1
|
Mukosera GT, Principe P, Mata-Greenwood E, Liu T, Schroeder H, Parast M, Blood AB. Iron nitrosyl complexes are formed from nitrite in the human placenta. J Biol Chem 2022; 298:102078. [PMID: 35643317 PMCID: PMC9257420 DOI: 10.1016/j.jbc.2022.102078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 11/19/2022] Open
Abstract
Placental nitric oxide (NO) is critical for maintaining perfusion in the maternal-fetal-placental circulation during normal pregnancy. NO and its many metabolites are also increased in pregnancies complicated by maternal inflammation such as preeclampsia, fetal growth restriction, gestational diabetes, and bacterial infection. However, it is unclear how increased levels of NO or its metabolites affect placental function or how the placenta deals with excessive levels of NO or its metabolites. Since there is uncertainty over the direction of change in plasma levels of NO metabolites in preeclampsia, we measured the levels of these metabolites at the placental tissue level. We found that NO metabolites are increased in placentas from patients with preeclampsia compared to healthy controls. We also discovered by ozone-based chemiluminescence and electron paramagnetic resonance that nitrite is efficiently converted into iron nitrosyl complexes (FeNOs) within the human placenta and also observed the existence of endogenous FeNOs within placentas from sheep and rats. We show these nitrite-derived FeNOs are relatively short-lived, predominantly protein-bound, heme-FeNOs. The efficient formation of FeNOs from nitrite in the human placenta hints toward the importance of both nitrite and FeNOs in placental physiology or pathology. As iron nitrosylation is an important posttranslational modification that affects the activity of multiple iron-containing proteins such as those in the electron transport chain, or those involved in epigenetic regulation, we conclude that FeNOs merit increased study in pregnancy complications.
Collapse
Affiliation(s)
- George T Mukosera
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University, Loma Linda, California, USA
| | - Patricia Principe
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University, Loma Linda, California, USA
| | - Eugenia Mata-Greenwood
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University, Loma Linda, California, USA
| | - Taiming Liu
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Hobe Schroeder
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University, Loma Linda, California, USA
| | - Mana Parast
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Arlin B Blood
- Lawrence D Longo Center for Perinatal Biology, Loma Linda University, Loma Linda, California, USA; Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California, USA.
| |
Collapse
|
2
|
Wu CR, Huang YD, Hong YH, Liu YH, Narwane M, Chang YH, Dinh TK, Hsieh HT, Hseuh YJ, Wu PC, Pao CW, Chan TS, Hsu IJ, Chen Y, Chen HC, Chin TY, Lu TT. Endogenous Conjugation of Biomimetic Dinitrosyl Iron Complex with Protein Vehicles for Oral Delivery of Nitric Oxide to Brain and Activation of Hippocampal Neurogenesis. JACS AU 2021; 1:998-1013. [PMID: 34467346 PMCID: PMC8395708 DOI: 10.1021/jacsau.1c00160] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 06/13/2023]
Abstract
Nitric oxide (NO), a pro-neurogenic and antineuroinflammatory gasotransmitter, features the potential to develop a translational medicine against neuropathological conditions. Despite the extensive efforts made on the controlled delivery of therapeutic NO, however, an orally active NO prodrug for a treatment of chronic neuropathy was not reported yet. Inspired by the natural dinitrosyl iron unit (DNIU) [Fe(NO)2], in this study, a reversible and dynamic interaction between the biomimetic [(NO)2Fe(μ-SCH2CH2OH)2Fe(NO)2] (DNIC-1) and serum albumin (or gastrointestinal mucin) was explored to discover endogenous proteins as a vehicle for an oral delivery of NO to the brain after an oral administration of DNIC-1. On the basis of the in vitro and in vivo study, a rapid binding of DNIC-1 toward gastrointestinal mucin yielding the mucin-bound dinitrosyl iron complex (DNIC) discovers the mucoadhesive nature of DNIC-1. A reversible interconversion between mucin-bound DNIC and DNIC-1 facilitates the mucus-penetrating migration of DNIC-1 shielded in the gastrointestinal tract of the stomach and small intestine. Moreover, the NO-release reactivity of DNIC-1 induces the transient opening of the cellular tight junction and enhances its paracellular permeability across the intestinal epithelial barrier. During circulation in the bloodstream, a stoichiometric binding of DNIC-1 to the serum albumin, as another endogenous protein vehicle, stabilizes the DNIU [Fe(NO)2] for a subsequent transfer into the brain. With aging mice under a Western diet as a disease model for metabolic syndrome and cognitive impairment, an oral administration of DNIC-1 in a daily manner for 16 weeks activates the hippocampal neurogenesis and ameliorates the impaired cognitive ability. Taken together, these findings disclose the synergy between biomimetic DNIC-1 and endogenous protein vehicles for an oral delivery of therapeutic NO to the brain against chronic neuropathy.
