1
|
Sumbul‐Sekerci B, Velioglu HA, Sekerci A. Diabetes-related clinical and microstructural white matter changes in patients with Alzheimer's disease. Brain Behav 2024; 14:e3533. [PMID: 38715429 PMCID: PMC11077244 DOI: 10.1002/brb3.3533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
AIM Although there exists substantial epidemiological evidence indicating an elevated risk of dementia in individuals with diabetes, our understanding of the neuropathological underpinnings of the association between Type-2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) remains unclear. This study aims to unveil the microstructural brain changes associated with T2DM in AD and identify the clinical variables contributing to these changes. METHODS In this retrospective study involving 64 patients with AD, 31 individuals had concurrent T2DM. The study involved a comparative analysis of diffusion tensor imaging (DTI) images and clinical features between patients with and without T2DM. The FSL FMRIB software library was used for comprehensive preprocessing and tractography analysis of DTI data. After eddy current correction, the "bedpost" model was utilized to model diffusion parameters. Linear regression analysis with a stepwise method was used to predict the clinical variables that could lead to microstructural white matter changes. RESULTS We observed a significant impairment in the left superior longitudinal fasciculus (SLF) among patients with AD who also had T2DM. This impairment in patients with AD and T2DM was associated with an elevation in creatine levels. CONCLUSION The white matter microstructure in the left SLF appears to be sensitive to the impairment of kidney function associated with T2DM in patients with AD. The emergence of AD in association with T2DM may be driven by mechanisms distinct from the typical AD pathology. Compromised renal function in AD could potentially contribute to impaired white matter integrity.
Collapse
Affiliation(s)
- Betul Sumbul‐Sekerci
- Department of Clinical Pharmacy, Faculty of PharmacyBezmialem Vakıf UniversityIstanbulTurkey
| | - Halil Aziz Velioglu
- Center for Psychiatric NeuroscienceFeinstein Institutes for Medical ResearchManhassetNew YorkUSA
- Department of Neuroscience, Faculty of MedicineIstanbul Medipol UniversityIstanbulTurkey
| | - Abdusselam Sekerci
- Department of Internal Medicine, Faculty of MedicineBezmialem Vakif UniversityIstanbulTurkey
| |
Collapse
|
2
|
Zhang Y, Yin X, Chen YC, Chen H, Jin M, Ma Y, Yong W, Muthaiah VPK, Xia W, Yin X. Aberrant Brain Triple-Network Effective Connectivity Patterns in Type 2 Diabetes Mellitus. Diabetes Ther 2024; 15:1215-1229. [PMID: 38578396 PMCID: PMC11043308 DOI: 10.1007/s13300-024-01565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
INTRODUCTION Aberrant brain functional connectivity network is thought to be related to cognitive impairment in patients with type 2 diabetes mellitus (T2DM). This study aims to investigate the triple-network effective connectivity patterns in patients with T2DM within and between the default mode network (DMN), salience network (SN), and executive control network (ECN) and their associations with cognitive declines. METHODS In total, 92 patients with T2DM and 98 matched healthy controls (HCs) were recruited and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Spectral dynamic causal modeling (spDCM) was used for effective connectivity analysis within the triple network. The posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC), lateral prefrontal cortex (LPFC), supramarginal gyrus (SMG), and anterior insula (AINS) were selected as the regions of interest. Group comparisons were performed for effective connectivity calculated using the fully connected model, and the relationships between effective connectivity alterations and cognitive impairment as well as clinical parameters were detected. RESULTS Compared to HCs, patients with T2DM exhibited increased or decreased effective connectivity patterns within the triple network. Furthermore, diabetes duration was significantly negatively correlated with increased effective connectivity from the r-LPFC to the mPFC, while body mass index (BMI) was significantly positively correlated with increased effective connectivity from the l-LPFC to the l-AINS (r = - 0.353, p = 0.001; r = 0.377, p = 0.004). CONCLUSION These results indicate abnormal effective connectivity patterns within the triple network model in patients with T2DM and provide new insight into the neurological mechanisms of T2DM and related cognitive dysfunction.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Xiao Yin
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Mingxu Jin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Yuehu Ma
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Wei Yong
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | | | - Wenqing Xia
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China.
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China.
| |
Collapse
|
3
|
Xu K, Wang J, Liu G, Yan J, Chang M, Jiang L, Zhang J. Altered dynamic effective connectivity of the default mode network in type 2 diabetes. Front Neurol 2024; 14:1324988. [PMID: 38288329 PMCID: PMC10822894 DOI: 10.3389/fneur.2023.1324988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Introduction Altered functional connectivity of resting-state functional magnetic resonance imaging (rs-fMRI) within default mode network (DMN) regions has been verified to be closely associated with cognitive decline in patients with Type 2 diabetes mellitus (T2DM), but most studies neglected the fluctuations of brain activities-the dynamic effective connectivity (DEC) within DMN of T2DM is still unknown. Methods For the current investigation, 40 healthy controls (HC) and 36 T2DM patients have been recruited as participants. To examine the variation of DEC between T2DM and HC, we utilized the methodologies of independent components analysis (ICA) and multivariate granger causality analysis (mGCA). Results We found altered DEC within DMN only show decrease in state 1. In addition, the causal information flow of diabetic patients major affected areas which are closely associated with food craving and metabolic regulation, and T2DM patients stayed longer in low activity level and exhibited decreased transition rate between states. Moreover, these changes related negatively with the MoCA scores and positively with HbA1C level. Conclusion Our study may offer a fresh perspective on brain dynamic activities to understand the mechanisms underlying T2DM-related cognitive deficits.
Collapse
Affiliation(s)
- Kun Xu
- Second Clinical School, Lanzhou University, Lanzhou, China
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| | - Jun Wang
- Second Clinical School, Lanzhou University, Lanzhou, China
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiahao Yan
- Second Clinical School, Lanzhou University, Lanzhou, China
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| | - Miao Chang
- Second Clinical School, Lanzhou University, Lanzhou, China
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| | - Linzhen Jiang
- Second Clinical School, Lanzhou University, Lanzhou, China
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
4
|
Wang Q, Hou C, Jiang X, Li H. Alterations of spontaneous brain activity in type 2 diabetes mellitus without mild cognitive impairment: a resting-state functional magnetic resonance study. Front Hum Neurosci 2024; 17:1305571. [PMID: 38273877 PMCID: PMC10808360 DOI: 10.3389/fnhum.2023.1305571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) has been demonstrated an increased risk factor of cognitive impairment or even dementia. Kinds of resting-state functional magnetic resonance imaging indices have been proposed and used to investigate the brain mechanism underlying diabetic cognitive impairment. This study aimed to explore the early changes in spontaneous neural activity among T2DM patients without cognitive impairment by means of multiple rs-fMRI indices. Methods T2DM patients without cognitive impairment and age-, sex-, and education matched control subjects were included in this study. Three rs-fMRI indices, namely amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo) and voxel-mirrored homotopic connectivity (VMHC) were computed after image pre-processing. The Montreal Cognitive Assessment (MoCA) was performed to distinguish normal cognition. Brain volume was also evaluated. Correlation analyses were conducted to explore any relationship among rs-fMRI indices and clinical characteristics. Results The T2DM patients were detected significantly decreased neural activity in right angular and left prefrontal gyrus including middle and superior frontal gyrus. Increased activities were also observed in left caudate and the supplementary motor area. No correlation between rs-fMRI indices and clinical characteristics was survived after multiple comparison correction. But we observed a significant, but decreased correlation between ALFF and ReHo values in the reported brain areas. Conclusion The combination of ALFF, ReHo and VMHC analyses demonstrated abnormal spontaneous neural activity in brain regions which were reported in T2DM patients without cognitive impairment. These results may enhance our understanding of the diabetic brain changes at the early stage.
Collapse
Affiliation(s)
| | | | | | - Hongjun Li
- Department of Radiology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Guimarães P, Serranho P, Duarte JV, Crisóstomo J, Moreno C, Gomes L, Bernardes R, Castelo-Branco M. The hemodynamic response function as a type 2 diabetes biomarker: a data-driven approach. Front Neuroinform 2024; 17:1321178. [PMID: 38250018 PMCID: PMC10796780 DOI: 10.3389/fninf.2023.1321178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction There is a need to better understand the neurophysiological changes associated with early brain dysfunction in Type 2 diabetes mellitus (T2DM) before vascular or structural lesions. Our aim was to use a novel unbiased data-driven approach to detect and characterize hemodynamic response function (HRF) alterations in T2DM patients, focusing on their potential as biomarkers. Methods We meshed task-based event-related (visual speed discrimination) functional magnetic resonance imaging with DL to show, from an unbiased perspective, that T2DM patients' blood-oxygen-level dependent response is altered. Relevance analysis determined which brain regions were more important for discrimination. We combined explainability with deconvolution generalized linear model to provide a more accurate picture of the nature of the neural changes. Results The proposed approach to discriminate T2DM patients achieved up to 95% accuracy. Higher performance was achieved at higher stimulus (speed) contrast, showing a direct relationship with stimulus properties, and in the hemispherically dominant left visual hemifield, demonstrating biological interpretability. Differences are explained by physiological asymmetries in cortical spatial processing (right hemisphere dominance) and larger neural signal-to-noise ratios related to stimulus contrast. Relevance analysis revealed the most important regions for discrimination, such as extrastriate visual cortex, parietal cortex, and insula. These are disease/task related, providing additional evidence for pathophysiological significance. Our data-driven design allowed us to compute the unbiased HRF without assumptions. Conclusion We can accurately differentiate T2DM patients using a data-driven classification of the HRF. HRF differences hold promise as biomarkers and could contribute to a deeper understanding of neurophysiological changes associated with T2DM.
