1
|
Sharma S, McKenzie M. The Pathogenesis of Very Long-Chain Acyl-CoA Dehydrogenase Deficiency. Biomolecules 2025; 15:416. [PMID: 40149952 PMCID: PMC11940467 DOI: 10.3390/biom15030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Living systems require energy to maintain their existence and perform tasks such as cell division. This energy is stored in several molecular forms in nature, specifically lipids, carbohydrates, and amino acids. At a cellular level, energy is extracted from these complex molecules and transferred to adenosine triphosphate (ATP) in the cytoplasm and mitochondria. Within the mitochondria, fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are crucial metabolic processes involved in generating ATP, with defects in these pathways causing mitochondrial disease. Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is a fatty acid β-oxidation disorder (FAOD) affecting 1 to 2 individuals per 100,000. Similar to other mitochondrial disorders, there is no cure for VLCADD, with symptomatic treatment comprising dietary management and supplementation with medium-chain fatty acids to bypass the enzyme deficiency. While this addresses the primary defect in VLCADD, there is growing evidence that other aspects of mitochondrial function are also affected in VLCADD, including secondary defects in OXPHOS function. Here, we review our current understanding of VLCADD with a focus on the associated biochemical and molecular defects that can disrupt multiple aspects of mitochondrial function. We describe the interactions between FAO proteins and the OXPHOS complexes and how these interactions are critical for maintaining the activity of both metabolic pathways. In particular, we describe what is now known about the protein-protein interactions between VLCAD and the OXPHOS supercomplex and how their disruption contributes to overall VLCADD pathogenesis.
Collapse
Affiliation(s)
- Shashwat Sharma
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia;
| | - Matthew McKenzie
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia;
- Institute for Physical Activity and Nutrition, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
2
|
Al Bandari M, Nagy L, Cruz V, Hewson S, Hossain A, Inbar-Feigenberg M. Management and Outcomes of Very Long-Chain Acyl-CoA Dehydrogenase Deficiency (VLCAD Deficiency): A Retrospective Chart Review. Int J Neonatal Screen 2024; 10:29. [PMID: 38651394 PMCID: PMC11036265 DOI: 10.3390/ijns10020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is a rare genetic condition affecting the mitochondrial beta-oxidation of long-chain fatty acids. This study reports on the clinical outcomes of patients diagnosed by newborn screening with VLCAD deficiency comparing metabolic parameters, enzyme activities, molecular results, and clinical management. It is a single-center retrospective chart review of VLCAD deficiency patients who met the inclusion criteria between January 2002 and February 2020. The study included 12 patients, 7 of whom had an enzyme activity of more than 10%, and 5 patients had an enzyme activity of less than 10%. The Pearson correlation between enzyme activity and the C14:1 level at newborn screening showed a p-value of 0.0003, and the correlation between enzyme activity and the C14:1 level at diagnosis had a p-value of 0.0295. There was no clear correlation between the number of documented admissions and the enzyme activity level. Patients who had a high C14:1 value at diagnosis were started on a diet with a lower percentage of energy from long-chain triglycerides. The C14:1 result at diagnosis is the value that has been guiding our initial clinical management in asymptomatic diagnosed newborns. However, the newborn screening C14:1 value is the most sensitive predictor of low enzyme activity and may help guide dietary management.
Collapse
Affiliation(s)
- Maria Al Bandari
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
| | - Laura Nagy
- Division of Clinical and Metabolic Genetics, Department of Clinical Dietetics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
| | - Vivian Cruz
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Division of Clinical and Metabolic Genetics, Lawrence S, Bloomberg, Faculty of Nursing, University of Toronto, Toronto, ON M5T 1P8, Canada
| | - Stacy Hewson
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Alomgir Hossain
- Clinical Research Services (CRS), The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
| | - Michal Inbar-Feigenberg
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Pediatrics, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
3
|
Schwantje M, Mosegaard S, Knottnerus SJG, van Klinken JB, Wanders RJ, van Lenthe H, Hermans J, IJlst L, Denis SW, Jaspers YRJ, Fuchs SA, Houtkooper RH, Ferdinandusse S, Vaz FM. Tracer-based lipidomics enables the discovery of disease-specific candidate biomarkers in mitochondrial β-oxidation disorders. FASEB J 2024; 38:e23478. [PMID: 38372965 DOI: 10.1096/fj.202302163r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/05/2024] [Accepted: 01/26/2024] [Indexed: 02/20/2024]
Abstract
Carnitine derivatives of disease-specific acyl-CoAs are the diagnostic hallmark for long-chain fatty acid β-oxidation disorders (lcFAOD), including carnitine shuttle deficiencies, very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD), long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) and mitochondrial trifunctional protein deficiency (MPTD). The exact consequence of accumulating lcFAO-intermediates and their influence on cellular lipid homeostasis is, however, still unknown. To investigate the fate and cellular effects of the accumulating lcFAO-intermediates and to explore the presence of disease-specific markers, we used tracer-based lipidomics with deuterium-labeled oleic acid (D9-C18:1) in lcFAOD patient-derived fibroblasts. In line with previous studies, we observed a trend towards neutral lipid accumulation in lcFAOD. In addition, we detected a direct connection between the chain length and patterns of (un)saturation of accumulating acylcarnitines and the various enzyme deficiencies. Our results also identified two disease-specific candidate biomarkers. Lysophosphatidylcholine(14:1) (LPC(14:1)) was specifically increased in severe VLCADD compared to mild VLCADD and control samples. This was confirmed in plasma samples showing an inverse correlation with enzyme activity, which was better than the classic diagnostic marker C14:1-carnitine. The second candidate biomarker was an unknown lipid class, which we identified as S-(3-hydroxyacyl)cysteamines. We hypothesized that these were degradation products of the CoA moiety of accumulating 3-hydroxyacyl-CoAs. S-(3-hydroxyacyl)cysteamines were significantly increased in LCHADD compared to controls and other lcFAOD, including MTPD. Our findings suggest extensive alternative lipid metabolism in lcFAOD and confirm that lcFAOD accumulate neutral lipid species. In addition, we present two disease-specific candidate biomarkers for VLCADD and LCHADD, that may have significant relevance for disease diagnosis, prognosis, and monitoring.
Collapse
Affiliation(s)
- Marit Schwantje
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Signe Mosegaard
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Suzan J G Knottnerus
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam, the Netherlands
| | - Jan Bert van Klinken
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Ronald J Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam, the Netherlands
| | - Henk van Lenthe
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jill Hermans
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam, the Netherlands
| | - Simone W Denis
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Yorrick R J Jaspers
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Sabine A Fuchs
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam, the Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam, the Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Rouyer A, Tard C, Dessein A, Spinazzi M, Bédat‐Millet A, Dimitri‐Boulos D, Nadaj‐Pakleza A, Chanson J, Nicolas G, Douillard C, Laforêt P. Long-term prognosis of fatty-acid oxidation disorders in adults: Optimism despite the limited effective therapies available. Eur J Neurol 2024; 31:e16138. [PMID: 38015438 PMCID: PMC11235989 DOI: 10.1111/ene.16138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/25/2023] [Accepted: 10/21/2023] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Fatty-acid oxidation disorders (FAODs) are recessive genetic diseases. MATERIALS AND METHODS We report here clinical and paraclinical data from a retrospective study of 44 adults with muscular FAODs from six French reference centers for neuromuscular or metabolic diseases. RESULTS The study cohort consisted of 44 adult patients: 14 with carnitine palmitoyl transferase 2 deficiency (32%), nine with multiple acyl-CoA deficiency (20%), 13 with very long-chain acyl-CoA dehydrogenase deficiency (30%), three with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (7%), and five with short-chain acyl-CoA dehydrogenase deficiency (11%). Disease onset occurred during childhood in the majority of patients (59%), with a mean age at onset of 15 years (range = 0.5-35) and a mean of 12.6 years (range = 0-58) from disease onset to diagnosis. The principal symptoms were acute muscle manifestations (rhabdomyolysis, exercise intolerance, myalgia), sometimes associated with permanent muscle weakness. Episodes of rhabdomyolysis were frequent (84%), with a mean creatinine kinase level of 68,958 U/L (range = 660-300,000). General metabolic complications were observed in 58% of patients, respiratory manifestations in 18% of cases, and cardiological manifestations in 9% of cases. Fasting acylcarnitine profile was used to orient genetic explorations in 65% of cases. After a mean follow-up of 10 years, 33% of patients were asymptomatic and 56% continued to display symptoms after exercise. The frequency of rhabdomyolysis decreased after diagnosis in 64% of cases. CONCLUSION A standardized register would complete this cohort description of muscular forms of FAODs with exhaustive data, making it possible to assess the efficacy of therapeutic protocols in real-life conditions and during the long-term follow-up of patients.
Collapse
Affiliation(s)
- Alice Rouyer
- Neurology DepartmentRaymond Poincaré University Hospital, Assitance Publique des Hopitaux de ParisGarchesFrance
| | - Céline Tard
- Neurology Department, University of Lille, Inserm, Centre Hospialo‐Niversitaire Lille, U1172–LilNCog (JPARC)–Lille Neuroscience and CognitionNord‐Est‐Ile‐de‐France Neuromuscular Reference Center, Cognitive‐Motor Unit of Expertise, Centre Hospitalo‐Régional Universitaire LilleLilleFrance
| | - Anne‐Frédérique Dessein
- Institute of Biochemistry, Biology, and Pathology Center, Metabolism Department and Medical Reference Center for Inherited Metabolic DiseasesLille University HospitalLilleFrance
| | - Marco Spinazzi
- Department of Neurology, Neuromuscular Reference Center Atlantique Occitanie CaraïbeUniversity HospitalAngersFrance
| | | | - Dalia Dimitri‐Boulos
- Internal Medicine DepartmentQuinze‐Vingts National Ophthalmology HospitalParisFrance
| | - Aleksandra Nadaj‐Pakleza
- Department of Neurology, Reference Center for Neuromuscular Disorders Nord‐Est‐Ile‐de‐France, European Reference Network for Rare Neuromuscular DiseasesUniversity Hospital of StrasbourgStrasbourgFrance
| | - Jean‐Baptiste Chanson
- Department of Neurology, Reference Center for Neuromuscular Disorders Nord‐Est‐Ile‐de‐France, European Reference Network for Rare Neuromuscular DiseasesUniversity Hospital of StrasbourgStrasbourgFrance
| | - Guillaume Nicolas
- Neurology DepartmentRaymond Poincaré University Hospital, Assitance Publique des Hopitaux de ParisGarchesFrance
- Nord‐Est‐Ile‐de‐France Neuromuscular Reference CenterFédération Hospitalo‐Universitaire PHENIXGarchesFrance
- U 1179 INSERMParis‐Saclay UniversityMontigny‐le‐BretonneuxFrance
| | - Claire Douillard
- Endocrinology–Diabetology–Metabolism Department and Medical Reference Center for Inherited Metabolic Diseases Jeanne de Flandre Hospital, Centre Hospitalo‐Régional Universitaire LilleLilleFrance
| | - Pascal Laforêt
- Neurology DepartmentRaymond Poincaré University Hospital, Assitance Publique des Hopitaux de ParisGarchesFrance
- Nord‐Est‐Ile‐de‐France Neuromuscular Reference CenterFédération Hospitalo‐Universitaire PHENIXGarchesFrance
- U 1179 INSERMParis‐Saclay UniversityMontigny‐le‐BretonneuxFrance
| |
Collapse
|
5
|
Lefort B, Gélinas R, Forest A, Bouchard B, Daneault C, Robillard Frayne I, Roy J, Oger C, Greffard K, Galano JM, Durand T, Labarthe F, Bilodeau JF, Ruiz M, Des Rosiers C. Remodeling of lipid landscape in high fat fed very-long chain acyl-CoA dehydrogenase null mice favors pro-arrhythmic polyunsaturated fatty acids and their downstream metabolites. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166843. [PMID: 37558007 DOI: 10.1016/j.bbadis.2023.166843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Very-long chain acyl-CoA dehydrogenase (VLCAD) catalyzes the initial step of mitochondrial long chain (LC) fatty acid β-oxidation (FAO). Inherited VLCAD deficiency (VLCADD) predisposes to neonatal arrhythmias whose pathophysiology is still not understood. We hypothesized that VLCADD results in global disruption of cardiac complex lipid homeostasis, which may set conditions predisposing to arrhythmia. To test this, we assessed the cardiac lipidome and related molecular markers in seven-month-old VLCAD-/- mice, which mimic to some extent the human cardiac phenotype. Mice were sacrificed in the fed or fasted state after receiving for two weeks a chow or a high-fat diet (HFD), the latter condition being known to worsen symptoms in human VLCADD. Compared to their littermate counterparts, HFD/fasted VLCAD-/- mouse hearts displayed the following lipid alterations: (1) Lower LC, but higher VLC-acylcarnitines accumulation, (2) higher levels of arachidonic acid (AA) and lower docosahexaenoic acid (DHA) contents in glycerophospholipids (GPLs), as well as (3) corresponding changes in pro-arrhythmogenic AA-derived isoprostanes and thromboxane B2 (higher), and anti-arrythmogenic DHA-derived neuroprostanes (lower). These changes were associated with remodeling in the expression of gene or protein markers of (1) GPLs remodeling: higher calcium-dependent phospholipase A2 and lysophosphatidylcholine-acyltransferase 2, (2) calcium handling perturbations, and (3) endoplasmic reticulum stress. Altogether, these results highlight global lipid dyshomeostasis beyond FAO in VLCAD-/- mouse hearts, which may set conditions predisposing the hearts to calcium mishandling and endoplasmic reticulum stress and thereby may contribute to the pathogenesis of arrhythmias in VLCADD in mice as well as in humans.