Collapse
Affiliation(s)
- Cheng-Ru Wu
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu, Taiwan
| | - Yi-Da Huang
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu, Taiwan
- Department
of Ophthalmology and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yong-Huei Hong
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu, Taiwan
| | - Ya-Hsin Liu
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu, Taiwan
| | - Manmath Narwane
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu, Taiwan
| | - Yu-Hsiang Chang
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu, Taiwan
| | - Trinh Kieu Dinh
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu, Taiwan
| | - Hsin-Tzu Hsieh
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu, Taiwan
| | - Yi-Jen Hseuh
- Department
of Ophthalmology and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ping-Ching Wu
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan, Taiwan
| | - Chih-Wen Pao
- National
Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Ting-Shan Chan
- National
Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - I-Jui Hsu
- Department
of Molecular Science and Engineering, Research and Development Center
of Smart Textile Technology, National Taipei
University of Technology, Taipei, Taiwan
| | - Yunching Chen
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu, Taiwan
| | - Hung-Chi Chen
- Department
of Ophthalmology and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department
of Medicine, College of Medicine, Chang
Gung University, Taoyuan, Taiwan
| | - Ting-Yu Chin
- Department
of Bioscience Technology, Chung Yuan Christian
University, Taoyuan, Taiwan
| | - Tsai-Te Lu
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu, Taiwan
| |
Collapse
|
3
|
Cho SL, Liao CJ, Lu TT. Synthetic methodology for preparation of dinitrosyl iron complexes. J Biol Inorg Chem 2019; 24:495-515. [DOI: 10.1007/s00775-019-01668-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/15/2019] [Indexed: 12/29/2022]
|
4
|
Lu TT, Wang YM, Hung CH, Chiou SJ, Liaw WF. Bioinorganic Chemistry of the Natural [Fe(NO)2] Motif: Evolution of a Functional Model for NO-Related Biomedical Application and Revolutionary Development of a Translational Model. Inorg Chem 2018; 57:12425-12443. [DOI: 10.1021/acs.inorgchem.8b01818] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Yun-Ming Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30013, Taiwan
| | | | - Show-Jen Chiou
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | | |
Collapse
|
5
|
Thomas DD, Corey C, Hickok J, Wang Y, Shiva S. Differential mitochondrial dinitrosyliron complex formation by nitrite and nitric oxide. Redox Biol 2017; 15:277-283. [PMID: 29304478 PMCID: PMC5975210 DOI: 10.1016/j.redox.2017.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/14/2017] [Accepted: 12/17/2017] [Indexed: 01/09/2023] Open
Abstract
Nitrite represents an endocrine reserve of bioavailable nitric oxide (NO) that mediates a number of physiological responses including conferral of cytoprotection after ischemia/reperfusion (I/R). It has long been known that nitrite can react with non-heme iron to form dinitrosyliron complexes (DNIC). However, it remains unclear how quickly nitrite-dependent DNIC form in vivo, whether formation kinetics differ from that of NO-dependent DNIC, and whether DNIC play a role in the cytoprotective effects of nitrite. Here we demonstrate that chronic but not acute nitrite supplementation increases DNIC concentration in the liver and kidney of mice. Although DNIC have been purported to have antioxidant properties, we show that the accumulation of DNIC in vivo is not associated with nitrite-dependent cytoprotection after hepatic I/R. Further, our data in an isolated mitochondrial model of anoxia/reoxygenation show that while NO and nitrite demonstrate similar S-nitrosothiol formation kinetics, DNIC formation is significantly greater with NO and associated with mitochondrial dysfunction as well as inhibition of aconitase activity. These data are the first to directly compare mitochondrial DNIC formation by NO and nitrite. This study suggests that nitrite-dependent DNIC formation is a physiological consequence of dietary nitrite. The data presented herein implicate mitochondrial DNIC formation as a potential mechanism underlying the differential cytoprotective effects of nitrite and NO after I/R, and suggest that DNIC formation is potentially responsible for the cytotoxic effects observed at high NO concentrations. Dietary nitrite results in DNIC formation in many tissues, most notably the liver. Nitrite-dependent DNIC accumulate within the mitochondrion. NO generates greater DNIC formation in the mitochondrion than nitrite. At high concentrations of NO DNIC formation is associated with mitochondrial injury.
