-weighted acquisitions for differentiation of lesion etiology: a very good lesion differentiation can be achieved, particularly with diffusion-weighted steady-state free precession sequences, which depict malignant lesions as hyperintense relative to normal-appearing vertebral bone marrow, in contrast to hypointense or isointense osteoporotic lesions. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Olaf Dietrich
- Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig Maximilian University Hospital Munich, Germany
| | - Tobias Geith
- Institute for Clinical Radiology, Ludwig Maximilian University Hospital Munich, Germany
| | - Maximilian F Reiser
- Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig Maximilian University Hospital Munich, Germany
- Institute for Clinical Radiology, Ludwig Maximilian University Hospital Munich, Germany
| | - Andrea Baur-Melnyk
- Institute for Clinical Radiology, Ludwig Maximilian University Hospital Munich, Germany
| |
Collapse
|
40
|
Gao QQ, Lu SS, Xu XQ, Wu CJ, Liu XL, Liu S, Shi HB. Quantitative assessment of hyperacute cerebral infarction with intravoxel incoherent motion MR imaging: Initial experience in a canine stroke model. J Magn Reson Imaging 2016; 46:550-556. [PMID: 27902857 DOI: 10.1002/jmri.25556] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/01/2016] [Indexed: 01/13/2023] Open
Abstract
PURPOSE To evaluate the feasibility of intravoxel incoherent motion (IVIM) for the measurement of diffusion and perfusion parameters in hyperacute strokes. MATERIALS AND METHODS An embolic ischemic model was established with an autologous thrombus in 20 beagles. IVIM imaging was performed on a 3.0 Tesla platform at 4.5 h and 6 h after embolization. Ten b values from 0 to 900 s/mm2 were fitted with a bi-exponential model to extract perfusion fraction f, diffusion coefficient D, and pseudo-diffusion coefficient D*. Additionally, the apparent diffusion coefficient (ADC) was calculated using the mono-exponential model with all the b values. Statistical analysis was performed using the pairwise Student's t test and Pearson's correlation test. RESULTS A significant decrease in f and D was observed in the ischemic area when compared with those in the contralateral side at 4.5 h and 6 h after embolization (P < 0.01 for all). No significant difference was observed in D* between the two sides at either time point (P = 0.086 and 0.336, respectively). In the stroke area, f at 6 h was significantly lower than that at 4.5 h (P = 0.016). A significantly positive correlation was detected between ADC and D in both stroke and contralateral sides at 4.5 h and 6 h (P < 0.001 for both). Significant correlation between ADC and f was only observed in the contralateral side at 4.5 h and 6 h (P = 0.019 and 0.021, respectively). CONCLUSION IVIM imaging could simultaneously evaluate the diffusion and microvascular perfusion characteristics in hyperacute strokes. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:550-556.
Collapse
Affiliation(s)
- Qian-Qian Gao
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shan-Shan Lu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Cheng-Jiang Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xing-Long Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Sheng Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hai-Bin Shi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
41
|
Zhang S, Yao Y, Shi J, Tang X, Zhao L, Zhu W. The temporal evolution of diffusional kurtosis imaging in an experimental middle cerebral artery occlusion (MCAO) model. Magn Reson Imaging 2016; 34:889-95. [DOI: 10.1016/j.mri.2016.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 03/26/2016] [Accepted: 04/17/2016] [Indexed: 01/13/2023]
|
42
|
Glenn GR, Jensen JH, Helpern JA, Spampinato MV, Kuzniecky R, Keller SS, Bonilha L. Epilepsy-related cytoarchitectonic abnormalities along white matter pathways. J Neurol Neurosurg Psychiatry 2016; 87:930-6. [PMID: 27076491 DOI: 10.1136/jnnp-2015-312980] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/28/2016] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is one of the most common forms of epilepsy. Unfortunately, the clinical outcomes of TLE cannot be determined based only on current diagnostic modalities. A better understanding of white matter (WM) connectivity changes in TLE may aid the identification of network abnormalities associated with TLE and the phenotypic characterisation of the disease. METHODS We implemented a novel approach for characterising microstructural changes along WM pathways using diffusional kurtosis imaging (DKI). Along-the-tract measures were compared for 32 subjects with left TLE and 36 age-matched and gender-matched controls along the left and right fimbria-fornix (FF), parahippocampal WM bundle (PWMB), arcuate fasciculus (AF), inferior longitudinal fasciculus (ILF), uncinate fasciculus (UF) and cingulum bundle (CB). Limbic pathways were investigated in relation to seizure burden and control with antiepileptic drugs. RESULTS By evaluating measures along each tract, it was possible to identify abnormalities localised to specific tract subregions. Compared with healthy controls, subjects with TLE demonstrated pathological changes in circumscribed regions of the FF, PWMB, UF, AF and ILF. Several of these abnormalities were detected only by kurtosis-based and not by diffusivity-based measures. Structural WM changes correlated with seizure burden in the bilateral PWMB and cingulum. CONCLUSIONS DKI improves the characterisation of network abnormalities associated with TLE by revealing connectivity abnormalities that are not disclosed by other modalities. Since TLE is a neuronal network disorder, DKI may be well suited to fully assess structural network abnormalities related to epilepsy and thus serve as a tool for phenotypic characterisation of epilepsy.