Collapse
Affiliation(s)
- Bruno Lefort
- Montreal Heart Institute Research Centre, Montreal, Canada; Institut des Cardiopathies Congénitales de Tours et FHU Precicare, CHU Tours, Tours, France; INSERM UMR 1069 et Université François Rabelais, Tours, France
| | - Roselle Gélinas
- Montreal Heart Institute Research Centre, Montreal, Canada; Present address: CHU Ste-Justine Research Center, Montreal, Quebec, Canada
| | - Anik Forest
- Montreal Heart Institute Research Centre, Montreal, Canada
| | | | | | | | - Jérôme Roy
- Institut des Biomolécules Max Mousseron, Pôle Chimie Balard Recherche, UMR 5247, Université de Montpellier, CNRS, ENSCM, Montpellier, France; INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, Pôle Chimie Balard Recherche, UMR 5247, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Karine Greffard
- Axe endocrinologie et néphrologie, CHU de Québec, Université Laval, Québec, Canada
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, Pôle Chimie Balard Recherche, UMR 5247, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, Pôle Chimie Balard Recherche, UMR 5247, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Jean-François Bilodeau
- Axe endocrinologie et néphrologie, CHU de Québec, Université Laval, Québec, Canada; Department of Nutrition, Faculty of medicine, Université Laval, Quebec, Canada
| | - Matthieu Ruiz
- Montreal Heart Institute Research Centre, Montreal, Canada; Department of Nutrition, Faculty of medicine, Université de Montréal, Montreal, Canada.
| | - Christine Des Rosiers
- Montreal Heart Institute Research Centre, Montreal, Canada; Department of Nutrition, Faculty of medicine, Université de Montréal, Montreal, Canada.
| |
Collapse
|
6
|
Shiraishi W, Tateishi T, Hayashida S, Tajima G, Tsumura M, Isobe N. [A case of very long chain acyl-CoA dehydrogenase deficiency diagnosed due to a trigger of hyperemesis gravidarum during pregnancy]. Rinsho Shinkeigaku 2023; 63:656-660. [PMID: 37779023 DOI: 10.5692/clinicalneurol.cn-001854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
A 25-year-old Japanese woman with a history of repeated episodes of rhabdomyolysis since the age of 12 presented with rhabdomyolysis caused by hyperemesis gravidarum. Blood tests showed an elevated serum CK level (11,755 IU/l; normal: 30-180 IU/l). Carnitine fractionation analysis revealed low levels of total carnitine (18.3 μmol/l; normal: 45-91 μmol/l), free carnitine (13.1 μmol/l; normal: 36-74 μmol/l), and acylcarnitine (5.2 μmol/l; normal: 6-23 μmol/l). Tandem mass spectrometry showed high levels of C14:1 acylcarnitine (0.84 nmol/ml: normal: <0.4 nmol/ml) and a high C14:1/C2 ratio of 0.253 (normal: <0.013), indicating a potential diagnosis of very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency. Enzyme activity measurement in the patient's peripheral blood lymphocytes confirmed the diagnosis of VLCAD deficiency, with low palmitoyl-CoA dehydrogenase levels (6.5% of normal control value). With the patient's informed consent, acyl-CoA dehydrogenase very long-chain (ACADVL) gene analysis revealed compound heterozygous mutations of c.1332G>A in exon 13 and c.1349G>A (p.R450H) in exon 14. In Japan, neonatal mass screening is performed to detect congenital metabolic diseases. With the introduction of tandem mass screening in 2014, fatty acid metabolism disorders, including VLCAD deficiency, are being detected before the onset of symptoms. However, it is important to note that mass screening cannot detect all cases of this disease. For patients with recurrent rhabdomyolysis, it is essential to consider congenital diseases, including fatty acid metabolism disorders, as a potential diagnosis.
Collapse
Affiliation(s)
- Wataru Shiraishi
- Department of Neurology, Kokura Memorial Hospital
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University
| | - Takahisa Tateishi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine
| | - Shotaro Hayashida
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University
| | - Go Tajima
- Division of Neonatal Screening, Research Institute, National Center for Child Health and Development
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences
| | - Miyuki Tsumura
- Division of Neonatal Screening, Research Institute, National Center for Child Health and Development
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
7
|
Bhai SF, Vissing J. Diagnosis and management of metabolic myopathies. Muscle Nerve 2023; 68:250-256. [PMID: 37226557 DOI: 10.1002/mus.27840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 05/26/2023]
Abstract
Metabolic myopathies are a set of rare inborn errors of metabolism leading to disruption in energy production. Relevant to skeletal muscle, glycogen storage disease and fatty acid oxidation defects can lead to exercise intolerance, rhabdomyolysis, and weakness in children and adults, distinct from the severe forms that involve multiple-organ systems. These nonspecific, dynamic symptoms along with conditions that mimic metabolic myopathies can make diagnosis challenging. Clinicians can shorten the time to diagnosis by recognizing the typical clinical phenotypes and performing next generation sequencing. With improved access and affordability of molecular testing, clinicians need to be well-versed in resolving variants of uncertain significance relevant to metabolic myopathies. Once identified, patients can improve quality of life, safely engage in exercise, and reduce episodes of rhabdomyolysis by modifying diet and lifestyle habits.
Collapse
Affiliation(s)
- Salman F Bhai
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Neuromuscular Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian, Dallas, Texas, USA
| | - John Vissing
- Department of Neurology, Rigshospitalet, Copenhagen Neuromuscular Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Batten K, Bhattacharya K, Simar D, Broderick C. Exercise testing and prescription in patients with inborn errors of muscle energy metabolism. J Inherit Metab Dis 2023; 46:763-777. [PMID: 37350033 DOI: 10.1002/jimd.12644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/02/2023] [Accepted: 06/21/2023] [Indexed: 06/24/2023]
Abstract
Skeletal muscle is a dynamic organ requiring tight regulation of energy metabolism in order to provide bursts of energy for effective function. Several inborn errors of muscle energy metabolism (IEMEM) affect skeletal muscle function and therefore the ability to initiate and sustain physical activity. Exercise testing can be valuable in supporting diagnosis, however its use remains limited due to the inconsistency in data to inform its application in IEMEM populations. While exercise testing is often used in adults with IEMEM, its use in children is far more limited. Once a physiological limitation has been identified and the aetiology defined, habitual exercise can assist with improving functional capacity, with reports supporting favourable adaptations in adult patients with IEMEM. Despite the potential benefits of structured exercise programs, data in paediatric populations remain limited. This review will focus on the utilisation and limitations of exercise testing and prescription for both adults and children, in the management of McArdle Disease, long chain fatty acid oxidation disorders, and primary mitochondrial myopathies.
Collapse
Affiliation(s)
- Kiera Batten
- School of Health Sciences, University of New South Wales, Sydney, Australia
- The Children's Hospital at Westmead, Sydney, Australia
| | - Kaustuv Bhattacharya
- The Children's Hospital at Westmead, Sydney, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - David Simar
- School of Health Sciences, University of New South Wales, Sydney, Australia
| | - Carolyn Broderick
- School of Health Sciences, University of New South Wales, Sydney, Australia
- The Children's Hospital at Westmead, Sydney, Australia
| |
Collapse
|
9
|
Labella B, Lanzi G, Cotti Piccinelli S, Caria F, Damioli S, Risi B, Bertella E, Poli L, Padovani A, Filosto M. Juvenile-Onset Recurrent Rhabdomyolysis Due to Compound Heterozygote Variants in the ACADVL Gene. Brain Sci 2023; 13:1178. [PMID: 37626534 PMCID: PMC10452278 DOI: 10.3390/brainsci13081178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/30/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is a rare autosomal recessive long-chain fatty acid oxidation disorder caused by mutations in the ACADVL gene. The myopathic form presents with exercise intolerance, exercise-related rhabdomyolysis, and muscle pain, usually starting during adolescence or adulthood. We report on a 17-year-old boy who has presented with exercise-induced muscle pain and fatigue since childhood. In recent clinical history, episodes of exercise-related severe hyperCKemia and myoglobinuria were reported. Electromyography was normal, and a muscle biopsy showed only "moth-eaten" fibers, and a mild increase in lipid storage in muscle fibers. NGS analysis displayed the already known heterozygote c.1769G>A variant and the unreported heterozygote c.523G>C change in ACADVL both having disease-causing predictions. Plasma acylcarnitine profiles revealed high long-chain acylcarnitine species levels, especially C14:1. Clinical, histopathological, biochemical, and genetic tests supported the diagnosis of VLCAD deficiency. Our report of a novel pathogenic missense variant in ACADVL expands the allelic heterogeneity of the disease. Since dietary treatment is the only therapy available for treating VLCAD deficiency and it is more useful the earlier it is started, prompt diagnosis is essential in order to minimize muscle damage and slow the disease progression.
Collapse
Affiliation(s)
- Beatrice Labella
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST “Spedali Civili”, 25100 Brescia, Italy;
| | - Gaetana Lanzi
- Medical Genetics Laboratory, Diagnostic Department, ASST-Pedali Civili of Brescia, 25100 Brescia, Italy;
| | - Stefano Cotti Piccinelli
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO—Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (F.C.); (S.D.); (B.R.); (E.B.)
| | - Filomena Caria
- NeMO—Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (F.C.); (S.D.); (B.R.); (E.B.)
| | - Simona Damioli
- NeMO—Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (F.C.); (S.D.); (B.R.); (E.B.)
| | - Barbara Risi
- NeMO—Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (F.C.); (S.D.); (B.R.); (E.B.)
| | - Enrica Bertella
- NeMO—Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (F.C.); (S.D.); (B.R.); (E.B.)
| | - Loris Poli
- Unit of Neurology, ASST “Spedali Civili”, 25100 Brescia, Italy;
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST “Spedali Civili”, 25100 Brescia, Italy;
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO—Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (F.C.); (S.D.); (B.R.); (E.B.)
| |
Collapse
|
10
|
Sebaa R, AlMalki RH, Alseraty W, Abdel Rahman AM. A Distinctive Metabolomics Profile and Potential Biomarkers for Very Long Acylcarnitine Dehydrogenase Deficiency (VLCADD) Diagnosis in Newborns. Metabolites 2023; 13:725. [PMID: 37367883 DOI: 10.3390/metabo13060725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Very long-chain acylcarnitine dehydrogenase deficiency (VLCADD) is a rare inherited metabolic disorder associated with fatty acid β-oxidation and characterized by genetic mutations in the ACADVL gene and accumulations of acylcarnitines. VLCADD, developed in neonates or later adults, can be diagnosed using newborn bloodspot screening (NBS) or genetic sequencing. These techniques have limitations, such as a high false discovery rate and variants of uncertain significance (VUS). As a result, an extra diagnostic tool is needed to deliver improved performance and health outcomes. As VLCADD is linked with metabolic disturbance, we postulated that newborn patients with VLCADD could display a distinct metabolomics pattern compared to healthy newborns and other disorders. Herein, we applied an untargeted metabolomics approach using liquid chromatography-high resolution mass spectrometry (LC-HRMS) to measure the global metabolites in dried blood spot (DBS) cards collected from VLCADD newborns (n = 15) and healthy controls (n = 15). Two hundred and six significantly dysregulated endogenous metabolites were identified in VLCADD, in contrast to healthy newborns. Fifty-eight and one hundred and eight up- and down-regulated endogenous metabolites were involved in several pathways such as tryptophan biosynthesis, aminoacyl-tRNA biosynthesis, amino sugar and nucleotide sugar metabolism, pyrimidine metabolism and pantothenate, and CoA biosynthesis. Furthermore, biomarker analyses identified 3,4-Dihydroxytetradecanoylcarnitine (AUC = 1), PIP (20:1)/PGF1alpha) (AUC = 0.982), and PIP2 (16:0/22:3) (AUC = 0.978) as potential metabolic biomarkers for VLCADD diagnosis. Our findings showed that compared to healthy newborns, VLCAADD newborns exhibit a distinctive metabolic profile, and identified potential biomarkers that can be used for early diagnosis, which improves the identification of the affected patients earlier. This allows for the timely administration of proper treatments, leading to improved health. However, further studies with large independent cohorts of VLCADD patients with different ages and phenotypes need to be studied to validate our potential diagnostic biomarkers and their specificity and accuracy during early life.
