1
|
Huang C, Chu LM, Liang B, Wu HL, Li BS, Ren S, Hou ML, Nie HC, Kong LY, Fan LQ, Du J, Zhu WB. Comparative genetic analysis of blood and semen samples in sperm donors from Hunan, China. Ann Med 2025; 57:2447421. [PMID: 39757988 PMCID: PMC11721621 DOI: 10.1080/07853890.2024.2447421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
OBJECTIVES At present, most genetic tests or carrier screening are performed with blood samples, and the known carrier rate of disease-causing variants is also derived from blood. For semen donors, what is really passed on to offspring is the pathogenic variant in their sperm. This study aimed to determine whether pathogenic variants identified in the sperm of young semen donors are also present in their blood, and whether matching results for blood are consistent with results for sperm. METHODS We included 40 paired sperm and blood samples from 40 qualified semen donors at the Hunan Province Human Sperm Bank of China. All samples underwent exome sequencing (ES) analysis, and the pathogenicity was assessed according to the American College of Medical Genetics (ACMG) guidelines. Scoring for sperm donation matching, which was based on gene scoring and variant scoring, was also used to assess the consistency of sperm and blood genetic test results. RESULTS A total of 108 pathogenic (P)/likely pathogenic (LP) variants in 82 genes were identified. The highest carrier had 7 variants, and there was also one donor did not carry any P/LP variant. On average, each donor carried 2.7 P/LP variants. Among all the P/LP variants, missense mutation was the dominant type and most of them were located in exonic regions. Chromosome 1 harboured the largest number of variants and no pathogenic copy number variants (CNV) was identified in semen donors. The P/LP variant of all the 40 semen donors was consistent by comparing sperm and blood. Except for one case that was slightly different, the rest simulated matching results for blood were all consistent with results for sperm. CONCLUSIONS It is reasonable to choose either blood or sperm for genetic screening in semen donors.
Collapse
Affiliation(s)
- Chuan Huang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Li-Ming Chu
- Basecare Medical Device Co., Ltd, Suzhou, China
| | - Bo Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Lan Wu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
| | - Bai-Shun Li
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
| | - Shuai Ren
- Basecare Medical Device Co., Ltd, Suzhou, China
| | | | - Hong-Chuan Nie
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
| | | | - Li-Qing Fan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Juan Du
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wen-Bing Zhu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
2
|
Lorenzoni PJ, Filla L, Dal-Prá Ducci R, Fustes OJH, Raquel do Vale Pascoal Rodrigues P, Arndt RC, Suemi Kamoi Kay C, Werneck LC, Scola RH. A TPM2 mutation causes congenital myopathy with fibre-type disproportion. Neurol Sci 2025; 46:1019-1022. [PMID: 39477909 DOI: 10.1007/s10072-024-07810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/08/2024] [Indexed: 01/28/2025]
Abstract
We report a 9-year-old girl with delayed motor milestones and respiratory difficulty since birth. She presented as a floppy infant, with generalised muscle wasting, dysphagia and facial weakness. The muscle biopsy of the biceps brachii revealed congenital fibre-type disproportion (CFTD) and Sanger sequencing detected a pathogenic variant in the beta-tropomyosin (TPM2) gene (c.415_417delGAG; p.Glu139del). There has been only one previous report of CFTD associated with p.Glu139del in the TPM2 gene.
Collapse
Affiliation(s)
- Paulo José Lorenzoni
- Service of Neuromuscular Disorders, Division of Neurology, Department of Internal Medicine, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, 80060-900, Brazil.
| | - Luciane Filla
- Service of Neuromuscular Disorders, Division of Neurology, Department of Internal Medicine, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, 80060-900, Brazil
| | - Renata Dal-Prá Ducci
- Service of Neuromuscular Disorders, Division of Neurology, Department of Internal Medicine, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, 80060-900, Brazil
| | - Otto Jesus Hernandez Fustes
- Service of Neuromuscular Disorders, Division of Neurology, Department of Internal Medicine, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, 80060-900, Brazil
| | - Paula Raquel do Vale Pascoal Rodrigues
- Service of Neuromuscular Disorders, Division of Neurology, Department of Internal Medicine, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, 80060-900, Brazil
| | - Raquel Cristina Arndt
- Service of Neuromuscular Disorders, Division of Neurology, Department of Internal Medicine, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, 80060-900, Brazil
| | - Cláudia Suemi Kamoi Kay
- Service of Neuromuscular Disorders, Division of Neurology, Department of Internal Medicine, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, 80060-900, Brazil
| | - Lineu Cesar Werneck
- Service of Neuromuscular Disorders, Division of Neurology, Department of Internal Medicine, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, 80060-900, Brazil
| | - Rosana Herminia Scola
- Service of Neuromuscular Disorders, Division of Neurology, Department of Internal Medicine, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, 80060-900, Brazil
| |
Collapse
|
3
|
Johnson AN. Myotube Guidance: Shaping up the Musculoskeletal System. J Dev Biol 2024; 12:25. [PMID: 39311120 PMCID: PMC11417883 DOI: 10.3390/jdb12030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/20/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Myofibers are highly specialized contractile cells of skeletal muscles, and dysregulation of myofiber morphogenesis is emerging as a contributing cause of myopathies and structural birth defects. Myotubes are the myofiber precursors and undergo a dramatic morphological transition into long bipolar myofibers that are attached to tendons on two ends. Similar to axon growth cones, myotube leading edges navigate toward target cells and form cell-cell connections. The process of myotube guidance connects myotubes with the correct tendons, orients myofiber morphology with the overall body plan, and generates a functional musculoskeletal system. Navigational signaling, addition of mass and volume, and identification of target cells are common events in myotube guidance and axon guidance, but surprisingly, the mechanisms regulating these events are not completely overlapping in myotubes and axons. This review summarizes the strategies that have evolved to direct myotube leading edges to predetermined tendon cells and highlights key differences between myotube guidance and axon guidance. The association of myotube guidance pathways with developmental disorders is also discussed.