Collapse
Affiliation(s)
- Pedro Guimarães
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
| | - Pedro Serranho
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- Department of Sciences and Technology, Universidade Aberta, Lisbon, Portugal
| | - João V. Duarte
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- University of Coimbra, Faculty of Medicine (FMUC), Coimbra, Portugal
| | - Joana Crisóstomo
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
| | - Carolina Moreno
- Department of Endocrinology, University Hospital of Coimbra (CHUC), Coimbra, Portugal
| | - Leonor Gomes
- Department of Endocrinology, University Hospital of Coimbra (CHUC), Coimbra, Portugal
| | - Rui Bernardes
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- University of Coimbra, Clinical Academic Center of Coimbra (CACC), Faculty of Medicine (FMUC), Coimbra, Portugal
| | - Miguel Castelo-Branco
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- University of Coimbra, Clinical Academic Center of Coimbra (CACC), Faculty of Medicine (FMUC), Coimbra, Portugal
| |
Collapse
|
6
|
Asano S, Ogawa A, Osada T, Oka S, Nakajima K, Oshima Y, Tanaka S, Kaga H, Tamura Y, Watada H, Kawamori R, Konishi S. Reduced gray matter volume in the default-mode network associated with insulin resistance. Cereb Cortex 2023; 33:11225-11234. [PMID: 37757477 DOI: 10.1093/cercor/bhad358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Insulin resistance may lead to structural and functional abnormalities of the human brain. However, the mechanism by which insulin resistance impairs the brain remains elusive. In this study, we used two large neuroimaging databases to investigate the brain regions where insulin resistance was associated with the gray matter volume and to examine the resting-state functional connectivity between these brain regions and each hypothalamic nucleus. Insulin resistance was associated with reduced gray matter volume in the regions of the default-mode and limbic networks in the cerebral cortex in older adults. Resting-state functional connectivity was prominent between these networks and the paraventricular nucleus of the hypothalamus, a hypothalamic interface connecting functionally with the cerebral cortex. Furthermore, we found a significant correlation in these networks between insulin resistance-related gray matter volume reduction and network paraventricular nucleus of the hypothalamus resting-state functional connectivity. These results suggest that insulin resistance-related gray matter volume reduction in the default-mode and limbic networks emerged through metabolic homeostasis mechanisms in the hypothalamus.
Collapse
Affiliation(s)
- Saki Asano
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akitoshi Ogawa
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Satoshi Oka
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Koji Nakajima
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasushi Oshima
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideyoshi Kaga
- Department of Metabolism and Endocrinology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshifumi Tamura
- Department of Metabolism and Endocrinology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ryuzo Kawamori
- Department of Metabolism and Endocrinology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Seiki Konishi
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine , 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Advanced Research Institute for Health Science, Juntendo University School of Medicine , 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
7
|
Shearrer GE. The Interaction of Glycemia with Anxiety and Depression Is Related to Altered Cerebellar and Cerebral Functional Correlations. Brain Sci 2023; 13:1086. [PMID: 37509016 PMCID: PMC10377615 DOI: 10.3390/brainsci13071086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Depression, type 2 diabetes (T2D), and obesity are comorbid, and prevention and treatment of all three diseases are needed. We hypothesized an inverse relationship between the connectivity of the cingulo-opercular task control network with the somatosensory mouth network and the interaction between HbA1c and depression. Three-hundred and twenty-five participants (BMI: 26.11 ± 0.29; Achenbach adult self-report (ASR) DSM depressive problems T-score (depression): 54.60 ± 6.77; Age: 28.26 ± 3.90 y; adult self-report anxiety and depression scale (anxiety and depression): 54.69 ± 7.27; HbA1c: 5.26 ± 0.29; 68% white) were sampled from the Human Connectome Project 1200 subjects PTN release. Inclusion criteria were: four (15 min) resting state fMRI scans; BMI; hemoglobin A1c (HbA1c); and complete adult self-report data. The following models were run to assess the connectivity between 15 independent fMRI components: the interaction of depression with HbA1c; anxiety and depression with HbA1c; depression with BMI; and anxiety and depression with BMI. All models were corrected for a reported number of depressive symptoms, head motion in the scanner, age, and race. Functional connectivity was modeled in FSLNets. Corrected significance was set at pFWE < 0.05. The interaction HbA1c and anxiety and depression was positively related to the connectivity of the cerebellum with the visual network (t = 3.76, pFWE = 0.008), frontoparietal network (t = 3.45, pFWE = 0.02), and somatosensory mouth network (t = 4.29, pFWE = 0.0004). Although our hypotheses were not supported, similar increases in cerebellar connectivity are seen in patients with T2D and overall suggest that the increased cerebellar connectivity may be compensatory for an increasingly poor glycemic control.
Collapse
Affiliation(s)
- Grace E Shearrer
- Department of Family and Consumer Sciences, Neuroscience Program, School of Computing, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82070, USA
| |
Collapse
|
8
|
Solis-Urra P, Esteban-Cornejo I, Mora-Gonzalez J, Stillman C, Contreras-Rodriguez O, Erickson KI, Catena A, Ortega FB. Early life factors and hippocampal functional connectivity in children with overweight/obesity. Pediatr Obes 2023; 18:e12998. [PMID: 36573637 PMCID: PMC11225616 DOI: 10.1111/ijpo.12998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE We investigated the association of anthropometric neonatal data (birth length and birth weight) and breastfeeding practices (exclusive and any breastfeeding) with hippocampal functional connectivity and its academic implication in children with overweight/obesity. METHODS Ninety six children with overweight/obesity aged 8-11 years (10.01 ± 1.14), from the ActiveBrains project were included in this cross-sectional study. Anthropometric neonatal data were collected from birth records, whereas breastfeeding practices were reported by parents. A 3.0 Tesla Siemens Magnetom Tim Trio system was used to acquire T1-weighted and resting-state functional magnetic resonance images. Academic performance was assessed by the Woodcock-Muñoz standardized test. Hippocampal seed-based methods with post-hoc regression analyses were performed. Analyses were considered significant when surpassing Family-Wise Error corrections. RESULTS Birth weight showed a positive association with the connectivity between the hippocampus and the pre- and postcentral gyri, and the cerebellum. In addition, breastfeeding was negatively associated with the connectivity between the hippocampus and the primary motor cortex and the angular gyrus. Any breastfeeding, in turn, showed a positive association with the connectivity between the hippocampus and the middle temporal gyrus. None of the connectivity outcomes related to early life factors was coupled with better academic abilities (all p > 0.05). CONCLUSIONS Our findings suggest that birth weight at birth and breastfeeding are associated with hippocampal connectivity in children with overweight/obesity. Despite this, how the results relate to academic performance remains a matter of speculation. Our findings suggest that clinicians should recognize the importance early life factors for potentially avoiding consequences on offspring's brain development.