Collapse
Affiliation(s)
- Rajaa Sebaa
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Al-Dawadmi 17472, Saudi Arabia
| | - Reem H AlMalki
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
| | - Wafaa Alseraty
- Department of Nursing, College of Applied Medical Sciences, Shaqra University, Al-Dawadmi 17472, Saudi Arabia
| | - Anas M Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
11
|
Lund M, Heaton R, Hargreaves IP, Gregersen N, Olsen RKJ. Odd- and even-numbered medium-chained fatty acids protect against glutathione depletion in very long-chain acyl-CoA dehydrogenase deficiency. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159248. [PMID: 36356723 DOI: 10.1016/j.bbalip.2022.159248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
Recent trials have reported the ability of triheptanoin to improve clinical outcomes for the severe symptoms associated with long-chain fatty acid oxidation disorders, including very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency. However, the milder myopathic symptoms are still challenging to treat satisfactorily. Myopathic pathogenesis is multifactorial, but oxidative stress is an important component. We have previously shown that metabolic stress increases the oxidative burden in VLCAD-deficient cell lines and can deplete the antioxidant glutathione (GSH). We investigated whether medium-chain fatty acids provide protection against GSH depletion during metabolic stress in VLCAD-deficient fibroblasts. To investigate the effect of differences in anaplerotic capacity, we included both even-(octanoate) and odd-numbered (heptanoate) medium-chain fatty acids. Overall, we show that modulation of the concentration of medium-chain fatty acids in culture media affects levels of GSH retained during metabolic stress in VLCAD-deficient cell lines but not in controls. Lowered glutamine concentration in the culture media during metabolic stress led to GSH depletion and decreased viability in VLCAD deficient cells, which could be rescued by both heptanoate and octanoate in a dose-dependent manner. Unlike GSH levels, the levels of total thiols increased after metabolic stress exposure, the size of this increase was not affected by differences in cell culture medium concentrations of glutamine, heptanoate or octanoate. Addition of a PPAR agonist further exacerbated stress-related GSH-depletion and viability loss, requiring higher concentrations of fatty acids to restore GSH levels and cell viability. Both odd- and even-numbered medium-chain fatty acids efficiently protect VLCADdeficient cells against metabolic stress-induced antioxidant depletion.
Collapse
Affiliation(s)
- Martin Lund
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juel-Jensens Boulevard 99, 8200 Aarhus, Denmark.
| | - Robert Heaton
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Iain P Hargreaves
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juel-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Rikke K J Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juel-Jensens Boulevard 99, 8200 Aarhus, Denmark.
| |
Collapse
|
12
|
Angelini C, Burlina A, Blau N, Ferreira CR. Clinical and biochemical footprints of inherited metabolic disorders: X. Metabolic myopathies. Mol Genet Metab 2022; 137:213-222. [PMID: 36155185 PMCID: PMC10507680 DOI: 10.1016/j.ymgme.2022.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
Metabolic myopathies are characterized by the deficiency or dysfunction of essential metabolites or fuels to generate energy for muscle contraction; they most commonly manifest with neuromuscular symptoms due to impaired muscle development or functioning. We have summarized associations of signs and symptoms in 358 inherited metabolic diseases presenting with myopathies. This represents the tenth of a series of articles attempting to create and maintain a comprehensive list of clinical and metabolic differential diagnoses according to system involvement.
Collapse
Affiliation(s)
- Corrado Angelini
- Laboratory for Neuromuscular Diseases, Campus Pietro d'Abano, University of Padova, Padova, Italy.
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Reference Center for Expanded Newborn Screening, University Hospital Padova, 35128, Padua, Italy.
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland.
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schiöth HB. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev 2022; 74:506-551. [PMID: 35710135 DOI: 10.1124/pharmrev.121.000408] [Citation(s) in RCA: 248] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal β -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.
Collapse
Affiliation(s)
- Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Janis Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Didi Nordberg
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Misty M Attwood
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Stefan Smesny
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Zumrut Duygu Sen
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - An Chi Guo
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Eponine Oler
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Siyang Tian
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Jiamin Zheng
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - David S Wishart
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Helgi B Schiöth
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| |
Collapse
|
14
|
Ribas GS, Vargas CR. Evidence that Oxidative Disbalance and Mitochondrial Dysfunction are Involved in the Pathophysiology of Fatty Acid Oxidation Disorders. Cell Mol Neurobiol 2022; 42:521-532. [PMID: 32876899 PMCID: PMC11441193 DOI: 10.1007/s10571-020-00955-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022]
Abstract
Mitochondrial fatty acid β-oxidation disorders (FAODs) are a group of about 20 diseases which are caused by specific mutations in genes that codify proteins or enzymes involved in the fatty acid transport and mitochondrial β-oxidation. As a consequence of these inherited metabolic defects, fatty acids can not be used as an appropriate energetic source during special conditions, such as prolonged fasting, exercise or other catabolic states. Therefore, patients usually present hepatopathy, cardiomyopathy, severe skeletal myopathy and neuropathy, besides biochemical features like hypoketotic hypoglycemia, metabolic acidosis, hypotony and hyperammonemia. This set of symptoms seems to be related not only with the energy deficiency, but also with toxic effects provoked by fatty acids and carnitine derivatives accumulated in the tissues of the patients. The understanding of the mechanisms by which these metabolites provoke tissue injury in FAODs is crucial for the developmental of novel therapeutic strategies that promote increased life expectancy, as well as improved life quality for patients. In this sense, the objective of this review is to present evidence from the scientific literature on the role of oxidative damage and mitochondrial dysfunction in the pathogenesis of the most prevalent FAODs: medium-chain acyl-CoA dehydrogenase (MCAD), long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and very long-chain acyl-CoA dehydrogenase (VLCAD) deficiencies. It is expected that the findings presented in this review, obtained from both animal model and patients studies, may contribute to a better comprehension of the pathophysiology of these diseases.
Collapse
Affiliation(s)
- Graziela Schmitt Ribas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carmen Regla Vargas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
15
|
Williams-Hall R, Tinsley K, Kruger E, Johnson C, Bowden A, Cimms T, Gater A. Qualitative evaluation of the symptoms and quality of life impacts of long-chain fatty acid oxidation disorders. Ther Adv Endocrinol Metab 2022; 13:20420188211065655. [PMID: 35035873 PMCID: PMC8755934 DOI: 10.1177/20420188211065655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Long-chain fatty acid oxidation disorders (LC-FAOD) are a group of rare autosomal-recessive genetic disorders characterized by metabolic deficiencies in which the body is unable to convert long-chain fatty acids into energy. To date, however, there is limited understanding of the patient experience of LC-FAOD. METHODS The symptoms, observable signs, and quality of life (QoL) impacts associated with LC-FAOD were explored via a focus group (n = 8) and semi-structured interviews (n = 6) with patients and caregivers of patients with LC-FAOD, and interviews (n = 4) with expert clinicians. Data were analyzed via thematic analysis and summarized in a conceptual model. RESULTS Participants reported a wide range of signs and symptoms associated with LC-FAOD, broadly categorized as musculoskeletal, endocrine/nutritional/metabolic, neurological, gastrointestinal/digestive, sensory, cardiovascular, respiratory, urological, and constitutional. LC-FAOD were reported to have a significant impact on various aspects of patients' lives including physical functioning, participation in daily activities, emotional/psychological wellbeing, and social functioning. Lifestyle modifications (such as diet and exercise restrictions) were necessary because of the condition. Symptoms were typically episodic in presentation often arising or exacerbated during catabolic conditions such as prolonged exercise, fasting, physiological stress, and illness/infection. Symptoms were also commonly reported to lead to emergency room visits, hospitalization, and clinical complications. CONCLUSION LC-FAOD have a considerable impact on patients' lives. There is a high degree of concordance in the signs, symptoms, and impacts of LC-FAOD reported by patients, caregivers, and clinicians; however, there were many symptoms and impacts that were only reported by patients and caregivers, thus demonstrating that insights from patient/caregiver experience data are integral for informing medical product development and facilitating patient-centered care.
Collapse
|
16
|
Ruiz-Sala P, Peña-Quintana L. Biochemical Markers for the Diagnosis of Mitochondrial Fatty Acid Oxidation Diseases. J Clin Med 2021; 10:jcm10214855. [PMID: 34768374 PMCID: PMC8584803 DOI: 10.3390/jcm10214855] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial fatty acid β-oxidation (FAO) contributes a large proportion to the body’s energy needs in fasting and in situations of metabolic stress. Most tissues use energy from fatty acids, particularly the heart, skeletal muscle and the liver. In the brain, ketone bodies formed from FAO in the liver are used as the main source of energy. The mitochondrial fatty acid oxidation disorders (FAODs), which include the carnitine system defects, constitute a group of diseases with several types and subtypes and with variable clinical spectrum and prognosis, from paucisymptomatic cases to more severe affectations, with a 5% rate of sudden death in childhood, and with fasting hypoketotic hypoglycemia frequently occurring. The implementation of newborn screening programs has resulted in new challenges in diagnosis, with the detection of new phenotypes as well as carriers and false positive cases. In this article, a review of the biochemical markers used for the diagnosis of FAODs is presented. The analysis of acylcarnitines by MS/MS contributes to improving the biochemical diagnosis, both in affected patients and in newborn screening, but acylglycines, organic acids, and other metabolites are also reported. Moreover, this review recommends caution, and outlines the differences in the interpretation of the biomarkers depending on age, clinical situation and types of samples or techniques.
Collapse
Affiliation(s)
- Pedro Ruiz-Sala
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma Madrid, CIBERER, IDIPAZ, 28049 Madrid, Spain;
| | - Luis Peña-Quintana
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Mother and Child Insular University Hospital Complex, Asociación Canaria para la Investigación Pediátrica (ACIP), CIBEROBN, University Institute for Research in Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
- Correspondence:
| |
Collapse
|
17
|
Owaki-Nakano R, Higashi M, Iwashita K, Shigematsu K, Toyama E, Yamaura K. Anesthetic management of multiple acyl-coenzyme A dehydrogenase deficiency in a series of surgeries under general anesthesia: a case report. JA Clin Rep 2021; 7:54. [PMID: 34245397 PMCID: PMC8272790 DOI: 10.1186/s40981-021-00459-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glutaric acidemia is a type of multiple acyl-coenzyme A dehydrogenase deficiency, an inborn error in fatty acid metabolism. In patients with glutaric acidemia, during the perioperative period, prolonged fasting, stress, and pain have been identified as risk factors for the induction of metabolic derangement. This report describes the surgical and anesthetic management of a patient with glutaric acidemia. CASE PRESENTATION A 56-year-old male patient with glutaric acidemia type 2 underwent a series of surgeries. During the initial off-pump coronary artery bypass surgery, the patient developed renal failure due to rhabdomyolysis upon receiving glucose at 2 mg/kg/min. However, in the second laparoscopic cholecystectomy, rhabdomyolysis was avoided by administering glucose at 4 mg/kg/min. CONCLUSIONS To avoid catabolism in patients with glutaric acidemia, appropriate glucose administration is important, depending on the surgical risk.