Collapse
Affiliation(s)
- Aaron N Johnson
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Küçükdogru R, Franz P, Worch R, Robaszkiewicz K, Siatkowska M, Tsiavaliaris G, Moraczewska J. Mechanochemical consequences of myopathy-linked mutations in Tpm2.2 on striated muscle contractility. FASEB J 2024; 38:e23400. [PMID: 38156416 DOI: 10.1096/fj.202301604r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Tropomyosin (Tpm) is an actin-binding protein central to muscle contraction regulation. The Tpm sequence consists of periodic repeats corresponding to seven actin-binding sites, further divided in two functionally distinct halves. To clarify the importance of the first and second halves of the actin-binding periods in regulating the interaction of myosin with actin, we introduced hypercontractile mutations D20H, E181K located in the N-terminal halves of periods 1 and 5 and hypocontractile mutations E41K, N202K located in the C-terminal halves of periods 1 and 5 of the skeletal muscle Tpm isoform Tpm2.2. Wild-type and mutant Tpms displayed similar actin-binding properties, however, as revealed by FRET experiments, the hypercontractile mutations affected the binding geometry and orientation of Tpm2.2 on actin, causing a stimulation of myosin motor performance. Contrary, the hypocontractile mutations led to an inhibition of both, actin activation of the myosin ATPase and motor activity, that was more pronounced than with wild-type Tpm2.2. Single ATP turnover kinetic experiments indicate that the introduced mutations have opposite effects on product release kinetics. While the hypercontractile Tpm2.2 mutants accelerated product release, the hypocontractile mutants decelerated product release from myosin, thus having either an activating or inhibitory influence on myosin motor performance, which agrees with the muscle disease phenotypes caused by these mutations.
Collapse
Affiliation(s)
- Recep Küçükdogru
- Department of Biochemistry and Cell Biology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Peter Franz
- Cellular Biophysics, Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Remigiusz Worch
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Robaszkiewicz
- Department of Biochemistry and Cell Biology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Małgorzata Siatkowska
- Department of Biochemistry and Cell Biology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Georgios Tsiavaliaris
- Cellular Biophysics, Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Joanna Moraczewska
- Department of Biochemistry and Cell Biology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| |
Collapse
|
5
|
Bouchoucha S, Chikhaoui A, Najjar D, Zayoud K, Zouari M, Nessib MN, Kéfi R, Yacoub-Youssef H. Case report: Exome sequencing revealed disease-causing variants in a patient with spondylospinal thoracic dysostosis. Front Pediatr 2023; 11:1132023. [PMID: 37744435 PMCID: PMC10512740 DOI: 10.3389/fped.2023.1132023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Background Spondylocostal dysostosis is a rare genetic disorder caused by mutations in DLL3, MESP2, LFNG, HES7, TBX6, and RIPPLY2. A particular form of this disorder characterized by the association of spondylocostal dysostosis with multiple pterygia has been reported and called spondylospinal thoracic dysostosis. Both disorders affect the spine and ribs, leading to abnormal development of the spine. Spondylospinal thoracic dysostosis is a rare syndrome characterized by the association of multiple vertebral segmentation defects, thoracic cage deformity, and multiple pterygia. This syndrome can be considered a different form of the described spondylocostal dysostosis. However, no genetic testing has been conducted for this rare disorder so far. Methods We report here the case of an 18-month-old female patient presenting the clinical and radiological features of spondylospinal thoracic dysostosis. To determine the underlying genetic etiology, whole exome sequencing (WES) and Sanger sequencing were performed. Results Using WES, we identified a variant in the TPM2 gene c. 628C>T, already reported in the non-lethal form of multiple pterygium syndrome. In addition, following the analysis of WES data, using bioinformatic tools, for oligogenic diseases, we identified candidate modifier genes, CAP2 and ADCY6, that could impact the clinical manifestations. Conclusion We showed a potential association between TPM2 and the uncommon spondylocostal dysostosis phenotype that would require further validation on larger cohort.
Collapse
Affiliation(s)
- Sami Bouchoucha
- Service Orthopédie, Hôpital D’enfant Béchir Hamza,Tunis, Tunisia
| | - Asma Chikhaoui
- Laboratoire de Génomique Biomédicale et Oncogénétique, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Dorra Najjar
- Laboratoire de Génomique Biomédicale et Oncogénétique, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Khouloud Zayoud
- Laboratoire de Génomique Biomédicale et Oncogénétique, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Mohamed Zouari
- Genomics Platform, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | | | - Rym Kéfi
- Laboratoire de Génomique Biomédicale et Oncogénétique, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Houda Yacoub-Youssef
- Laboratoire de Génomique Biomédicale et Oncogénétique, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
6
|
Demirkol Canli S, Uner M, Kucukkaraduman B, Karaoglu DA, Isik A, Turhan N, Akyol A, Gomceli I, Gure AO. A Novel Gene List Identifies Tumors with a Stromal-Mesenchymal Phenotype and Worse Prognosis in Gastric Cancer. Cancers (Basel) 2023; 15:cancers15113035. [PMID: 37296997 DOI: 10.3390/cancers15113035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Molecular biomarkers that predict disease progression can help identify tumor subtypes and shape treatment plans. In this study, we aimed to identify robust biomarkers of prognosis in gastric cancer based on transcriptomic data obtained from primary gastric tumors. METHODS Microarray, RNA sequencing, and single-cell RNA sequencing-based gene expression data from gastric tumors were obtained from public databases. Freshly frozen gastric tumors (n = 42) and matched FFPE (formalin-fixed, paraffin-embedded) (n = 40) tissues from a Turkish gastric cancer cohort were used for quantitative real-time PCR and immunohistochemistry-based assessments of gene expression, respectively. RESULTS A novel list of 20 prognostic genes was identified and used for the classification of gastric tumors into two major tumor subgroups with differential stromal gene expression ("Stromal-UP" (SU) and "Stromal-DOWN" (SD)). The SU group had a more mesenchymal profile with an enrichment of extracellular matrix-related gene sets and a poor prognosis compared to the SD group. Expression of the genes within the signature correlated with the expression of mesenchymal markers ex vivo. A higher stromal content in FFPE tissues was associated with shorter overall survival. CONCLUSIONS A stroma-rich, mesenchymal subgroup among gastric tumors identifies an unfavorable clinical outcome in all cohorts tested.