Collapse
Affiliation(s)
- Douglas D Thomas
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 South Wood St., Chicago IL 60612, USA.
| | - Catherine Corey
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, BST1240E, 200 Lothrop St, Pittsburgh, PA 15261, USA
| | - Jason Hickok
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 South Wood St., Chicago IL 60612, USA
| | - Yinna Wang
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, BST1240E, 200 Lothrop St, Pittsburgh, PA 15261, USA
| | - Sruti Shiva
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, BST1240E, 200 Lothrop St, Pittsburgh, PA 15261, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Metabolism & Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
6
|
Iijima K, Shimosegawa T. Involvement of luminal nitric oxide in the pathogenesis of the gastroesophageal reflux disease spectrum. J Gastroenterol Hepatol 2014; 29:898-905. [PMID: 24863184 DOI: 10.1111/jgh.12548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2014] [Indexed: 12/16/2022]
Abstract
Over the last 3 decades, the incidence of esophageal adenocarcinoma has dramatically increased in Western countries; a similar increase may be observed in Asian countries in the near future. Esophageal adenocarcinoma arises from a sequential gastroesophageal reflux disease (GERD) spectrum from reflux erosive esophagitis, to Barrett's esophagus, and finally to esophageal adenocarcinoma. At present, gastric acid and bile are assumed to be primarily involved in the etiology of the GERD spectrum. We reported in 2002 that, at the gastroesophageal junction in humans, abundant amounts of nitric oxide (NO) are generated luminally through the entero-salivary re-circulation of dietary nitrate. Since then, we have carried out a series of experiments to demonstrate that NO diffuses into the adjacent epithelium at cytotoxic levels. This diffusion results in disruption of the epithelial barrier function, exacerbation of inflammation, acceleration of columnar transformation in the esophagus (Barrett's esophagus) via the induction of caudal-type homeobox 2, and the shifting of carcinogenic N-nitroso compound formation from the luminal to epithelial compartment. These results suggest that, in addition to conventionally recognized causative factors, luminal NO could also be involved in the pathogenesis of the GERD spectrum. In addition, we recently showed that there is a prominent gender-related difference in NO-related cytotoxicity in the esophagus and that estrogen attenuated the esophageal tissue damage via the estrogen receptor in female rats. The role of estrogen in attenuating the esophageal tissue damage in NO-related esophageal damage could explain the well-recognized male predominance in the GERD spectrum in humans.
Collapse
Affiliation(s)
- Katsunori Iijima
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | |
Collapse
|
7
|
Ramirez L, Simontacchi M, Murgia I, Zabaleta E, Lamattina L. Nitric oxide, nitrosyl iron complexes, ferritin and frataxin: a well equipped team to preserve plant iron homeostasis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:582-92. [PMID: 21893255 DOI: 10.1016/j.plantsci.2011.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 05/08/2023]
Abstract
Iron is a key element in plant nutrition. Iron deficiency as well as iron overload results in serious metabolic disorders that affect photosynthesis, respiration and general plant fitness with direct consequences on crop production. More than 25% of the cultivable land possesses low iron availability due to high pH (calcareous soils). Plant biologists are challenged by this concern and aimed to find new avenues to ameliorate plant responses and keep iron homeostasis under control even at wide range of iron availability in various soils. For this purpose, detailed knowledge of iron uptake, transport, storage and interactions with cellular compounds will help to construct a more complete picture of its role as essential nutrient. In this review, we summarize and describe the recent findings involving four central players involved in keeping cellular iron homeostasis in plants: nitric oxide, ferritin, frataxin and nitrosyl iron complexes. We attempt to highlight the interactions among these actors in different scenarios occurring under iron deficiency or iron overload, and discuss their counteracting and/or coordinating actions leading to the control of iron homeostasis.