Collapse
Affiliation(s)
- Ryoko Owaki-Nakano
- Department of Anesthesiology, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Midoriko Higashi
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Kohei Iwashita
- Department of Anesthesiology, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Kenji Shigematsu
- Department of Anesthesiology, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Emiko Toyama
- Department of Anesthesiology, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Ken Yamaura
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
18
|
Vallejo AN, Mroczkowski HJ, Michel JJ, Woolford M, Blair HC, Griffin P, McCracken E, Mihalik SJ, Reyes‐Mugica M, Vockley J. Pervasive inflammatory activation in patients with deficiency in very-long-chain acyl-coA dehydrogenase (VLCADD). Clin Transl Immunology 2021; 10:e1304. [PMID: 34194748 PMCID: PMC8236555 DOI: 10.1002/cti2.1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES Very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is a disorder of fatty acid oxidation. Symptoms are managed by dietary supplementation with medium-chain fatty acids that bypass the metabolic block. However, patients remain vulnerable to hospitalisations because of rhabdomyolysis, suggesting pathologic processes other than energy deficit. Since rhabdomyolysis is a self-destructive process that can signal inflammatory/immune cascades, we tested the hypothesis that inflammation is a physiologic dimension of VLCADD. METHODS All subjects (n = 18) underwent informed consent/assent. Plasma cytokine and cytometry analyses were performed. A prospective case analysis was carried out on a patient with recurrent hospitalisation. Health data were extracted from patient medical records. RESULTS Patients showed systemic upregulation of nine inflammatory mediators during symptomatic and asymptomatic periods. There was also overall abundance of immune cells with high intracellular expression of IFNγ, IL-6, MIP-1β (CCL4) and TNFα, and the transcription factors p65-NFκB and STAT1 linked to inflammatory pathways. A case analysis of a patient exhibited already elevated plasma cytokine levels during diagnosis in early infancy, evolving into sustained high systemic levels during recurrent rhabdomyolysis-related hospitalisations. There were corresponding activated leukocytes, with higher intracellular stores of inflammatory molecules in monocytes compared to T cells. Exposure of monocytes to long-chain free fatty acids recapitulated the cytokine signature of patients. CONCLUSION Pervasive plasma cytokine upregulation and pre-activated immune cells indicate chronic inflammatory state in VLCADD. Thus, there is rationale for practical implementation of clinical assessment of inflammation and/or translational testing, or adoption, of anti-inflammatory intervention(s) for personalised disease management.
Collapse
Affiliation(s)
- Abbe N Vallejo
- Division of Pediatric Rheumatology, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of ImmunologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Children's Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghPAUSA
| | - Henry J Mroczkowski
- Children's Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghPAUSA
- Division of Genetic and Genomic Medicine, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Present address:
Department of PediatricsUniversity of Tennessee Health Sciences CenterMemphisTNUSA
| | - Joshua J Michel
- Division of Pediatric Rheumatology, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Michael Woolford
- Division of Pediatric Rheumatology, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Harry C Blair
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Pittsburgh Veterans Administration Medical CenterPittsburghPAUSA
| | - Patricia Griffin
- Division of Pediatric Rheumatology, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Elizabeth McCracken
- Children's Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghPAUSA
- Division of Genetic and Genomic Medicine, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Center for Rare Disease and TherapyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Stephanie J Mihalik
- Division of Genetic and Genomic Medicine, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Miguel Reyes‐Mugica
- Children's Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghPAUSA
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Jerry Vockley
- Children's Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghPAUSA
- Division of Genetic and Genomic Medicine, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Center for Rare Disease and TherapyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of Human GeneticsUniversity of Pittsburgh Graduate School of Public HealthPittsburghPAUSA
| |
Collapse
|
19
|
Lund M, Andersen KG, Heaton R, Hargreaves IP, Gregersen N, Olsen RKJ. Bezafibrate activation of PPAR drives disturbances in mitochondrial redox bioenergetics and decreases the viability of cells from patients with VLCAD deficiency. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166100. [PMID: 33549744 DOI: 10.1016/j.bbadis.2021.166100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is the most common inborn long-chain fatty acid oxidation (FAO) disorder. VLCAD deficiency is characterized by distinct phenotypes. The severe phenotypes are potentially life-threatening and affect the heart or liver, with a comparatively milder phenotype characterized by myopathic symptoms. There is an unmet clinical need for effective treatment options for the myopathic phenotype. The molecular mechanisms driving the gradual decrease in mitochondrial function and associated alterations of muscle fibers are unclear. The peroxisome proliferator-activated receptor (PPAR) pan-agonist bezafibrate is a potent modulator of FAO and multiple other mitochondrial functions and has been proposed as a potential medication for myopathic cases of long-chain FAO disorders. In vitro experiments have demonstrated the ability of bezafibrate to increase VLCAD expression and activity. However, the outcome of small-scale clinical trials has been controversial. We found VLCAD deficient patient fibroblasts to have an increased oxidative stress burden and deranged mitochondrial bioenergetic capacity, compared to controls. Applying heat stress under fasting conditions to bezafibrate pretreated patient cells, caused a marked further increase of mitochondrial superoxide levels. Patient cells failed to maintain levels of the essential thiol peptide antioxidant glutathione and experienced a decrease in cellular viability. Our findings indicate that chronic PPAR activation is a plausible initiator of long-term pathogenesis in VLCAD deficiency. Our findings further implicate disruption of redox homeostasis as a key pathogenic mechanism in VLCAD deficiency and support the notion that a deranged thiol metabolism might be an important pathogenic factor in VLCAD deficiency.
Collapse
Affiliation(s)
- Martin Lund
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juel-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Kathrine G Andersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juel-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Robert Heaton
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Iain P Hargreaves
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juel-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Rikke K J Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juel-Jensens Boulevard 99, 8200 Aarhus, Denmark.
| |
Collapse
|
20
|
Fuseya Y, Sakurai T, Miyahara JI, Sato K, Kaji S, Saito Y, Takahashi M, Nishino I, Fukuda T, Sugie H, Yamashita H. Adult-onset Repeat Rhabdomyolysis with a Very Long-chain Acyl-CoA Dehydrogenase Deficiency Due to Compound Heterozygous ACADVL Mutations. Intern Med 2020; 59:2729-2732. [PMID: 32669490 PMCID: PMC7691026 DOI: 10.2169/internalmedicine.4604-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is a genetic disorder of fatty acid beta oxidation that is caused by a defect in ACADVL, which encodes VLCAD. The clinical presentation of VLCAD deficiency is heterogeneous, and either a delayed diagnosis or a misdiagnosis may sometimes occur. We herein describe a difficult-to-diagnose case of the muscle form of adult-onset VLCAD deficiency with compound heterozygous ACADVL mutations including c.790A>G (p.K264E) and c.1246G>A (p.A416T).
Collapse
Affiliation(s)
- Yasuhiro Fuseya
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Japan
- Department of Neurology, Graduate School of Medicine, Kyoto University Hospital, Japan
| | | | | | - Kei Sato
- Department of Neurology, Uji Hospital, Japan
| | - Seiji Kaji
- Department of Neurology, Graduate School of Medicine, Kyoto University Hospital, Japan
- Department of Neurology, Japanese Red Cross Wakayama Medical Center, Japan
| | - Yoshihiko Saito
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan
| | - Makio Takahashi
- Department of Neurology, Japanese Red Cross Osaka Hospital, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan
| | - Tokiko Fukuda
- Department of Pediatrics, Hamamatsu University School of Medicine, Japan
| | - Hideo Sugie
- Faculty of Health and Medical Sciences, Tokoha University, Japan
| | - Hirofumi Yamashita
- Department of Neurology, Japanese Red Cross Wakayama Medical Center, Japan
| |
Collapse
|
21
|
Knottnerus SJG, Bleeker JC, Ferdinandusse S, Houtkooper RH, Langeveld M, Nederveen AJ, Strijkers GJ, Visser G, Wanders RJA, Wijburg FA, Boekholdt SM, Bakermans AJ. Subclinical effects of long-chain fatty acid β-oxidation deficiency on the adult heart: A case-control magnetic resonance study. J Inherit Metab Dis 2020; 43:969-980. [PMID: 32463482 PMCID: PMC7539973 DOI: 10.1002/jimd.12266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/05/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022]
Abstract
Cardiomyopathy can be a severe complication in patients with long-chain fatty acid β-oxidation disorders (LCFAOD), particularly during episodes of metabolic derangement. It is unknown whether latent cardiac abnormalities exist in adult patients. To investigate cardiac involvement in LCFAOD, we used proton magnetic resonance imaging (MRI) and spectroscopy (1 H-MRS) to quantify heart function, myocardial tissue characteristics, and myocardial lipid content in 14 adult patients (two with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD); four with carnitine palmitoyltransferase II deficiency (CPT2D); and eight with very long-chain acyl-CoA dehydrogenase deficiency (VLCADD)) and 14 gender-, age-, and BMI-matched control subjects. Examinations included cine MRI, MR tagging, native myocardial T1 and T2 mapping, and localized 1 H-MRS at 3 Tesla. Left ventricular (LV) myocardial mass (P = .011) and the LV myocardial mass-to-volume ratio (P = .008) were higher in patients, while ejection fraction (EF) was normal (P = .397). LV torsion was higher in patients (P = .026), whereas circumferential shortening was similar compared with controls (P = .875). LV hypertrophy was accompanied by high myocardial T1 values (indicative of diffuse fibrosis) in two patients, and additionally a low EF in one case. Myocardial lipid content was similar in patients and controls. We identified subclinical morphological and functional differences between the hearts of LCFAOD patients and matched control subjects using state-of-the-art MR methods. Our results suggest a chronic cardiac disease phenotype and hypertrophic LV remodeling of the heart in LCFAOD, potentially triggered by a mild, but chronic, energy deficiency, rather than by lipotoxic effects of accumulating lipid metabolites.
Collapse
Affiliation(s)
- Suzan J. G. Knottnerus
- Department of Metabolic DiseasesWilhelmina Children's Hospital, University Medical Center UtrechtUtrechtThe Netherlands
- Laboratory Genetic Metabolic DiseasesAmsterdam University Medical Centers, University of Amsterdam, Amsterdam Gastroenterology and MetabolismAmsterdamThe Netherlands
| | - Jeannette C. Bleeker
- Department of Metabolic DiseasesWilhelmina Children's Hospital, University Medical Center UtrechtUtrechtThe Netherlands
- Laboratory Genetic Metabolic DiseasesAmsterdam University Medical Centers, University of Amsterdam, Amsterdam Gastroenterology and MetabolismAmsterdamThe Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic DiseasesAmsterdam University Medical Centers, University of Amsterdam, Amsterdam Gastroenterology and MetabolismAmsterdamThe Netherlands
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic DiseasesAmsterdam University Medical Centers, University of Amsterdam, Amsterdam Gastroenterology and MetabolismAmsterdamThe Netherlands
| | - Mirjam Langeveld
- Department of Endocrinology and MetabolismAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - Aart J. Nederveen
- Department of Radiology and Nuclear MedicineAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - Gustav J. Strijkers
- Biomedical Engineering and Physics, Amsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Gepke Visser
- Department of Metabolic DiseasesWilhelmina Children's Hospital, University Medical Center UtrechtUtrechtThe Netherlands
- Laboratory Genetic Metabolic DiseasesAmsterdam University Medical Centers, University of Amsterdam, Amsterdam Gastroenterology and MetabolismAmsterdamThe Netherlands
| | - Ronald J. A. Wanders
- Laboratory Genetic Metabolic DiseasesAmsterdam University Medical Centers, University of Amsterdam, Amsterdam Gastroenterology and MetabolismAmsterdamThe Netherlands
| | - Frits A. Wijburg
- Department of PediatricsEmma Children's Hospital, Amsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - S. Matthijs Boekholdt
- Department of CardiologyAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - Adrianus J. Bakermans
- Department of Radiology and Nuclear MedicineAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
22
|
Van Calcar SC, Sowa M, Rohr F, Beazer J, Setlock T, Weihe TU, Pendyal S, Wallace LS, Hansen JG, Stembridge A, Splett P, Singh RH. Nutrition management guideline for very-long chain acyl-CoA dehydrogenase deficiency (VLCAD): An evidence- and consensus-based approach. Mol Genet Metab 2020; 131:23-37. [PMID: 33093005 DOI: 10.1016/j.ymgme.2020.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022]
Abstract
The nutrition management guideline for very-long chain acyl-CoA dehydrogenase deficiency (VLCAD) is the fourth in a series of web-based guidelines focusing on the diet treatment for inherited metabolic disorders and follows previous publication of guidelines for maple syrup urine disease (2014), phenylketonuria (2016) and propionic acidemia (2019). The purpose of this guideline is to establish harmonization in the treatment and monitoring of individuals with VLCAD of all ages in order to improve clinical outcomes. Six research questions were identified to support guideline development on: nutrition recommendations for the healthy individual, illness management, supplementation, monitoring, physical activity and management during pregnancy. This report describes the methodology used in its development including review, critical appraisal and abstraction of peer-reviewed studies and unpublished practice literature; expert input through two Delphi surveys and a nominal group process; and external review from metabolic physicians and dietitians. It includes the summary statements of the nutrition management recommendations for each research question, followed by a standardized rating based on the strength of the evidence. Online, open access of the full published guideline allows utilization by health care providers, researchers and collaborators who advise, advocate and care for individuals with VLCAD and their families and can be accessed from the Genetic Metabolic Dietitians International (https://GMDI.org) and Southeast Regional Genetics Network (https://southeastgenetics.org/ngp) websites.