Collapse
Affiliation(s)
- Secil Demirkol Canli
- Molecular Pathology Application and Research Center, Hacettepe University, 06100 Ankara, Turkey
- Department of Molecular Biology and Genetics, Bilkent University, 06800 Ankara, Turkey
- Division of Tumor Pathology, Cancer Institute, Hacettepe University, 06100 Ankara, Turkey
| | - Meral Uner
- Department of Pathology, School of Medicine, Hacettepe University, 06100 Ankara, Turkey
| | - Baris Kucukkaraduman
- Department of Molecular Biology and Genetics, Bilkent University, 06800 Ankara, Turkey
| | | | - Aynur Isik
- Hacettepe University Transgenic Animal Technologies Research and Application Center, 06100 Ankara, Turkey
| | - Nesrin Turhan
- Ankara City Hospital, Department of Pathology, University of Health Sciences, 06018 Ankara, Turkey
| | - Aytekin Akyol
- Department of Pathology, School of Medicine, Hacettepe University, 06100 Ankara, Turkey
| | - Ismail Gomceli
- Faculty of Health Sciences, Antalya Bilim University, 07190 Antalya, Turkey
| | - Ali Osmay Gure
- Department of Medical Biology, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| |
Collapse
|
7
|
McAdow J, Yang S, Ou T, Huang G, Dobbs MB, Gurnett CA, Greenberg MJ, Johnson AN. A pathogenic mechanism associated with myopathies and structural birth defects involves TPM2-directed myogenesis. JCI Insight 2022; 7:e152466. [PMID: 35579956 PMCID: PMC9309062 DOI: 10.1172/jci.insight.152466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
Nemaline myopathy (NM) is the most common congenital myopathy, characterized by extreme weakness of the respiratory, limb, and facial muscles. Pathogenic variants in Tropomyosin 2 (TPM2), which encodes a skeletal muscle-specific actin binding protein essential for sarcomere function, cause a spectrum of musculoskeletal disorders that include NM as well as cap myopathy, congenital fiber type disproportion, and distal arthrogryposis (DA). The in vivo pathomechanisms underlying TPM2-related disorders are unknown, so we expressed a series of dominant, pathogenic TPM2 variants in Drosophila embryos and found 4 variants significantly affected muscle development and muscle function. Transient overexpression of the 4 variants also disrupted the morphogenesis of mouse myotubes in vitro and negatively affected zebrafish muscle development in vivo. We used transient overexpression assays in zebrafish to characterize 2 potentially novel TPM2 variants and 1 recurring variant that we identified in patients with DA (V129A, E139K, A155T, respectively) and found these variants caused musculoskeletal defects similar to those of known pathogenic variants. The consistency of musculoskeletal phenotypes in our assays correlated with the severity of clinical phenotypes observed in our patients with DA, suggesting disrupted myogenesis is a potentially novel pathomechanism of TPM2 disorders and that our myogenic assays can predict the clinical severity of TPM2 variants.
Collapse
Affiliation(s)
- Jennifer McAdow
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shuo Yang
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tiffany Ou
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Gary Huang
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Matthew B. Dobbs
- Paley Orthopedic and Spine Institute, West Palm Beach, Florida, USA
| | - Christina A. Gurnett
- Department of Neurology
- Department of Orthopedic Surgery
- Department of Pediatrics, and
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Aaron N. Johnson
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Tian Z, Zhao J, Wang Y. The prognostic value of TPM1-4 in hepatocellular carcinoma. Cancer Med 2021; 11:433-446. [PMID: 34850589 PMCID: PMC8729055 DOI: 10.1002/cam4.4453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
Background Despite advances in multiple disciplinary diagnoses and treatments, the prognosis of hepatocellular carcinoma (HCC) remains poor. Some evidence has identified that the aberrant expression of tropomyosins (TPMs) is involved with some cancers development. However, prognostic values of TPMs in HCC have not been thoroughly investigated. Methods Original TPM1–4 mRNA expression of TCGA HCC data and GTEx was downloaded from UCSC XENA. Oncomine database and GSE46408 were used for verification. Clinical stages and survival analysis of TPM1–4 in HCC were performed by GEPIA2. cBioPortal was utilized to assess TPM1–4 gene alteration in HCC. TIMER2.0 was used for investigating the relevance of TPM1–4 to tumor‐infiltrating immune cells in HCC. Additionally, we constructed a TPM1–4 prognostic model to explore the value of TPM1–4 for prognostic evaluation in HCC. LinkedOmics was applied to elucidate TPM3 co‐expression networks in HCC. Results This present study showed that TPM1–4 was upregulated in all HCC tissues, and TPM3 overexpression was correlated with poor survival outcomes in patients with HCC. Besides, TPM3 amplification was the main altered type in TPM1–4 genetic alteration, which affected the prognosis of HCC patients. The risk model revealed that TPM1, TPM2, and TPM3 were applied to risk assessment of HCC prognosis, among which TPM3 expression was significantly higher in the high‐risk group than that in the low‐risk group. Univariate and multivariate cox regression analyses indicated that TPM3 may be an independent prognostic factor of HCC prognosis. In addition, TPM3 co‐expression genes mainly participated in the cell cycle by maintaining microtubule cytoskeleton in HCC progression. TPM1–4 was associated with some tumor‐infiltrating immune cells in HCC. Conclusion Our study detected that the expression level of TPM1–4 was all remarkably elevated in HCC, suggesting that TPM1–4 may serve an important role in HCC development. High TPM3 expression was found to be correlated with poor overall survival, and TPM3 may be an independent prognostic factor for HCC.