Collapse
Affiliation(s)
- G Russell Glenn
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina, USA Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jens H Jensen
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Joseph A Helpern
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina, USA Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Maria V Spampinato
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ruben Kuzniecky
- Department of Neurology, New York University, New York City, New York, USA
| | - Simon S Keller
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK Department of Clinical Neuroscience, Institute of Psychiatry, King's College London, London, UK
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
43
|
Diffusion-weighted echo planar MR imaging of the neck at 3 T using integrated shimming: comparison of MR sequence techniques for reducing artifacts caused by magnetic-field inhomogeneities. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 30:57-63. [PMID: 27503308 DOI: 10.1007/s10334-016-0582-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/14/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Our objective was to compare available techniques reducing artifacts in echo planar imaging (EPI)-based diffusion-weighed magnetic resonance imaging MRI (DWI) of the neck at 3 Tesla caused by B0-field inhomogeneities. MATERIALS AND METHODS A cylindrical fat-water phantom was equipped with a Maxwell coil allowing for additional linear B0-field variations in z-direction. The effect of increasing strength of this superimposed gradient on image quality was observed using a standard single-shot EPI-based DWI sequence (sEPI), a zoomed single-shot EPI sequence (zEPI), a readout-segmented EPI sequence (rsEPI), and an sEPI sequence with integrated dynamic shimming (intEPI) on a 3-Tesla system. Additionally, ten volunteers were examined over the neck region using these techniques. Image quality was assessed by two radiologists. Scan durations were recorded. RESULTS With increasing strength of the external gradient, marked distortions, signal loss, and failure of fat suppression were observed using sEPI, zEPI, and rsEPI. These artifacts were markedly reduced using intEPI. Significantly better in vivo image quality was also observed using intEPI compared with the other techniques. Scan time of intEPI was similar to sEPI and zEPI and shorter than rsEPI. CONCLUSION The use of integrated 2D shim and frequency adjustment for EPI-based DWI results in a significant improvement in image quality of the head/neck region at 3 Tesla. Combining integrated shimming with rsEPI or zEPI can be expected to provide additional improvements.