Collapse
Affiliation(s)
| | - M Sowa
- CHOC Children's, Orange, CA, USA
| | - F Rohr
- Met Ed Co, Boulder, CO, USA; Children's Hospital of Boston, Boston, MA, USA
| | - J Beazer
- National PKU News, How Much Phe, LLC, Helena, MT, USA
| | - T Setlock
- Shodair Children's Hospital, Helena, MT, USA
| | - T U Weihe
- Children's Mercy, Kansas City, MO, USA
| | - S Pendyal
- Duke University Health System, Durham, NC, USA
| | - L S Wallace
- University of Tennessee Health Science Center, Memphis, TN, USA
| | - J G Hansen
- Oregon Health & Science University, Portland, OR, USA
| | | | - P Splett
- University of Minnesota, St. Paul, MN, USA
| | | |
Collapse
|
23
|
Fatehi F, Okhovat AA, Nilipour Y, Mroczek M, Straub V, Töpf A, Palibrk A, Peric S, Rakocevic Stojanovic V, Najmabadi H, Nafissi S. Adult-onset very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD). Eur J Neurol 2020; 27:2257-2266. [PMID: 32558070 DOI: 10.1111/ene.14402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/10/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is a hereditary disorder of mitochondrial long-chain fatty acid oxidation that has variable presentations, including exercise intolerance, cardiomyopathy and liver disease. The aim of this study was to describe the clinical and genetic manifestations of six patients with adult-onset VLCADD. METHODS In this study, the clinical, pathological and genetic findings of six adult patients (four from Iran and two from Serbia) with VLCADD and their response to treatment are described. RESULTS The median (range) age of patients at first visit was 31 (27-38) years, and the median (range) age of onset was 26.5 (19-33) years. Parental consanguinity was present for four patients. Four patients had a history of rhabdomyolysis, and the recorded CK level ranged between 67 and 90 000 IU/l. Three patients had a history of exertional myalgia, and one patient had a non-fluctuating weakness. Through next-generation sequencing analysis, we identified six cases with variants in the ACADVL gene and a confirmed diagnosis of VLCADD. Of the total six variants identified, five were missense, and one was a novel frameshift mutation identified in two unrelated individuals. Two variants were novel, and three were previously reported. We treated the patients with a combination of L-carnitine, Coenzyme Q10 and riboflavin. Three patients responded favorably to the treatment. CONCLUSION Adult-onset VLCADD is a rare entity with various presentations. Patients may respond favorably to a cocktail of L-carnitine, Coenzyme Q10, and riboflavin.
Collapse
Affiliation(s)
- F Fatehi
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - A A Okhovat
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Y Nilipour
- Pediatric Pathology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Mofid Children Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Mroczek
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - V Straub
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - A Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - A Palibrk
- Neurology Clinic, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - S Peric
- Neurology Clinic, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - V Rakocevic Stojanovic
- Neurology Clinic, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - H Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - S Nafissi
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Musumeci O, Ferlazzo E, Rodolico C, Gambardella A, Gagliardi M, Aguglia U, Toscano A. A Family With a Complex Phenotype Caused by Two Different Rare Metabolic Disorders: GLUT1 and Very-Long-Chain Fatty Acid Dehydrogenase (VLCAD) Deficiencies. Front Neurol 2020; 11:514. [PMID: 32655480 PMCID: PMC7324651 DOI: 10.3389/fneur.2020.00514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/11/2020] [Indexed: 01/04/2023] Open
Abstract
GLUT1 Deficiency Syndrome (GLUT1-DS) is a rare and potentially treatable neurometabolic condition, caused by a reduced glucose transport into the brain and clinically characterized by an epileptic encephalopathy with movement disorders. A wide inter-intrafamilial phenotypic variability has been reported. Very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is an inherited metabolic disorder of mitochondrial long-chain fatty acid oxidation (FAO) with also a variable age of onset and clinical presentation including cardiomyopathy, hypoketotic hypoglycemia, and liver disease. Sometimes, VLCAD manifests later with a prevalent muscle involvement characterized by exercise intolerance and recurrent rhabdomyolysis. We report a 40-year-old man with mild mental retardation and sporadic choreo-athetoid movements, who complained of recurrent episodes of rhabdomyolysis triggered by exercise or fasting since his twenties. His 15-year-old son had a psychomotor developmental delay with episodes of drowsiness mainly at fasting and exercise-induced choreo-athetoid movements but no history of pigmenturia. Clinical and laboratory findings in the son suggested a diagnosis of GLUT1-DS confirmed by SCL2A1 genetic analysis that revealed a heterozygous mutation c.997C>T (p.R333W) that was also found in the proband. However, the presence in the latter of recurrent exercise-induced rhabdomyolysis, never reported in GLUT1-DS, implied a second metabolic disorder. Increased plasma C14:1-carnitine levels and the identification of two known heterozygous mutations c. 553G>A (p.G185S) and c.1153C>T (p.R385W) in ACADVL confirmed the additional diagnosis of VLCAD deficiency in the proband. Nowadays, there is an increasing evidence of "double trouble" cases of genetic origin. Consequently, when atypical features accompany a known phenotype, associated comorbidities should be considered.
Collapse
Affiliation(s)
- Olimpia Musumeci
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Edoardo Ferlazzo
- Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy.,Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy.,Regional Epilepsy Centre, "Bianchi-Melacrino-Morelli" Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Carmelo Rodolico
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonio Gambardella
- Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy.,Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Monica Gagliardi
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Umberto Aguglia
- Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy.,Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy.,Regional Epilepsy Centre, "Bianchi-Melacrino-Morelli" Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Antonio Toscano
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
25
|
Brailova M, Clerfond G, Trésorier R, Minet-Quinard R, Durif J, Massoullié G, Pereira B, Sapin V, Eschalier R, Bouvier D. Inherited Metabolic Diseases and Cardiac Pathology in Adults: Diagnosis and Prevalence in a CardioMetabo Study. J Clin Med 2020; 9:E694. [PMID: 32143453 PMCID: PMC7141305 DOI: 10.3390/jcm9030694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 01/03/2023] Open
Abstract
Many inherited metabolic diseases (IMD) have cardiac manifestations. The aim of this study was to estimate the prevalence of IMD in adult patients with hypertrophic cardiomyopathy (HCM) and cardiac rhythm abnormalities that require cardiac implantable electronic devices (CIEDs). The study included a review of the medical files of patients aged 18 to 65 years who were followed in our cardiology department during the period 2010-2017. Metabolic explorations for Fabry disease (FD), mitochondrial cytopathies, and fatty-acid metabolism disorders were carried out in patients with unexplained etiology. The prevalence of IMD in patients with HCM was 5.6% (confidence interval (CI): 2.6-11.6). Six cases of IMD were identified: 1 mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome, 1 Hurler syndrome, 2 Friedreich's ataxia, 1 FD, and 1 short-chain acyl-CoA dehydrogenase deficiency. Three cases of IMD were identified in patients requiring CIEDs: 1 patient with Leber hereditary optic neuropathy, 1 FD, and 1 short chain acyl-CoA dehydrogenase (SCAD) deficiency. IMD prevalence in patients with CIEDs was 3.1% (CI: 1.1-8.8). IMD evaluation should be performed in unexplained HCM and cardiac rhythm abnormalities adult patients, since the prevalence of IMD is relatively important and they could benefit from specific treatment and family diagnosis.
Collapse
Affiliation(s)
- Marina Brailova
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France; (M.B.); (J.D.)
| | - Guillaume Clerfond
- Cardiology Department, CHU Clermont-Ferrand, Faculty of Medicine, Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, 63000 Clermont-Ferrand, France; (G.C.); (R.T.); (G.M.); (R.E.)
- INI-CRCT F-CRIN, 54500 Nancy, France
| | - Romain Trésorier
- Cardiology Department, CHU Clermont-Ferrand, Faculty of Medicine, Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, 63000 Clermont-Ferrand, France; (G.C.); (R.T.); (G.M.); (R.E.)
| | - Régine Minet-Quinard
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Faculty of Medicine, Université Clermont-Auvergne, CNRS 6293, INSERM 1103, GReD, 63000 Clermont-Ferrand, France; (R.M.-Q.); (V.S.)
| | - Julie Durif
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France; (M.B.); (J.D.)
| | - Grégoire Massoullié
- Cardiology Department, CHU Clermont-Ferrand, Faculty of Medicine, Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, 63000 Clermont-Ferrand, France; (G.C.); (R.T.); (G.M.); (R.E.)
| | - Bruno Pereira
- Biostatistics Unit (DRCI), CHU de Clermont-Ferrand, 63000 Clermont-Ferrand, France;
| | - Vincent Sapin
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Faculty of Medicine, Université Clermont-Auvergne, CNRS 6293, INSERM 1103, GReD, 63000 Clermont-Ferrand, France; (R.M.-Q.); (V.S.)
| | - Romain Eschalier
- Cardiology Department, CHU Clermont-Ferrand, Faculty of Medicine, Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, 63000 Clermont-Ferrand, France; (G.C.); (R.T.); (G.M.); (R.E.)
- INI-CRCT F-CRIN, 54500 Nancy, France
| | - Damien Bouvier
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Faculty of Medicine, Université Clermont-Auvergne, CNRS 6293, INSERM 1103, GReD, 63000 Clermont-Ferrand, France; (R.M.-Q.); (V.S.)
| |
Collapse
|
26
|
Gardner L, Miller DM, Daly C, Gupta PK, House C, Roiz de Sa D, Shaw MA, Hopkins PM. Investigating the genetic susceptibility to exertional heat illness. J Med Genet 2020; 57:531-541. [DOI: 10.1136/jmedgenet-2019-106461] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/25/2019] [Accepted: 12/21/2019] [Indexed: 12/16/2022]
Abstract
BackgroundWe aimed to identify rare (minor allele frequency ≤1%), potentially pathogenic non-synonymous variants in a well-characterised cohort with a clinical history of exertional heat illness (EHI) or exertional rhabdomyolysis (ER). The genetic link between malignant hyperthermia (MH) and EHI was investigated due to their phenotypic overlap.MethodsThe coding regions of 38 genes relating to skeletal muscle calcium homeostasis or exercise intolerance were sequenced in 64 patients (mostly military personnel) with a history of EHI, or ER and who were phenotyped using skeletal muscle in vitro contracture tests. We assessed the pathogenicity of variants using prevalence data, in silico analysis, phenotype and segregation evidence and by review of the literature.ResultsWe found 51 non-polymorphic, potentially pathogenic variants in 20 genes in 38 patients. Our data indicate that RYR1 p.T3711M (previously shown to be likely pathogenic for MH susceptibility) and RYR1 p.I3253T are likely pathogenic for EHI. PYGM p.A193S was found in 3 patients with EHI, which is significantly greater than the control prevalence (p=0.000025). We report the second case of EHI in which a missense variant at CACNA1S p.R498 has been found. Combinations of rare variants in the same or different genes are implicated in EHI.ConclusionWe confirm a role of RYR1 in the heritability of EHI as well as ER but highlight the likely genetic heterogeneity of these complex conditions. We propose defects, or combinations of defects, in skeletal muscle calcium homeostasis, oxidative metabolism and membrane excitability are associated with EHI.
