1
|
Cui Y, Hu Z, Wang L, Zhu B, Deng L, Zhang H, Wang X. DL-3-n-Butylphthalide Ameliorates Post-stroke Emotional Disorders by Suppressing Neuroinflammation and PANoptosis. Neurochem Res 2024; 49:2215-2227. [PMID: 38834844 DOI: 10.1007/s11064-024-04171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/22/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Post-stroke emotional disorders such as post-stroke anxiety and post-stroke depression are typical symptoms in patients with stroke. They are closely associated with poor prognosis and low quality of life. The State Food and Drug Administration of China has approved DL-3-n-butylphthalide (NBP) as a treatment for ischemic stroke (IS). Clinical research has shown that NBP alleviates anxiety and depressive symptoms in patients with IS. Therefore, this study explored the role and molecular mechanisms of NBP in cases of post-stroke emotional disorders using network pharmacology and experimental validation. The results showed that NBP treatment significantly increased the percentage of time spent in the center of the middle cerebral artery occlusion (MCAO) rats in the open field test and the percentage of sucrose consumption in the sucrose preference test. Network pharmacology results suggest that NBP may regulate neuroinflammation and cell death. Further experiments revealed that NBP inhibited the toll-like receptor 4/nuclear factor kappa B signaling pathway, decreased the level of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, and interleukin-6, and M1-type microglia markers (CD68, inducible nitric oxide synthase), and reduced the expression of PANoptosis-related molecules including caspase-1, caspase-3, caspase-8, gasdermin D, and mixed lineage kinase domain-like protein in the hippocampus of the MACO rats. These findings demonstrate that the mechanisms through which NBP ameliorates post-stroke emotional disorders in rats are associated with inhibiting neuroinflammation and PANoptosis, providing a new strategy and experimental basis for treating post-stroke emotional disorders.
Collapse
Affiliation(s)
- Yanhui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Zhaolan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Laifa Wang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, "The 14Th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, Changsha Medical University, Changsha, 410000, China
| | - Bi Zhu
- Class 2011 Clinical Medicine Eight-year Program of Central, South University, Changsha, 410000, China
| | - Ling Deng
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, "The 14Th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, Changsha Medical University, Changsha, 410000, China
| | - Hui Zhang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, "The 14Th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, Changsha Medical University, Changsha, 410000, China.
| | - Xueqin Wang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, "The 14Th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, Changsha Medical University, Changsha, 410000, China.
- Wuzhou Medical College, Wuzhou, 543199, China.
| |
Collapse
|
2
|
Shen K, Shi Y, Wang X, Leung SW. Cellular Components of the Blood-Brain Barrier and Their Involvement in Aging-Associated Cognitive Impairment. Aging Dis 2024:AD.202.0424. [PMID: 39122454 DOI: 10.14336/ad.202.0424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/01/2024] [Indexed: 08/12/2024] Open
Abstract
Human life expectancy has been significantly extended, which poses major challenges to our healthcare and social systems. Aging-associated cognitive impairment is attributed to endothelial dysfunction in the cardiovascular system and neurological dysfunction in the central nervous system. The central nervous system is considered an immune-privileged tissue due to the exquisite protection provided by the blood-brain barrier. The present review provides an overview of the structure and function of blood-brain barrier, extending the cell components of blood-brain barrier from endothelial cells and pericytes to astrocytes, perivascular macrophages and oligodendrocyte progenitor cells. In particular, the pathological changes in the blood-brain barrier in aging, with special focus on the underlying mechanisms and molecular changes, are presented. Furthermore, the potential preventive/therapeutic strategies against aging-associated blood-brain barrier disruption are discussed.
Collapse
Affiliation(s)
- Kaiyuan Shen
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Shi
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Susan Ws Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Xue M, Huang X, Zhu T, Zhang L, Yang H, Shen Y, Feng L. Unveiling the Significance of Peroxiredoxin 6 in Central Nervous System Disorders. Antioxidants (Basel) 2024; 13:449. [PMID: 38671897 PMCID: PMC11047492 DOI: 10.3390/antiox13040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Peroxiredoxin 6 (Prdx6), a unique 1-Cys member of the peroxiredoxin family, exhibits peroxidase activity, phospholipase activity, and lysophosphatidylcholine acyltransferase (LPCAT) activity. Prdx6 has been known to be an important enzyme for the maintenance of lipid peroxidation repair, cellular metabolism, inflammatory signaling, and antioxidant damage. Growing research has demonstrated that the altered activity of this enzyme is linked with various pathological processes including central nervous system (CNS) disorders. This review discusses the distinctive structure, enzyme activity, and function of Prdx6 in different CNS disorders, as well as emphasizing the significance of Prdx6 in neurological disorders.
Collapse
Affiliation(s)
- Min Xue
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
| | - Xiaojie Huang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Tong Zhu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Lijun Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Hao Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
4
|
Li J, Jiang W, Cai Y, Ning Z, Zhou Y, Wang C, Chung SK, Huang Y, Sun J, Deng M, Zhou L, Cheng X. Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism. Neural Regen Res 2024; 19:650-656. [PMID: 37721297 PMCID: PMC10581554 DOI: 10.4103/1673-5374.380906] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/03/2023] [Accepted: 05/31/2023] [Indexed: 09/19/2023] Open
Abstract
Vascular etiology is the second most prevalent cause of cognitive impairment globally. Endothelin-1, which is produced and secreted by endothelial cells and astrocytes, is implicated in the pathogenesis of stroke. However, the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood. Here, using mice in which astrocytic endothelin-1 was overexpressed, we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia (1 hour of ischemia; 7 days, 28 days, or 3 months of reperfusion). We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion. Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6, which were differentially expressed in the brain, were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke. Moreover, the levels of the enriched differentially expressed proteins were closely related to lipid metabolism, as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis. Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine, sphingomyelin, and phosphatidic acid. Overall, this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction.
Collapse
Affiliation(s)
- Jie Li
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, Guangdong Province, China
| | - Wen Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuefang Cai
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Zhenqiu Ning
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yingying Zhou
- Department of Anatomy, Sun Yat-Sen School of Medicine, Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Chengyi Wang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Sookja Ki Chung
- Faculty of Medicine, Macau University of Science and Technology, Macao Special Administration Region, China
| | - Yan Huang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, Guangdong Province, China
| | - Jingbo Sun
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, Guangdong Province, China
| | - Minzhen Deng
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Lihua Zhou
- Department of Anatomy, Sun Yat-Sen School of Medicine, Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Xiao Cheng
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, Guangdong Province, China
| |
Collapse
|
5
|
Hou K, Xiao ZC, Dai HL. p38 MAPK Endogenous Inhibition Improves Neurological Deficits in Global Cerebral Ischemia/Reperfusion Mice. Neural Plast 2022; 2022:3300327. [PMID: 35811833 PMCID: PMC9259354 DOI: 10.1155/2022/3300327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/02/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Cerebral ischemia/reperfusion (I/R) injury is a complex pathophysiological process that can lead to neurological function damage and the formation of cerebral infarction. The p38 MAPK pathway has attracted considerable attention in cerebral I/R injury (IRI), but little research has been carried out on its direct role in vivo. In this study, to observe the effects of p38 MAPK endogenous inhibition on cerebral IRI, p38 heterozygous knockdown (p38KI/+) mice were used. We hypothesized that p38 signaling might be involved in I/R injury and neurological damage reduction and that neurological behavioral deficits improve when p38 MAPK is inhibited. First, we examined the neurological damage and neurological behavioral deficit effects of I/R injury in WT mice. Cerebral I/R injury was induced by the bilateral common carotid artery occlusion (BCCAO) method. The cerebral infarction area and volume were assessed and analyzed by 2,3,5-triphenyltetrazolium chloride (TTC) staining. p38 MAPK and caspase-3 were detected by western blotting. Neuronal apoptosis was measured using TUNEL staining. Neurological deficits were detected by behavioral testing. Furthermore, to assess whether these neuroprotective effects occurred when p38 MAPK was inhibited, p38 heterozygous knockdown (p38KI/+) mice were used. We found that p38 MAPK endogenous inhibition rescued hippocampal cell apoptosis, reduced ischemic penumbra, and improved neurological behavioral deficits. These findings showed that p38 MAPK endogenous inhibition had a neuroprotective effect on IRI and that p38 MAPK may be a potential therapeutic target for cerebral IRI.
Collapse
Affiliation(s)
- Kun Hou
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Clinical Medicine Center for Cardiovascular Disease of Yunnan Province, Department of Cardiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650500, China
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China
| | - Zhi-cheng Xiao
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China
- Department of Anatomy and Developmental Biology, Monash University, Clayton 3800, Australia
| | - Hai-Long Dai
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Clinical Medicine Center for Cardiovascular Disease of Yunnan Province, Department of Cardiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| |
Collapse
|
6
|
Archie SR, Al Shoyaib A, Cucullo L. Blood-Brain Barrier Dysfunction in CNS Disorders and Putative Therapeutic Targets: An Overview. Pharmaceutics 2021; 13:pharmaceutics13111779. [PMID: 34834200 PMCID: PMC8622070 DOI: 10.3390/pharmaceutics13111779] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/22/2023] Open
Abstract
The blood-brain barrier (BBB) is a fundamental component of the central nervous system (CNS). Its functional and structural integrity is vital to maintain the homeostasis of the brain microenvironment by controlling the passage of substances and regulating the trafficking of immune cells between the blood and the brain. The BBB is primarily composed of highly specialized microvascular endothelial cells. These cells’ special features and physiological properties are acquired and maintained through the concerted effort of hemodynamic and cellular cues from the surrounding environment. This complex multicellular system, comprising endothelial cells, astrocytes, pericytes, and neurons, is known as the neurovascular unit (NVU). The BBB strictly controls the transport of nutrients and metabolites into brain parenchyma through a tightly regulated transport system while limiting the access of potentially harmful substances via efflux transcytosis and metabolic mechanisms. Not surprisingly, a disruption of the BBB has been associated with the onset and/or progression of major neurological disorders. Although the association between disease and BBB disruption is clear, its nature is not always evident, specifically with regard to whether an impaired BBB function results from the pathological condition or whether the BBB damage is the primary pathogenic factor prodromal to the onset of the disease. In either case, repairing the barrier could be a viable option for treating and/or reducing the effects of CNS disorders. In this review, we describe the fundamental structure and function of the BBB in both healthy and altered/diseased conditions. Additionally, we provide an overview of the potential therapeutic targets that could be leveraged to restore the integrity of the BBB concomitant to the treatment of these brain disorders.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-248-370-3884; Fax: +1-248-370-4060
| |
Collapse
|
7
|
Chavda V, Patel S, Alghamdi BS, Ashraf GM. Endothelin-1 induced global ischaemia in adult zebrafish: A model with novel entity of stroke research. J Chem Neuroanat 2021; 118:102025. [PMID: 34520802 DOI: 10.1016/j.jchemneu.2021.102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Stroke is a leading cause of death in the general population, and it occurs three times more frequently in diabetic patients, necessitating extensive research into new therapeutics. The reproducibility, similarity, and technical limitations of current animal models are limited. METHODS We developed a stroke induction model using pink zebra-Danio-rerio. Diabetes was induced in zebrafish by giving them D-glucose (111 mM) for 14 days, and those with blood glucose levels higher than 100 mg/dl were included in the study. In Zebrafish, an experimental stroke was induced by a single oral administration of Endothelin-1 (ET-1, 3µl/gm). Swimming, behavioural patterns, and cognitive performance were all recorded and analysed using UMA Tracker. The brains were removed for histopathological analysis. RESULTS In both the normal and diabetic groups, ET-1 administration resulted in a statistically significant change in swimming pattern and movements. Furthermore, changes in swimming pattern and recovery time were statistically significant in the diabetic ET-1 treatment group. In the neurocognitive assessment paradigm, the behavioural study of ET-1 treated groups revealed a disturbed cognitive profile and locomotor coordination, with an increase in the number of errors and a decrease in total distance travelled. Histopathological analysis of ET-1 treated groups revealed cortical lesions, shrunken neuronal cells, and thrombocytes in spheroid form with disturbed normal architecture of brain tissue when compared to normal control groups in tectum opticum and telencephalon. In terms of stability, reproducibility, and genetic similarity to human stroke, the current experimental model outperforms other available rodent stroke models. CONCLUSION The ET-1 induced experimental zebrafish stroke model opens up new avenues for diabetes-related stroke research due to its novelty, reproducibility, and ability to overcome technical errors found in other recent models.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pharmacology, Nirma University, Ahmadabad, Gujarat, India
| | - Snehal Patel
- Department of Pharmacology, Nirma University, Ahmadabad, Gujarat, India.