Collapse
|
44
|
Glenn GR, Kuo LW, Chao YP, Lee CY, Helpern JA, Jensen JH. Mapping the Orientation of White Matter Fiber Bundles: A Comparative Study of Diffusion Tensor Imaging, Diffusional Kurtosis Imaging, and Diffusion Spectrum Imaging. AJNR Am J Neuroradiol 2016; 37:1216-22. [PMID: 26939628 DOI: 10.3174/ajnr.a4714] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/30/2015] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND PURPOSE White matter fiber tractography relies on fiber bundle orientation estimates from diffusion MR imaging. However, clinically feasible techniques such as DTI and diffusional kurtosis imaging use assumptions, which may introduce error into in vivo orientation estimates. In this study, fiber bundle orientations from DTI and diffusional kurtosis imaging are compared with diffusion spectrum imaging as a criterion standard to assess the performance of each technique. MATERIALS AND METHODS For each subject, full DTI, diffusional kurtosis imaging, and diffusion spectrum imaging datasets were acquired during 2 independent sessions, and fiber bundle orientations were estimated by using the specific theoretic assumptions of each technique. Angular variability and angular error measures were assessed by comparing the orientation estimates. Tractography generated with each of the 3 reconstructions was also examined and contrasted. RESULTS Orientation estimates from all 3 techniques had comparable angular reproducibility, but diffusional kurtosis imaging decreased angular error throughout the white matter compared with DTI. Diffusion spectrum imaging and diffusional kurtosis imaging enabled the detection of crossing-fiber bundles, which had pronounced effects on tractography relative to DTI. Diffusion spectrum imaging had the highest sensitivity for detecting crossing fibers; however, the diffusion spectrum imaging and diffusional kurtosis imaging tracts were qualitatively similar. CONCLUSIONS Fiber bundle orientation estimates from diffusional kurtosis imaging have less systematic error than those from DTI, which can noticeably affect tractography. Moreover, tractography obtained with diffusional kurtosis imaging is qualitatively comparable with that of diffusion spectrum imaging. Because diffusional kurtosis imaging has a shorter typical scan time than diffusion spectrum imaging, diffusional kurtosis imaging is potentially more suitable for a variety of clinical and research applications.
Collapse
Affiliation(s)
- G R Glenn
- From the Center for Biomedical Imaging (G.R.G., C.-Y.L., J.A.H., J.H.J.) Department of Neurosciences (G.R.G., J.A.H.) Department of Radiology and Radiological Science (G.R.G., C.-Y.L., J.A.H., J.H.J.), Medical University of South Carolina, Charleston, South Carolina
| | - L-W Kuo
- Institute of Biomedical Engineering and Nanomedicine (L.-W.K.), National Health Research Institutes, Miaoli County, Taiwan
| | - Y-P Chao
- Graduate Institute of Medical Mechatronics (Y.-P.C.), Chang Gung University, Taoyuan, Taiwan
| | - C-Y Lee
- From the Center for Biomedical Imaging (G.R.G., C.-Y.L., J.A.H., J.H.J.) Department of Radiology and Radiological Science (G.R.G., C.-Y.L., J.A.H., J.H.J.), Medical University of South Carolina, Charleston, South Carolina
| | - J A Helpern
- From the Center for Biomedical Imaging (G.R.G., C.-Y.L., J.A.H., J.H.J.) Department of Neurosciences (G.R.G., J.A.H.) Department of Radiology and Radiological Science (G.R.G., C.-Y.L., J.A.H., J.H.J.), Medical University of South Carolina, Charleston, South Carolina
| | - J H Jensen
- From the Center for Biomedical Imaging (G.R.G., C.-Y.L., J.A.H., J.H.J.) Department of Radiology and Radiological Science (G.R.G., C.-Y.L., J.A.H., J.H.J.), Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
45
|
Kurz KD, Ringstad G, Odland A, Advani R, Farbu E, Kurz MW. Radiological imaging in acute ischaemic stroke. Eur J Neurol 2016; 23 Suppl 1:8-17. [PMID: 26563093 DOI: 10.1111/ene.12849] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/03/2015] [Indexed: 11/28/2022]
Abstract
Patients who suffer acute ischaemic stroke can be treated with thrombolysis if therapy is initiated early. Radiological evaluation of the intracranial tissue before such therapy can be given is mandatory. In this review current radiological diagnostic strategies are discussed for this patient group. Beyond non-enhanced computed tomography (CT), the standard imaging method for many years, more sophisticated CT stroke protocols including CT angiography and CT perfusion have been developed, and additionally an increasing number of patients are examined with magnetic resonance imaging as the first imaging method used. Advantages and challenges of the different methods are discussed.