Collapse
Affiliation(s)
- Leonor Ramirez
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, CC 1245 Mar del Plata, Argentina
| | | | | | | | | |
Collapse
|
8
|
Generation, Translocation, and Action of Nitric Oxide in Living Systems. ACTA ACUST UNITED AC 2011; 18:1211-20. [DOI: 10.1016/j.chembiol.2011.09.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 01/01/2023]
|
9
|
Landry AP, Duan X, Huang H, Ding H. Iron-sulfur proteins are the major source of protein-bound dinitrosyl iron complexes formed in Escherichia coli cells under nitric oxide stress. Free Radic Biol Med 2011; 50:1582-90. [PMID: 21420489 PMCID: PMC3090472 DOI: 10.1016/j.freeradbiomed.2011.03.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/26/2011] [Accepted: 03/03/2011] [Indexed: 12/29/2022]
Abstract
Protein-bound dinitrosyl iron complexes (DNICs) have been observed in prokaryotic and eukaryotic cells under nitric oxide (NO) stress. The identity of proteins that bind DNICs, however, still remains elusive. Here we demonstrate that iron-sulfur proteins are the major source of protein-bound DNICs formed in Escherichia coli cells under NO stress. Expression of recombinant iron-sulfur proteins, but not proteins without iron-sulfur clusters, almost doubles the amount of protein-bound DNICs formed in E. coli cells after NO exposure. Purification of recombinant proteins from the NO-exposed E. coli cells further confirms that iron-sulfur proteins, but not proteins without iron-sulfur clusters, are modified, forming protein-bound DNICs. Deletion of the iron-sulfur cluster assembly proteins IscA and SufA to block the [4Fe-4S] cluster biogenesis in E. coli cells largely eliminates the NO-mediated formation of protein-bound DNICs, suggesting that iron-sulfur clusters are mainly responsible for the NO-mediated formation of protein-bound DNICs in cells. Furthermore, depletion of the "chelatable iron pool" in wild-type E. coli cells effectively removes iron-sulfur clusters from proteins and concomitantly diminishes the NO-mediated formation of protein-bound DNICs, indicating that iron-sulfur clusters in proteins constitute at least part of the chelatable iron pool in cells.
Collapse
Affiliation(s)
| | | | - Hao Huang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803
| |
Collapse
|
10
|
Tinberg CE, Tonzetich ZJ, Wang H, Do LH, Yoda Y, Cramer SP, Lippard SJ. Characterization of iron dinitrosyl species formed in the reaction of nitric oxide with a biological Rieske center. J Am Chem Soc 2010; 132:18168-76. [PMID: 21133361 PMCID: PMC3010263 DOI: 10.1021/ja106290p] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reactions of nitric oxide with cysteine-ligated iron-sulfur cluster proteins typically result in disassembly of the iron-sulfur core and formation of dinitrosyl iron complexes (DNICs). Here we report the first evidence that DNICs also form in the reaction of NO with Rieske-type [2Fe-2S] clusters. Upon treatment of a Rieske protein, component C of toluene/o-xylene monooxygenase from Pseudomonas sp. OX1, with an excess of NO(g) or NO-generators S-nitroso-N-acetyl-D,L-pencillamine and diethylamine NONOate, the absorbance bands of the [2Fe-2S] cluster are extinguished and replaced by a new feature that slowly grows in at 367 nm. Analysis of the reaction products by electron paramagnetic resonance, Mössbauer, and nuclear resonance vibrational spectroscopy reveals that the primary product of the reaction is a thiolate-bridged diiron tetranitrosyl species, [Fe(2)(μ-SCys)(2)(NO)(4)], having a Roussin's red ester (RRE) formula, and that mononuclear DNICs account for only a minor fraction of nitrosylated iron. Reduction of this RRE reaction product with sodium dithionite produces the one-electron-reduced RRE, having absorptions at 640 and 960 nm. These results demonstrate that NO reacts readily with a Rieske center in a protein and suggest that dinuclear RRE species, not mononuclear DNICs, may be the primary iron dinitrosyl species responsible for the pathological and physiological effects of nitric oxide in such systems in biology.