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Finney CA, Shvetcov A, Westbrook RF, Morris MJ, Jones NM. The selective estrogen receptor modulator tamoxifen protects against subtle cognitive decline and early markers of injury 24 h after hippocampal silent infarct in male Sprague-Dawley rats. Horm Behav 2021; 134:105016. [PMID: 34242875 DOI: 10.1016/j.yhbeh.2021.105016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 02/07/2023]
Abstract
Silent infarcts (SI) are subcortical cerebral infarcts occurring in the absence of typical ischemia symptoms and are linked to cognitive decline and dementia development. There are no approved treatments for SI. One potential treatment is tamoxifen, a selective estrogen receptor modulator. It is critical to establish whether treatments effectively target the early consequences of SI to avoid progression to complete injury. We induced SI in the dorsal hippocampal CA1 of rats and assessed whether tamoxifen is protective 24 h later against cognitive deficits and injury responses including gliosis, apoptosis, inflammation and changes in estrogen receptors (ERs). SI led to subtle cognitive impairment on the object place task, an effect ameliorated by tamoxifen administration. SI did not lead to detectable hippocampal cell loss but increased apoptosis, astrogliosis, microgliosis and inflammation. Tamoxifen protected against the effects of SI on all measures except microgliosis. SI increased ERα and decreased ERβ in the hippocampus, which were mitigated by tamoxifen. Exploratory data analyses using scatterplot matrices and principal component analysis indicated that SI rats given tamoxifen were indistinguishable from controls. Further, SI rats were significantly different from all other groups, an effect associated with low levels of ERα and increased apoptosis, gliosis, inflammation, ERβ, and time spent with the unmoved object. The results demonstrate that tamoxifen is protective against the early cellular and cognitive consequences of hippocampal SI 24 h after injury. Tamoxifen mitigates apoptosis, gliosis, and inflammation and normalization of ER levels in the CA1, leading to improved cognitive outcomes after hippocampal SI.
Collapse
|
9
|
Liao J, Zhang Y, Chen X, Zhang J. The Roles of Peroxiredoxin 6 in Brain Diseases. Mol Neurobiol 2021; 58:4348-4364. [PMID: 34013449 DOI: 10.1007/s12035-021-02427-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Peroxiredoxin 6 (PRDX6), the only mammalian 1-Cys member of the peroxiredoxins (PRDXs) family, has multiple functions of glutathione peroxidase (Gpx) activity, acidic calcium-independent phospholipase (aiPLA2) activity, and lysophosphatidylcholine acyl transferase (LPCAT) activity. It has been documented to be involved in redox homeostasis, phospholipid turnover, glycolipid metabolism, and cellular signaling. Here, we reviewed the characteristics of the available Prdx6 genetic mouse models and the research progresses made with regard to PRDX6 in neuropsychiatric disorders, including neurodegenerative diseases, brain aging, stroke, neurotrauma, gliomas, major depressive disorder, drug addiction, post-traumatic stress disorder, and schizophrenia. The present review highlights the important roles of PRDX6 in neuropsychiatric disorders and may provide novel insights for the development of effective pharmacological treatments and genetic therapies.
Collapse
Affiliation(s)
- Jiangfeng Liao
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China.,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350005, Fujian, China
| | - Yusi Zhang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China.,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350005, Fujian, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China. .,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350005, Fujian, China.
| | - Jing Zhang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China. .,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
10
|
Daverey A, Agrawal SK. Regulation of Prdx6 by Nrf2 Mediated Through aiPLA2 in White Matter Reperfusion Injury. Mol Neurobiol 2021; 58:1275-1289. [PMID: 33159299 DOI: 10.1007/s12035-020-02182-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/18/2020] [Indexed: 12/18/2022]
Abstract
Hypoxia and reperfusion produces overproduction of ROS (reactive oxygen species), which may lead to mitochondrial dysfunction leading to cell death and apoptosis. Here, we explore the hypothesis that Prdx6 protects the spinal cord white matter from hypoxia-reperfusion injury and elucidate the possible mechanism by which Prdx6 elicits its protective effects. Briefly, rats were deeply anesthetized with isoflurane. A 30-mm section of the spinal cord was rapidly removed and placed in cold Ringer's solution (2-4 °C). The dissected dorsal column was exposed to hypoxia with 95% N2 and 5% CO2 and reperfusion with 95% O2 and 5% CO2. The expression of Prdx6 significantly upregulated in white matter after hypoxia compared to the sham group, whereas reperfusion caused a gradual decrease in Prdx6 expression after reperfusion injury. For the first time, our study revealed the novel expression and localized expression of Prdx6 in astrocytes after hypoxia, and possible communication of astrocytes and axons through Prdx6. The gradual increase in Nrf2 expression suggests a negative regulation of Prdx6 through Nrf2 signaling. Furthermore, inhibition of aiPLA2 activity of Prdx6 by MJ33 shows that the regulation of Prdx6 by Nrf2 is mediated through aiPLA2 activity. The present study uncovers a differential distribution of Prdx6 in axons and astrocytes and regulation of Prdx6 in hypoxia-reperfusion injury. The low levels of Prdx6 in reperfusion injury lead to increased inflammation and apoptosis in the white matter; therefore, the results of this study suggest that Prdx6 has a protective role in spinal hypoxia-reperfusion injury.
Collapse
Affiliation(s)
- Amita Daverey
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA.
| | - Sandeep K Agrawal
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| |
Collapse
|
11
|
Tayler H, Miners JS, Güzel Ö, MacLachlan R, Love S. Mediators of cerebral hypoperfusion and blood-brain barrier leakiness in Alzheimer's disease, vascular dementia and mixed dementia. Brain Pathol 2021; 31:e12935. [PMID: 33410232 PMCID: PMC8412075 DOI: 10.1111/bpa.12935] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/18/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022] Open
Abstract
In vascular dementia (VaD) and Alzheimer’s disease (AD), cerebral hypoperfusion and blood‐brain barrier (BBB) leakiness contribute to brain damage. In this study, we have measured biochemical markers and mediators of cerebral hypoperfusion and BBB in the frontal (BA6) and parietal (BA7) cortex and underlying white matter, to investigate the pathophysiology of vascular dysfunction in AD, VaD and mixed dementia. The ratio of myelin‐associated glycoprotein to proteolipid protein‐1 (MAG:PLP1), a post‐mortem biochemical indicator of the adequacy of ante‐mortem cerebral perfusion; the concentration of fibrinogen adjusted for haemoglobin level, a marker of blood‐brain barrier (BBB) leakiness; the level of vascular endothelial growth factor‐A (VEGF), a marker of tissue hypoxia; and endothelin‐1 (EDN1), a potent vasoconstrictor, were measured by ELISA in the frontal and parietal cortex and underlying white matter in 94 AD, 20 VaD, 33 mixed dementia cases and 58 age‐matched controls. All cases were assessed neuropathologically for small vessel disease (SVD), cerebral amyloid angiopathy (CAA) severity, Aβ and phospho‐tau parenchymal load, and Braak tangle stage. Aβ40 and Aβ42 were measured by ELISA in guanidine‐HCl tissue extracts. We found biochemical evidence of cerebral hypoperfusion in AD, VaD and mixed dementia to be associated with SVD, Aβ level, plaque load, EDN1 level and Braak tangle stage, and to be most widespread in mixed dementia. There was evidence of BBB leakiness in AD—limited to the cerebral cortex and related to EDN1 level. In conclusion, abnormalities of cerebral perfusion and BBB function in common types of dementia can largely be explained by a combination of arteriolosclerosis, and Aβ‐, tau‐ and endothelin‐related vascular dysfunction. The relative contributions of these processes vary considerably both between and within the diseases.
Collapse
Affiliation(s)
- Hannah Tayler
- Dementia Research Group, Institute of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - J Scott Miners
- Dementia Research Group, Institute of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Özge Güzel
- Dementia Research Group, Institute of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rob MacLachlan
- Dementia Research Group, Institute of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Seth Love
- Dementia Research Group, Institute of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
12
|
Finney CA, Morris MJ, Westbrook RF, Jones NM. Hippocampal silent infarct leads to subtle cognitive decline that is associated with inflammation and gliosis at twenty-four hours after injury in a rat model. Behav Brain Res 2020; 401:113089. [PMID: 33358919 DOI: 10.1016/j.bbr.2020.113089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 01/31/2023]
Abstract
Silent infarcts (SI) are subcortical cerebral infarcts that occur in the absence of clinical symptoms commonly associated with ischemia and are linked to dementia development. Little is known about the pathophysiology underlying the cognitive dysfunction associated with SI, and few studies have examined the early cellular responses and neurobiological underpinnings. We induced SI in adult male Sprague-Dawley rats using an infusion of endothelin-1 in the CA1 dorsal hippocampus. Twenty-four hours later, we assessed cognition using the hippocampal-dependent object place recognition task. We also examined whether the resulting cognitive effects were associated with common markers of ischemia, specifically cell and synapse loss, gliosis, and inflammation, using histology and immunohistochemistry. Hippocampal SI led to subtle cognitive impairment on the object place recognition task 24 -hs post-injury. This was characterized by a significant difference in exploration proportion relative to a pre-injury baseline and a positive association between time spent with both the moved and unmoved objects. SI did not result in any detectable cell or synaptophysin loss, but did increase apoptosis, gliosis and inflammation in the CA1. Principal component analysis indicated the main variables associated with hippocampal SI included increased time spent with the unmoved object, gliosis, apoptosis and inflammation as well as decreased exploration proportion and CA1 cells. Our data demonstrate that hippocampal SI can lead to cognitive dysfunction 24 -hs after injury. Further, this appears to be driven by early degenerative processes including apoptosis, gliosis and inflammation, suggesting that these may be targets for early interventions treating hippocampal SI and its cognitive consequences.