Collapse
Affiliation(s)
- K D Kurz
- Department of Radiology, Stavanger University Hospital, Stavanger, Norway.,Radiologic Research Group, Stavanger University Hospital, Stavanger, Norway
| | - G Ringstad
- Department of Radiology and Nuclear Imaging, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - A Odland
- Department of Radiology, Stavanger University Hospital, Stavanger, Norway.,Radiologic Research Group, Stavanger University Hospital, Stavanger, Norway
| | - R Advani
- Department of Neurology, Stavanger University Hospital, Stavanger, Norway.,Neuroscience Research Group, Stavanger University Hospital, Stavanger, Norway
| | - E Farbu
- Department of Neurology, Stavanger University Hospital, Stavanger, Norway.,Neuroscience Research Group, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Medicine, Haukeland University Hospital, Bergen, Norway
| | - M W Kurz
- Department of Neurology, Stavanger University Hospital, Stavanger, Norway.,Neuroscience Research Group, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
46
|
Suo S, Cao M, Zhu W, Li L, Li J, Shen F, Zu J, Zhou Z, Zhuang Z, Qu J, Chen Z, Xu J. Stroke assessment with intravoxel incoherent motion diffusion-weighted MRI. NMR IN BIOMEDICINE 2016; 29:320-328. [PMID: 26748572 DOI: 10.1002/nbm.3467] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
Intravoxel incoherent motion (IVIM) diffusion-weighted MRI can simultaneously measure diffusion and perfusion characteristics in a non-invasive way. This study aimed to determine the potential utility of IVIM in characterizing brain diffusion and perfusion properties for clinical stroke. The multi-b-value diffusion-weighted images of 101 patients diagnosed with acute/subacute ischemic stroke were retrospectively evaluated. The diffusion coefficient D, representing the water apparent diffusivity, was obtained by fitting the diffusion data with increasing high b-values to a simple mono-exponential model. The IVIM-derived perfusion parameters, pseudodiffusion coefficient D*, vascular volume fraction f and blood flow-related parameter fD*, were calculated with the bi-exponential model. Additionally, the apparent diffusion coefficient (ADC) was fitted according to the mono-exponential model using all b-values. The diffusion parameters for the ischemic lesion and normal contralateral region were measured in each patient. Statistical analysis was performed using the paired Student t-test and Pearson correlation test. Diffusion data in both the ischemic lesion and normal contralateral region followed the IVIM bi-exponential behavior, and the IVIM model showed better goodness of fit than the mono-exponential model with lower Akaike information criterion values. The paired Student t-test revealed significant differences for all diffusion parameters (all P < 0.001) except D* (P = 0.218) between ischemic and normal areas. For all patients in both ischemic and normal regions, ADC was significantly positively correlated with D (both r = 1, both P < 0.001) and f (r = 0.541, P < 0.001; r = 0.262, P = 0.008); significant correlation was also found between ADC and fD* in the ischemic region (r = 0.254, P = 0.010). For all pixels within the region of interest from a representative subject in both ischemic and normal regions, ADC was significantly positively correlated with D (both r = 1, both P < 0.001), f (r = 0.823, P < 0.001; r = 0.652, P < 0.001) and fD* (r = 0.294, P < 0.001; r = 0.340, P < 0.001). These findings may have clinical implications for the use of IVIM imaging in the assessment and management of acute/subacute stroke patients. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shiteng Suo
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengqiu Cao
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqiu Zhu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Li
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Li
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Shen
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinyan Zu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zien Zhou
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiguo Zhuang
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | - Zengai Chen
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianrong Xu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
47
|
Dayan M, Monohan E, Pandya S, Kuceyeski A, Nguyen TD, Raj A, Gauthier SA. Profilometry: A new statistical framework for the characterization of white matter pathways, with application to multiple sclerosis. Hum Brain Mapp 2015; 37:989-1004. [PMID: 26667008 DOI: 10.1002/hbm.23082] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/18/2015] [Accepted: 11/30/2015] [Indexed: 01/22/2023] Open
Abstract
AIMS describe a new "profilometry" framework for the multimetric analysis of white matter tracts, and demonstrate its application to multiple sclerosis (MS) with radial diffusivity (RD) and myelin water fraction (MWF). METHODS A cohort of 15 normal controls (NC) and 141 MS patients were imaged with T1, T2 FLAIR, T2 relaxometry and diffusion MRI (dMRI) sequences. T1 and T2 FLAIR allowed for the identification of patients having lesion(s) on the tracts studied, with a special focus on the forceps minor. T2 relaxometry provided MWF maps, while dMRI data yielded RD maps and the tractography required to compute MWF and RD tract profiles. The statistical framework combined a multivariate analysis of covariance (MANCOVA) and a linear discriminant analysis (LDA) both accounting for age and gender, with multiple comparison corrections. RESULTS In the single-case case study the profilometry visualization showed a clear departure of MWF and RD from the NC normative data at the lesion location(s). Group comparison from MANCOVA demonstrated significant differences at lesion locations, and a significant age effect in several tracts. The follow-up LDA analysis suggested MWF better discriminates groups than RD. DISCUSSION AND CONCLUSION While progress has been made in both tract-profiling and metrics for white matter characterization, no single framework for a joint analysis of multimodality tract profiles accounting for age and gender is known to exist. The profilometry analysis and visualization appears to be a promising method to compare groups using a single score from MANCOVA while assessing the contribution of each metric with LDA.