Collapse
Affiliation(s)
- Patricio Solis-Urra
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Nuclear Medicine Services, “Virgen de Las Nieves”, University Hospital, Granada, Spain
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar, Chile
| | - Irene Esteban-Cornejo
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Mora-Gonzalez
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Chelsea Stillman
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Oren Contreras-Rodriguez
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), and CIBERSAM, Girona, Spain
- Department of Psychiatry and Legal Medicine, Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Kirk I. Erickson
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- AdventHealth Research Institute, Orlando, Florida, USA
| | - Andrés Catena
- School of Psychology, University of Granada, Granada, Spain
| | - Francisco B. Ortega
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
9
|
Duarte JV, Guerra C, Moreno C, Gomes L, Castelo-Branco M. Changes in hemodynamic response function components reveal specific changes in neurovascular coupling in type 2 diabetes. Front Physiol 2023; 13:1101470. [PMID: 36703928 PMCID: PMC9872943 DOI: 10.3389/fphys.2022.1101470] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is a metabolic disease that leads to multiple vascular complications with concomitant changes in human neurophysiology, which may lead to long-term cognitive impairment, and dementia. Early impairments of neurovascular coupling can be studied using event-related functional magnetic resonance imaging (fMRI) designs. Here, we aimed to characterize the changes in the hemodynamic response function (HRF) in T2DM to probe components from the initial dip to late undershoot. We investigated whether the HRF morphology is altered throughout the brain in T2DM, by extracting several parameters of the fMRI response profiles in 141 participants (64 patients with T2DM and 77 healthy controls) performing a visual motion discrimination task. Overall, the patients revealed significantly different HRFs, which extended to all brain regions, suggesting that this is a general phenomenon. The HRF in T2DM was found to be more sluggish, with a higher peak latency and lower peak amplitude, relative slope to peak, and area under the curve. It also showed a pronounced initial dip, suggesting that the initial avidity for oxygen is not compensated for, and an absent or less prominent but longer undershoot. Most HRF parameters showed a higher dispersion and variability in T2DM. In sum, we provide a definite demonstration of an impaired hemodynamic response function in the early stages of T2DM, following a previous suggestion of impaired neurovascular coupling. The quantitative demonstration of a significantly altered HRF morphology in separate response phases suggests an alteration of distinct physiological mechanisms related to neurovascular coupling, which should be considered in the future to potentially halt the deterioration of the brain function in T2DM.
Collapse
Affiliation(s)
- João Valente Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Intelligent Systems Associate Laboratory (LASI), Coimbra, Portugal
| | - Catarina Guerra
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Carolina Moreno
- Service of Endocrinology, Diabetes and Metabolism, Coimbra University Hospital, Coimbra, Portugal
| | - Leonor Gomes
- Service of Endocrinology, Diabetes and Metabolism, Coimbra University Hospital, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Intelligent Systems Associate Laboratory (LASI), Coimbra, Portugal,*Correspondence: Miguel Castelo-Branco,
| |
Collapse
|
10
|
Zhang G, Liu T, Wei W, Zhang R, Wang H, Wang M. Evaluation of altered brain activity in type 2 diabetes using various indices of brain function: A resting-state functional magnetic resonance imaging study. Front Hum Neurosci 2023; 16:1032264. [PMID: 36699964 PMCID: PMC9870028 DOI: 10.3389/fnhum.2022.1032264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) has been identified as a risk factor that increases the rate of cognitive decline. Previous studies showed that patients with T2DM had brain function alterations based on a single index of resting-state functional magnetic resonance imaging (rs-fMRI). The present study aimed to explore spontaneous brain activity in patients with T2DM by comparing various rs-fMRI indices, and to determine the relationship between these changes and cognitive dysfunction. Methods A total of 52 patients with T2DM and age- and sex-matched control participants were included in this study. The amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and voxel-mirrored homotopic connectivity (VMHC) values were calculated to represent the status of spontaneous neural activity. The Montreal Cognitive Assessment (MoCA) was used for the rapid evaluation of cognition in all subjects. Pearson correlation and mediation analyses were conducted to investigate the relationship between rs-fMRI indices and clinical parameters such as fasting glucose, disease duration, and MoCA. Results Patients with T2DM had alterations of concordant spontaneous brain activity in brain areas including the bilateral cerebellum posterior lobe, the left inferior temporal gyrus (ITG.L), the parahippocampal gyrus, and the left supplementary motor area (SMA.L). The indices were significantly correlated to each other in most of the detected brain areas. Positive correlations were observed between fasting glucose and neural activity in the surrounding areas of the left insula and the inferior frontal gyrus. MoCA scores were negatively correlated with the ReHo values extracted from the left anterior occipital lobe and the superior cerebellar cortex and were positively correlated with VMHC values extracted from the left caudate and the precentral gyrus (PreCG). No significant mediation effect of abnormal brain activity was found in the relationship between clinical parameters and MoCA scores. Conclusion The current study demonstrated the functional concordance of abnormal brain activities in patients with T2DM by comparing ALFF, ReHo, and VMHC measurements. Widespread abnormalities mainly involved in motor and sensory processing functions may provide insight into examining T2DM-related neurological pathophysiology.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China,Department of Radiology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Taiyuan Liu
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wei Wei
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Rui Zhang
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Huilin Wang
- Department of Radiology, Bethune International Peace Hospital, Shijiazhuang, China,*Correspondence: Huilin Wang ✉
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China,Laboratory of Brian Science and Brain-Like Intelligence Technology, Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China,Meiyun Wang ✉
| |
Collapse
|
11
|
Xia S, Zhang Y, Peng B, Hu X, Zhou L, Chen C, Lu C, Chen M, Pang C, Dai Y, Ji J. Detection of mild cognitive impairment in type 2 diabetes mellitus based on machine learning using privileged information. Neurosci Lett 2022; 791:136908. [DOI: 10.1016/j.neulet.2022.136908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 01/21/2023]
|
12
|
Deng L, Liu H, Liu W, Liao Y, Liang Q, Wang W. Alteration in topological organization characteristics of gray matter covariance networks in patients with prediabetes. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:1375-1384. [PMID: 36411688 PMCID: PMC10930362 DOI: 10.11817/j.issn.1672-7347.2022.220085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Prediabetes is associated with an increased risk of cognitive impairment and neurodegenerative diseases. However, the exact mechanism of prediabetes-related brain diseases has not been fully elucidated. The brain structure of patients with prediabetes has been damaged to varying degrees, and these changes may affect the topological characteristics of large-scale brain networks. The structural covariance of connected gray matter has been demonstrated valuable in inferring large-scale structural brain networks. The alterations of gray matter structural covariance networks in prediabetes remain unclear. This study aims to examine the topological features and robustness of gray matter structural covariance networks in prediabetes. METHODS A total of 48 subjects were enrolled in this study, including 23 patients with prediabetes (the PD group) and 25 age-and sex-matched healthy controls (the Ctr group). All subjects' high-resolution 3D T1 images of the brain were collected by a 3.0 Tesla MR machine. Mini-mental state examination was used to evaluate the cognitive status of each subject. We calculated the gray matter volume of 116 brain regions with automated anatomical labeling (AAL) template, and constructed gray matter structural covariance networks by thresholding interregional structural correlation matrices as well as graph theoretical analysis. The area under the curve (AUC) in conjunction with permutation testing was employed for testing the differences in network measures, which included small world parameter (Sigma), normalized clustering coefficient (Gamma), normalized path length (Lambda), global efficiency, characteristic path length, local efficiency, mean clustering coefficient, and network robustness parameters. RESULTS The network in both groups followed small-world characteristics, showing that Sigma was greater than 1, the Lambda was much higher than 1, and Gamma was close to 1. Compared with the Ctr group, the network of the PD group showed increased Sigma, Lambda, and Gamma across a range of network sparsity. The Gamma of the PD group was significantly higher than that in the Ctr group in the network sparsity range of 0.12-0.16, but there was no difference between the 2 groups (all P>0.05). The grey matter network showed an increased characteristic path length and a decreased global efficiency in the PD group, but AUC analysis showed that there was no significant difference between groups (all P>0.05). For the network separation measures, the local efficiency and mean clustering coefficient of the gray matter network in the PD group were significantly increased and AUC analysis also confirmed it (P=0.001 and P=0.004, respectively). In addition, network robustness analysis showed that the grey matter network of the PD group was more vulnerable to random damage (P=0.001). CONCLUSIONS The prediabetic gray matter network shows an increased average clustering coefficient and local efficiency, and is more vulnerable to random damage than the healthy control, suggesting that the topological characteristics of the prediabetes grey matter covariant network have changed (network separation enhanced and network robustness reduced), which may provide new insights into the brain damage relevant to the disease.