Collapse
Affiliation(s)
- Christine E. Tinberg
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Zachary J. Tonzetich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Hongxin Wang
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Loi H. Do
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Yoshitaka Yoda
- Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Stephen P. Cramer
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Applied Science, University of California, Davis, CA 95616
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
11
|
Endo H, Iijima K, Asanuma K, Ara N, Ito H, Asano N, Uno K, Koike T, Imatani A, Shimosegawa T. Exogenous luminal nitric oxide exposure accelerates columnar transformation of rat esophagus. Int J Cancer 2010; 127:2009-2019. [PMID: 20131319 DOI: 10.1002/ijc.25227] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Exposure of the esophageal mucosa to refluxed gastroduodenal contents is recognized to be an important risk factor for Barrett's esophagus (BE). At the human gastroesophageal junction, nitric oxide is generated luminally through the enterosalivary recirculation of dietary nitrate, and in cases with gastroesophageal reflux, the site of luminal nitric oxide generation could shift to the distal esophagus. The aim of this study is to investigate whether exogenous luminal nitric oxide could promote the development of BE in rats. Sodium nitrite plus ascorbic acid were administered to a rat surgical model of BE, in which the gastroduodenal contents were refluxed into the esophagus to generate exogenous luminal nitric oxide in the esophagus by the acid-catalyzed chemical reaction between the 2 reagents. The emergence of BE was evaluated histologically in the early phase (several weeks) after the surgery with or without exogenous nitric oxide administration. To elucidate the histogenesis of BE, CDX2, MUC2 and MUC6 expressions were investigated immunohistochemically. Coadministration of sodium nitrite plus ascorbic acid significantly accelerated the timing of emergence and increased the area of BE compared with controls. Administration of either reagent alone did not show any promotive effects on BE formation. Immunohistochemically, the columnar epithelium thus induced was similar to the specialized intestinal metaplasia in human BE. The results of this animal model study suggest that exogenous luminal nitric oxide could be involved in the pathogenesis of the columnar transformation of the esophagus. Further studies in human are warranted.
Collapse
Affiliation(s)
- Hiroyuki Endo
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
We are pursuing a dual strategy for investigating the chemistry of nitric oxide as a biological signaling agent. In one approach, metal-based fluorescent sensors for the detection of NO in living cells are evaluated, and a sensor based on a copper fluorescein complex has proved to be a valuable lead compound. Sensors of this class permit identification of NO from both inducible and constitutive forms of nitric oxide synthase and facilitate investigation of different NO functions in response to external stimuli. In the other approach, we employ synthetic model complexes of iron-sulfur clusters to probe their reactivity toward nitric oxide as biomimics of the active sites of iron-sulfur proteins. Our studies reveal that NO disassembles the Fe-S clusters to form dinitrosyl iron complexes.
Collapse
Affiliation(s)
- Zachary J. Tonzetich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Lindsey E. McQuade
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
13
|
Yang J, Duan X, Landry AP, Ding H. Oxygen is required for the L-cysteine-mediated decomposition of protein-bound dinitrosyl-iron complexes. Free Radic Biol Med 2010; 49:268-74. [PMID: 20406681 PMCID: PMC2916049 DOI: 10.1016/j.freeradbiomed.2010.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 04/07/2010] [Accepted: 04/13/2010] [Indexed: 02/07/2023]
Abstract
Increasing evidence suggests that iron-sulfur proteins are the primary targets of nitric oxide (NO). Exposure of Escherichia coli cells to NO readily converts iron-sulfur proteins to protein-bound dinitrosyl-iron complexes (DNICs). Although the protein-bound DNICs are stable in vitro under aerobic or anaerobic conditions, they are efficiently repaired in aerobically growing E. coli cells even without new protein synthesis. The cellular repair mechanism for the NO-modified iron-sulfur proteins remains largely elusive. Here we report that, unlike aerobically growing E. coli cells, starved E. coli cells fail to reactivate the NO-modified iron-sulfur proteins. Significantly, the addition of L-cysteine, but not other related biological thiols, results in decomposition of the protein-bound DNICs in starved E. coli cells and in cell extracts under aerobic conditions. However, under anaerobic conditions, L-cysteine has little or no effect on the protein-bound DNICs in starved E. coli cells or in vitro, suggesting that oxygen is required for the L-cysteine-mediated decomposition of the protein-bound DNICs. Additional studies reveal that L-cysteine is able to release the DNIC from the protein and bind to it, and the L-cysteine-bound DNICs are rapidly disrupted by oxygen, resulting in the eventual decomposition of the protein-bound DNICs under aerobic conditions.