Collapse
Affiliation(s)
- Zhihui Tian
- Gastroenterology Ward One, Shanxi Province Cancer Hospital, Taiyuan, Shanxi, China
| | - Jian Zhao
- Gastroenterology Ward One, Shanxi Province Cancer Hospital, Taiyuan, Shanxi, China
| | - Yusheng Wang
- Gastroenterology Ward One, Shanxi Province Cancer Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
9
|
ALGhasab NS, Alshehri B, Altamimi LA, Assiri RA, AlYousef LA, ALMesned S, ALreshidi FS, Kharabsheh SM, Al-Saud SA, Alharbi W. Cardiac anomalies associated with Escobar syndrome: A case report and a review of the literature. Medicine (Baltimore) 2021; 100:e26687. [PMID: 34397695 PMCID: PMC8322495 DOI: 10.1097/md.0000000000026687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/07/2021] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Escobar syndrome (ES) is an autosomal recessive disorder. It is highly characterized by facial abnormalities, congenital diaphragmatic muscle weakness, myasthenic-like features, and skin pterygiums on multiple body legions. ES is a rare condition associated with many external and internal abnormalities. The internal malformations described in ES affect many organs including the heart, lungs, esophagus, liver, spleen, and intestine. The purpose of this paper is to explore the cardiac manifestations associated with ES. PATIENT CONCERNS A 3.5-year-old girl, who was born for double first cousins, was admitted to the hospital for neuromuscular evaluation of multiple congenital contractures. DIAGNOSIS The girl was diagnosed with ES and isolated dextrocardia which is a rare cardiac manifestation. However, to the best of our knowledge, no similar cases have been reported to date, and this case is thus believed to be very rare. INTERVENTIONS The patient underwent an operative intervention to correct the bilateral fixed flexion deformity at her knees which was related to the posterior bilateral fibrotic bands/pterygia. OUTCOMES Post-operatively, complete knee extension was obtained, the patient was fitted with a cast and extension night splint. She was discharged alive and had no complications. The patient was followed regularly in the orthopedic clinic and had periodic physiotherapy sessions. CONCLUSIONS ES and isolated dextrocardia concurrence in the presented case resulted from different pathogenic mechanisms. Our findings suggest that ES might be caused by dysfunction in the acetylcholine receptor throughout fetal life, which may have affected muscle strength and movement. Other cardiac conditions include hypoplastic left-sided heart, Hypertrophic cardiomyopathy, patent ductus arteriosus, and heterotaxia.
Collapse
Affiliation(s)
- Naif Saad ALGhasab
- Department of Internal Medicine, Medical College, Ha’il University, Ha’il, Saudi Arabia
| | - Bandar Alshehri
- Adult Cardiology Department, Prince Sultan Cardiac Center, Riyadh, Saudi Arabia
| | | | - Raghad Asaad Assiri
- College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Loujain Ahmad AlYousef
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Sulaman ALMesned
- Department of Surgery, Medical College, Qassim University, Buraydah, Saudi Arabia
| | - Fayez Saud ALreshidi
- Department of Family and Community Medicine, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Suleiman M. Kharabsheh
- Department of Cardiovascular Disease, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sara Abou Al-Saud
- Department of Cardiac Science, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Waleed Alharbi
- Department of Cardiac Science, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Whittle J, Johnson A, Dobbs MB, Gurnett CA. Models of Distal Arthrogryposis and Lethal Congenital Contracture Syndrome. Genes (Basel) 2021; 12:genes12060943. [PMID: 34203046 PMCID: PMC8234565 DOI: 10.3390/genes12060943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
Distal arthrogryposis and lethal congenital contracture syndromes describe a broad group of disorders that share congenital limb contractures in common. While skeletal muscle sarcomeric genes comprise many of the first genes identified for Distal Arthrogyposis, other mechanisms of disease have been demonstrated, including key effects on peripheral nerve function. While Distal Arthrogryposis and Lethal Congenital Contracture Syndromes display superficial similarities in phenotype, the underlying mechanisms for these conditions are diverse but overlapping. In this review, we discuss the important insights gained into these human genetic diseases resulting from in vitro molecular studies and in vivo models in fruit fly, zebrafish, and mice.
Collapse
Affiliation(s)
- Julia Whittle
- Department of Neurology, Washington University in St Louis, St Louis, MO 63130, USA;
| | - Aaron Johnson
- Department of Developmental Biology, Washington University in St Louis, St Louis, MO 63130, USA;
| | - Matthew B. Dobbs
- Paley Orthopaedic and Spine Institute, West Palm Beach, FL 33407, USA;
| | - Christina A. Gurnett
- Department of Neurology, Washington University in St Louis, St Louis, MO 63130, USA;
- Correspondence:
| |
Collapse
|
11
|
Karpicheva OE. Hallmark Features of the Tropomyosin
Regulatory Function in Several Variants of Congenital Myopathy. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Mutations Q93H and E97K in TPM2 Disrupt Ca-Dependent Regulation of Actin Filaments. Int J Mol Sci 2021; 22:ijms22084036. [PMID: 33919826 PMCID: PMC8070786 DOI: 10.3390/ijms22084036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Tropomyosin is a two-chain coiled coil protein, which together with the troponin complex controls interactions of actin with myosin in a Ca2+-dependent manner. In fast skeletal muscle, the contractile actin filaments are regulated by tropomyosin isoforms Tpm1.1 and Tpm2.2, which form homo- and heterodimers. Mutations in the TPM2 gene encoding isoform Tpm2.2 are linked to distal arthrogryposis and congenital myopathy-skeletal muscle diseases characterized by hyper- and hypocontractile phenotypes, respectively. In this work, in vitro functional assays were used to elucidate the molecular mechanisms of mutations Q93H and E97K in TPM2. Both mutations tended to decrease actin affinity of homo-and heterodimers in the absence and presence of troponin and Ca2+, although the effect of Q93H was stronger. Changes in susceptibility of tropomyosin to trypsin digestion suggested that the mutations diversified dynamics of tropomyosin homo- and heterodimers on the filament. The presence of Q93H in homo- and heterodimers strongly decreased activation of the actomyosin ATPase and reduced sensitivity of the thin filament to [Ca2+]. In contrast, the presence of E97K caused hyperactivation of the ATPase and increased sensitivity to [Ca2+]. In conclusion, the hypo- and hypercontractile phenotypes associated with mutations Q93H and E97K in Tpm2.2 are caused by defects in Ca2+-dependent regulation of actin-myosin interactions.