Collapse
Affiliation(s)
- Lingling Deng
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Huasheng Liu
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wen Liu
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yunjie Liao
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qi Liang
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Wei Wang
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
13
|
Lin L, Zhang J, Liu Y, Hao X, Shen J, Yu Y, Xu H, Cong F, Li H, Wu J. Aberrant brain functional networks in type 2 diabetes mellitus: A graph theoretical and support-vector machine approach. Front Hum Neurosci 2022; 16:974094. [PMID: 36310847 PMCID: PMC9597867 DOI: 10.3389/fnhum.2022.974094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Type 2 diabetes mellitus (T2DM) is a high risk of cognitive decline and dementia, but the underlying mechanisms are not yet clearly understood. This study aimed to explore the functional connectivity (FC) and topological properties among whole brain networks and correlations with impaired cognition and distinguish T2DM from healthy controls (HC) to identify potential biomarkers for cognition abnormalities. Methods A total of 80 T2DM and 55 well-matched HC were recruited in this study. Subjects’ clinical data, neuropsychological tests and resting-state functional magnetic resonance imaging data were acquired. Whole-brain network FC were mapped, the topological characteristics were analyzed using a graph-theoretic approach, the FC and topological characteristics of the network were compared between T2DM and HC using a general linear model, and correlations between networks and clinical and cognitive characteristics were identified. The support vector machine (SVM) model was used to identify differences between T2DM and HC. Results In patients with T2DM, FC was higher in two core regions [precuneus/posterior cingulated cortex (PCC)_1 and later prefrontal cortex_1] in the default mode network and lower in bilateral superior parietal lobes (within dorsal attention network), and decreased between the right medial frontal cortex and left auditory cortex. The FC of the right frontal medial-left auditory cortex was positively correlated with the Montreal Cognitive Assessment scales and negatively correlated with the blood glucose levels. Long-range connectivity between bilateral auditory cortex was missing in the T2DM. The nodal degree centrality and efficiency of PCC were higher in T2DM than in HC (P < 0.005). The nodal degree centrality in the PCC in the SVM model was 97.56% accurate in distinguishing T2DM patients from HC, demonstrating the reliability of the prediction model. Conclusion Functional abnormalities in the auditory cortex in T2DM may be related to cognitive impairment, such as memory and attention, and nodal degree centrality in the PCC might serve as a potential neuroimaging biomarker to predict and identify T2DM.
Collapse
Affiliation(s)
- Lin Lin
- Graduate School, Tianjin Medical University, Tianjin, China
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jindi Zhang
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Yutong Liu
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Xinyu Hao
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
- Faculty of Information Technology, University of Jyvaskyla, Jyvaskyla, Finland
| | - Jing Shen
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yang Yu
- Department of Endocrinology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Huashuai Xu
- Faculty of Information Technology, University of Jyvaskyla, Jyvaskyla, Finland
| | - Fengyu Cong
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Huanjie Li
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
- Huanjie Li,
| | - Jianlin Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- *Correspondence: Jianlin Wu,
| |
Collapse
|
14
|
Li ZY, Ma T, Yu Y, Hu B, Han Y, Xie H, Ni MH, Chen ZH, Zhang YM, Huang YX, Li WH, Wang W, Yan LF, Cui GB. Changes of brain function in patients with type 2 diabetes mellitus measured by different analysis methods: A new coordinate-based meta-analysis of neuroimaging. Front Neurol 2022; 13:923310. [PMID: 36090859 PMCID: PMC9449648 DOI: 10.3389/fneur.2022.923310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022] Open
Abstract
Objective Neuroimaging meta-analysis identified abnormal neural activity alterations in patients with type 2 diabetes mellitus (T2DM), but there was no consistency or heterogeneity analysis between different brain imaging processing strategies. The aim of this meta-analysis was to determine consistent changes of regional brain functions in T2DM via the indicators obtained by using different post-processing methods. Methods Since the indicators obtained using varied post-processing methods reflect different neurophysiological and pathological characteristics, we further conducted a coordinate-based meta-analysis (CBMA) of the two categories of neuroimaging literature, which were grouped according to similar data processing methods: one group included regional homogeneity (ReHo), independent component analysis (ICA), and degree centrality (DC) studies, while the other group summarized the literature on amplitude of low-frequency fluctuation (ALFF) and cerebral blood flow (CBF). Results The final meta-analysis included 23 eligible trials with 27 data sets. Compared with the healthy control group, when neuroimaging studies were combined with ReHo, ICA, and DC measurements, the brain activity of the right Rolandic operculum, right supramarginal gyrus, and right superior temporal gyrus in T2DM patients decreased significantly. When neuroimaging studies were combined with ALFF and CBF measurements, there was no clear evidence of differences in the brain function between T2DM and HCs. Conclusion T2DM patients have a series of spontaneous abnormal brain activities, mainly involving brain regions related to learning, memory, and emotion, which provide early biomarkers for clarifying the mechanism of cognitive impairment and neuropsychiatric disorders in diabetes. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=247071, PROSPERO [CRD42021247071].
Collapse
Affiliation(s)
- Ze-Yang Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Teng Ma
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying Yu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bo Hu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu Han
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Xie
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Min-Hua Ni
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Faculty of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhu-Hong Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang-Ming Zhang
- Battalion of the Second Regiment of Cadets of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yu-Xiang Huang
- Battalion of the Second Regiment of Cadets of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wen-Hua Li
- Battalion of the Second Regiment of Cadets of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wen Wang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- *Correspondence: Guang-Bin Cui ;
| | - Lin-Feng Yan
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Lin-Feng Yan
| | - Guang-Bin Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Wen Wang
| |
Collapse
|
15
|
Meng J, Liu J, Li H, Gao Y, Cao L, He Y, Guo Y, Feng L, Hu X, Li H, Zhang C, He W, Wu Y, Huang X. Impairments in intrinsic functional networks in type 2 diabetes: A meta-analysis of resting-state functional connectivity. Front Neuroendocrinol 2022; 66:100992. [PMID: 35278579 DOI: 10.1016/j.yfrne.2022.100992] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/05/2022] [Accepted: 02/28/2022] [Indexed: 12/27/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with abnormal communication among large-scale brain networks, revealed by resting-state functional connectivity (rsFC), with inconsistent results between studies. We performed a meta-analysis of seed-based rsFC studies to identify consistent network connectivity alterations. Thirty-three datasets from 30 studies (1014 T2DM patients and 902 healthy controls [HC]) were included. Seed coordinates and between-group effects were extracted, and the seeds were divided into networks based on their location. Compared to HC, T2DM patients showed hyperconnectivity and hypoconnectivity within the DMN, DMN hypoconnectivity with the affective network (AN), ventral attention network (VAN) and frontal parietal network, and DMN hyperconnectivity with the VAN and visual network. T2DM patients also showed AN hypoconnectivity with the somatomotor network and hyperconnectivity with the VAN. T2DM illness durations negatively correlated with within-DMN rsFC. These DMN-centered impairments in large-scale brain networks in T2DM patients may help to explain the cognitive deficits associated with T2DM.
Collapse
Affiliation(s)
- Jinli Meng
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China; Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital. C.T.), No. 20, Xi Mian Qiao Heng Jie, Wuhou District, Chengdu, Sichuan, China
| | - Jing Liu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China; Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hailong Li
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China; Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yingxue Gao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China; Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lingxiao Cao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China; Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuanyuan He
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital. C.T.), No. 20, Xi Mian Qiao Heng Jie, Wuhou District, Chengdu, Sichuan, China
| | - Yongyue Guo
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital. C.T.), No. 20, Xi Mian Qiao Heng Jie, Wuhou District, Chengdu, Sichuan, China
| | - Li Feng
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital. C.T.), No. 20, Xi Mian Qiao Heng Jie, Wuhou District, Chengdu, Sichuan, China
| | - Xin Hu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital. C.T.), No. 20, Xi Mian Qiao Heng Jie, Wuhou District, Chengdu, Sichuan, China
| | - Hengyan Li
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital. C.T.), No. 20, Xi Mian Qiao Heng Jie, Wuhou District, Chengdu, Sichuan, China
| | - Chenghui Zhang
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital. C.T.), No. 20, Xi Mian Qiao Heng Jie, Wuhou District, Chengdu, Sichuan, China
| | - Wanlin He
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital. C.T.), No. 20, Xi Mian Qiao Heng Jie, Wuhou District, Chengdu, Sichuan, China
| | - Yunhong Wu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital. C.T.), No. 20, Xi Mian Qiao Heng Jie, Wuhou District, Chengdu, Sichuan, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China; Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Wu J, Kang S, Su J, Liu K, Fan L, Ma X, Tan X, Huang H, Feng Y, Chen Y, Lyu W, Zeng L, Qiu S, Hu D. Altered Functional Network Connectivity of Precuneus and Executive Control Networks in Type 2 Diabetes Mellitus Without Cognitive Impairment. Front Neurosci 2022; 16:887713. [PMID: 35833084 PMCID: PMC9271612 DOI: 10.3389/fnins.2022.887713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
In epidemiological studies, type 2 diabetes mellitus (T2DM) has been associated with cognitive impairment and dementia, but studies about functional network connectivity in T2DM without cognitive impairment are limited. This study aimed to explore network connectivity alterations that may help enhance our understanding of damage-associated processes in T2DM. MRI data were analyzed from 82 patients with T2DM and 66 normal controls. Clinical, biochemical, and neuropsychological assessments were conducted in parallel with resting-state functional magnetic resonance imaging, and the cognitive status of the patients was assessed using the Montreal Cognitive Assessment-B (MoCA-B) score. Independent component analysis revealed a positive correlation between the salience network and the visual network and a negative connection between the left executive control network and the default mode network in patients with T2DM. The differences in dynamic brain network connectivity were observed in the precuneus, visual, and executive control networks. Internal network connectivity was primarily affected in the thalamus, inferior parietal lobe, and left precuneus. Hemoglobin A1c level, body mass index, MoCA-B score, and grooved pegboard (R) assessments indicated significant differences between the two groups (p < 0.05). Our findings show that key changes in functional connectivity in diabetes occur in the precuneus and executive control networks that evolve before patients develop cognitive deficits. In addition, the current study provides useful information about the role of the thalamus, inferior parietal lobe, and precuneus, which might be potential biomarkers for predicting the clinical progression, assessing the cognitive function, and further understanding the neuropathology of T2DM.