Collapse
|
27
|
Impairment of mitochondrial bioenergetics and permeability transition induction caused by major long-chain fatty acids accumulating in VLCAD deficiency in skeletal muscle as potential pathomechanisms of myopathy. Toxicol In Vitro 2020; 62:104665. [DOI: 10.1016/j.tiv.2019.104665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/07/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022]
|
28
|
Cecatto C, Amaral AU, Wajner A, Wajner SM, Castilho RF, Wajner M. Disturbance of mitochondrial functions associated with permeability transition pore opening induced by cis-5-tetradecenoic and myristic acids in liver of adolescent rats. Mitochondrion 2019; 50:1-13. [PMID: 31655165 DOI: 10.1016/j.mito.2019.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 12/30/2022]
Abstract
Patients affected by very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency commonly present liver dysfunction whose pathogenesis is poorly known. We demonstrate here that major metabolites accumulating in this disorder, namely cis-5-tetradecenoic acid (Cis-5) and myristic acid (Myr), markedly impair mitochondrial respiration, decreasing ATP production in liver mitochondrial preparations from adolescent rats. Other parameters of mitochondrial homeostasis such as membrane potential (ΔΨm) and Ca2+retention capacity were strongly compromised by these fatty acids, involving induction of mitochondrial permeability transition. The present data indicate that disruption of mitochondrial bioenergetics and Ca2+homeostasis may contribute to the liver dysfunction of VLCAD deficient patients.
Collapse
Affiliation(s)
- Cristiane Cecatto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | - Alessandro Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simone Magagnin Wajner
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roger Frigério Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
29
|
Yamada K, Matsubara K, Matsubara Y, Watanabe A, Kawakami S, Ochi F, Kuwabara K, Mushimoto Y, Kobayashi H, Hasegawa Y, Fukuda S, Yamaguchi S, Taketani T. Clinical course in a patient with myopathic VLCAD deficiency during pregnancy with an affected baby. JIMD Rep 2019; 49:17-20. [PMID: 31497477 PMCID: PMC6718132 DOI: 10.1002/jmd2.12061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 11/08/2022] Open
Abstract
Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is an autosomal recessive mitochondrial fatty acid oxidation disorder that manifests in three clinical forms: (a) severe, (b) milder, and (c) myopathic. Patients with the myopathic form present intermittent muscular symptoms such as myalgia, muscle weakness, and rhabdomyolysis during adolescence or adulthood. Here, the clinical symptoms and serum creatine kinase (CK) levels of a pregnant 31-year-old woman with the myopathic form of VLCAD deficiency were reduced during pregnancy. Clinical symptoms rarely appeared during pregnancy, although she had sometimes suffered from muscular symptoms before pregnancy. When ritodrine was administered for threatened premature labor at 35 weeks of gestation, her CK level was elevated to over 3900 IU/L. She delivered a full-term baby via cesarean section but suffered from muscle weakness with elevated CK levels soon after delivery. It has been reported that an unaffected placenta and fetus can improve maternal β-oxidation during pregnancy. However, in our case, the baby was also affected by VLCAD deficiency. These suggest that the clinical symptoms of a woman with VLCAD deficiency might be reduced during pregnancy even if the fetus is affected with VLCAD deficiency.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of PediatricsShimane University Faculty of MedicineIzumoShimaneJapan
| | - Keiichi Matsubara
- Department of Obstetrics and GynecologyEhime University School of MedicineToonEhimeJapan
| | - Yuko Matsubara
- Department of Obstetrics and GynecologyEhime University School of MedicineToonEhimeJapan
| | - Asami Watanabe
- Department of PediatricsYawatahama City General HospitalYawatahamaEhimeJapan
- Department of PediatricsEhime University Graduate School of MedicineToonEhimeJapan
| | - Sanae Kawakami
- Department of PediatricsYawatahama City General HospitalYawatahamaEhimeJapan
| | - Fumihiro Ochi
- Department of PediatricsYawatahama City General HospitalYawatahamaEhimeJapan
- Department of PediatricsEhime University Graduate School of MedicineToonEhimeJapan
| | - Kozue Kuwabara
- Department of PediatricsEhime University Graduate School of MedicineToonEhimeJapan
| | - Yuichi Mushimoto
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityHigashi‐kuFukuokaJapan
| | - Hironori Kobayashi
- Department of PediatricsShimane University Faculty of MedicineIzumoShimaneJapan
| | - Yuki Hasegawa
- Department of PediatricsShimane University Faculty of MedicineIzumoShimaneJapan
| | - Seiji Fukuda
- Department of PediatricsShimane University Faculty of MedicineIzumoShimaneJapan
| | - Seiji Yamaguchi
- Department of PediatricsShimane University Faculty of MedicineIzumoShimaneJapan
| | - Takeshi Taketani
- Department of PediatricsShimane University Faculty of MedicineIzumoShimaneJapan
| |
Collapse
|
30
|
Herrera-Olivares AM, Fernández-Luque JA, Paradas C, Lucia A, Santalla A. Combined HIIT and Resistance Training in Very Long-Chain Acyl-CoA Dehydrogenase Deficiency: A Case Report. Front Physiol 2019; 10:650. [PMID: 31191348 PMCID: PMC6547021 DOI: 10.3389/fphys.2019.00650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is a rare disorder of mitochondrial fatty acid β-oxidation characterized by a spectrum of clinical manifestations. Patients with the adult-onset form can present with muscle pain, rhabdomyolysis and myoglobinuria after physiological stress, such as fasting and exercise. We report on a 23-year-old female patient with a history of recurrent rhabdomyolysis. The patient completed a 6-month supervised combined (high-intensity interval training [HIIT] + resistance training) program, with the addition of a medium chain triglyceride + carbohydrate supplement provided 60 min before each session. The HIIT consisted of 6 sets of 70–80 s performed at maximum intensity with a minimum cadence of 100 rpm. Resistance training consisted of a circuit of basic exercises with dumbbells and elastic bands, with sets of 4–7 repetitions. The patient was evaluated at months 0, 3 and 6 using an incremental discontinuous step protocol, with steps of 1 min of exercise/1 min of passive recovery, at a high pedal cadence. The test started at 10 W, with a load increase of 10 W/step. Blood creatine kinase (CK) concentration was measured before each evaluation. There was a training-induced increment of 90.2% in peak oxygen uptake (VO2peak), 71.4% in peak power output and 24.7% in peak heart rate. The patient reported no muscle pain, contractures, rhabdomyolysis (basal CK concentration was always <200 U/L) or hospital admissions during the training period. After completion of 6-month program, the patient remained active, doing similar but non-supervised training for 1.5 years (to date). During this period, the patient has not reported myalgias, contractures, rhabdomyolysis or hospital admissions. Our preliminary data suggest that it is possible to carry out a combined (HIIT + strength) training program in patients with VLCADD, safely (without muscle contractures or rhabdomyolysis) and obtaining high values of VO2peak and cycling power output.
Collapse
Affiliation(s)
| | | | - Carmen Paradas
- Neuromuscular Disorders Unit, Department of Neurology, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, CSIC-Universidad de Sevilla, Seville, Spain.,Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Alfredo Santalla
- Faculty of Sport Sciences, Universidad Pablo de Olavide, Seville, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
31
|
Bleeker JC, Kok IL, Ferdinandusse S, de Vries M, Derks TGJ, Mulder MF, Williams M, Gozalbo ER, Bosch AM, van den Hurk DT, de Sain-van der Velden MGM, Waterham HR, Wijburg FA, Visser G. Proposal for an individualized dietary strategy in patients with very long-chain acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 2019; 42:159-168. [PMID: 30740737 DOI: 10.1002/jimd.12037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Patients with very long chain acyl-CoA dehydrogenase deficiency (VLCADD), a long chain fatty acid oxidation disorder, are traditionally treated with a long chain triglyceride (LCT) restricted and medium chain triglyceride (MCT) supplemented diet. Introduction of VLCADD in newborn screening (NBS) programs has led to the identification of asymptomatic newborns with VLCADD, who may have a more attenuated phenotype and may not need dietary adjustments. OBJECTIVE To define dietary strategies for individuals with VLCADD based on the predicted phenotype. METHOD We evaluated long-term dietary histories of a cohort of individuals diagnosed with VLCADD identified before the introduction of VLCADD in NBS and their beta-oxidation (LC-FAO) flux score (rate of oleate oxidation) in cultured skin fibroblasts in relation to the clinical outcome. Based on these results a dietary strategy is proposed. RESULTS Sixteen individuals with VLCADD were included. One had an LC-FAO flux score >90%, was not on a restricted diet and is asymptomatic to date. Four patients had an LC-FAO flux score <10%, and significant VLCADD related symptoms despite the use of strict diets including LCT restriction, MCT supplementation and nocturnal gastric drip feeding. Patients with an LC-FAO flux score between 10 and 90% (n = 11) showed a more heterogeneous phenotype. CONCLUSIONS This study shows that a strict diet cannot prevent poor clinical outcome in severely affected patients and that the LC-FAO flux is a good predictor of clinical outcome in individuals with VLCADD identified before its introduction in NBS. Hereby, we propose an individualized dietary strategy based on the LC-FAO flux score.
Collapse
Affiliation(s)
- Jeannette C Bleeker
- Department of Metabolic Diseases, Dutch Fatty Acid Oxidation Expertise Center, Wilhelmina Children's Hospital (UMCU), University Medical Center Utrecht, Internal Mail KE 04.306.0, PO Box 85090 3508 AB, Utrecht, Netherlands
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, Netherlands
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Irene L Kok
- Department of Metabolic Diseases, Dutch Fatty Acid Oxidation Expertise Center, Wilhelmina Children's Hospital (UMCU), University Medical Center Utrecht, Internal Mail KE 04.306.0, PO Box 85090 3508 AB, Utrecht, Netherlands
- Department of Internal Medicine and Dermatology, Dietetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, Netherlands
| | - Maaike de Vries
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Terry G J Derks
- Department of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, Netherlands
| | - Margot F Mulder
- Department of Pediatrics, VU University Medical Center Amsterdam, Amsterdam, Netherlands
| | - Monique Williams
- Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, Netherlands
| | - Estela Rubio Gozalbo
- Department of Pediatrics and Laboratory Genetic Metabolic Diseases, Maastricht University Medical Center, Maastricht, Netherlands
| | - Annet M Bosch
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Dorine T van den Hurk
- Department of Internal Medicine and Dermatology, Dietetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Monique G M de Sain-van der Velden
- Department of Medical Genetics, Section Metabolic Diagnostics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, Netherlands
| | - Frits A Wijburg
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gepke Visser
- Department of Metabolic Diseases, Dutch Fatty Acid Oxidation Expertise Center, Wilhelmina Children's Hospital (UMCU), University Medical Center Utrecht, Internal Mail KE 04.306.0, PO Box 85090 3508 AB, Utrecht, Netherlands
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
32
|
Pennisi EM, Garibaldi M, Antonini G. Lipid Myopathies. J Clin Med 2018; 7:E472. [PMID: 30477112 PMCID: PMC6306737 DOI: 10.3390/jcm7120472] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 02/06/2023] Open
Abstract
Disorders of lipid metabolism affect several tissues, including skeletal and cardiac muscle tissues. Lipid myopathies (LM) are rare multi-systemic diseases, which most often are due to genetic defects. Clinically, LM can have acute or chronic clinical presentation. Disease onset can occur in all ages, from early stages of life to late-adult onset, showing with a wide spectrum of clinical symptoms. Muscular involvement can be fluctuant or stable and can manifest as fatigue, exercise intolerance and muscular weakness. Muscular atrophy is rarely present. Acute muscular exacerbations, resulting in rhabdomyolysis crisis are triggered by several factors. Several classifications of lipid myopathies have been proposed, based on clinical involvement, biochemical defect or histopathological findings. Herein, we propose a full revision of all the main clinical entities of lipid metabolism disorders with a muscle involvement, also including some those disorders of fatty acid oxidation (FAO) with muscular symptoms not included among previous lipid myopathies classifications.