Collapse
|
13
|
Wang T, Liu C, Pan LH, Liu Z, Li CL, Lin JY, He Y, Xiao JY, Wu S, Qin Y, Li Z, Lin F. Inhibition of p38 MAPK Mitigates Lung Ischemia Reperfusion Injury by Reducing Blood-Air Barrier Hyperpermeability. Front Pharmacol 2020; 11:569251. [PMID: 33362540 PMCID: PMC7759682 DOI: 10.3389/fphar.2020.569251] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/29/2020] [Indexed: 01/18/2023] Open
Abstract
Background: Lung ischemia reperfusion injury (LIRI) is a complex pathophysiological process activated by lung transplantation and acute lung injury. The p38 mitogen-activated protein kinase (MAPK) is involved in breakdown of the endothelial barrier during LIRI, but the mechanism is still unclear. Therefore, we investigated the function of p38 MAPK in LIRI in vivo and in vitro. Methods: Sprague–Dawley rats were subjected to ischemia reperfusion with or without pretreatment with a p38 MAPK inhibitor. Lung injury was assessed using hematoxylin and eosin staining, and pulmonary blood–air barrier permeability was evaluated using Evans blue staining. A rat pulmonary microvascular endothelial cell line was infected with lentiviral expressing short hairpin (sh)RNA targeting p38 MAPK and then cells were subjected to oxygen/glucose deprivation and reoxygenation (OGD/R). Markers of endothelial destruction were measured by western blot and immunofluorescence. Results:In vivo LIRI models showed structural changes indicative of lung injury and hyperpermeability of the blood–air barrier. Inhibiting p38 MAPK mitigated these effects. Oxygen/glucose deprivation and reoxygenation promoted hyperpermeability of the endothelial barrier in vitro, but knockdown of p38 MAPK attenuated cell injury; maintained endothelial barrier integrity; and partially reversed injury-induced downregulation of permeability protein AQP1, endothelial protective protein eNOS, and junction proteins ZO-1 and VE-cadherin while downregulating ICAM-1, a protein involved in destroying the endothelial barrier, and ET-1, a protein involved in endothelial dysfunction. Conclusion: Inhibition of p38 MAPK alleviates LIRI by decreasing blood–air hyperpermeability. Blocking p38 MAPK may be an effective treatment against acute lung injury.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chunxia Liu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ling-Hui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhen Liu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chang-Long Li
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jin-Yuan Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yi He
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jing-Yuan Xiao
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Siyi Wu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yi Qin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhao Li
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fei Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
14
|
Cao C, Zhou J, Wu X, Qian Y, Hong Y, Mu J, Jin L, Zhu C, Li S. Activation of CRHR1 contributes to cerebral endothelial barrier impairment via cPLA2 phosphorylation in experimental ischemic stroke. Cell Signal 2020; 66:109467. [DOI: 10.1016/j.cellsig.2019.109467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 11/27/2022]
|
15
|
Lerman LO, Kurtz TW, Touyz RM, Ellison DH, Chade AR, Crowley SD, Mattson DL, Mullins JJ, Osborn J, Eirin A, Reckelhoff JF, Iadecola C, Coffman TM. Animal Models of Hypertension: A Scientific Statement From the American Heart Association. Hypertension 2019; 73:e87-e120. [PMID: 30866654 DOI: 10.1161/hyp.0000000000000090] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypertension is the most common chronic disease in the world, yet the precise cause of elevated blood pressure often cannot be determined. Animal models have been useful for unraveling the pathogenesis of hypertension and for testing novel therapeutic strategies. The utility of animal models for improving the understanding of the pathogenesis, prevention, and treatment of hypertension and its comorbidities depends on their validity for representing human forms of hypertension, including responses to therapy, and on the quality of studies in those models (such as reproducibility and experimental design). Important unmet needs in this field include the development of models that mimic the discrete hypertensive syndromes that now populate the clinic, resolution of ongoing controversies in the pathogenesis of hypertension, and the development of new avenues for preventing and treating hypertension and its complications. Animal models may indeed be useful for addressing these unmet needs.
Collapse
|
16
|
Fouda AY, Fagan SC, Ergul A. Brain Vasculature and Cognition. Arterioscler Thromb Vasc Biol 2019; 39:593-602. [PMID: 30816798 PMCID: PMC6540805 DOI: 10.1161/atvbaha.118.311906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
There is a complex interaction between the brain and the cerebral vasculature to meet the metabolic demands of the brain for proper function. Preservation of cerebrovascular function and integrity has a central role in this sophisticated communication within the brain, and any derangements can have deleterious acute and chronic consequences. In almost all forms of cognitive impairment, from mild to Alzheimer disease, there are changes in cerebrovascular function and structure leading to decreased cerebral blood flow, which may initiate or worsen cognitive impairment. In this focused review, we discuss the contribution of 2 major vasoactive pathways to cerebrovascular dysfunction and cognitive impairment in an effort to identify early intervention strategies.
Collapse
Affiliation(s)
- Abdelrahman Y. Fouda
- Vascular Biology Center, Augusta University, GA
- Charlie Norwood VA Medical Center Augusta, GA
| | - Susan C. Fagan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, GA
- Charlie Norwood VA Medical Center Augusta, GA
| | - Adviye Ergul
- Ralph Johnson Veterans Administration Medical Center, Medical University of South Carolina, Charleston, SC
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
17
|
Pacifici F, Della Morte D, Capuani B, Pastore D, Bellia A, Sbraccia P, Di Daniele N, Lauro R, Lauro D. Peroxiredoxin6, a Multitask Antioxidant Enzyme Involved in the Pathophysiology of Chronic Noncommunicable Diseases. Antioxid Redox Signal 2019; 30:399-414. [PMID: 29160110 DOI: 10.1089/ars.2017.7427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Chronic noncommunicable diseases (NCDs) are the leading causes of disability and death worldwide. NCDs mainly comprise diabetes mellitus, cardiovascular diseases, chronic obstructive pulmonary disease, cancer, and neurological degenerative diseases, which kill more than 80% of population, especially the elderly, worldwide. Recent Advances: Several recent theories established NCDs as multifactorial diseases, where a combination of genetic, epigenetic, and environmental factors contributes to their pathogenesis. Nevertheless, recent findings suggest that the common factor linking all these pathologies is an increase in oxidative stress and the age-related loss of the antioxidant mechanisms of defense against it. Impairment in mitochondrial homeostasis with consequent deregulation in oxidative stress balance has also been suggested. CRITICAL ISSUES Therefore, antioxidant proteins deserve particular attention for their potential role against NCDs. In particular, peroxiredoxin(Prdx)6 is a unique antioxidant enzyme, belonging to the Prdx family, with double properties, peroxidase and phospholipase activities. Through these activities, Prdx6 has been shown to be a powerful antioxidant enzyme, implicated in the pathogenesis of different NCDs. Recently, we described a phenotype of diabetes mellitus in Prdx6 knockout mice, suggesting a pivotal role of Prdx6 in the pathogenesis of cardiometabolic diseases. FUTURE DIRECTIONS Increasing awareness on the role of antioxidant defenses in the pathogenesis of NCDs may open novel therapeutic approaches to reduce the burden of this pandemic phenomenon. However, knowledge of the role of Prdx6 in NCD prevention and pathogenesis is still not clarified.
Collapse
Affiliation(s)
- Francesca Pacifici
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - David Della Morte
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 2 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
| | - Barbara Capuani
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - Donatella Pastore
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - Alfonso Bellia
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| | - Paolo Sbraccia
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| | - Nicola Di Daniele
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| | - Renato Lauro
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - Davide Lauro
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| |
Collapse
|
18
|
Wu Q, Zheng R, Wang J, Wang J, Li S. CT perfusion imaging of cerebral microcirculatory changes following subarachnoid hemorrhage in rabbits: Specific role of endothelin-1 receptor antagonist. Brain Res 2018; 1701:196-203. [PMID: 30244111 DOI: 10.1016/j.brainres.2018.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cerebral vasospasm may lead to delayed ischemic neurological deficits following subarachnoid hemorrhage (SAH). Endothelin (ET-1) is an important factor participating in cerebral vasospasm underlying SAH. We used a specific endothelin receptor antagonist, BQ123 to assess the specific role of endothelin-1 receptor antagonist in cerebral vasospasm in a rabbit model of SAH by examining plasma ET-1 levels and the principal CT perfusion (CTP) parameters pertinent to the hemodynamic status of microcirculation following SAH. METHODS 102 male New Zealand white rabbits were divided into control, SAH and SAH + BQ123 intervention group (BQ123 group). Rabbit SAH model was established by double hemorrhage injection of autologous blood into the cisterna magna; Aquilion ONE was used to collect cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) which were used to evaluate cerebral microcirculation hemodynamics; Elisa was used to assess plasma ET-1 levels. Data were collected on days 1, 4, 7 and 14 following SAH, respectively. RESULTS Compared with the control group, the CBF in the SAH group was significantly lower, while the MTT was significantly higher. The CBF decreased on the 4th day and reached the lowest on the 7th day. The MTT began to rise on the 4th day and peaked on the 7th day. While in the BQ123 intervention group, the CBF significantly increased while the MTT significantly decreased on the 1st and the 4th days, respectively. Compared with SAH group, plasma ET-1 levels in BQ123 group significantly increased on the earlier (1st and 4th days) but not later days (between the 7th and 14th days). In addition, the inflammatory infiltration of brain tissues in rabbits treated with BQ123 post-SAH was significantly reduced compared with SAH group. CONCLUSION CTP can quantify the therapeutic effect of BQ123 after SAH; Selective blockade of ET-1 endothelin receptor, BQ123 significantly improved microcirculatory perfusion along with a reduction in resultant vasogenic inflammatory responses. The effect of BQ123 on the cerebral microcirculation was lobe dependent.
Collapse
Affiliation(s)
- Quanyang Wu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Ruibin Zheng
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Jiao Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Jiaqi Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Songbai Li
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China.
| |
Collapse
|
19
|
Wang F, Cao Y, Ma L, Pei H, Rausch WD, Li H. Dysfunction of Cerebrovascular Endothelial Cells: Prelude to Vascular Dementia. Front Aging Neurosci 2018; 10:376. [PMID: 30505270 PMCID: PMC6250852 DOI: 10.3389/fnagi.2018.00376] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Vascular dementia (VaD) is the second most common type of dementia after Alzheimer's disease (AD), characterized by progressive cognitive impairment, memory loss, and thinking or speech problems. VaD is usually caused by cerebrovascular disease, during which, cerebrovascular endothelial cells (CECs) are vulnerable. CEC dysfunction occurs before the onset of VaD and can eventually lead to dysregulation of cerebral blood flow and blood-brain barrier damage, followed by the activation of glia and inflammatory environment in the brain. White matter, neuronal axons, and synapses are compromised in this process, leading to cognitive impairment. The present review summarizes the mechanisms underlying CEC impairment during hypoperfusion and pathological role of CECs in VaD. Through the comprehensive examination and summarization, endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) signaling pathway, Ras homolog gene family member A (RhoA) signaling pathway, and CEC-derived caveolin-1 (CAV-1) are proposed to serve as targets of new drugs for the treatment of VaD.