Collapse
Affiliation(s)
- Michael Dayan
- Weill Cornell Medicine, Deparment of Radiology, New York, NY
| | | | - Sneha Pandya
- Weill Cornell Medicine, Deparment of Radiology, New York, NY
| | - Amy Kuceyeski
- Weill Cornell Medicine, Deparment of Radiology, New York, NY.,Weill Cornell Medicine, Brain and Mind Research Institute, New York, NY
| | - Thanh D Nguyen
- Weill Cornell Medicine, Deparment of Radiology, New York, NY
| | - Ashish Raj
- Weill Cornell Medicine, Deparment of Radiology, New York, NY.,Weill Cornell Medicine, Brain and Mind Research Institute, New York, NY
| | - Susan A Gauthier
- Weill Cornell Medicine, Deparment of Neurology, New York, NY.,Weill Cornell Medicine, Brain and Mind Research Institute, New York, NY
| |
Collapse
|
48
|
Gatidis S, Schmidt H, Martirosian P, Nikolaou K, Schwenzer NF. Apparent diffusion coefficient-dependent voxelwise computed diffusion-weighted imaging: An approach for improving SNR and reducing T2 shine-through effects. J Magn Reson Imaging 2015; 43:824-32. [PMID: 26348708 DOI: 10.1002/jmri.25044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/24/2015] [Indexed: 01/08/2023] Open
Abstract
PURPOSE To introduce and evaluate a method for signal-to-noise ratio (SNR) improvement and T2 shine-through effect reduction in diffusion-weighted magnetic resonance imaging (DWI). MATERIALS AND METHODS The proposed method uses quantitative information given by the voxel apparent diffusion coefficient (ADC) to derive voxelwise-computed DWI (vcDWI). Behavior of signal intensity variations was simulated and correlated with measurements using a dedicated phantom for DWI allowing for independent adjustment of T2 -relaxivity and diffusivity. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were measured and compared to the method of computed DWI (cDWI). Image signal was correlated with ADCs to appreciate the extent of T2 shine-through effects. Additionally, the proposed method was retrospectively applied to whole-body DWI data of 20 patients with metastatic malignancies. vcDWI was compared to cDWI and measured DWI with respect to image quality, lesion detectability, and lesion diffusivity assessment. RESULTS Theoretically predicted signal intensity variations showed a high correlation with measured phantom data (r > 0.96). The proposed method yielded lower background signal intensity variation and higher contrast (+144%) and CNR (+358%) for diffusion-restricted phantom compartments than cDWI. Signal intensities of vcDWI showed an increased inverse correlation with phantom ADC values compared to cDWI (r = -0.86 vs. r = -0.73). Application to patient data showed higher image quality (P < 0.001) and lesion detectability (P = 0.011) using vcDWI compared to cDWI, and higher confidence for the correct identification of diffusion-restricted lesions compared to measured DWI (80/80 vs. 60/81; P = 0.013). CONCLUSION vcDWI is a promising approach for the reduction of T2 shine-through effects and improvement of SNR and CNR in DWI. The clinical significance of these improvements, especially regarding lesion detection, needs to be evaluated in larger prospective clinical studies.