Collapse
Affiliation(s)
- Jinjian Wu
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shangyu Kang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianpo Su
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Kai Liu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Liangwei Fan
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Xiaomeng Ma
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Tan
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoming Huang
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Feng
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuna Chen
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjiao Lyu
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingli Zeng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Shijun Qiu,
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
- Dewen Hu,
| |
Collapse
|
17
|
Croosu SS, Hansen TM, Brock B, Mohr Drewes A, Brock C, Frøkjær JB. Altered functional connectivity between brain structures in adults with type 1 diabetes and polyneuropathy. Brain Res 2022; 1784:147882. [DOI: 10.1016/j.brainres.2022.147882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 01/17/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022]
|
18
|
Shi AP, Yu Y, Hu B, Li YT, Wang W, Cui GB. Large-scale functional connectivity predicts cognitive impairment related to type 2 diabetes mellitus. World J Diabetes 2022; 13:110-125. [PMID: 35211248 PMCID: PMC8855139 DOI: 10.4239/wjd.v13.i2.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/10/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Large-scale functional connectivity (LSFC) patterns in the brain have unique intrinsic characteristics. Abnormal LSFC patterns have been found in patients with dementia, as well as in those with mild cognitive impairment (MCI), and these patterns predicted their cognitive performance. It has been reported that patients with type 2 diabetes mellitus (T2DM) may develop MCI that could progress to dementia. We investigated whether we could adopt LSFC patterns as discriminative features to predict the cognitive function of patients with T2DM, using connectome-based predictive modeling (CPM) and a support vector machine.
AIM To investigate the utility of LSFC for predicting cognitive impairment related to T2DM more accurately and reliably.
METHODS Resting-state functional magnetic resonance images were derived from 42 patients with T2DM and 24 healthy controls. Cognitive function was assessed using the Montreal Cognitive Assessment (MoCA). Patients with T2DM were divided into two groups, according to the presence (T2DM-C; n = 16) or absence (T2DM-NC; n = 26) of MCI. Brain regions were marked using Harvard Oxford (HOA-112), automated anatomical labeling (AAL-116), and 264-region functional (Power-264) atlases. LSFC biomarkers for predicting MoCA scores were identified using a new CPM technique. Subsequently, we used a support vector machine based on LSFC patterns for among-group differentiation. The area under the receiver operating characteristic curve determined the appearance of the classification.
RESULTS CPM could predict the MoCA scores in patients with T2DM (Pearson’s correlation coefficient between predicted and actual MoCA scores, r = 0.32, P=0.0066 [HOA-112 atlas]; r = 0.32, P=0.0078 [AAL-116 atlas]; r = 0.42, P=0.0038 [Power-264 atlas]), indicating that LSFC patterns represent cognition-level measures in these patients. Positive (anti-correlated) LSFC networks based on the Power-264 atlas showed the best predictive performance; moreover, we observed new brain regions of interest associated with T2DM-related cognition. The area under the receiver operating characteristic curve values (T2DM-NC group vs. T2DM-C group) were 0.65-0.70, with LSFC matrices based on HOA-112 and Power-264 atlases having the highest value (0.70). Most discriminative and attractive LSFCs were related to the default mode network, limbic system, and basal ganglia.
CONCLUSION LSFC provides neuroimaging-based information that may be useful in detecting MCI early and accurately in patients with T2DM.
Collapse
Affiliation(s)
- An-Ping Shi
- Department of Radiology, Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, The Affiliated Tangdu Hospital of Air Force Medical University (Fourth Military Medical University), Xi'an 710038, Shaanxi Province, China
| | - Ying Yu
- Department of Radiology, Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, The Affiliated Tangdu Hospital of Air Force Medical University (Fourth Military Medical University), Xi'an 710038, Shaanxi Province, China
| | - Bo Hu
- Department of Radiology, Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, The Affiliated Tangdu Hospital of Air Force Medical University (Fourth Military Medical University), Xi'an 710038, Shaanxi Province, China
| | - Yu-Ting Li
- Department of Radiology, Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, The Affiliated Tangdu Hospital of Air Force Medical University (Fourth Military Medical University), Xi'an 710038, Shaanxi Province, China
| | - Wen Wang
- Department of Radiology, Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, The Affiliated Tangdu Hospital of Air Force Medical University (Fourth Military Medical University), Xi'an 710038, Shaanxi Province, China
| | - Guang-Bin Cui
- Department of Radiology, Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, The Affiliated Tangdu Hospital of Air Force Medical University (Fourth Military Medical University), Xi'an 710038, Shaanxi Province, China
| |
Collapse
|
19
|
Gallardo-Moreno GB, Alvarado-Rodríguez FJ, Romo-Vázquez R, Vélez-Pérez H, González-Garrido AA. Type 1 diabetes affects the brain functional connectivity underlying working memory processing. Psychophysiology 2021; 59:e13969. [PMID: 34762737 DOI: 10.1111/psyp.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
Visuospatial working memory (VSWM) deficits have been demonstrated to occur during the development of type-1-diabetes (T1D). Despite confirming the early appearance of distinct task-related brain activation patterns in T1D patients compared to healthy controls, the effect of VSWM load on functional brain connectivity during task performance is still unknown. Using electroencephalographic methods, the present study evaluated this topic in clinically well-controlled T1D young patients and healthy individuals, while they performed a VSWM task with different memory load levels during two main VSWM processing phases: encoding and maintenance. The results showed a significantly lower number of correct responses and longer reaction times in T1D while performing the task. Besides, higher and progressively increasing functional connectivity indices were found for T1D patients in response to cumulative degrees of VSWM load, from the beginning of the VSWM encoding phase, without notably affecting the VSWM maintenance phase. In contrast, healthy controls managed to solve the task, showing lower functional brain connectivity during the initial VSWM processing steps with more gradual task-related adjustments. Present results suggest that T1D patients anticipate high VSWM load demands by early recruiting supplementary processing resources as the probable expression of a more inefficient, though paradoxically better adjusted to task demands cognitive strategy.
Collapse
Affiliation(s)
| | - Francisco J Alvarado-Rodríguez
- División de Electrónica y Computación, CUCEI, Universidad de Guadalajara, Guadalajara, Mexico.,Dpto. de Electromecánica, Universidad Autónoma de Guadalajara, Guadalajara, Mexico
| | - Rebeca Romo-Vázquez
- División de Electrónica y Computación, CUCEI, Universidad de Guadalajara, Guadalajara, Mexico
| | - Hugo Vélez-Pérez
- División de Electrónica y Computación, CUCEI, Universidad de Guadalajara, Guadalajara, Mexico
| | | |
Collapse
|
20
|
Yassine HN, Solomon V, Thakral A, Sheikh-Bahaei N, Chui HC, Braskie MN, Schneider LS, Talbot K. Brain energy failure in dementia syndromes: Opportunities and challenges for glucagon-like peptide-1 receptor agonists. Alzheimers Dement 2021; 18:478-497. [PMID: 34647685 PMCID: PMC8940606 DOI: 10.1002/alz.12474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/11/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
Medications for type 2 diabetes (T2DM) offer a promising path for discovery and development of effective interventions for dementia syndromes. A common feature of dementia syndromes is an energy failure due to reduced energy supply to neurons and is associated with synaptic loss and results in cognitive decline and behavioral changes. Among diabetes medications, glucagon‐like peptide‐1 (GLP‐1) receptor agonists (RAs) promote protective effects on vascular, microglial, and neuronal functions. In this review, we present evidence from animal models, imaging studies, and clinical trials that support developing GLP‐1 RAs for dementia syndromes. The review examines how changes in brain energy metabolism differ in conditions of insulin resistance and T2DM from dementia and underscores the challenges that arise from the heterogeneity of dementia syndromes. The development of GLP‐1 RAs as dementia therapies requires a deeper understanding of the regional changes in brain energy homeostasis guided by novel imaging biomarkers.