Collapse
Affiliation(s)
- Feixue Wang
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Ma
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wolf Dieter Rausch
- Department for Biomedical Sciences, Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Ward R, Abdul Y, Ergul A. Endothelin-1 inhibition improves the mBDNF/proBDNF ratio in endothelial cells and HT22 neurons under high glucose/palmitate growth conditions. Physiol Res 2018; 67:S237-S246. [PMID: 29947543 DOI: 10.33549/physiolres.933837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Diabetes increases the risk and worsens the progression of cognitive impairment. The hippocampus is an important domain for learning and memory. We previously showed that endothelin-1 (ET-1) reduced diabetes-induced inflammation in hippocampal neurons, suggesting a neuroprotective effect. Given that neurons and endothelial cells within the neurovascular unit depend on each other for proper function, we investigated the effect of ET-1 on brain-derived neurotrophic factor (BDNF) synthesis, a key neurotrophin and prosurvival factor, in neuronal (HT22 hippocampal neurons) and brain microvascular endothelial (BMEC-5i) cells under normal and diabetes-mimicking (high glucose plus palmitate) conditions. Cells were treated with exogenous ET-1 or ET receptor antagonists including ET(B) receptor selective antagonist BQ788 (1 microM) or dual-receptor antagonist bosentan (10 microM). Mature (m)BDNF, proBDNF and caspase-3 levels were measured by Western blotting. Diabetic conditions reduced the prosurvival mBDNF/proBDNF ratio in both HT22 and BMEC-5i cells. Addition of exogenous ET-1 had no effect on the BDNF system in HT22 cells in diabetic conditions. Both HT22 and BMEC-5i cells had an increase in the mBDNF/proBDNF ratio when grown in diabetes-simulating conditions in the presence of endothelin receptor inhibition. These data suggest that blockade of ET-1 may provide neuroprotection to hippocampal cells through the modulation of the BDNF system.
Collapse
Affiliation(s)
- R Ward
- Department of Neuroscience and Regenerative Medicine and Department of Physiology, Augusta University, Augusta, GA, USA.
| | | | | |
Collapse
|
21
|
Abstract
Endothelins were discovered more than thirty years ago as potent vasoactive compounds. Beyond their well-documented cardiovascular properties, however, the contributions of the endothelin pathway have been demonstrated in several neuroinflammatory processes and the peptides have been reported as clinically relevant biomarkers in neurodegenerative diseases. Several studies report that endothelin-1 significantly contributes to the progression of neuroinflammatory processes, particularly during infections in the central nervous system (CNS), and is associated with a loss of endothelial integrity at the blood brain barrier level. Because of the paucity of clinical trials with endothelin-1 antagonists in several infectious and non-infectious neuroinflammatory diseases, it remains an open question whether the 21 amino acid peptide is a mediator/modulator rather than a biomarker of the progression of neurodegeneration. This review focuses on the potential roles of endothelins in the pathology of neuroinflammatory processes, including infectious diseases of viral, bacterial or parasitic origin in which the synthesis of endothelins or its pharmacology have been investigated from the cell to the bedside in several cases, as well as in non-infectious inflammatory processes such as neurodegenerative disorders like Alzheimers Disease or central nervous system vasculitis.
Collapse
|
22
|
Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, Keep RF, Shi Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 2017; 163-164:144-171. [PMID: 28987927 DOI: 10.1016/j.pneurobio.2017.10.001] [Citation(s) in RCA: 623] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/30/2017] [Accepted: 10/02/2017] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) plays a vital role in regulating the trafficking of fluid, solutes and cells at the blood-brain interface and maintaining the homeostatic microenvironment of the CNS. Under pathological conditions, such as ischemic stroke, the BBB can be disrupted, followed by the extravasation of blood components into the brain and compromise of normal neuronal function. This article reviews recent advances in our knowledge of the mechanisms underlying BBB dysfunction and recovery after ischemic stroke. CNS cells in the neurovascular unit, as well as blood-borne peripheral cells constantly modulate the BBB and influence its breakdown and repair after ischemic stroke. The involvement of stroke risk factors and comorbid conditions further complicate the pathogenesis of neurovascular injury by predisposing the BBB to anatomical and functional changes that can exacerbate BBB dysfunction. Emphasis is also given to the process of long-term structural and functional restoration of the BBB after ischemic injury. With the development of novel research tools, future research on the BBB is likely to reveal promising potential therapeutic targets for protecting the BBB and improving patient outcome after ischemic stroke.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | | | - Ling Zhu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael V L Bennett
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
23
|
Chidlow G, Wood JPM, Casson RJ. Investigations into Hypoxia and Oxidative Stress at the Optic Nerve Head in a Rat Model of Glaucoma. Front Neurosci 2017; 11:478. [PMID: 28883787 PMCID: PMC5573812 DOI: 10.3389/fnins.2017.00478] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/11/2017] [Indexed: 01/03/2023] Open
Abstract
The vascular hypothesis of glaucoma proposes that retinal ganglion cell axons traversing the optic nerve head (ONH) undergo oxygen and nutrient insufficiency as a result of compromised local blood flow, ultimately leading to their degeneration. To date, evidence for the hypothesis is largely circumstantial. Herein, we made use of an induced rat model of glaucoma that features reproducible and widespread axonal transport disruption at the ONH following chronic elevation of intraocular pressure. If vascular insufficiency plays a role in the observed axonal transport failure, there should exist a physical signature at this time point. Using a range of immunohistochemical and molecular tools, we looked for cellular events indicative of vascular insufficiency, including the presence of hypoxia, upregulation of hypoxia-inducible, or antioxidant-response genes, alterations to antioxidant enzymes, increased formation of superoxide, and the presence of oxidative stress. Our data show that ocular hypertension caused selective hypoxia within the laminar ONH in 11/13 eyes graded as either medium or high for axonal transport disruption. Hypoxia was always present in areas featuring injured axons, and, the greater the abundance of axonal transport disruption, the greater the likelihood of a larger hypoxic region. Nevertheless, hypoxic regions were typically focal and were not necessarily evident in sections taken deeper within the same ONH, while disrupted axonal transport was frequently encountered without any discernible hypoxia. Ocular hypertension caused upregulation of heme oxygenase-1—an hypoxia-inducible and redox-sensitive enzyme—in ONH astrocytes. The distribution and abundance of heme oxygenase-1 closely matched that of axonal transport disruption, and encompassed hypoxic regions and their immediate penumbra. Ocular hypertension also caused upregulations in the iron-regulating protein ceruloplasmin, the anaerobic glycolytic enzyme lactate dehydrogenase, and the transcription factors cFos and p-cJun. Moreover, ocular hypertension increased the generation of superoxide radicals in the retina and ONH, as well as upregulating the active subunit of the superoxide-generating enzyme NADPH oxidase, and invoking modest alterations to antioxidant-response enzymes. The results of this study provide further indirect support for the hypothesis that reduced blood flow to the ONH contributes to axonal injury in glaucoma.
Collapse
Affiliation(s)
- Glyn Chidlow
- Ophthalmic Research Laboratories, Discipline of Ophthalmology and Visual Sciences, University of AdelaideAdelaide, SA, Australia
| | - John P M Wood
- Ophthalmic Research Laboratories, Discipline of Ophthalmology and Visual Sciences, University of AdelaideAdelaide, SA, Australia
| | - Robert J Casson
- Ophthalmic Research Laboratories, Discipline of Ophthalmology and Visual Sciences, University of AdelaideAdelaide, SA, Australia
| |
Collapse
|
24
|
Tohidpour A, Morgun AV, Boitsova EB, Malinovskaya NA, Martynova GP, Khilazheva ED, Kopylevich NV, Gertsog GE, Salmina AB. Neuroinflammation and Infection: Molecular Mechanisms Associated with Dysfunction of Neurovascular Unit. Front Cell Infect Microbiol 2017; 7:276. [PMID: 28676848 PMCID: PMC5476750 DOI: 10.3389/fcimb.2017.00276] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is a complex inflammatory process in the central nervous system, which is sought to play an important defensive role against various pathogens, toxins or factors that induce neurodegeneration. The onset of neurodegenerative diseases and various microbial infections are counted as stimuli that can challenge the host immune system and trigger the development of neuroinflammation. The homeostatic nature of neuroinflammation is essential to maintain the neuroplasticity. Neuroinflammation is regulated by the activity of neuronal, glial, and endothelial cells within the neurovascular unit, which serves as a “platform” for the coordinated action of pro- and anti-inflammatory mechanisms. Production of inflammatory mediators (cytokines, chemokines, reactive oxygen species) by brain resident cells or cells migrating from the peripheral blood, results in the impairment of blood-brain barrier integrity, thereby further affecting the course of local inflammation. In this review, we analyzed the most recent data on the central nervous system inflammation and focused on major mechanisms of neurovascular unit dysfunction caused by neuroinflammation and infections.
Collapse
Affiliation(s)
- Abolghasem Tohidpour
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Andrey V Morgun
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia.,Department of Paediatrics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Elizaveta B Boitsova
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia.,Department of Children Infectious Diseases, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Natalia A Malinovskaya
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Galina P Martynova
- Department of Children Infectious Diseases, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Elena D Khilazheva
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Natalia V Kopylevich
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Galina E Gertsog
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Alla B Salmina
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| |
Collapse
|
25
|
Amygdalar Endothelin-1 Regulates Pyramidal Neuron Excitability and Affects Anxiety. Sci Rep 2017; 7:2316. [PMID: 28539637 PMCID: PMC5443782 DOI: 10.1038/s41598-017-02583-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/13/2017] [Indexed: 11/24/2022] Open
Abstract
An abnormal neuronal activity in the amygdala is involved in the pathogenesis of anxiety disorders. However, little is known about the mechanisms. High-anxiety mice and low-anxiety mice, representing the innate extremes of anxiety-related behaviors, were first grouped according to their anxiety levels in the elevated plus maze test. We found that the mRNA for endothelin-1 (ET1) and ET1 B-type receptors (ETBRs) in the amygdala was down-regulated in high-anxiety mice compared with low-anxiety mice. Knocking down basolateral amygdala (BLA) ET1 expression enhanced anxiety-like behaviors, whereas over-expressing ETBRs, but not A-type receptors (ETARs), had an anxiolytic effect. The combined down-regulation of ETBR and ET1 had no additional anxiogenic effect compared to knocking down the ETBR gene alone, suggesting that BLA ET1 acts through ETBRs to regulate anxiety-like behaviors. To explore the mechanism underlying this phenomenon further, we verified that most of the ET1 and the ET1 receptors in the BLA were expressed in pyramidal neurons. The ET1–ETBR signaling pathway decreased the firing frequencies and threshold currents for the action potentials of BLA pyramidal neurons but did not alter BLA synaptic neurotransmission. Together, these results indicate that amygdalar ET1-ETBR signaling could attenuate anxiety-like behaviors by directly decreasing the excitability of glutamatergic neurons.