Collapse
|
13
|
Bone Marrow-Derived Mesenchymal Stem Cells Differentially Affect Glioblastoma Cell Proliferation, Migration, and Invasion: A 2D-DIGE Proteomic Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4952876. [PMID: 33628783 PMCID: PMC7892224 DOI: 10.1155/2021/4952876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/08/2021] [Accepted: 02/01/2021] [Indexed: 12/22/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) display high tumor tropism and cause indirect effects through the cytokines they secrete. However, the effects of BM-MSCs on the biological behaviors of glioblastoma multiforme remain unclear. In this study, the conditioned medium from BM-MSCs significantly inhibited the proliferation of C6 cells (P < 0.05) but promoted their migration and invasion (P < 0.05). Two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) proteomic analysis revealed 17 proteins differentially expressed in C6 cells exposed to the BM-MSC-conditioned medium including five upregulated proteins and 12 downregulated proteins. Among these, six differentially expressed proteins (Calr, Set, Oat, Npm1, Ddah1, and Tardbp) were closely related to cell proliferation and differentiation, and nine proteins (Pdia6, Sphk1, Anxa4, Vim, Tuba1c, Actr1b, Actn4, Rap2c, and Tpm2) were associated with motility and the cytoskeleton, which may modulate the invasion and migration of tumor cells. Above all, by identifying the differentially expressed proteins using proteomics and bioinformatics analysis, BM-MSCs could be genetically modified to specifically express tumor-suppressive factors when BM-MSCs are to be used as tumor-selective targeting carriers in the future.
Collapse
|
14
|
Homozygous intronic variants in TPM2 cause recessively inherited Escobar variant of multiple pterygium syndrome and congenital myopathy. Neuromuscul Disord 2021; 31:359-366. [PMID: 33558124 DOI: 10.1016/j.nmd.2020.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 11/22/2022]
Abstract
Pathogenic variants in TPM2 have been associated with a variable clinical spectrum, including congenital myopathies and distal arthrogryposis, all but one with dominant inheritance. We report the second case of recessively inherited TPM2-related Escobar variant of multiple pterygium syndrome and congenital myopathy in a patient from a consanguineous family. Ultra-structural examination of the biopsy revealed few cores/mini-cores and sparse nemaline rods. We found a novel homozygous intronic sequence variant, c.564-2A>C in TPM2. This variant is predicted to abolish the consensus acceptor splice site for exon 6b of TPM2 gene. Parents of the proband, both healthy adults with no clinical features, were heterozygous for the variant. Here we establish a homozygous intronic variant in TPM2 as the likely cause of Escobar variant of multiple pterygium syndrome and congenital myopathy, with sparse nemaline rods.
Collapse
|
15
|
Muniz MMM, Fonseca LFS, Dos Santos Silva DB, de Oliveira HR, Baldi F, Chardulo AL, Ferro JA, Cánovas A, de Albuquerque LG. Identification of novel mRNA isoforms associated with meat tenderness using RNA sequencing data in beef cattle. Meat Sci 2020; 173:108378. [PMID: 33248741 DOI: 10.1016/j.meatsci.2020.108378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022]
Abstract
The Warner-Bratzler shear force (WBSF) and myofibrillar fragmentation index (MFI) are complementary methodologies used to measure beef tenderness. Longissimus thoracis samples from the 20 most extreme bulls (out of 80 bulls set) for WBSF (tender (n = 10) and tough (n = 10)) and MFI (high (n = 10) and low (n = 10)) traits were collected to perform transcriptomic analysis using RNA-Sequencing. All analysis were performed through CLC Genomics Workbench. A total of 39 and 27 transcripts for WBSF and MFI phenotypes were DE, respectively. The possible DE novel mRNA isoforms, for WBSF and MFI traits, are myosin encoders (e.g. MYL1 and MYL6). In addition, we identified potential mRNA isoforms related to genes affecting the speed fibers degradation during the meat aging process. The DE novel transcripts are transcripted by genes with biological functions related to oxidative process, energy production and striated muscle contraction. The results suggest that the identified mRNA isoforms could be used as potential candidate to select animals in order to improve meat tenderness.
Collapse
Affiliation(s)
- Maria Malane Magalhães Muniz
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil; Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.
| | | | | | - Hinayah Rojas de Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Fernando Baldi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil; National Council for Scientific and Technological Development (CNPq), Brazil
| | - Artur Loyola Chardulo
- National Council for Scientific and Technological Development (CNPq), Brazil; São Paulo State University (Unesp), College of Veterinary and Animal Science, Botucatu, SP, Brazil
| | - Jesus Aparecido Ferro
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil; National Council for Scientific and Technological Development (CNPq), Brazil
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Lucia Galvão de Albuquerque
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil; National Council for Scientific and Technological Development (CNPq), Brazil.
| |
Collapse
|
16
|
Looking for Targets to Restore the Contractile Function in Congenital Myopathy Caused by Gln 147Pro Tropomyosin. Int J Mol Sci 2020; 21:ijms21207590. [PMID: 33066566 PMCID: PMC7589864 DOI: 10.3390/ijms21207590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022] Open
Abstract
We have used the technique of polarized microfluorimetry to obtain new insight into the pathogenesis of skeletal muscle disease caused by the Gln147Pro substitution in β-tropomyosin (Tpm2.2). The spatial rearrangements of actin, myosin and tropomyosin in the single muscle fiber containing reconstituted thin filaments were studied during simulation of several stages of ATP hydrolysis cycle. The angular orientation of the fluorescence probes bound to tropomyosin was found to be changed by the substitution and was characteristic for a shift of tropomyosin strands closer to the inner actin domains. It was observed both in the absence and in the presence of troponin, Ca2+ and myosin heads at all simulated stages of the ATPase cycle. The mutant showed higher flexibility. Moreover, the Gln147Pro substitution disrupted the myosin-induced displacement of tropomyosin over actin. The irregular positioning of the mutant tropomyosin caused premature activation of actin monomers and a tendency to increase the number of myosin cross-bridges in a state of strong binding with actin at low Ca2+.