Collapse
Affiliation(s)
- Hussein N Yassine
- Department of Medicine, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA.,Department of Neurology, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Victoria Solomon
- Department of Medicine, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Angad Thakral
- Department of Medicine, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Nasim Sheikh-Bahaei
- Department of Radiology, Keck School of Medicine USC, Los Angeles, California, USA
| | - Helena C Chui
- Department of Neurology, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Lon S Schneider
- Department of Neurology, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA.,Department of Psychiatry and Behavioral Sciences, Keck School of Medicine USC, Los Angeles, California, USA
| | - Konrad Talbot
- Departments of Neurosurgery, Pathology and Human Anatomy, and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
21
|
Deng L, Liu H, Liu H, Liu J, Liu W, Liu Y, Zhang Y, Rong P, Liang Q, Wang W. Concomitant functional impairment and reorganization in the linkage between the cerebellum and default mode network in patients with type 2 diabetes mellitus. Quant Imaging Med Surg 2021; 11:4310-4320. [PMID: 34603986 PMCID: PMC8408787 DOI: 10.21037/qims-21-41] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/06/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Increasing evidence shows that the default mode network (DMN) and cerebellum are prone to structural and functional abnormalities in patients with type 2 diabetes mellitus (T2DM). However, the type of change in the functional connection between the DMN and cerebellum is still unknown. METHODS In this study, seed-based functional connectivity (FC) analysis was used to examine the intrinsic FC of the cerebellum-DMN between healthy controls (HCs) and T2DM patients. Pearson correlation analysis was used to explore the relationship between clinical variables and changes in FC. RESULTS Compared with HCs, T2DM patients showed significantly increased FC of the left crus I-left medial superior frontal gyrus, left crus I-right medial superior frontal gyrus, and right crus I-left medial orbitofrontal cortex. Compared with HCs, T2DM patients showed decreased FC of the lobule IX-the right angular gyrus. Moreover, diabetes duration was positively correlated with increased FC of the left crus I-right medial superior frontal gyrus (r=0.438, P=0.007). CONCLUSIONS Concomitant functional impairment and reorganization in the linkage between the cerebellum and DMN in patients with T2DM may be a biomarker of early brain damage that can help us better understand the pathogenesis of cognitive impairment in T2DM.
Collapse
Affiliation(s)
- Lingling Deng
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Huasheng Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Huanghui Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wen Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yan Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Youming Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qi Liang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wei Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
22
|
Huang L, Zhang Q, Tang T, Yang M, Chen C, Tao J, Liang S. Abnormalities of Brain White Matter in Type 2 Diabetes Mellitus: A Meta-Analysis of Diffusion Tensor Imaging. Front Aging Neurosci 2021; 13:693890. [PMID: 34421572 PMCID: PMC8378805 DOI: 10.3389/fnagi.2021.693890] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Aims: The study aimed to conduct a meta-analysis to determine the abnormalities of white matter in patients with type 2 diabetes mellitus (T2DM) by identifying the consistency of diffusion tensor imaging (DTI). Method: The literature for DTI comparing patients with T2DM with controls published before October 30, 2020, were reviewed in PubMed, Web of Science, Embase, CNKI, and Wan Fang databases. The meta-analysis was performed using the activation likelihood estimation (ALE) method, including 12 reports and 381 patients with T2DM. Results: The meta-analysis identified 10 white matter regions that showed a consistent reduction of fractional anisotropy (FA) in patients with T2DM, including genu of the corpus callosum, the body of corpus callosum, bilateral anterior corona radiata, bilateral superior corona radiata, bilateral cingulum, and bilateral superior fronto-occipital fasciculus. Conclusion: This study revealed the abnormal characteristics of white matter in T2DM, which would be helpful to understand the underlying neuropathological and physiological mechanisms of T2DM and provide evidence for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Li Huang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qingqing Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Tong Tang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Minguang Yang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Cong Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shengxiang Liang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
23
|
Yao L, Yang C, Zhang W, Li S, Li Q, Chen L, Lui S, Kemp GJ, Biswal BB, Shah NJ, Li F, Gong Q. A multimodal meta-analysis of regional structural and functional brain alterations in type 2 diabetes. Front Neuroendocrinol 2021; 62:100915. [PMID: 33862036 DOI: 10.1016/j.yfrne.2021.100915] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 02/04/2023]
Abstract
Neuroimaging studies have identified brain structural and functional alterations of type 2 diabetes mellitus (T2DM) patients; however, there is no systematic information on the relations between abnormalities in these two domains. We conducted a multimodal meta-analysis of voxel-based morphometry and regional resting-state functional MRI studies in T2DM, including fifteen structural datasets (693 patients and 684 controls) and sixteen functional datasets (378 patients and 358 controls). We found, in patients with T2DM compared to controls, conjoint decreased regional gray matter volume (GMV) and altered intrinsic activity mainly in the default mode network including bilateral superior temporal gyrus/Rolandic operculum, left middle and inferior temporal gyrus, and left supramarginal gyrus; decreased GMV alone in the limbic system; and functional abnormalities alone in the cerebellum, insula, and visual cortex. This meta-analysis identified complicated patterns of conjoint and dissociated brain alterations in T2DM patients, which may help provide new insight into the neuropathology of T2DM.
Collapse
Affiliation(s)
- Li Yao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, NO. 37 Guoxue Xiang, Chengdu 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China
| | - Chengmin Yang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, NO. 37 Guoxue Xiang, Chengdu 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, NO. 37 Guoxue Xiang, Chengdu 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China
| | - Siyi Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, NO. 37 Guoxue Xiang, Chengdu 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China
| | - Qian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, NO. 37 Guoxue Xiang, Chengdu 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China
| | - Lizhou Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, NO. 37 Guoxue Xiang, Chengdu 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, NO. 37 Guoxue Xiang, Chengdu 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, L3 5TR, United Kingdom
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, China
| | - Nadim J Shah
- Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, NO. 37 Guoxue Xiang, Chengdu 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China; Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, NO. 37 Guoxue Xiang, Chengdu 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China.
| |
Collapse
|
24
|
Liu J, Li Y, Yang X, Xu H, Ren J, Zhou P. Regional Spontaneous Neural Activity Alterations in Type 2 Diabetes Mellitus: A Meta-Analysis of Resting-State Functional MRI Studies. Front Aging Neurosci 2021; 13:678359. [PMID: 34220486 PMCID: PMC8245688 DOI: 10.3389/fnagi.2021.678359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/11/2021] [Indexed: 01/06/2023] Open
Abstract
Objective: Resting-state functional magnetic resonance imaging (rs-fMRI) studies have revealed inconsistent regional spontaneous neural activity alterations in patients with type 2 diabetes mellitus (T2DM). The aim of our meta-analysis was to identify concordant regional spontaneous neural activity abnormalities in patients with T2DM. Methods: A systematic search was conducted to identify voxel-based rs-fMRI studies comparing T2DM patients with healthy controls. The permutation of subject images seed-based d mapping (SDM) was used to quantitatively estimate the regional spontaneous neural activity abnormalities in patients with T2DM. Metaregression was conducted to examine the associations between clinical characteristics and functional alterations. Results: A total of 16 studies with 19 datasets including 434 patients with T2DM and 391 healthy controls were included. Patients with T2DM showed hypoactivity in the right medial superior frontal gyrus, right superior temporal gyrus, and left lingual gyrus, whereas hyperactivity in the right cerebellum. Metaregression analysis identified negative correlation between regional activity in the medial superior frontal and anterior cingulate gyri and illness duration of patients with T2DM. Conclusion: The patterns of regional spontaneous neural activity alterations, characterized by hypoactivity in the medial pre-frontal cortex, visual cortex, and superior temporal gyrus, whereas hyperactivity in the cerebellum, might represent the underlying neuropathological mechanisms of T2DM.