Collapse
|
26
|
Michinaga S, Koyama Y. Protection of the Blood–Brain Barrier as a Therapeutic Strategy for Brain Damage. Biol Pharm Bull 2017; 40:569-575. [DOI: 10.1248/bpb.b16-00991] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shotaro Michinaga
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University
| | - Yutaka Koyama
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University
| |
Collapse
|
27
|
Li L, Wang N, Jin Q, Wu Q, Liu Y, Wang Y. Protection of Tong-Qiao-Huo-Xue Decoction against Cerebral Ischemic Injury through Reduction Blood–Brain Barrier Permeability. Chem Pharm Bull (Tokyo) 2017; 65:1004-1010. [DOI: 10.1248/cpb.c17-00267] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lili Li
- Key Laboratory of Xin’an Medicine, Ministry of Education
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- College of Pharmacy, Anhui University of Chinese Medicine
| | - Ning Wang
- Key Laboratory of Xin’an Medicine, Ministry of Education
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- College of Pharmacy, Anhui University of Chinese Medicine
| | - Qizhong Jin
- Key Laboratory of Xin’an Medicine, Ministry of Education
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
| | - Qian Wu
- Key Laboratory of Xin’an Medicine, Ministry of Education
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
| | - Yafang Liu
- Key Laboratory of Xin’an Medicine, Ministry of Education
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- College of Pharmacy, Anhui University of Chinese Medicine
| | - Yan Wang
- Key Laboratory of Xin’an Medicine, Ministry of Education
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
| |
Collapse
|
28
|
Zhou L, Ma SL, Yeung PKK, Wong YH, Tsim KWK, So KF, Lam LCW, Chung SK. Anxiety and depression with neurogenesis defects in exchange protein directly activated by cAMP 2-deficient mice are ameliorated by a selective serotonin reuptake inhibitor, Prozac. Transl Psychiatry 2016; 6:e881. [PMID: 27598965 PMCID: PMC5048194 DOI: 10.1038/tp.2016.129] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 01/29/2023] Open
Abstract
Intracellular cAMP and serotonin are important modulators of anxiety and depression. Fluoxetine, a selective serotonin reuptake inhibitor (SSRI) also known as Prozac, is widely used against depression, potentially by activating cAMP response element-binding protein (CREB) and increasing brain-derived neurotrophic factor (BDNF) through protein kinase A (PKA). However, the role of Epac1 and Epac2 (Rap guanine nucleotide exchange factors, RAPGEF3 and RAPGEF4, respectively) as potential downstream targets of SSRI/cAMP in mood regulations is not yet clear. Here, we investigated the phenotypes of Epac1 (Epac1(-/-)) or Epac2 (Epac2(-/-)) knockout mice by comparing them with their wild-type counterparts. Surprisingly, Epac2(-/-) mice exhibited a wide range of mood disorders, including anxiety and depression with learning and memory deficits in contextual and cued fear-conditioning tests without affecting Epac1 expression or PKA activity. Interestingly, rs17746510, one of the three single-nucleotide polymorphisms (SNPs) in RAPGEF4 associated with cognitive decline in Chinese Alzheimer's disease (AD) patients, was significantly correlated with apathy and mood disturbance, whereas no significant association was observed between RAPGEF3 SNPs and the risk of AD or neuropsychiatric inventory scores. To further determine the detailed role of Epac2 in SSRI/serotonin/cAMP-involved mood disorders, we treated Epac2(-/-) mice with a SSRI, Prozac. The alteration in open field behavior and impaired hippocampal cell proliferation in Epac2(-/-) mice were alleviated by Prozac. Taken together, Epac2 gene polymorphism is a putative risk factor for mood disorders in AD patients in part by affecting the hippocampal neurogenesis.
Collapse
Affiliation(s)
- L Zhou
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - S L Ma
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - P K K Yeung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Y H Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China,State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - K W K Tsim
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China,Division of Life Science and Center for Chinese Medicine, Hong Kong University of Science and Technology, Clear Water Bay, Clear Water Bay, Hong Kong SAR, China
| | - K F So
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,State Key Laboratory of Brain and Cognitive Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Department of Ophthalmology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - L C W Lam
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - S K Chung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,School of Biomedical Sciences, The University of Hong Kong, 1/F, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China. E-mail:
| |
Collapse
|
29
|
Ma W, Fu Q, Zhang Y, Zhang Z. A Single-Nucleotide Polymorphism in 3'-Untranslated Region of Endothelin-1 Reduces Risk of Dementia After Ischemic Stroke. Med Sci Monit 2016; 22:1368-74. [PMID: 27106952 PMCID: PMC4846183 DOI: 10.12659/msm.895888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Ischemic stroke is widely recognized as a major health problem and social burden worldwide, and it usually leads to dementia. In this study, we aimed to better understand the pathogenesis in the development of dementia following ischemic stroke. MATERIAL AND METHODS We exploited miRNA database to search for the target for miR-125a and validated the found target using luciferase assay. Further, we performed real-time PCR and Western blot analysis to examine the expression of miR-125a and its target in the tissue samples. In addition, a polymorphism was genotyped and its association with post-stroke dementia was analyzed. RESULTS We identified enthothelin-1 (ET-1) as a target of miR-125a, and this relationship was validated using luciferase assay. Furthermore, transfection of miR-125a inhibitor substantially upregulated the expression of ET-1, while miR-125a and ET-1 siRNA caused downregulation of ET-1 in endothelial cells. In addition, we found that a polymorphism (rs12976445) interferes with the expression of miR-125a, which in turn caused an increase in the expression of ET-1 in human endothelial cells. Logistic regression analysis showed that rs12976445 is significantly associated with the risk of dementia after ischemic stroke. CONCLUSIONS Our study demonstrated the pathogenesis mechanism during the development of dementia after ischemic stroke by investigating the relationship between miR-125a and its target ET-1, promising a potential pathological solution for post-stroke dementia in the future.
Collapse
Affiliation(s)
- Wanwan Ma
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China (mainland)
| | - Qizhi Fu
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China (mainland)
| | - Yanpeng Zhang
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China (mainland)
| | - Zhen Zhang
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China (mainland)
| |
Collapse
|
30
|
Relationship of endothelin-1 and NLRP3 inflammasome activation in HT22 hippocampal cells in diabetes. Life Sci 2016; 159:97-103. [PMID: 26883974 DOI: 10.1016/j.lfs.2016.02.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 12/22/2022]
Abstract
Diabetes increases the risk and worsens the progression of cognitive decline. Diabetic rats treated with the dual endothelin receptor antagonist bosentan, have been shown to improve hippocampal-based cognitive deficits. The NLRP3 inflammasome has been implicated in vascular complications of diabetes. We hypothesized that diabetes-mediated increase in endothelin-1 (ET-1) in hippocampal cells causes NLRP3 activation and inflammation. An in vitro model was employed by exposing HT22 hippocampal cells to normal (25mM), low (5.5mM) and high (50mM) glucose conditions with and without palmitate (200μM) in the presence and absence of 10μM bosentan for 24h. NLRP3 activity was measured by western blotting for cryopyrin and caspase-1. ET-1 and IL-1β expression was determined by ELISA. HT22 cells synthesize high levels of ET-1 in normal conditions, which was reduced with palmitate and bosentan as well as low and high glucose conditions. Decreased ET-1 levels were associated with greater activation of NLRP3 and IL-1β in normal glucose. High glucose increased NLRP3 markers and activation compared to normal and low glucose. These data suggest that ET-1 may be protective to neurons. Although endothelin antagonism may be beneficial in improving vascular dysfunction and cognitive impairment, its impact on hippocampal neurons should be further explored.
Collapse
|
31
|
Chidlow G, Wood JPM, Knoops B, Casson RJ. Expression and distribution of peroxiredoxins in the retina and optic nerve. Brain Struct Funct 2015; 221:3903-3925. [PMID: 26501408 PMCID: PMC5065902 DOI: 10.1007/s00429-015-1135-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/13/2015] [Indexed: 02/08/2023]
Abstract
Oxidative stress is implicated in various pathological conditions of the retina and optic nerve. Peroxiredoxins (Prdxs) comprise a recently characterized family of antioxidant enzymes. To date, little information exists regarding the distribution of Prdxs in the eye. Herein, we employed a combination of qRT-PCR, immunohistochemistry and Western blotting to determine the level of expression and distribution of the six Prdx isoforms in the retina and optic nerve of the rat. In addition, we performed some parallel analyses on the common marmoset (Callithrix Jacchus). In the rat, all of the Prdx transcripts were expressed in relatively high amounts in both retina and optic nerve, with abundances ranging from approximately 3–50 % of the level of the housekeeping gene cyclophilin. With regard to protein expression, each isoform was detected in the retina and optic nerve by either Western blotting and/or immunohistochemistry. Excepting Prdx4, there was a good correspondence between the rodent and primate results. In the retina, Prdx1 and Prdx2 were principally localized to neurons in the inner nuclear layer and cone photoreceptors, Prdx3 and Prdx5 displayed characteristic mitochondrial immunolabeling, while Prdx6 was associated with astrocytes and Müller cells. In the optic nerve, Prdx1 was robustly expressed by oligodendrocytes, Prdx3 and Prdx5 were observed in axons, and Prdx6 was restricted to astrocytes. The present findings augment our understanding of the distribution and expression of the Prdxs in the retina and optic nerve of rodents and primates and lay the foundation for subsequent analysis of their involvement in relevant blinding diseases.
Collapse
Affiliation(s)
- Glyn Chidlow
- Ophthalmic Research Laboratories, South Australian Institute of Ophthalmology, Hanson Institute Centre for Neurological Diseases, Frome Rd, Adelaide, SA, 5000, Australia. .,Department of Ophthalmology and Visual Sciences, University of Adelaide, Frome Rd, Adelaide, SA, 5000, Australia.
| | - John P M Wood
- Ophthalmic Research Laboratories, South Australian Institute of Ophthalmology, Hanson Institute Centre for Neurological Diseases, Frome Rd, Adelaide, SA, 5000, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Frome Rd, Adelaide, SA, 5000, Australia
| | - Bernard Knoops
- Group of Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Robert J Casson
- Ophthalmic Research Laboratories, South Australian Institute of Ophthalmology, Hanson Institute Centre for Neurological Diseases, Frome Rd, Adelaide, SA, 5000, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Frome Rd, Adelaide, SA, 5000, Australia
| |
Collapse
|
32
|
Hung VKL, Yeung PKK, Lai AKW, Ho MCY, Lo ACY, Chan KC, Wu EXK, Chung SSM, Cheung CW, Chung SK. Selective astrocytic endothelin-1 overexpression contributes to dementia associated with ischemic stroke by exaggerating astrocyte-derived amyloid secretion. J Cereb Blood Flow Metab 2015; 35:1687-96. [PMID: 26104290 PMCID: PMC4640314 DOI: 10.1038/jcbfm.2015.109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 04/26/2015] [Accepted: 04/28/2015] [Indexed: 12/27/2022]
Abstract
Endothelin-1 (ET-1) is synthesized by endothelial cells and astrocytes in stroke and in brains of Alzheimer's disease patients. Our transgenic mice with ET-1 overexpression in the endothelial cells (TET-1) showed more severe blood-brain barrier (BBB) breakdown, neuronal apoptosis, and glial reactivity after 2-hour transient middle cerebral artery occlusion (tMCAO) with 22-hour reperfusion and more severe cognitive deficits after 30 minutes tMCAO with 5 months reperfusion. However, the role of astrocytic ET-1 in contributing to poststroke cognitive deficits after tMCAO is largely unknown. Therefore, GET-1 mice were challenged with tMCAO to determine its effect on neurologic and cognitive deficit. The GET-1 mice transiently displayed a sensorimotor deficit after reperfusion that recovered shortly, then more severe deficit in spatial learning and memory was observed at 3 months after ischemia compared with that of the controls. Upregulation of TNF-α, cleaved caspase-3, and Thioflavin-S-positive aggregates was observed in the ipsilateral hemispheres of the GET-1 brains as early as 3 days after ischemia. In an in vitro study, ET-1 overexpressing astrocytic cells showed amyloid secretion after hypoxia/ischemia insult, which activated endothelin A (ETA) and endothelin B (ETB) receptors in a PI3K/AKT-dependent manner, suggesting role of astrocytic ET-1 in dementia associated with stroke by astrocyte-derived amyloid production.