Collapse
Affiliation(s)
- Juanjuan Yang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Xuewu Duan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Aaron P. Landry
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
14
|
Tonzetich ZJ, Wang H, Mitra D, Tinberg CE, Do LH, Jenney FE, Adams MWW, Cramer SP, Lippard SJ. Identification of protein-bound dinitrosyl iron complexes by nuclear resonance vibrational spectroscopy. J Am Chem Soc 2010; 132:6914-6. [PMID: 20429508 PMCID: PMC2892860 DOI: 10.1021/ja101002f] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have applied (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to identify protein-bound dinitrosyl iron complexes. Intense NRVS peaks due to vibrations of the N-Fe-N unit can be observed between 500 and 700 cm(-1) and are diagnostic indicators of the type of iron dinitrosyl species present. NRVS spectra for four iron dinitrosyl model compounds are presented and used as benchmarks for the identification of species formed in the reaction of Pyrococcus furiosus ferredoxin D14C with nitric oxide.
Collapse
Affiliation(s)
- Zachary J. Tonzetich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Hongxin Wang
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Devrani Mitra
- Department of Applied Science, University of California, Davis, CA 95616
| | - Christine E. Tinberg
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Loi H. Do
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Francis E. Jenney
- GA Campus - Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Stephen P. Cramer
- Department of Applied Science, University of California, Davis, CA 95616
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
15
|
Rocha BS, Gago B, Barbosa RM, Laranjinha J. Diffusion of nitric oxide through the gastric wall upon reduction of nitrite by red wine: Physiological impact. Nitric Oxide 2010; 22:235-41. [DOI: 10.1016/j.niox.2010.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 01/08/2010] [Accepted: 01/11/2010] [Indexed: 02/07/2023]
|
16
|
Ito H, Iijima K, Ara N, Asanuma K, Endo H, Asano N, Koike T, Abe Y, Imatani A, Shimosegawa T. Reactive nitrogen oxide species induce dilatation of the intercellular space of rat esophagus. Scand J Gastroenterol 2010; 45:282-291. [PMID: 20001645 DOI: 10.3109/00365520903469956] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Dilatation of the intercellular space (DIS) of the esophageal epithelium is recognized as one of the earliest histological changes in gastroesophageal reflux disease patients. At the human gastroesophageal junction, reactive nitrogen oxide species (RNOS) are generated luminally through the entero-salivary re-circulation of dietary nitrate. In cases with gastroesophageal reflux, the site of luminal RNOS generation may shift to the distal esophagus. The aim of this study was to investigate whether luminal RNOS exposure could be involved in the pathogenesis of DIS. MATERIAL AND METHODS Rat esophageal mucosa was studied with an Ussing chamber model. On the luminal side of the chamber, RNOS were generated by the acidification of physiologic concentrations of sodium nitrite (1.0 or 5.0 mM). Esophageal barrier function was assessed by means of electrophysiological transmembrane resistance and membrane permeability by means of (3)H-mannitol flux. The dimensions of the intercellular spaces were assessed by using transmission electron microscopy. RESULTS Administration of acid plus sodium nitrite induced DIS of the esophageal epithelium, and this ultrastructural morphological change was accompanied by a concomitant decrease in the transmembrane resistance and an increase in the epithelial permeability. The DIS induced by luminal RNOS was also confirmed in an in vivo exposure model. CONCLUSIONS The present animal study indicates that the RNOS generated by the acidification of salivary nitrite in the presence of refluxed gastric acid in the esophagus could be a luminal factor that is responsible for the induction of DIS. Further studies are warranted to investigate the clinical relevance of the present findings to the human situation.