Collapse
Affiliation(s)
- Sergios Gatidis
- Department of Radiology, Diagnostic and Interventional Radiology, Eberhard-Karls-University, Tübingen, Germany
| | - Holger Schmidt
- Department of Radiology, Diagnostic and Interventional Radiology, Eberhard-Karls-University, Tübingen, Germany
| | - Petros Martirosian
- Department of Radiology, Diagnostic and Interventional Radiology, Section on Experimental Radiology, Eberhard-Karls-University, Tübingen, Germany
| | - Konstantin Nikolaou
- Department of Radiology, Diagnostic and Interventional Radiology, Eberhard-Karls-University, Tübingen, Germany
| | - Nina F Schwenzer
- Department of Radiology, Diagnostic and Interventional Radiology, Eberhard-Karls-University, Tübingen, Germany
| |
Collapse
|
49
|
Quddus A, Lawlor M, Siddiqui A, Holmes P, Plant GT. Using Diffusion-Weighted Magnetic Resonance Imaging to Confirm a Diagnosis of Posterior Ischaemic Optic Neuropathy: Two Case Reports and Literature Review. Neuroophthalmology 2015; 39:161-165. [PMID: 27928349 DOI: 10.3109/01658107.2015.1021054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 02/11/2015] [Accepted: 02/16/2015] [Indexed: 12/29/2022] Open
Abstract
Posterior ischaemic optic neuropathy is a rare cause of visual loss believed to be due to infarction in the territory of the pial branches of the ophthalmic artery. The disorder most commonly occurs in the context of prolonged surgery or giant cell arteritis, and the absence of clinical signs in the eye means that the diagnosis is one of exclusion. Here, we present two cases studies of patients who developed posterior ischaemic optic neuropathy confirmed by the observation of secondary changes on diffusion-weighted imaging sequences. In the first case visual loss followed robotic pelvic surgery, and in the second case it was associated with multiorgan dysfunction secondary to severe pancreatitis. Our cases demonstrate that in the right clinical context, diffusion-weighted imaging can provide a positive diagnosis of acute posterior ischaemic optic nerve injury in the acute phase.
Collapse
Affiliation(s)
- Ayyaz Quddus
- Royal Free London Hospital , London, United Kingdom
| | - Mitchell Lawlor
- Department of Clinical Ophthalmology, University of Sydney , Sydney, Australia , and
| | - Ata Siddiqui
- Guys and St. Thomas' Hospital , London, United Kingdom
| | - Paul Holmes
- Guys and St. Thomas' Hospital , London, United Kingdom
| | | |
Collapse
|
50
|
Morgan CD, Stephens M, Zuckerman SL, Waitara MS, Morone PJ, Dewan MC, Mocco J. Physiologic imaging in acute stroke: Patient selection. Interv Neuroradiol 2015; 21:499-510. [PMID: 26063695 DOI: 10.1177/1591019915587227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Treatment of acute stroke is changing, as endovascular intervention becomes an important adjunct to tissue plasminogen activator. An increasing number of sophisticated physiologic imaging techniques have unique advantages and applications in the evaluation, diagnosis, and treatment-decision making of acute ischemic stroke. In this review, we first highlight the strengths, weaknesses, and possible indications for various stroke imaging techniques. How acute imaging findings in each modality have been used to predict functional outcome is discussed. Furthermore, there is an increasing emphasis on using these state-of-the-art imaging modalities to offer maximal patient benefit through IV therapy, endovascular thrombolytics, and clot retrieval. We review the burgeoning literature in the determination of stroke treatment based on acute, physiologic imaging findings.
Collapse
Affiliation(s)
- Clinton D Morgan
- Department of Neurological Surgery, Vanderbilt University School of Medicine, USA
| | | | - Scott L Zuckerman
- Department of Neurological Surgery, Vanderbilt University School of Medicine, USA
| | | | - Peter J Morone
- Department of Neurological Surgery, Vanderbilt University School of Medicine, USA
| | - Michael C Dewan
- Department of Neurological Surgery, Vanderbilt University School of Medicine, USA
| | - J Mocco
- Department of Neurosurgery, Icahn School of Medicine at Mouth Sinai, USA
| |
Collapse
|