Collapse
Affiliation(s)
- Elena Maria Pennisi
- Unit of Neuromuscular Disorders, Neurology, San Filippo Neri Hospital, 00135 Rome, Italy.
| | - Matteo Garibaldi
- Unit of Neuromuscular Diseases, Department of Neurology, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant' Andrea Hospital, 00189 Rome, Italy.
| | - Giovanni Antonini
- Unit of Neuromuscular Diseases, Department of Neurology, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant' Andrea Hospital, 00189 Rome, Italy.
| |
Collapse
|
33
|
Management and diagnosis of mitochondrial fatty acid oxidation disorders: focus on very-long-chain acyl-CoA dehydrogenase deficiency. J Hum Genet 2018; 64:73-85. [PMID: 30401918 DOI: 10.1038/s10038-018-0527-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/15/2018] [Accepted: 10/21/2018] [Indexed: 12/31/2022]
Abstract
Mitochondrial fatty acid oxidation disorders (FAODs) are caused by defects in β-oxidation enzymes, including very long-chain acyl-CoA dehydrogenase (VLCAD), trifunctional protein (TFP), carnitine palmitoyltransferase-2 (CPT2), carnitine-acylcarnitine translocase (CACT) and others. During prolonged fasting, infection, or exercise, patients with FAODs present with hypoglycemia, rhabdomyolysis, cardiomyopathy, liver dysfunction, and occasionally sudden death. This article describes the diagnosis, newborn screening, and treatment of long-chain FAODs with a focus on VLCAD deficiency. VLCAD deficiency is generally classified into three phenotypes based on onset time, but the classification should be comprehensively determined based on genotype, residual enzyme activity, and clinical course, due to a lack of apparent genotype-phenotype correlation. With the expansion of newborn screening for FAODs, several issues have arisen, such as missed detection, overdiagnosis (including detection of benign/asymptomatic type), and poor prognosis of the neonatal-onset form. Meanwhile, dietary management and restriction of exercise have been unnecessary for patients with the benign/asymptomatic type of VLCAD deficiency with a high fatty acid oxidation flux score. Although L-carnitine therapy for VLCAD/TFP deficiency has been controversial, supplementation with L-carnitine may be accepted for CPT2/CACT and multiple acyl-CoA dehydrogenase deficiencies. Recently, a double-blind, randomized controlled trial of triheptanoin (seven-carbon fatty acid triglyceride) versus trioctanoin (regular medium-chain triglyceride) was conducted and demonstrated improvement of cardiac functions on triheptanoin. Additionally, although the clinical efficacy of bezafibrate remains controversial, a recent open-label clinical trial showed efficacy of this drug in improving quality of life. These drugs may be promising for the treatment of FAODs, though further studies are required.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW This review aims to highlight the most relevant clinical and laboratory findings, regarding acute and progressive metabolic myopathies, and to develop an algorithm addressing clinicians to clinical practice. RECENT FINDINGS Although diagnosis of metabolic myopathies remains still challenging, the recent identification of new disorders has increased the number of patients requiring specific investigations. Nowadays, a more detailed characterization of the clinical spectrum of metabolic myopathies improved awareness as well as a deeper knowledge on their natural history or multisystem involvement. Diagnostic procedures, as first-line screening tests are necessary for an earlier and more accurate diagnostic work up, not only in infantile cases, but also in adults with suspected metabolic myopathies. New generation diagnostic techniques such as NGS (Next Generation Sequencing) and whole exome/genome sequencing have emerged as innovative tools to extensively evaluate either known genes variants or new candidate genes as possible causes of metabolic myopathies. SUMMARY Diagnosis of metabolic myopathies is still challenging for clinicians because of rarity and clinical heterogeneity which is often overlapping with other neuromuscular disorders. Detailed algorithms supported by advanced laboratory investigations may be helpful to timely reach a diagnosis, so allowing an earlier therapeutic decision.
Collapse
|
35
|
Cecatto C, Amaral AU, da Silva JC, Wajner A, Schimit MDOV, da Silva LHR, Wajner SM, Zanatta Â, Castilho RF, Wajner M. Metabolite accumulation in VLCAD deficiency markedly disrupts mitochondrial bioenergetics and Ca 2+ homeostasis in the heart. FEBS J 2018; 285:1437-1455. [PMID: 29476646 DOI: 10.1111/febs.14419] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/19/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Abstract
We studied the effects of the major long-chain fatty acids accumulating in very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency, namely cis-5-tetradecenoic acid (Cis-5) and myristic acid (Myr), on important mitochondrial functions in isolated mitochondria from cardiac fibers and cardiomyocytes of juvenile rats. Cis-5 and Myr at pathological concentrations markedly reduced mitochondrial membrane potential (ΔΨm ), matrix NAD(P)H pool, Ca2+ retention capacity, ADP- (state 3) and carbonyl cyanide 3-chlorophenyl hydrazine-stimulated (uncoupled) respiration, and ATP generation. By contrast, these fatty acids increased resting (state 4) respiration (uncoupling effect) with the involvement of the adenine nucleotide translocator because carboxyatractyloside significantly attenuated the increased state 4 respiration provoked by Cis-5 and Myr. Furthermore, the classical inhibitors of mitochondrial permeability transition (MPT) pore cyclosporin A plus ADP, as well as the Ca2+ uptake blocker ruthenium red, fully prevented the Cis-5- and Myr-induced decrease in ΔΨm in Ca2+ -loaded mitochondria, suggesting, respectively, the induction of MPT pore opening and the contribution of Ca2+ toward these effects. The findings of the present study indicate that the major long-chain fatty acids that accumulate in VLCAD deficiency disrupt mitochondrial bioenergetics and Ca2+ homeostasis, acting as uncouplers and metabolic inhibitors of oxidative phosphorylation, as well as inducers of MPT pore opening, in the heart at pathological relevant concentrations. It is therefore presumed that a disturbance of bioenergetics and Ca2+ homeostasis may contribute to the cardiac manifestations observed in VLCAD deficiency.
Collapse
Affiliation(s)
- Cristiane Cecatto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Brazil
| | - Janaína Camacho da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alessandro Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariana de Oliveira Vargas Schimit
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas Henrique Rodrigues da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Simone Magagnin Wajner
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ângela Zanatta
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Roger Frigério Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Brazil
| |
Collapse
|
36
|
Sjogren's syndrome: New paradigms and areas for future research. Clin Immunol 2017; 182:1-3. [PMID: 28673862 DOI: 10.1016/j.clim.2017.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/28/2017] [Indexed: 12/31/2022]
|
37
|
Wang W, Palmfeldt J, Mohsen AW, Gregersen N, Vockley J. Fasting induces prominent proteomic changes in liver in very long chain Acyl-CoA dehydrogenase deficient mice. Biochem Biophys Rep 2016; 8:333-339. [PMID: 28955973 PMCID: PMC5613767 DOI: 10.1016/j.bbrep.2016.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/27/2016] [Accepted: 08/09/2016] [Indexed: 12/26/2022] Open
Abstract
Very long chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD) is a clinically heterogeneous disorder of mitochondrial fatty acid β-oxidation usually identified through newborn screening. Genotype-phenotype correlations have been defined, but considerable clinical heterogeneity still exists. Symptoms are often induced by physiological stress such as fasting or intercurrent illness, setting it as an important example of environmental effects altering clinical course in an individual with a genetic disease. However, neither the cellular changes that predispose to this phenomenon nor the alterations it induces are well characterized. We examined the effects of fasting in a knockout mouse model to explore changes in global mitochondria protein profiles in liver and to investigate the physiologically relevant changes that lead to the clinical presentations. An isobaric tags for relative and absolute quantification (iTRAQ) labeling approach was employed to examine mitochondrial proteome changes in VLCAD deficient compared to wild type mice in the fed and fasted states. We identified numerous proteomic changes associated with the gene defect and fasting within relevant metabolic pathways. Few changes induced by fasting were shared between the VLCAD deficient and wild type mice, with more alterations found in the deficient mice on fasting. Particularly, fasting in the deficient mice could reverse the protective response in oxidative phosphorylation pathway seen in wild type animals. In addition, we found that changes in chaperone proteins including heat shock protein 60 (HSP60) and 10 (HSP10) during fasting differed between the two genotypes, highlighting the importance of these proteins in VLCAD deficiency. Finally, the effects on the liver proteome imposed by changes in fasted VLCAD deficient mice indicates that this environmental factor may be an inducer of both cellular and physiological changes. VLCAD deficient mice show significant changes in the proteome compared to wild type animals. Hypoglycemia induces different proteomic changes in VLCAD deficient mice than is seen in wild type animals. Multiple functional pathways are altered in VLCAD deficient animals. Proteomic changes in VLCAD deficient mice may help understand the physiologic ramifications of this deficiency in humans.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Al-Walid Mohsen
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Jerry Vockley
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA.,Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
38
|
Bauquier J, Stent A, Gibney J, Jerrett I, White J, Tennent-Brown B, Pearce A, Pitt J. Evidence for marsh mallow (Malva parviflora
) toxicosis causing myocardial disease and myopathy in four horses. Equine Vet J 2016; 49:307-313. [DOI: 10.1111/evj.12604] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022]
Affiliation(s)
- J. Bauquier
- Faculty of Veterinary and Agricultural Sciences; University of Melbourne; Werribee Victoria Australia
| | - A. Stent
- Faculty of Veterinary and Agricultural Sciences; University of Melbourne; Werribee Victoria Australia
| | - J. Gibney
- Victorian Department of Environment and Primary Industries; Bundoora Victoria Australia
| | - I. Jerrett
- Victorian Department of Environment and Primary Industries; Bundoora Victoria Australia
| | - J. White
- Faculty of Veterinary and Agricultural Sciences; University of Melbourne; Parkville Victoria Australia
| | - B. Tennent-Brown
- Faculty of Veterinary and Agricultural Sciences; University of Melbourne; Werribee Victoria Australia
| | - A. Pearce
- Golden Plains Equine; Bannockburn Victoria Australia
| | - J. Pitt
- Victorian Clinical Genetics Services; Royal Children's Hospital; Melbourne Victoria Australia
| |
Collapse
|
39
|
Yamamoto F, Nakamagoe K, Yamada K, Ishii A, Furuta J, Yamaguchi S, Tamaoka A. A case of very-long-chain acyl-coenzyme A dehydrogenase deficiency with novel compound heterozygous mutations. J Neurol Sci 2016; 368:165-7. [PMID: 27538624 DOI: 10.1016/j.jns.2016.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Fumiko Yamamoto
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kiyotaka Nakamagoe
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Kenji Yamada
- Department of Pediatrics, Shimane University Faculty of Medicine, Shimane, Japan
| | - Akiko Ishii
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Junichi Furuta
- Department of Dermatology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University Faculty of Medicine, Shimane, Japan
| | - Akira Tamaoka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
40
|
Abstract
One large group of hereditary myopathies characterized by recurrent myoglobinuria, almost invariably triggered by exercise, comprises metabolic disorders of two main fuels, glycogen and long-chain fatty acids, or mitochondrial diseases of the respiratory chain. Differential diagnosis is required to distinguish the three conditions, although all cause a crisis of muscle energy. Muscle biopsy may be useful when performed well after the episode of rhabdomyolysis. Molecular genetics is increasingly the diagnostic test of choice to discover the underlying genetic basis.
Collapse
|
41
|
Altered Energetics of Exercise Explain Risk of Rhabdomyolysis in Very Long-Chain Acyl-CoA Dehydrogenase Deficiency. PLoS One 2016; 11:e0147818. [PMID: 26881790 PMCID: PMC4755596 DOI: 10.1371/journal.pone.0147818] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/09/2016] [Indexed: 12/31/2022] Open
Abstract
Rhabdomyolysis is common in very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and other metabolic myopathies, but its pathogenic basis is poorly understood. Here, we show that prolonged bicycling exercise against a standardized moderate workload in VLCADD patients is associated with threefold bigger changes in phosphocreatine (PCr) and inorganic phosphate (Pi) concentrations in quadriceps muscle and twofold lower changes in plasma acetyl-carnitine levels than in healthy subjects. This result is consistent with the hypothesis that muscle ATP homeostasis during exercise is compromised in VLCADD. However, the measured rates of PCr and Pi recovery post-exercise showed that the mitochondrial capacity for ATP synthesis in VLCADD muscle was normal. Mathematical modeling of oxidative ATP metabolism in muscle composed of three different fiber types indicated that the observed altered energy balance during submaximal exercise in VLCADD patients may be explained by a slow-to-fast shift in quadriceps fiber-type composition corresponding to 30% of the slow-twitch fiber-type pool in healthy quadriceps muscle. This study demonstrates for the first time that quadriceps energy balance during exercise in VLCADD patients is altered but not because of failing mitochondrial function. Our findings provide new clues to understanding the risk of rhabdomyolysis following exercise in human VLCADD.