Collapse
Affiliation(s)
- H Ito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Aobaku, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ishiyama F, Iijima K, Asanuma K, Ara N, Yoshitake J, Abe Y, Koike T, Imatani A, Ohara S, Shimosegawa T. Exogenous luminal nitric oxide exacerbates esophagus tissue damage in a reflux esophagitis model of rats. Scand J Gastroenterol 2009; 44:527-37. [PMID: 19172433 DOI: 10.1080/00365520802699260] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Cytotoxic concentrations of nitric oxide are generated luminally at the gastroesophageal junction through the entero-salivary recirculation of dietary nitrate in humans. The site of luminal nitric oxide generation shifts to the lower esophagus when gastric acid is refluxed into the esophagus. The aim of this study was to investigate the influence of persistent administration of exogenous nitric oxide on esophageal damage. MATERIAL AND METHODS 0.1% sodium nitrite and/or 1% ascorbic acid was administered in an established rat acid-refluxed esophagitis model. Co-administration of both reactants in this model is thought to induce high concentrations of nitric oxide luminally in the esophagus by an acid-catalyzed chemical reaction when refluxed gastric acid is present. The tissue damage was evaluated by a macroscopic lesion index and myeloperoxidase activity. Nitrotyrosin was assessed immunohistochemically as a footprint of peroxynitrite formation. RESULTS Co-administration of sodium nitrite and ascorbic acid induced a 4- to 5-fold increase in the esophageal damage compared with baseline reflux esophagitis, while the damage was unchanged when either of the reagents alone was given. Nitrotyrosine was strongly stained in the tissue from the co-administration. Treatment of superoxide scavengers efficiently prevented the exacerbation of esophageal damage by exogenous nitric oxide exposure, suggesting an essential role of superoxide in esophageal damage. CONCLUSIONS Exogenous luminal nitric oxide greatly exacerbated the tissue damage of reflux esophagitis. Diffusion of the luminal nitric oxide into the adjacent superoxide-enriched inflamed tissue of the esophagus could lead to the production of the highly toxic agent peroxynitrite, thus causing exacerbation of the esophageal damage.
Collapse
Affiliation(s)
- Fumitake Ishiyama
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Duan X, Yang J, Ren B, Tan G, Ding H. Reactivity of nitric oxide with the [4Fe-4S] cluster of dihydroxyacid dehydratase from Escherichia coli. Biochem J 2009; 417:783-9. [PMID: 18945212 PMCID: PMC2706667 DOI: 10.1042/bj20081423] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although the NO (nitric oxide)-mediated modification of iron-sulfur proteins has been well-documented in bacteria and mammalian cells, specific reactivity of NO with iron-sulfur proteins still remains elusive. In the present study, we report the first kinetic characterization of the reaction between NO and iron-sulfur clusters in protein using the Escherichia coli IlvD (dihydroxyacid dehydratase) [4Fe-4S] cluster as an example. Combining a sensitive NO electrode with EPR (electron paramagnetic resonance) spectroscopy and an enzyme activity assay, we demonstrate that NO is rapidly consumed by the IlvD [4Fe-4S] cluster with the concomitant formation of the IlvD-bound DNIC (dinitrosyl-iron complex) and inactivation of the enzyme activity under anaerobic conditions. The rate constant for the initial reaction between NO and the IlvD [4Fe-4S] cluster is estimated to be (7.0+/-2.0)x10(6) M(-2) x s(-1) at 25 degrees C, which is approx. 2-3 times faster than that of the NO autoxidation by O2 in aqueous solution. Addition of GSH failed to prevent the NO-mediated modification of the IlvD [4Fe-4S] cluster regardless of the presence of O2 in the medium, further suggesting that NO is more reactive with the IlvD [4Fe-4S] cluster than with GSH or O2. Purified aconitase B [4Fe-4S] cluster from E. coli has an almost identical NO reactivity as the IlvD [4Fe-4S] cluster. However, the reaction between NO and the endonuclease III [4Fe-4S] cluster is relatively slow, apparently because the [4Fe-4S] cluster in endonuclease III is less accessible to solvent than those in IlvD and aconitase B. When E. coli cells containing recombinant IlvD, aconitase B or endonuclease III are exposed to NO using the Silastic tubing NO delivery system under aerobic and anaerobic conditions, the [4Fe-4S] clusters in IlvD and aconitase B, but not in endonuclease III, are efficiently modified forming the protein-bound DNICs, confirming that NO has a higher reactivity with the [4Fe-4S] clusters in IlvD and aconitase B than with O2 or GSH. The results suggest that the iron-sulfur clusters in proteins such as IlvD and aconitase B may constitute the primary targets of the NO cytotoxicity under both aerobic and anaerobic conditions.
Collapse
Affiliation(s)
- Xuewu Duan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Juanjuan Yang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Binbin Ren
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Guoqiang Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|