Collapse
Affiliation(s)
- Victor K L Hung
- Department of Anatomy, The University of Hong Kong, HKSAR, China
| | - Patrick K K Yeung
- Department of Anatomy, The University of Hong Kong, HKSAR, China.,School of Biomedical Sciences, The University of Hong Kong, HKSAR, China
| | - Angela K W Lai
- Department of Anatomy, The University of Hong Kong, HKSAR, China
| | - Maggie C Y Ho
- Department of Anatomy, The University of Hong Kong, HKSAR, China
| | - Amy C Y Lo
- Department of Anatomy, The University of Hong Kong, HKSAR, China
| | - Kevin C Chan
- University of Biomedical Imaging and Signal Processing, The University of Hong Kong, HKSAR, China
| | - Ed X K Wu
- University of Biomedical Imaging and Signal Processing, The University of Hong Kong, HKSAR, China
| | | | - Chi W Cheung
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China.,Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, HKSAR, China
| | - Sookja K Chung
- Department of Anatomy, The University of Hong Kong, HKSAR, China.,School of Biomedical Sciences, The University of Hong Kong, HKSAR, China.,Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, HKSAR, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Zhuhai, Guandong, China
| |
Collapse
|
33
|
Meyer T, Chavanon ML, Herrrmann-Lingen C, Roggenthien M, Nolte K, Pieske B, Wachter R, Edelmann F. Elevated Plasma C-Terminal Endothelin-1 Precursor Fragment Concentrations Are Associated with Less Anxiety in Patients with Cardiovascular Risk Factors. Results from the Observational DIAST-CHF Study. PLoS One 2015; 10:e0136739. [PMID: 26322793 PMCID: PMC4556459 DOI: 10.1371/journal.pone.0136739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/07/2015] [Indexed: 01/25/2023] Open
Abstract
Background The role of endothelin-1 (ET-1) in the neurobiology of anxiety is unknown, therefore, we assessed in the observational multicenter DIAST-CHF study whether the C-terminal ET-1 precursor fragment (CT-proET-1) is linked to anxiety. Methods Plasma concentrations of CT-proET-1 were measured in a total of 1,410 patients presenting with cardiovascular risk factors (mean age 66.91±8.2 years, 49.3% males, mean left ventricular ejection fraction 60.0±8.2%) who had completed the Hospital Anxiety and Depression Scale (HADS) questionnaire. Results Among the total study cohort (n = 1,410), there were 118 subjects (8.4%) with an HADS anxiety score above the cut-off level of 11 suggestive of clinically relevant anxiety. Plasma CT-proET-1 levels were significantly lower in the group of anxious patients as compared to non-anxious patients (p = 0.013). In regression models adjusted for sex, age, systolic blood pressure, and diameters of left atrium and ventricle, plasma CT-proET-1 was again linked to anxiety (Exp(β) = 0.247, 95%-confidence interval [95%-CI] = 0.067–0.914, p = 0.036). Given the high prevalence of depressive disorders in anxious patients, we additionally included the HADS depression score as an independent variable in the models and found that CT-proET-1 remained a significant predictor of anxiety, independent of comorbid depression (Exp(β) = 0.114, 95%-CI = 0.023–0.566, p = 0.008). Conclusions Our data from a population-based study in outpatients with cardiovascular risk factors revealed that circulating CT-proET-1 levels are negatively associated with anxiety. Further investigations are required to clarify the putative anxiolytic effect of ET-1 or its precursor molecules in humans and to decipher its mechanistic pathways.
Collapse
Affiliation(s)
- Thomas Meyer
- Department of Psychosomatic Medicine and Psychotherapy, University of Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research, partner site Göttingen, Göttingen, Germany
| | - Mira-Lynn Chavanon
- Department of Psychosomatic Medicine and Psychotherapy, University of Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research, partner site Göttingen, Göttingen, Germany
| | - Christoph Herrrmann-Lingen
- Department of Psychosomatic Medicine and Psychotherapy, University of Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research, partner site Göttingen, Göttingen, Germany
| | - Maren Roggenthien
- Department of Psychosomatic Medicine and Psychotherapy, University of Göttingen, Göttingen, Germany
| | - Kathleen Nolte
- Department of Cardiology and Pneumology, University of Göttingen, Göttingen, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
- German Center for Cardiovascular Research, partner site Berlin, Berlin, Germany
| | - Rolf Wachter
- Department of Cardiology and Pneumology, University of Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research, partner site Berlin, Berlin, Germany
| | - Frank Edelmann
- Department of Cardiology and Pneumology, University of Göttingen, Göttingen, Germany
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
- German Center for Cardiovascular Research, partner site Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
34
|
Ahn SM, Kim YR, Kim HN, Shin HK, Choi BT. Beneficial Effects of Polygonum multiflorum on Hippocampal Neuronal Cells and Mouse Focal Cerebral Ischemia. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:637-51. [DOI: 10.1142/s0192415x15500391] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Beneficial effects of the water extract of Polygonum multiflorum (WEPM) and their mechanisms were investigated in HT22 hippocampal cells and hippocampus of middle cerebral artery occlusion (MCAO) mice. In HT22 cells against glutamate-induced oxidative stress, pretreatment with WEPM resulted in significantly reduced apoptotic neuronal death. Pretreatment with WEPM resulted in the suppression of ROS accumulation in connection with cellular Ca 2+ level after exposure to glutamate. Treatment with glutamate alone led to suppressed protein level of mature brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP response element binding protein (CREB); however, pretreatment with either WEPM or anti-oxidant N-acetyl-ʟ-cysteine (NAC) resulted in the significant enhancement of levels of these proteins. In addition, levels of mature BDNF expression and CREB phosphorylation were increased by combined treatment with WEPM, NAC, and intracellular Ca 2+ inhibitor BAPTA compared to other treatment groups. In MCAO mice, we confirmed the critical role of mature BDNF expression and CREB phosphorylation by WEPM in the neurons of the hippocampus. Our results suggest that WEPM mainly exerted beneficial effects on hippocampal neurons through the suppression of ROS accumulation and up-regulation of mature BDNF expression and CREB phosphorylation.
Collapse
Affiliation(s)
- Sung Min Ahn
- Department of Korean Medical Science, Pusan National University, Yangsan 626-870, Republic of Korea
- Korean Medical Science Research Center for Healthy Aging, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Yu Ri Kim
- Department of Korean Medical Science, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Ha Neui Kim
- Department of Korean Medical Science, Pusan National University, Yangsan 626-870, Republic of Korea
- Korean Medical Science Research Center for Healthy Aging, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Hwa Kyoung Shin
- Division of Meridian and Structural Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
- Korean Medical Science Research Center for Healthy Aging, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medical Science, Pusan National University, Yangsan 626-870, Republic of Korea
- Division of Meridian and Structural Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
- Korean Medical Science Research Center for Healthy Aging, Pusan National University, Yangsan 626-870, Republic of Korea
| |
Collapse
|
35
|
Ahn SM, Kim YR, Kim HN, Choi YW, Lee JW, Kim CM, Baek JU, Shin HK, Choi BT. Neuroprotection and spatial memory enhancement of four herbal mixture extract in HT22 hippocampal cells and a mouse model of focal cerebral ischemia. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:202. [PMID: 26122524 PMCID: PMC4486694 DOI: 10.1186/s12906-015-0741-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 06/23/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Four traditional Korean medicinal herbs which act in retarding the aging process, Polygonum multiflorum Thunb., Rehmannia glutinosa (Gaertn) Libosch., Polygala tenuifolia Willd., and Acorus gramineus Soland., were prepared by systematic investigation of Dongeuibogam (Treasured Mirror of Eastern Medicine), published in the early 17th century in Korea. This study was performed to evaluate beneficial effects of four herbal mixture extract (PMC-12) on hippocampal neuron and spatial memory. METHODS High performance liquid chromatography (HPLC) analysis was performed for standardization of PMC-12. Cell viability, lactate dehydrogenase, flow cytometry, reactive oxygen species (ROS), and Western blot assays were performed in HT22 hippocampal cells and immunohistochemistry and behavioral tests were performed in a mouse model of focal cerebral ischemia in order to observe alterations of hippocampal cell survival and subsequent memory function. RESULTS In the HPLC analysis, PMC-12 was standardized to contain 3.09% 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside, 0.35% 3',6-disinapoyl sucrose, and 0.79% catalpol. In HT22 cells, pretreatment with PMC-12 resulted in significantly reduced glutamate-induced apoptotic cell death. Pretreatment with PMC-12 also resulted in suppression of ROS accumulation in connection with cellular Ca(2+) level after exposure to glutamate. Expression levels of phosphorylated p38 mitogen-activated protein kinases (MAPK) and dephosphorylated phosphatidylinositol-3 kinase (PI3K) by glutamate exposure were recovered by pretreatment with either PMC-12 or anti-oxidant N-acetyl-L-cysteine (NAC). Expression levels of mature brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP response element binding protein (CREB) were significantly enhanced by treatment with either PMC-12 or NAC. Combination treatment with PMC-12, NAC, and intracellular Ca(2+) inhibitor BAPTA showed similar expression levels. In a mouse model of focal cerebral ischemia, we observed higher expression of mature BDNF and phosphorylation of CREB in the hippocampus and further confirmed improved spatial memory by treatment with PMC-12. CONCLUSIONS Our results suggest that PMC-12 mainly exerted protective effects on hippocampal neurons through suppression of Ca(2+)-related ROS accumulation and regulation of signaling pathways of p38 MAPK and PI3K associated with mature BDNF expression and CREB phosphorylation and subsequently enhanced spatial memory.
Collapse
|
36
|
Liu J, Yeung PKK, Cheng L, Lo ACY, Chung SSM, Chung SK. Epac2-deficiency leads to more severe retinal swelling, glial reactivity and oxidative stress in transient middle cerebral artery occlusion induced ischemic retinopathy. SCIENCE CHINA-LIFE SCIENCES 2015; 58:521-30. [PMID: 25985753 DOI: 10.1007/s11427-015-4860-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/13/2015] [Indexed: 01/01/2023]
Abstract
Ischemia occurs in diabetic retinopathy with neuronal loss, edema, glial cell reactivity and oxidative stress. Epacs, consisting of Epac1 and Epac2, are cAMP mediators playing important roles in maintenance of endothelial barrier and neuronal functions. To investigate the roles of Epacs in the pathogenesis of ischemic retinopathy, transient middle cerebral artery occlusion (tMCAO) was performed on Epac1-deficient (Epac1 (-/-)) mice, Epac2-deficient (Epac2 (-/-)) mice, and their wild type counterparts (Epac1 (+/+) and Epac2 (+/+)). Two-hour occlusion and 22-hour reperfusion were conducted to induce ischemia/reperfusion injury to the retina. After tMCAO, the contralateral retinae displayed similar morphology between different genotypes. Neuronal loss, retinal edema and increase in immunoreactivity for aquaporin 4 (AQP4), glial fibrillary acidic protein (GFAP), peroxiredoxin 6 (Prx6) were observed in ipsilateral retinae. Epac2 (-/-) ipsilateral retinae showed more neuronal loss in retinal ganglion cell layer, increased retinal thickness and stronger immunostaining of AQP4, GFAP, and Prx6 than those of Epac2 (+/+). However, Epac1 (-/-) ipsilateral retinae displayed similar pathology as those in Epac1 (+/+) mice. Our observations suggest that Epac2-deficiency led to more severe ischemic retinopathy after retinal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Jin Liu
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
37
|
Bi LL, Chen M, Pei L, Shu S, Jin HJ, Yan HL, Wei N, Wang S, Yang X, Yan HH, Xu MM, Yao CY, Li N, Tang N, Wu JH, Zhu HZ, Li H, Cai Y, Guo Y, Shi Y, Tian Q, Zhu LQ, Lu YM. Infralimbic Endothelin1 Is Critical for the Modulation of Anxiety-Like Behaviors. Mol Neurobiol 2015; 53:2054-2064. [PMID: 25899174 DOI: 10.1007/s12035-015-9163-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/26/2015] [Indexed: 10/23/2022]
Abstract
Endothelin1 (ET1) is a potent vasoconstrictor that is also known to be a neuropeptide that is involved in neural circuits. We examined the role of ET1 that has been implicated in the anxiogenic process. We found that infusing ET1 into the IL cortex increased anxiety-like behaviors. The ET(A) receptor (ET(A)R) antagonist (BQ123) but not the ET(B) receptor (ET(B)R) antagonist (BQ788) alleviated ET1-induced anxiety. ET1 had no effect on GABAergic neurotransmission or NMDA receptor (NMDAR)-mediated neurotransmission, but increased AMPA receptor (AMPAR)-mediated excitatory synaptic transmission. The changes in AMPAR-mediated excitatory postsynaptic currents were due to presynaptic mechanisms. Finally, we found that the AMPAR antagonists (CNQX) and BQ123 reversed ET1's anxiogenic effect, with parallel and corresponding electrophysiological changes. Moreover, infusing CNQX + BQ123 into the IL had no additional anxiolytic effect compared to CNQX treatment alone. Altogether, our findings establish a previously unknown anxiogenic action of ET1 in the IL cortex. AMPAR-mediated glutamatergic neurotransmission may underlie the mechanism of ET1-ET(A)R signaling pathway in the regulation of anxiety.