Collapse
Affiliation(s)
- Jieke Liu
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Li
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xi Yang
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Xu
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Ren
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Zhou
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
25
|
Zhang D, Lei Y, Gao J, Qi F, Yan X, Ai K, Zhe X, Cheng M, Wang M, Su Y, Tang M, Zhang X. Right Frontoinsular Cortex: A Potential Imaging Biomarker to Evaluate T2DM-Induced Cognitive Impairment. Front Aging Neurosci 2021; 13:674288. [PMID: 34122050 PMCID: PMC8193040 DOI: 10.3389/fnagi.2021.674288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/27/2021] [Indexed: 01/07/2023] Open
Abstract
Cognitive impairment in type 2 diabetes mellitus (T2DM) is associated with functional and structural abnormalities in the intrinsic brain network. The salience network (SN) is a neurocognitive network that maintains normal cognitive function, but it has received little attention in T2DM. We explored SN changes in patients with T2DM with normal cognitive function (DMCN) and in patients with T2DM with mild cognitive impairment (DMCI). Sixty-five T2DM patients and 31 healthy controls (HCs) underwent a neuropsychological assessment, independent component analysis (ICA), and voxel-based morphometry (VBM) analysis. The ICA extracted the SN for VBM to compare SN functional connectivity (FC) and gray matter (GM) volume (GMV) between groups. A correlation analysis examined the relationship between abnormal FC and GMV and clinical/cognitive variables. Compared with HCs, DMCN patients demonstrated increased FC in the left frontoinsular cortex (FIC), right anterior insula, and putamen, while DMCI patients demonstrated decreased right middle/inferior frontal gyrus FC. Compared with DMCN patients, DMCI patients showed decreased right FIC FC. There was no significant difference in SN GMV in DMCN and DMCI patients compared with HCs. FIC GMV was decreased in the DMCI patients compared with DMCN patients. In addition, right FIC FC and SN GMV positively correlated with Montreal Cognitive Assessment and Mini-Mental State Examination (MMSE) scores. These findings indicate that changes in SN FC, and GMV are complex non-linear processes accompanied by increased cognitive dysfunction in patients with T2DM. The right FIC may be a useful imaging biomarker for supplementary assessment of early cognitive dysfunction in patients with T2DM.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yumeng Lei
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Jie Gao
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Fei Qi
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Xuejiao Yan
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Kai Ai
- Department of Clinical Science, Philips Healthcare, Xi'an, China
| | - Xia Zhe
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Miao Cheng
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Man Wang
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Yu Su
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
26
|
Furlano JA, Horst BR, Nagamatsu LS. Brain deficits in prediabetic adults: A systematic review. J Neurosci Res 2021; 99:1725-1743. [PMID: 33819349 DOI: 10.1002/jnr.24830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
Previous findings on the relationship between prediabetes (the precursor stage of type 2 diabetes) and brain health in humans are inconsistent. Thus, this systematic review of cross-sectional and longitudinal studies aimed to summarize what is currently known about brain deficits in prediabetic adults. Following the PRISMA reporting standards for systematic reviews, we conducted a comprehensive review of peer-reviewed journal articles published from 2009 to present, focusing on studies that assessed brain volume, structural connectivity, and cerebrovascular health in prediabetic adults and older adults (i.e., 18 years or older). We systematically searched PsychINFO, Scopus, Web of Science, Ovid MEDLINE, CINAHL, and EMbase databases. Quality assessment was based on the NIH Quality Assessment Tool for Observational and Cross-sectional Studies. In total, 19 studies were included in our review. Results from these studies show that prediabetes may be associated with deficits in brain structure and pathology, however, several studies also refute these findings. Moreover, we identified clear inconsistencies in study methodologies, including diabetes measures and classification, across studies that may account for these conflicting findings.
Collapse
Affiliation(s)
- Joyla A Furlano
- Neuroscience, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Becky R Horst
- Neuroscience, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | | |
Collapse
|
27
|
Guo X, Wang S, Chen YC, Wei HL, Zhou GP, Yu YS, Yin X, Wang K, Zhang H. Aberrant Brain Functional Connectivity Strength and Effective Connectivity in Patients with Type 2 Diabetes Mellitus. J Diabetes Res 2021; 2021:5171618. [PMID: 34877358 PMCID: PMC8645376 DOI: 10.1155/2021/5171618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/03/2021] [Indexed: 12/04/2022] Open
Abstract
Alterations of brain functional connectivity in patients with type 2 diabetes mellitus (T2DM) have been reported by resting-state functional magnetic resonance imaging studies, but the underlying precise neuropathological mechanism remains unclear. This study is aimed at investigating the implicit alterations of functional connections in T2DM by integrating functional connectivity strength (FCS) and Granger causality analysis (GCA) and further exploring their associations with clinical characteristics. Sixty T2DM patients and thirty-three sex-, age-, and education-matched healthy controls (HC) were recruited. Global FCS analysis of resting-state functional magnetic resonance imaging was performed to explore seed regions with significant differences between the two groups; then, GCA was applied to detect directional effective connectivity (EC) between the seeds and other brain regions. Correlations of EC with clinical variables were further explored in T2DM patients. Compared with HC, T2DM patients showed lower FCS in the bilateral fusiform gyrus, right superior frontal gyrus (SFG), and right postcentral gyrus, but higher FCS in the right supplementary motor area (SMA). Moreover, altered directional EC was found between the left fusiform gyrus and bilateral lingual gyrus and right medial frontal gyrus (MFG), as well as between the right SFG and bilateral frontal regions. In addition, triglyceride, insulin, and plasma glucose levels were correlated with the abnormal EC of the left fusiform, while disease duration and cognitive function were associated with the abnormal EC of the right SFG in T2DM patients. These results suggest that T2DM patients show aberrant brain function connectivity strength and effective connectivity which is associated with the diabetes-related metabolic characteristics, disease duration, and cognitive function, providing further insights into the complex neural basis of diabetes.
Collapse
Affiliation(s)
- Xi Guo
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 211100, China
| | - Su Wang
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 211100, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210006, China
| | - Heng-Le Wei
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 211100, China
| | - Gang-Ping Zhou
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 211100, China
| | - Yu-Sheng Yu
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 211100, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210006, China
| | - Kun Wang
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 211100, China
| | - Hong Zhang
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 211100, China
| |
Collapse
|
28
|
Chan ST, Evans KC, Song TY, Selb J, van der Kouwe A, Rosen BR, Zheng YP, Ahn AC, Kwong KK. Dynamic brain-body coupling of breath-by-breath O2-CO2 exchange ratio with resting state cerebral hemodynamic fluctuations. PLoS One 2020; 15:e0238946. [PMID: 32956397 PMCID: PMC7505589 DOI: 10.1371/journal.pone.0238946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The origin of low frequency cerebral hemodynamic fluctuations (CHF) in the resting state remains unknown. Breath-by breath O2-CO2 exchange ratio (bER) has been reported to correlate with the cerebrovascular response to brief breath hold challenge at the frequency range of 0.008-0.03Hz in healthy adults. bER is defined as the ratio of the change in the partial pressure of oxygen (ΔPO2) to that of carbon dioxide (ΔPCO2) between end inspiration and end expiration. In this study, we aimed to investigate the contribution of respiratory gas exchange (RGE) metrics (bER, ΔPO2 and ΔPCO2) to low frequency CHF during spontaneous breathing. METHODS Twenty-two healthy adults were included. We used transcranial Doppler sonography to evaluate CHF by measuring the changes in cerebral blood flow velocity (ΔCBFv) in bilateral middle cerebral arteries. The regional CHF were mapped with blood oxygenation level dependent (ΔBOLD) signal changes using functional magnetic resonance imaging. Temporal features and frequency characteristics of RGE metrics during spontaneous breathing were examined, and the simultaneous measurements of RGE metrics and CHF (ΔCBFv and ΔBOLD) were studied for their correlation. RESULTS We found that the time courses of ΔPO2 and ΔPCO2 were interdependent but not redundant. The oscillations of RGE metrics were coherent with resting state CHF at the frequency range of 0.008-0.03Hz. Both bER and ΔPO2 were superior to ΔPCO2 in association with CHF while CHF could correlate more strongly with bER than with ΔPO2 in some brain regions. Brain regions with the strongest coupling between bER and ΔBOLD overlapped with many areas of default mode network including precuneus and posterior cingulate. CONCLUSION Although the physiological mechanisms underlying the strong correlation between bER and CHF are unclear, our findings suggest the contribution of bER to low frequency resting state CHF, providing a novel insight of brain-body interaction via CHF and oscillations of RGE metrics.
Collapse
Affiliation(s)
- Suk-tak Chan
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Karleyton C. Evans
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Tian-yue Song
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Juliette Selb
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Andre van der Kouwe
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Bruce R. Rosen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Yong-ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Andrew C. Ahn
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Kenneth K. Kwong
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| |
Collapse
|
29
|
Liu D, Duan S, Wei P, Chen L, Wang J, Zhang J. Aberrant Brain Spontaneous Activity and Synchronization in Type 2 Diabetes Mellitus Patients: A Resting-State Functional MRI Study. Front Aging Neurosci 2020; 12:181. [PMID: 32612525 PMCID: PMC7308457 DOI: 10.3389/fnagi.2020.00181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/25/2020] [Indexed: 01/02/2023] Open
Abstract
The study aimed to investigate the aberration of brain spontaneous activity and synchronization in type 2 diabetes mellitus (T2DM) patients homozygous for the apolipoprotein E (APOE)-ε3 allele. In the APOE-ε3 homozygotes, 37 T2DM patients and 37 well-matched healthy controls (HC) were included to acquire blood sample measurements, neuropsychological tests, and brain functional MRI data. The amplitude of low-frequency fluctuations (ALFF) analysis was conducted to identify the brain areas with abnormal spontaneous activity. Then, the identified brain areas were taken as seeds to compute their functional connectivity (FC) with other brain regions. The two-sample t-test or the Mann-Whitney U test were applied to reveal significant differences in acquired measurements between the two groups. The potential correlations among the three types of measurements were explored using partial correlation analysis in the T2DM group. The T2DM group had elevated glycemic levels and scored lower on the cognitive assessment but higher on the anxiety and depression tests (p < 0.05). The T2DM group exhibited higher ALFF in the left middle occipital gyrus, and the left middle occipital gyrus had lower FC with the left caudate nucleus and the left inferior parietal gyrus (p < 0.05). No significant correlations were observed. T2DM patients homozygous for the APOE-ε3 allele exhibited aberrant brain spontaneous activity and synchronization in brain regions associated with vision-related information processing, executive function, and negative emotions. The findings may update our understanding of the mechanisms of brain dysfunction in T2DM patients in a neuroimaging perspective.