Collapse
|
17
|
Papadimas GK, Xirou S, Kararizou E, Papadopoulos C. Update on Congenital Myopathies in Adulthood. Int J Mol Sci 2020; 21:ijms21103694. [PMID: 32456280 PMCID: PMC7279481 DOI: 10.3390/ijms21103694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital myopathies (CMs) constitute a group of heterogenous rare inherited muscle diseases with different incidences. They are traditionally grouped based on characteristic histopathological findings revealed on muscle biopsy. In recent decades, the ever-increasing application of modern genetic technologies has not just improved our understanding of their pathophysiology, but also expanded their phenotypic spectrum and contributed to a more genetically based approach for their classification. Later onset forms of CMs are increasingly recognised. They are often considered milder with slower progression, variable clinical presentations and different modes of inheritance. We reviewed the key features and genetic basis of late onset CMs with a special emphasis on those forms that may first manifest in adulthood.
Collapse
|
18
|
Matyushenko AM, Levitsky DI. Molecular Mechanisms of Pathologies of Skeletal and Cardiac Muscles Caused by Point Mutations in the Tropomyosin Genes. BIOCHEMISTRY (MOSCOW) 2020; 85:S20-S33. [PMID: 32087052 DOI: 10.1134/s0006297920140023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review is devoted to tropomyosin (Tpm) - actin-binding protein, which plays a crucial role in the regulation of contraction of skeletal and cardiac muscles. Special attention is paid to myopathies and cardiomyopathies - severe hereditary diseases of skeletal and cardiac muscles associated with point mutations in Tpm genes. The current views on the molecular mechanisms of these diseases and the effects of such mutations on the Tpm structure and functions are considered in detail. Besides, some part of the review is devoted to analysis of the properties of Tpm homodimers and heterodimers with myopathic substitutions of amino acid residues in only one of the two chains of the Tpm dimeric molecule.
Collapse
Affiliation(s)
- A M Matyushenko
- Bach Institute of Biochemistry, Federal Research Center on Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - D I Levitsky
- Bach Institute of Biochemistry, Federal Research Center on Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
19
|
Matyushenko AM, Shchepkin DV, Susorov DS, Nefedova VV, Kopylova GV, Berg VY, Kleymenov SY, Levitsky DI. Structural and functional properties of αβ-heterodimers of tropomyosin with myopathic mutations Q147P and K49del in the β-chain. Biochem Biophys Res Commun 2018; 508:934-939. [PMID: 30545627 DOI: 10.1016/j.bbrc.2018.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023]
Abstract
Tropomyosin (Tpm) is an α-helical coiled-coil actin-binding protein that plays a key role in the Ca2+-regulated contraction of striated muscles. Two Tpm isoforms, α (Tpm 1.1) and β (Tpm 2.2), are expressed in fast skeletal muscles. These Tpm isoforms can form either αα and ββ homodimers, or αβ heterodimers. However, only αα-Tpm and αβ-Tpm dimers are usually present in most of fast skeletal muscles, because ββ-homodimers are relatively unstable and cannot exist under physiologic conditions. Nevertheless, the most of previous studies of myopathy-causing mutations in the Tpm β-chains were performed on the ββ-homodimers. In the present work, we applied different methods to investigate the effects of two myopathic mutations in the β-chain, Q147P and K49del (i.e. deletion of Lys49), on structural and functional properties of Tpm αβ-heterodimers and to compare them with the properties of ββ-homodimers carrying these mutations in both β-chains. The results show that the properties of αβ-Tpm heterodimers with these mutations in the β-chain differ significantly from the properties of ββ-homodimers with the same substitutions in both β-chains. This indicates that the αβ-heterodimer is a more appropriate model for studying the effects of myopathic mutations in the β-chain of Tpm than the ββ-homodimer which virtually does not exist in human skeletal muscles.