Collapse
Affiliation(s)
- Lin-Lin Bi
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.
| | - Ming Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Pei
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Shu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Juan Jin
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Lin Yan
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Na Wei
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Wang
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Yang
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Huan-Huan Yan
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-Meng Xu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng-Ye Yao
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Na Li
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Na Tang
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Hua Wu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hou-Ze Zhu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Li
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - You Cai
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Guo
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Shi
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tian
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - You-Ming Lu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
38
|
Wang M, Zhong D, Zheng Y, Li H, Chen H, Ma S, Sun Y, Yan W, Li G. Damage effect of interleukin (IL)-23 on oxygen-glucose-deprived cells of the neurovascular unit via IL-23 receptor. Neuroscience 2015; 289:406-16. [PMID: 25600958 DOI: 10.1016/j.neuroscience.2015.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 11/16/2022]
Abstract
Interleukin-23/interleukin-23 receptor (IL-23/IL-23R) has been implicated in many inflammatory diseases. Previous research mainly focused on its ability to induce IL-17 production from T cells. However, few studies have investigated its role in cerebral ischemic injury. The aim of our study was to explore the potential effect of IL-23 on cells of the neurovascular unit (NVU) under an oxygen-glucose deprivation (OGD) condition and the role of IL-23R in IL-23-mediated effect. OGD of primary cells of the NVU and permanent middle cerebral artery occlusion (pMCAO) were used to produce experimental stroke in vitro and in vivo, respectively. IL-23 and IL-23R were detected by immunohistochemistry and western blot in pMCAO mice. Metabolic viability of cultured cells was assessed by MTT assay. The cell-associated proteins (Bcl-2, AQP4 and ET-1) were determined by western blot and enzyme-linked immunosorbent assay (ELISA). Immunofluorescence staining and western blot were used to detect the IL-23R expression. The results showed that the expression of IL-23/IL-23R was elevated in pMCAO mice. IL-23 could aggravate neuron damage, astrocyte swelling, and further impair the integrity of blood-brain barrier induced by OGD. In addition, the effect of IL-23 on cells of the NVU is mediated by IL-23R and is likely IL-23R-expression-level dependent. However, there are no such biological properties for the IL-23p19 subunit alone. Our study provides the first evidence that IL-23 has a toxic effect on cells of the NVU under OGD stress, which is mediated by IL-23R. These results not only help us better understand the role of IL-23/IL-23R in brain ischemia, but also provide a potential therapeutic target in stroke.
Collapse
Affiliation(s)
- M Wang
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin, 150001 Heilongjiang, PR China
| | - D Zhong
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin, 150001 Heilongjiang, PR China
| | - Y Zheng
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin, 150001 Heilongjiang, PR China
| | - H Li
- Department of Neurobiology, Harbin Medical University Provincial Key Lab of Neurobiology, Harbin Medical University, Xuefu Road, 150081 Heilongjiang, PR China
| | - H Chen
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin, 150001 Heilongjiang, PR China
| | - S Ma
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin, 150001 Heilongjiang, PR China
| | - Y Sun
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin, 150001 Heilongjiang, PR China
| | - W Yan
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin, 150001 Heilongjiang, PR China
| | - G Li
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin, 150001 Heilongjiang, PR China.
| |
Collapse
|
39
|
Murray KN, Girard S, Holmes WM, Parkes LM, Williams SR, Parry-Jones AR, Allan SM. Systemic inflammation impairs tissue reperfusion through endothelin-dependent mechanisms in cerebral ischemia. Stroke 2014; 45:3412-9. [PMID: 25228257 DOI: 10.1161/strokeaha.114.006613] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Systemic inflammation contributes to diverse acute and chronic brain pathologies, and extensive evidence implicates inflammation in stroke susceptibility and poor outcome. Here we investigate whether systemic inflammation alters cerebral blood flow during reperfusion after experimental cerebral ischemia. METHODS Serial diffusion and perfusion-weighted MRI was performed after reperfusion in Wistar rats given systemic (intraperitoneal) interleukin-1β or vehicle before 60-minute transient middle cerebral artery occlusion. The expression and location of endothelin-1 was assessed by polymerase chain reaction, ELISA, and immunofluorescence. RESULTS Systemic interleukin-1 caused a severe reduction in cerebral blood flow and increase in infarct volume compared with vehicle. Restriction in cerebral blood flow was observed alongside activation of the cerebral vasculature and upregulation of the vasoconstricting peptide endothelin-1 in the ischemic penumbra. A microthrombotic profile was also observed in the vasculature of rats receiving interleukin-1. Blockade of endothelin-1 receptors reversed this hypoperfusion, reduced tissue damage, and improved functional outcome. CONCLUSIONS These data suggest patients with a raised inflammatory profile may have persistent deficits in perfusion after reopening of an occluded vessel. Future therapeutic strategies to interrupt the mechanism identified could lead to enhanced recovery of penumbra in patients with a heightened inflammatory burden and a better outcome after stroke.
Collapse
Affiliation(s)
- Katie N Murray
- From the Faculty of Life Sciences (K.N.M., S.M.A.) and Centre for Imaging Science (L.M.P., S.R.W.), University of Manchester, Manchester, United Kingdom; Sainte-Justine Hospital Research Centre, University of Montreal, Canada (S.G.); Glasgow Experimental MRI Centre, The University of Glasgow, Glasgow, United Kingdom (W.M.H.); and University of Manchester, Manchester Academic Health Sciences Centre, United Kingdom (A.R.P.-J.)
| | - Sylvie Girard
- From the Faculty of Life Sciences (K.N.M., S.M.A.) and Centre for Imaging Science (L.M.P., S.R.W.), University of Manchester, Manchester, United Kingdom; Sainte-Justine Hospital Research Centre, University of Montreal, Canada (S.G.); Glasgow Experimental MRI Centre, The University of Glasgow, Glasgow, United Kingdom (W.M.H.); and University of Manchester, Manchester Academic Health Sciences Centre, United Kingdom (A.R.P.-J.)
| | - William M Holmes
- From the Faculty of Life Sciences (K.N.M., S.M.A.) and Centre for Imaging Science (L.M.P., S.R.W.), University of Manchester, Manchester, United Kingdom; Sainte-Justine Hospital Research Centre, University of Montreal, Canada (S.G.); Glasgow Experimental MRI Centre, The University of Glasgow, Glasgow, United Kingdom (W.M.H.); and University of Manchester, Manchester Academic Health Sciences Centre, United Kingdom (A.R.P.-J.)
| | - Laura M Parkes
- From the Faculty of Life Sciences (K.N.M., S.M.A.) and Centre for Imaging Science (L.M.P., S.R.W.), University of Manchester, Manchester, United Kingdom; Sainte-Justine Hospital Research Centre, University of Montreal, Canada (S.G.); Glasgow Experimental MRI Centre, The University of Glasgow, Glasgow, United Kingdom (W.M.H.); and University of Manchester, Manchester Academic Health Sciences Centre, United Kingdom (A.R.P.-J.)
| | - Stephen R Williams
- From the Faculty of Life Sciences (K.N.M., S.M.A.) and Centre for Imaging Science (L.M.P., S.R.W.), University of Manchester, Manchester, United Kingdom; Sainte-Justine Hospital Research Centre, University of Montreal, Canada (S.G.); Glasgow Experimental MRI Centre, The University of Glasgow, Glasgow, United Kingdom (W.M.H.); and University of Manchester, Manchester Academic Health Sciences Centre, United Kingdom (A.R.P.-J.)
| | - Adrian R Parry-Jones
- From the Faculty of Life Sciences (K.N.M., S.M.A.) and Centre for Imaging Science (L.M.P., S.R.W.), University of Manchester, Manchester, United Kingdom; Sainte-Justine Hospital Research Centre, University of Montreal, Canada (S.G.); Glasgow Experimental MRI Centre, The University of Glasgow, Glasgow, United Kingdom (W.M.H.); and University of Manchester, Manchester Academic Health Sciences Centre, United Kingdom (A.R.P.-J.).
| | - Stuart M Allan
- From the Faculty of Life Sciences (K.N.M., S.M.A.) and Centre for Imaging Science (L.M.P., S.R.W.), University of Manchester, Manchester, United Kingdom; Sainte-Justine Hospital Research Centre, University of Montreal, Canada (S.G.); Glasgow Experimental MRI Centre, The University of Glasgow, Glasgow, United Kingdom (W.M.H.); and University of Manchester, Manchester Academic Health Sciences Centre, United Kingdom (A.R.P.-J.)
| |
Collapse
|
40
|
Guo Y, Chung SK, Siu CW, Kwan SC, Ho PWL, Yeung PKK, Chan KH. Endothelin-1 overexpression exacerbate experimental allergic encephalomyelitis. J Neuroimmunol 2014; 276:64-70. [PMID: 25205217 DOI: 10.1016/j.jneuroim.2014.08.616] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/11/2014] [Indexed: 01/28/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a CNS inflammatory demyelinating disorder. T helper 1 (Th1) and T helper 17 (Th17) cells are important in MS immunopathogenesis. Level of endothelin-1 (ET-1), a potent vasoconstrictor, is increased in sera of MS patients. We studied the role of ET-1 in experimental allergic encephalomyelitis (EAE), a MS animal model. METHODS EAE is induced in transgenic mice overexpressing endothelial ET-1 (TET-1), transgenic mice overexpressing astrocytic ET-1 (GET-1) and non-transgenic (NTg) mice by immunization with myelin oligodendrocyte glycoprotein (MOG)35-55 peptide. EAE scores, spinal cord histology, serum proinflammatory cytokines levels, and proinflammatory cytokines production from splenocytes of ET-1 transgenic and NTg mice with EAE were studied. RESULTS ET-1 transgenic mice developed more severe EAE than NTg with increased inflammation and demyelination in spinal cord. The mean maximum EAE scores for GET-1, TET-1 and NTg mice with EAE were 4.84, 4.31 and 4.05 respectively (p<0.05). Serum levels of IL-6, IL-17A, IFN-γ and TNF-α were higher in ET-1 transgenic than NTg mice with EAE (p<0.05) while serum IL-4 levels were similar. mRNA levels of IL-6, IL-17A, IFN-γ and TNF-α from cultured splenocytes were higher in ET-1-transgenic than NTg mice with EAE (p<0.05) while IL-4 mRNA levels were similar. Consistently, levels of IL-6, IL-17A, IFN-γ and TNF-α in culture media of splenocytes were higher in ET-1 transgenic than NTg mice with EAE (p<0.05) while IL-4 levels were similar. CONCLUSIONS Mice with endothelial or astrocytic ET-1 overexpression developed more severe EAE with increased splenic lymphocyte production of Th1 and Th17 proinflammatory cytokines.