Collapse
|
42
|
Houten SM, Violante S, Ventura FV, Wanders RJA. The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders. Annu Rev Physiol 2015; 78:23-44. [PMID: 26474213 DOI: 10.1146/annurev-physiol-021115-105045] [Citation(s) in RCA: 573] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondrial fatty acid β-oxidation (FAO) is the major pathway for the degradation of fatty acids and is essential for maintaining energy homeostasis in the human body. Fatty acids are a crucial energy source in the postabsorptive and fasted states when glucose supply is limiting. But even when glucose is abundantly available, FAO is a main energy source for the heart, skeletal muscle, and kidney. A series of enzymes, transporters, and other facilitating proteins are involved in FAO. Recessively inherited defects are known for most of the genes encoding these proteins. The clinical presentation of these disorders may include hypoketotic hypoglycemia, (cardio)myopathy, arrhythmia, and rhabdomyolysis and illustrates the importance of FAO during fasting and in hepatic and (cardio)muscular function. In this review, we present the current state of knowledge on the biochemistry and physiological functions of FAO and discuss the pathophysiological processes associated with FAO disorders.
Collapse
Affiliation(s)
- Sander M Houten
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; ,
| | - Sara Violante
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; ,
| | - Fatima V Ventura
- Metabolism and Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences, iMed.ULisboa, 1649-003 Lisboa, Portugal; .,Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, University of Amsterdam, 1100 DE Amsterdam, The Netherlands; .,Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
43
|
Diekman E, de Sain-van der Velden M, Waterham H, Kluijtmans L, Schielen P, van Veen EB, Ferdinandusse S, Wijburg F, Visser G. The Newborn Screening Paradox: Sensitivity vs. Overdiagnosis in VLCAD Deficiency. JIMD Rep 2015; 27:101-6. [PMID: 26453363 DOI: 10.1007/8904_2015_476] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To improve the efficacy of newborn screening (NBS) for very long chain acyl-CoA dehydrogenase deficiency (VLCADD). PATIENTS AND METHODS Data on all dried blood spots collected by the Dutch NBS from October 2007 to 2010 (742.728) were included. Based solely on the C14:1 levels (cutoff ≥0.8 μmol/L), six newborns with VLCADD had been identified through NBS during this period. The ratio of C14:1 over C2 was calculated. DNA of all blood spots with a C14:1/C2 ratio of ≥0.020 was isolated and sequenced. Children homozygous or compound heterozygous for mutations in the ACADVL gene were traced back and invited for detailed clinical, biochemical, and genetic evaluation. RESULTS Retrospective analysis based on the C14:1/C2 ratio with a cutoff of ≥0.020 identified an additional five children with known ACADVL mutations and low enzymatic activity. All were still asymptomatic at the time of diagnosis (age 2-5 years). Increasing the cutoff to ≥0.023 resulted in a sensitivity of 93% and a positive predictive value of 37%. The sensitivity of the previously used screening approach (C14:1 ≥0.8) was 50%. CONCLUSION This study shows that the ratio C14:1/C2 is a more sensitive marker than C14:1 for identifying VLCADD patients in NBS. However, as these patients were all asymptomatic at the time of diagnosis, this suggests that a more sensitive screening approach may also identify individuals who may never develop clinical disease. Long-term follow-up studies are needed to establish the risk of these VLCADD-deficient individuals for developing clinical signs and symptoms.
Collapse
Affiliation(s)
- Eugene Diekman
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Department of Paediatric Gastroenterology and Metabolic Diseases, Wilhelmina Children's Hospital UMC Utrecht, Utrecht, The Netherlands
| | | | - Hans Waterham
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Leo Kluijtmans
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Schielen
- National Institute for Public Health and the Environment (RIVM), Reference Laboratory for Pre- and Neonatal Screening, Bilthoven, The Netherlands
| | - Evert Ben van Veen
- National Institute for Public Health and the Environment (RIVM), Reference Laboratory for Pre- and Neonatal Screening, Bilthoven, The Netherlands
| | - Sacha Ferdinandusse
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Frits Wijburg
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Gepke Visser
- Department of Paediatric Gastroenterology and Metabolic Diseases, Wilhelmina Children's Hospital UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
44
|
Lund M, Olsen RKJ, Gregersen N. A short introduction to acyl-CoA dehydrogenases; deficiencies and novel treatment strategies. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1092869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Scalco RS, Gardiner AR, Pitceathly RD, Zanoteli E, Becker J, Holton JL, Houlden H, Jungbluth H, Quinlivan R. Rhabdomyolysis: a genetic perspective. Orphanet J Rare Dis 2015; 10:51. [PMID: 25929793 PMCID: PMC4522153 DOI: 10.1186/s13023-015-0264-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/09/2015] [Indexed: 01/19/2023] Open
Abstract
Rhabdomyolysis (RM) is a clinical emergency characterized by fulminant skeletal muscle damage and release of intracellular muscle components into the blood stream leading to myoglobinuria and, in severe cases, acute renal failure. Apart from trauma, a wide range of causes have been reported including drug abuse and infections. Underlying genetic disorders are also a cause of RM and can often pose a diagnostic challenge, considering their marked heterogeneity and comparative rarity. In this paper we review the range of rare genetic defects known to be associated with RM. Each gene has been reviewed for the following: clinical phenotype, typical triggers for RM and recommended diagnostic approach. The purpose of this review is to highlight the most important features associated with specific genetic defects in order to aid the diagnosis of patients presenting with hereditary causes of recurrent RM.
Collapse
Affiliation(s)
- Renata Siciliani Scalco
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK. .,Department of Neurology, HSL, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil. .,CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF, Brazil.
| | - Alice R Gardiner
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.
| | - Robert Ds Pitceathly
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK. .,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London (KCL), London, UK.
| | - Edmar Zanoteli
- Department of Neurology, School of Medicine, Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil.
| | - Jefferson Becker
- Department of Neurology, HSL, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Janice L Holton
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.
| | - Heinz Jungbluth
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London (KCL), London, UK. .,Department of Paediatric Neurology, Evelina Children's Hospital, Guy's & St Thomas NHS Foundation Trust, London, UK. .,Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section, King's College London, London, UK.
| | - Ros Quinlivan
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK. .,Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
46
|
Abstract
Rhabdomyolysis is characterized by severe acute muscle injury resulting in muscle pain, weakness, and/or swelling with release of myofiber contents into the bloodstream. Symptoms develop over hours to days after an inciting factor and may be associated with dark pigmentation of the urine. Serum creatine kinase and urine myoglobin levels are markedly elevated. Clinical examination, history, laboratory studies, muscle biopsy, and genetic testing are useful tools for diagnosis of rhabdomyolysis, and they can help differentiate acquired from inherited causes of rhabdomyolysis. Acquired causes include substance abuse, medication or toxic exposures, electrolyte abnormalities, endocrine disturbances, and autoimmune myopathies. Inherited predisposition to rhabdomyolysis can occur with disorders of glycogen metabolism, fatty acid β-oxidation, and mitochondrial oxidative phosphorylation. Less common inherited causes of rhabdomyolysis include structural myopathies, channelopathies, and sickle-cell disease. This review focuses on the differentiation of acquired and inherited causes of rhabdomyolysis and proposes a practical diagnostic algorithm. Muscle Nerve 51: 793-810, 2015.
Collapse
Affiliation(s)
- Jessica R Nance
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew L Mammen
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Building 50, Room 1146, Bethesda, Maryland, 20892, USA
| |
Collapse
|
47
|
Abstract
Metabolic and mitochondrial myopathies encompass a heterogeneous group of disorders that result in impaired energy production in skeletal muscle. Symptoms of premature muscle fatigue, sometimes leading to myalgia, rhabdomyolysis, and myoglobinuria, typically occur with exercise that would normally depend on the defective metabolic pathway. But in another group of these disorders, the dominant muscle symptom is weakness. This article reviews the clinical features, diagnosis, and management of these diseases with emphasis on the recent literature.
Collapse
Affiliation(s)
- Lydia J Sharp
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Neuromuscular Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, 7232 Greenville Avenue, Dallas, TX 75231, USA
| | - Ronald G Haller
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Neuromuscular Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, 7232 Greenville Avenue, Dallas, TX 75231, USA; North Texas VA Medical Center, 4500 South Lancaster Road, Dallas, TX 75216, USA.
| |
Collapse
|
48
|
Yamamoto H, Tachibana D, Tajima G, Shigematsu Y, Hamasaki T, Tanaka A, Koyama M. Successful management of pregnancy with very-long-chain acyl-coenzyme A dehydrogenase deficiency. J Obstet Gynaecol Res 2015; 41:1126-8. [DOI: 10.1111/jog.12672] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/01/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Hiroko Yamamoto
- Department of Obstetrics and Gynecology; Osaka City University Graduate School of Medicine; Osaka Japan
| | - Daisuke Tachibana
- Department of Obstetrics and Gynecology; Osaka City University Graduate School of Medicine; Osaka Japan
| | - Go Tajima
- Department of Pediatrics; Hiroshima University Graduate School of Biomedical and Health Sciences; Hiroshima Japan
| | | | - Takashi Hamasaki
- Department of Pediatrics; Osaka City University Graduate School of Medicine; Osaka Japan
| | - Akemi Tanaka
- Department of Pediatrics; Osaka City University Graduate School of Medicine; Osaka Japan
| | - Masayasu Koyama
- Department of Obstetrics and Gynecology; Osaka City University Graduate School of Medicine; Osaka Japan
| |
Collapse
|
49
|
Hisahara S, Matsushita T, Furuyama H, Tajima G, Shigematsu Y, Imai T, Shimohama S. A Heterozygous Missense Mutation in Adolescent-Onset Very Long-Chain Acyl-CoA Dehydrogenase Deficiency with Exercise-Induced Rhabdomyolysis. TOHOKU J EXP MED 2015; 235:305-10. [DOI: 10.1620/tjem.235.305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Shin Hisahara
- Department of Neurology, School of Medicine, Sapporo Medical University
| | | | | | - Go Tajima
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences & Health Sciences
| | - Yosuke Shigematsu
- Department of Health Science, Faculty of Medical Sciences, University of Fukui
| | - Tomihiro Imai
- Department of Occupational Therapy, School of Health Sciences, Sapporo Medical University
- Department of Neurology, School of Medicine, Sapporo Medical University
| | - Shun Shimohama
- Department of Neurology, School of Medicine, Sapporo Medical University
| |
Collapse
|
50
|
Topçu Y, Bayram E, Karaoğlu P, Yiş U, Kurul SH. Importance of acylcarnitine profile analysis for disorders of lipid metabolism in adolescent patients with recurrent rhabdomyolysis: Report of two cases. Ann Indian Acad Neurol 2014; 17:437-40. [PMID: 25506168 PMCID: PMC4251020 DOI: 10.4103/0972-2327.144031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 02/12/2014] [Accepted: 03/16/2014] [Indexed: 11/06/2022] Open
Abstract
Metabolic myopathies due to disorders of lipid metabolism are a heterogeneous group of diseases. Newborns may present with hypotonia and convulsions, while progressive proximal muscle weakness or recurrent episodes of muscle weakness accompanied by rhabdomyolysis/myoglobinuria may be seen in older ages. There is little knowledge on detection of disorders of lipid metabolism by acylcarnitine profile (ACP) analysis by tandem mass spectrometry outside the neonatal period particularly in cases with recurrent rhabdomyolysis first presenting in adolescence and adulthood. Two adolescent female cases presented with episodes of rhabdomyolysis and muscle weakness. A 13-year-old patient had five episodes of rhabdomyolysis triggered by infections. Tandem mass spectrometry was normal. A 16-year-old female patient was hospitalized eight times due to recurrent rhabdomyolysis. Increased levels of C14:2, C14:1, and C14 were determined in tandem mass spectrometry. Final diagnoses were carnitine palmitoyltransferase II (CPT II) deficiency and very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency. Increased serum levels of long-chain acylcarnitine can guide to the diagnosis of lipid metabolism disorders. Serum ACP should be performed before enzyme assay and genetic studies.
Collapse
Affiliation(s)
- Yasemin Topçu
- Department of Pediatrics, Division of Pediatric Neurology, Dokuz Eylul University Medical Faculty, Izmir, Turkey
| | - Erhan Bayram
- Department of Pediatrics, Division of Pediatric Neurology, Dokuz Eylul University Medical Faculty, Izmir, Turkey
| | - Pakize Karaoğlu
- Department of Pediatrics, Division of Pediatric Neurology, Dokuz Eylul University Medical Faculty, Izmir, Turkey
| | - Uluç Yiş
- Department of Pediatrics, Division of Pediatric Neurology, Dokuz Eylul University Medical Faculty, Izmir, Turkey
| | - Semra Hız Kurul
- Department of Pediatrics, Division of Pediatric Neurology, Dokuz Eylul University Medical Faculty, Izmir, Turkey
| |
Collapse
|