Collapse
Affiliation(s)
- Alexander M Matyushenko
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia; Institute of Immunology and Physiology of the Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Daniil V Shchepkin
- Institute of Immunology and Physiology of the Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Denis S Susorov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Victoria V Nefedova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Galina V Kopylova
- Institute of Immunology and Physiology of the Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Valentina Y Berg
- Institute of Immunology and Physiology of the Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Sergey Y Kleymenov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia; Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334, Moscow, Russia
| | - Dmitrii I Levitsky
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia; A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
20
|
Cheng C, Nowak RB, Amadeo MB, Biswas SK, Lo WK, Fowler VM. Tropomyosin 3.5 protects the F-actin networks required for tissue biomechanical properties. J Cell Sci 2018; 131:jcs222042. [PMID: 30333143 PMCID: PMC6288072 DOI: 10.1242/jcs.222042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
Tropomyosins (Tpms) stabilize F-actin and regulate interactions with other actin-binding proteins. The eye lens changes shape in order to focus light to transmit a clear image, and thus lens organ function is tied to its biomechanical properties, presenting an opportunity to study Tpm functions in tissue mechanics. Mouse lenses contain Tpm3.5 (also known as TM5NM5), a previously unstudied isoform encoded by Tpm3, which is associated with F-actin on lens fiber cell membranes. Decreased levels of Tpm3.5 lead to softer and less mechanically resilient lenses that are unable to resume their original shape after compression. While cell organization and morphology appear unaffected, Tmod1 dissociates from the membrane in Tpm3.5-deficient lens fiber cells resulting in reorganization of the spectrin-F-actin and α-actinin-F-actin networks at the membrane. These rearranged F-actin networks appear to be less able to support mechanical load and resilience, leading to an overall change in tissue mechanical properties. This is the first in vivo evidence that a Tpm protein is essential for cell biomechanical stability in a load-bearing non-muscle tissue, and indicates that Tpm3.5 protects mechanically stable, load-bearing F-actin in vivoThis article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Catherine Cheng
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Roberta B Nowak
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael B Amadeo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sondip K Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30314, USA
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30314, USA
| | - Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
21
|
Li S, You Y, Gao J, Mao B, Cao Y, Zhao X, Zhang X. Novel mutations in TPM2 and PIEZO2 are responsible for distal arthrogryposis (DA) 2B and mild DA in two Chinese families. BMC MEDICAL GENETICS 2018; 19:179. [PMID: 30285720 PMCID: PMC6171138 DOI: 10.1186/s12881-018-0692-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/23/2018] [Indexed: 12/25/2022]
Abstract
Background Distal arthrogryposis (DA) is a group of clinically and genetically heterogeneous disorders that involve multiple congenital limb contractures and comprise at least 10 clinical subtypes. Here, we describe our findings in two Chinese families: Family 1 with DA2B (MIM 601680) and Family 2 with mild DA. Methods To map the disease locus, two-point linkage analysis was performed with microsatellite markers closed to TPM2, TNNI2/TNNT3 and TNNC2. In Family 1, a positive LOD (logarithm of odds) score was only obtained at the microsatellite marker close to TPM2 and mutation screening was performed using direct sequencing of TPM2 in the proband. In Family 2, for the LOD score that did not favor linkage to any markers, whole-exome sequencing (WES) was performed on the proband. PCR–restriction fragment length polymorphism (RFLP) and bioinformatics analysis were then applied to identify the pathogenic mutations in two families. In order to correlate genotype with phenotype in DA, retrospective analyses of phenotypic features according to the TPM2 and PIEZO2 mutation spectrums were carried out. Results A heterozygous missense mutation c.308A > G (p.Q103R) in TPM2 in Family 1, and a novel variation c.8153G > A (p.R2718Q) in PIEZO2 in Family 2 were identified. Each of the two novel variants was co-segregated with the DA manifestations in the corresponding family. Bioinformatics analysis from several tools supported the pathogenicity of the mutations. Furthermore, our study suggests that there is no relation between the types or locations of TPM2 mutations and the clinical characteristics, and that different inheritance modes and mutation types concerning PIEZO2 cause distinct clinical manifestations. Conclusions We report two novel mutations within TPM2 and PIEZO2 responsible for DA2B and mild DA in two Chinese families, respectively. Our study expands the spectrum of causal mutations in the TPM2 and PIEZO2 genes. Electronic supplementary material The online version of this article (10.1186/s12881-018-0692-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shan Li
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Dong Cheng District, Beijing, 100005, China
| | - Yi You
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Dong Cheng District, Beijing, 100005, China
| | - Jinsong Gao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Bin Mao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Dong Cheng District, Beijing, 100005, China
| | - Yixuan Cao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Dong Cheng District, Beijing, 100005, China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Dong Cheng District, Beijing, 100005, China.
| | - Xue Zhang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Dong Cheng District, Beijing, 100005, China.
| |
Collapse
|
22
|
Bershitsky SY, Logvinova DS, Shchepkin DV, Kopylova GV, Matyushenko AM. Myopathic mutations in the β-chain of tropomyosin differently affect the structural and functional properties of ββ- and αβ-dimers. FASEB J 2018; 33:1963-1971. [PMID: 30199282 DOI: 10.1096/fj.201800755r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tropomyosin (Tpm) is an actin-binding protein that plays a vital role in the regulation of muscle contraction. Fast skeletal muscles express 2 Tpm isoforms, α (Tpm 1.1) and β (Tpm 2.2), resulting in the existence of 2 forms of dimeric Tpm molecule: αα-homodimer and αβ-heterodimer. ββ-Homodimer is unstable and absent in the native state, despite which most of the studies of myopathy-relating Tpm mutations have been performed on the ββ-homodimer. Here, we applied different methods to investigate the effects of myopathic mutations R133W and N202K in the β-chain of Tpm on properties of αβ-heterodimers and to compare them with the features of ββ-homodimers with the same mutations. The results show that properties of αβ-Tpm and ββ-Tpm with substitutions in the β-chain differ significantly, and this indicates that the effects of myopathic mutations in the Tpm β-chain should be studied on the Tpm αβ-heterodimer.-Bershitsky, S. Y., Logvinova, D. S., Shchepkin, D. V., Kopylova, G. V., Matyushenko, A. M. Myopathic mutations in the β-chain of tropomyosin differently affect the structural and functional properties of ββ- and αβ-dimers.
Collapse
Affiliation(s)
- Sergey Y Bershitsky
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia; and
| | - Daria S Logvinova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia; and.,Research Center of Biotechnology, A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Daniil V Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia; and
| | - Galina V Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia; and
| | - Alexander M Matyushenko
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia; and.,Research Center of Biotechnology, A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
23
|
Hsu WL, Ma YL, Liu YC, Lee EHY. Smad4 SUMOylation is essential for memory formation through upregulation of the skeletal myopathy gene TPM2. BMC Biol 2017; 15:112. [PMID: 29183317 PMCID: PMC5706330 DOI: 10.1186/s12915-017-0452-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 11/07/2017] [Indexed: 11/22/2022] Open
Abstract
Background Smad4 is a critical effector of TGF-β signaling that regulates a variety of cellular functions. However, its role in the brain has rarely been studied. Here, we examined the molecular mechanisms underlying the post-translational regulation of Smad4 function by SUMOylation, and its role in spatial memory formation. Results In the hippocampus, Smad4 is SUMOylated by the E3 ligase PIAS1 at Lys-113 and Lys-159. Both spatial training and NMDA injection enhanced Smad4 SUMOylation. Inhibition of Smad4 SUMOylation impaired spatial learning and memory in rats by downregulating TPM2, a gene associated with skeletal myopathies. Similarly, knockdown of TPM2 expression impaired spatial learning and memory, while TPM2 mRNA and protein expression increased after spatial training. Among the TPM2 mutations associated with skeletal myopathies, the TPM2E122K mutation was found to reduce TPM2 expression and impair spatial learning and memory in rats. Conclusions We have identified a novel role of Smad4 SUMOylation and TPM2 in learning and memory formation. These results suggest that patients with skeletal myopathies who carry the TPM2E122K mutation may also have deficits in learning and memory functions. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0452-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei L Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yun L Ma
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yen C Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Eminy H Y Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan. .,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan.