Collapse
Affiliation(s)
- Yawei Guo
- University Department of Medicine, Queen Mary Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong; Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong; Research Center of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Sookja Kim Chung
- Department of Anatomy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chung-Wah Siu
- University Department of Medicine, Queen Mary Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong; Research Center of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Shing-Cheong Kwan
- University Department of Medicine, Queen Mary Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong; Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Philip Wing-Lok Ho
- University Department of Medicine, Queen Mary Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong; Research Center of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Patrick Ka-Kit Yeung
- Department of Anatomy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Koon-Ho Chan
- University Department of Medicine, Queen Mary Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong; Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong; Research Center of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong.
| |
Collapse
|
41
|
Ginsenoside Rd attenuates tau protein phosphorylation via the PI3K/AKT/GSK-3β pathway after transient forebrain ischemia. Neurochem Res 2014; 39:1363-73. [PMID: 24792734 DOI: 10.1007/s11064-014-1321-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/16/2014] [Accepted: 04/25/2014] [Indexed: 01/17/2023]
Abstract
Phosphorylated tau was found to be regulated after cerebral ischemia and linked to high risk for the development of post-stroke dementia. Our previous study showed that ginsenoside Rd (Rd), one of the main active ingredients in Panax ginseng, decreased tau phosphorylation in Alzheimer model. As an extending study, here we investigated whether Rd could reduce tau phosphorylation and sequential cognition impairment after ischemic stroke. Sprague-Dawley rats were subjected to focal cerebral ischemia. The tau phosphorylation of rat brains were analyzed following ischemia by Western blot and animal cognitive functions were examined by Morris water maze and Novel object recognition task. Ischemic insults increased the levels of phosphorylated tau protein at Ser199/202 and PHF-1 sites and caused animal memory deficits. Rd treatment attenuated ischemia-induced enhancement of tau phosphorylation and ameliorated behavior impairment. Furthermore, we revealed that Rd inhibited the activity of Glycogen synthase kinase-3β (GSK-3β), the most important kinase involving tau phosphorylation, but enhanced the activity of protein kinase B (PKB/AKT), a key kinase suppressing GSK-3β activity. Moreover, we found that LY294002, an antagonist for phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway, abolished the inhibitory effect of Rd on GSK-3β activity and tau phosphorylation. Taken together, our findings provide the first evidence that Rd may reduce cerebral ischemia-induced tau phosphorylation via the PI3K/AKT/GSK-3β pathway.
Collapse
|
42
|
Endothelin-1 and its role in the pathogenesis of infectious diseases. Life Sci 2014; 118:110-9. [PMID: 24780317 DOI: 10.1016/j.lfs.2014.04.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/08/2014] [Accepted: 04/15/2014] [Indexed: 12/12/2022]
Abstract
Endothelins are potent regulators of vascular tone, which also have mitogenic, apoptotic, and immunomodulatory properties (Rubanyi and Polokoff, 1994; Kedzierski and Yanagisawa, 2001; Bagnato et al., 2011). Three isoforms of endothelin have been identified to date, with endothelin-1 (ET-1) being the best studied. ET-1 is classically considered a potent vasoconstrictor. However, in addition to the effects of ET-1 on vascular smooth muscle cells, the peptide is increasingly recognized as a pro-inflammatory cytokine (Teder and Noble, 2000; Sessa et al., 1991). ET-1 causes platelet aggregation and plays a role in the increased expression of leukocyte adhesion molecules, the synthesis of inflammatory mediators contributing to vascular dysfunction. High levels of ET-1 are found in alveolar macrophages, leukocytes (Sessa et al., 1991) and fibroblasts (Gu et al., 1991). Clinical and experimental data indicate that ET-1 is involved in the pathogenesis of sepsis (Tschaikowsky et al., 2000; Goto et al., 2012), viral and bacterial pneumonia (Schuetz et al., 2008; Samransamruajkit et al., 2002), Rickettsia conorii infections (Davi et al., 1995), Chagas disease (Petkova et al., 2000, 2001), and severe malaria (Dai et al., 2012; Machado et al., 2006; Wenisch et al., 1996a; Dietmann et al., 2008). In this minireview, we will discuss the role of endothelin in the pathogenesis of infectious processes.
Collapse
|
43
|
De Mey JGR, Vanhoutte PM. End o' the line revisited: moving on from nitric oxide to CGRP. Life Sci 2014; 118:120-8. [PMID: 24747136 DOI: 10.1016/j.lfs.2014.04.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/24/2022]
Abstract
When endothelin-1(ET-1) was discovered it was hailed as the prototypical endothelium-derived contracting factor (EDCF). However, over the years little evidence emerged convincingly demonstrating that the peptide actually contributes to moment-to-moment changes in vascular tone elicited by endothelial cells. This has been attributed to the profound inhibitory effect of nitric oxide (NO) on both the production (by the endothelium) and the action (on vascular smooth muscle) of ET-1. Hence, the peptide is likely to initiate acute changes in vascular diameter only under extreme conditions of endothelial dysfunction when the NO bioavailability is considerably reduced if not absent. The present essay discusses whether or not this concept should be revised, in particular in view of the potent inhibitory effect exerted by calcitonin gene related peptide (CGRP) released from sensorimotor nerves on vasoconstrictor responses to ET-1.
Collapse
Affiliation(s)
- Jo G R De Mey
- Institute of Molecular Medicine, University of South Denmark, Odense, Denmark; Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - Paul M Vanhoutte
- Institute of Molecular Medicine, University of South Denmark, Odense, Denmark; Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
44
|
Chen S, Feng H, Sherchan P, Klebe D, Zhao G, Sun X, Zhang J, Tang J, Zhang JH. Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol 2014; 115:64-91. [PMID: 24076160 PMCID: PMC3961493 DOI: 10.1016/j.pneurobio.2013.09.002] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/07/2013] [Accepted: 09/12/2013] [Indexed: 12/13/2022]
Abstract
Despite decades of study, subarachnoid hemorrhage (SAH) continues to be a serious and significant health problem in the United States and worldwide. The mechanisms contributing to brain injury after SAH remain unclear. Traditionally, most in vivo research has heavily emphasized the basic mechanisms of SAH over the pathophysiological or morphological changes of delayed cerebral vasospasm after SAH. Unfortunately, the results of clinical trials based on this premise have mostly been disappointing, implicating some other pathophysiological factors, independent of vasospasm, as contributors to poor clinical outcomes. Delayed cerebral vasospasm is no longer the only culprit. In this review, we summarize recent data from both experimental and clinical studies of SAH and discuss the vast array of physiological dysfunctions following SAH that ultimately lead to cell death. Based on the progress in neurobiological understanding of SAH, the terms "early brain injury" and "delayed brain injury" are used according to the temporal progression of SAH-induced brain injury. Additionally, a new concept of the vasculo-neuronal-glia triad model for SAH study is highlighted and presents the challenges and opportunities of this model for future SAH applications.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Prativa Sherchan
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Damon Klebe
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Xiaochuan Sun
- Department of Neurosurgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiping Tang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
45
|
Liu HF, Lu S, Ho PWL, Tse HM, Pang SYY, Kung MHW, Ho JWM, Ramsden DB, Zhou ZJ, Ho SL. LRRK2 R1441G mice are more liable to dopamine depletion and locomotor inactivity. Ann Clin Transl Neurol 2014; 1:199-208. [PMID: 25356398 PMCID: PMC4184549 DOI: 10.1002/acn3.45] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/31/2014] [Accepted: 01/31/2014] [Indexed: 12/11/2022] Open
Abstract
Objective Mutations in leucine-rich repeat kinase 2 (LRRK2) pose a significant genetic risk in familial and sporadic Parkinson's disease (PD). R1441 mutation (R1441G/C) in its GTPase domain is found in familial PD. How LRRK2 interacts with synaptic proteins, and its role in dopamine (DA) homeostasis and synaptic vesicle recycling remain unclear. Methods To explore the pathogenic effects of LRRK2R1441G mutation on nigrostriatal synaptic nerve terminals and locomotor activity, we generated C57BL/6N mice with homozygous LRRK2R1441G knockin (KI) mutation, and examined for early changes in nigrostriatal region, striatal synaptosomal [3H]-DA uptake and locomotor activity after reserpine-induced DA depletion. Results Under normal conditions, mutant mice showed no differences, (1) in amount and morphology of nigrostriatal DA neurons and neurites, (2) tyrosine hydroxylase (TH), DA uptake transporter (DAT), vesicular monoamine transporter-2 (VMAT2) expression in striatum, (3) COX IV, LC3B, Beclin-1 expression in midbrain, (4) LRRK2 expression in total cell lysate from whole brain, (5) α-synuclein, ubiquitin, and tau protein immunostaining in midbrain, (6) locomotor activity, compared to wild-type controls. However, after a single intraperitoneal reserpine dose, striatal synaptosomes from young 3-month-old mutant mice demonstrated significantly lower DA uptake with impaired locomotor activity and significantly slower recovery from the effects of reserpine. Interpretation Although no abnormal phenotype was observed in mutant LRRK2R1441G mice, the KI mutation increases vulnerability to reserpine-induced striatal DA depletion and perturbed DA homeostasis resulting in presynaptic dysfunction and locomotor deficits with impaired recovery from reserpine. This subtle nigrostriatal synaptic vulnerability may reflect one of the earliest pathogenic processes in LRRK2-associated PD.
Collapse
Affiliation(s)
- Hui-Fang Liu
- Division of Neurology, Department of Medicine, University of Hong Kong Hong Kong
| | - Song Lu
- Division of Neurology, Department of Medicine, University of Hong Kong Hong Kong ; Research Centre of Heart, Brain, Hormone and Healthy Aging, University of Hong Kong Hong Kong
| | - Philip Wing-Lok Ho
- Division of Neurology, Department of Medicine, University of Hong Kong Hong Kong ; Research Centre of Heart, Brain, Hormone and Healthy Aging, University of Hong Kong Hong Kong
| | - Ho-Man Tse
- Division of Neurology, Department of Medicine, University of Hong Kong Hong Kong
| | - Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, University of Hong Kong Hong Kong
| | | | - Jessica Wing-Man Ho
- Division of Neurology, Department of Medicine, University of Hong Kong Hong Kong ; Research Centre of Heart, Brain, Hormone and Healthy Aging, University of Hong Kong Hong Kong
| | - David B Ramsden
- Department of Clinical and Experimental Medicine, University of Birmingham Birmingham, United Kingdom
| | - Zhong-Jun Zhou
- Department of Biochemistry, University of Hong Kong Hong Kong
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, University of Hong Kong Hong Kong ; Research Centre of Heart, Brain, Hormone and Healthy Aging, University of Hong Kong Hong Kong
| |
Collapse
|