Collapse
Affiliation(s)
- Daihong Liu
- Department of Medical Imaging, Chongqing University Cancer Hospital, Chongqing, China
| | - Shanshan Duan
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ping Wei
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lihua Chen
- Department of Radiology, PLA 904 Hospital, Wuxi, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiuquan Zhang
- Department of Medical Imaging, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
30
|
Large-Scale Neuronal Network Dysfunction in Diabetic Retinopathy. Neural Plast 2020; 2020:6872508. [PMID: 32399026 PMCID: PMC7204201 DOI: 10.1155/2020/6872508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
Diabetic retinopathy (DR) patients are at an increased risk of cognitive decline and dementia. There is accumulating evidence that specific functional and structural architecture changes in the brain are related to cognitive impairment in DR patients. However, little is known regarding whether the functional architecture of resting-state networks (RSNs) changes in DR patients. The purpose of this study was to investigate the intranetwork functional connectivity (FC) and functional network connectivity (FNC) of RSN changes in DR patients using independent component analysis (ICA). Thirty-four DR patients (18 men and 16 women; mean age, 53.53 ± 8.67 years) and 38 nondiabetic healthy controls (HCs) (15 men and 23 women; mean age, 48.63 ± 11.83 years), closely matched for age, sex, and education, underwent resting-state magnetic resonance imaging scans. ICA was applied to extract the nine RSNs. Then, two-sample t-tests were conducted to investigate different intranetwork FCs within nine RSNs between the two groups. The FNC toolbox was used to assess interactions among RSNs. Pearson correlation analysis was conducted to explore the relationship between intranetwork FCs and clinical variables in the DR group. A receiver operating characteristic (ROC) curve was conducted to assess the ability of the intranetwork FCs of RSNs in discriminating between the two groups. Compared to the HC group, DR patients showed significant decreased intranetwork FCs within the basal ganglia network (BGN), visual network (VN), ventral default mode network (vDMN), right executive control network (rECN), salience network (SN), left executive control network (lECN), auditory network (AN), and dorsal default mode network (dDMN). In addition, FNC analysis showed increased VN-BGN, VN-vDMN, VN-dDMN, vDMN-lECN, SN-BGN, lECN-dDMN, and AN-BGN FNCs in the DR group, relative to the HC group. Furthermore, altered intranetwork FCs of RSNs were significantly correlated with the glycosylated hemoglobin (HbA1c) level in DR patients. A ROC curve showed that these specific intranetwork FCs of RSNs discriminated between the two groups with a high degree of sensitivity and specificity. Our study highlighted that DR patients had widespread deficits in both low-level perceptual and higher-order cognitive networks. Our results offer important insights into the neural mechanisms of visual loss and cognitive decline in DR patients.
Collapse
|
31
|
Cui Y, Tang TY, Lu CQ, Cai Y, Lu T, Wang YC, Teng GJ, Ju S. Abnormal Cingulum Bundle Induced by Type 2 Diabetes Mellitus: A Diffusion Tensor Tractography Study. Front Aging Neurosci 2020; 12:594198. [PMID: 33384593 PMCID: PMC7771529 DOI: 10.3389/fnagi.2020.594198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/16/2020] [Indexed: 01/29/2023] Open
Abstract
Purpose: In Type 2 diabetes (T2DM), white matter (WM) pathology has been suggested to play an important role in the etiology of T2DM-related cognitive impairment. This study aims to investigate the integrity of the cingulum bundle (CB), a major WM tract, in T2DM patients using diffusion tensor tractography. Methods: Thirty-seven T2DM patients and 34 age-, sex- and education matched healthy controls were included and underwent diffusion tensor imaging. Tractography of bilateral CB tracts was performed and diffusion measurements were compared between the two groups. Next, brain regions with significant group differences on fractional anisotropy (FA) values were set as the region of interest (ROI), and the CB fibers that passed through were identified. Diffusion measures were extracted from these fibers to investigate their correlations with the cognitive performances and endocrine parameters. Results: T2DM patients exhibited decreased FA in bilateral CB, increased mean diffusion (MD) in the right CB, and decreased length in the left CB. Through voxel-wise comparison, the most prominent FA difference was identified in the posterior segment of the CB and the reconstructed tract was part of the retrosplenial component. Importantly, the diffusion measurements of the tract were significantly correlated with the impaired performance in executive functioning and elevated insulin resistance (IR) in the T2DM group, instead of the control group. Conclusions: The diffusion measurements in bilateral CB were altered in T2DM patients, which might reflect important neuropathologic changes in the fibers. Our study adds to knowledge about how the cingulum changes structurally along its entire length in T2DM and highlights the relationship between WM and cognitive performance. Besides, IR might be an important risk factor that warrants further exploration.
Collapse
Affiliation(s)
- Ying Cui
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Tian-Yu Tang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chun-Qiang Lu
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yu Cai
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Tong Lu
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yuan-Cheng Wang
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Gao-Jun Teng
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Shenghong Ju
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- *Correspondence: Shenghong Ju
| |
Collapse
|
32
|
Yu Y, Yan LF, Sun Q, Hu B, Zhang J, Yang Y, Dai YJ, Cui WX, Xiu SJ, Hu YC, Heng CN, Liu QQ, Hou JF, Pan YY, Zhai LH, Han TH, Cui GB, Wang W. Neurovascular decoupling in type 2 diabetes mellitus without mild cognitive impairment: Potential biomarker for early cognitive impairment. Neuroimage 2019; 200:644-658. [PMID: 31252056 DOI: 10.1016/j.neuroimage.2019.06.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a significant risk factor for mild cognitive impairment (MCI) and the acceleration of MCI to dementia. The high glucose level induce disturbance of neurovascular (NV) coupling is suggested to be one potential mechanism, however, the neuroimaging evidence is still lacking. To assess the NV decoupling pattern in early diabetic status, 33 T2DM without MCI patients and 33 healthy control subjects were prospectively enrolled. Then, they underwent resting state functional MRI and arterial spin labeling imaging to explore the hub-based networks and to estimate the coupling of voxel-wise cerebral blood flow (CBF)-degree centrality (DC), CBF-mean amplitude of low-frequency fluctuation (mALFF) and CBF- mean regional homogeneity (mReHo). We further evaluated the relationship between NV coupling pattern and cognitive performance (false discovery rate corrected). T2DM without MCI patients displayed significant decrease in the absolute CBF-mALFF, CBF-mReHo coupling of CBFnetwork and in the CBF-DC coupling of DCnetwork. Besides, networks which involved CBF and DC hubs mainly located in the default mode network (DMN). Furthermore, less severe disease and better cognitive performance in T2DM patients were significantly correlated with higher coupling of CBF-DC, CBF-mALFF or CBF-mReHo, especially for the cognitive dimensions of general function and executive function. Thus, coupling of CBF-DC, CBF-mALFF and CBF-mReHo may serve as promising indicators to reflect NV coupling state and to explain the T2DM related early cognitive impairment.
Collapse
Affiliation(s)
- Ying Yu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Lin-Feng Yan
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Qian Sun
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Bo Hu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Jin Zhang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Yang Yang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Yu-Jie Dai
- Department of Clinical Nutrition, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), 15 West Changle Road, Xi'an, 710032, Shaanxi, China.
| | - Wu-Xun Cui
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Si-Jie Xiu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Yu-Chuan Hu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Chun-Ni Heng
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Qing-Quan Liu
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Jun-Feng Hou
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Yu-Yun Pan
- Student Brigade, Fourth Military Medical University (Air Force Medical University), 169 Changle Road, Xi'an, 710032, Shaanxi, China.
| | - Liang-Hao Zhai
- Student Brigade, Fourth Military Medical University (Air Force Medical University), 169 Changle Road, Xi'an, 710032, Shaanxi, China.
| | - Teng-Hui Han
- Student Brigade, Fourth Military Medical University (Air Force Medical University), 169 Changle Road, Xi'an, 710032, Shaanxi, China.
| | - Guang-Bin Cui
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Wen Wang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|