| |
Collapse
|
24
|
Anandan C, Milone M. An adult with a rare form of congenital fiber type disproportion. Muscle Nerve 2017; 57:E97-E99. [PMID: 28881016 DOI: 10.1002/mus.25954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/25/2017] [Accepted: 09/02/2017] [Indexed: 12/25/2022]
|
25
|
Abstract
Striated cardiac and skeletal muscles play very different roles in the body, but they are similar at the molecular level. In particular, contraction, regardless of the type of muscle, is a precise and complex process involving the integral protein myofilaments and their associated regulatory components. The smallest functional unit of muscle contraction is the sarcomere. Within the sarcomere can be found a sophisticated ensemble of proteins associated with the thick filaments (myosin, myosin binding protein-C, titin, and obscurin) and thin myofilaments (actin, troponin, tropomyosin, nebulin, and nebulette). These parallel thick and thin filaments slide across one another, pulling the two ends of the sarcomere together to regulate contraction. More specifically, the regulation of both timing and force of contraction is accomplished through an intricate network of intra- and interfilament interactions belonging to each myofilament. This review introduces the sarcomere proteins involved in striated muscle contraction and places greater emphasis on the more recently identified and less well-characterized myofilaments: cardiac myosin binding protein-C, titin, nebulin, and obscurin. © 2017 American Physiological Society. Compr Physiol 7:675-692, 2017.
Collapse
Affiliation(s)
- Brian Leei Lin
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Taejeong Song
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA.,Department of Internal Medicine, Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA.,Department of Internal Medicine, Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
26
|
Borovikov YS, Rysev NA, Avrova SV, Karpicheva OE, Borys D, Moraczewska J. Molecular mechanisms of deregulation of the thin filament associated with the R167H and K168E substitutions in tropomyosin Tpm1.1. Arch Biochem Biophys 2016; 614:28-40. [PMID: 27956029 DOI: 10.1016/j.abb.2016.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/01/2022]
Abstract
Point mutations R167H and K168E in tropomyosin Tpm1.1 (TM) disturb Ca2+-dependent regulation of the actomyosin ATPase. To understand mechanisms of this defect we studied multistep changes in mobility and spatial arrangement of tropomyosin, actin and myosin heads during the ATPase cycle in reconstituted ghost fibres using the polarized fluorescence microscopy. It was found that both mutations disturbed the mode of troponin operation in the fibres. At high Ca2+, troponin increased the fraction of actin monomers that were in the "switched on" state, but both mutant tropomyosins were shifted toward the outer actin domains, which decreased the fraction of strongly bound myosin heads throughout the ATPase cycle. At low Ca2+, the R167H-TM was located close to the outer actin domains, which reduced the number of strongly-bound myosin heads. However, under these conditions troponin increased the number of actin monomers that were switched on. The K168E-TM was displaced far to the outer actin domains and troponin binding decreased the fraction of switched on actin monomers, but the proportion of the strongly bound myosin heads was abnormally high. Thus, the mutations differently disturbed transmission of conformational changes between troponin, tropomyosin and actin, which is essential for the Са2+-dependent regulation of the thin filament.
Collapse
Affiliation(s)
- Yurii S Borovikov
- Institute of Cytology, Tikhoretsky Pr., 4, Saint Petersburg, 194064, Russia.
| | - Nikita A Rysev
- Institute of Cytology, Tikhoretsky Pr., 4, Saint Petersburg, 194064, Russia
| | | | - Olga E Karpicheva
- Institute of Cytology, Tikhoretsky Pr., 4, Saint Petersburg, 194064, Russia
| | - Danuta Borys
- Kazimierz Wielki University in Bydgoszcz, Ks. J. Poniatowski 12, Str., 85-671 Bydgoszcz, Poland
| | - Joanna Moraczewska
- Kazimierz Wielki University in Bydgoszcz, Ks. J. Poniatowski 12, Str., 85-671 Bydgoszcz, Poland
| |
Collapse
|
27
|
Mroczek M, Kabzińska D, Chrzanowska KH, Pronicki M, Kochański A. A novel TPM2 gene splice-site mutation causes severe congenital myopathy with arthrogryposis and dysmorphic features. J Appl Genet 2016; 58:199-203. [PMID: 27726070 PMCID: PMC5391399 DOI: 10.1007/s13353-016-0368-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/04/2016] [Accepted: 09/15/2016] [Indexed: 12/24/2022]
Abstract
To date, only two splice-site mutations within the TPM2 gene have been shown to be causative for congenital myopathies. While the majority of TPM2 gene mutations are causative for nemaline myopathy, cap disease or distal arthrogryposis, some mutations in this gene have been found to be associated with non-specific congenital myopathy. We report on a patient with such an unspecified congenital myopathy associated with distinctive facial dysmorphic features and distal arthrogryposis. Using the whole exome sequencing (WES) approach we were able to identify a novel heterozygous splice-site mutation within the TPM2 gene, showing the utility of WES in molecular diagnostics of congenital myopathies without recognizable morphological hallmarks.
Collapse
Affiliation(s)
- Magdalena Mroczek
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, A. Pawi ńskiego 5, 02-106, Warsaw, Poland
| | - Dagmara Kabzińska
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, A. Pawi ńskiego 5, 02-106, Warsaw, Poland.
| | - Krystyna H Chrzanowska
- Department of Medical Genetics, The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Maciej Pronicki
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, A. Pawi ńskiego 5, 02-106, Warsaw, Poland
| |
Collapse
|
28
|
Epigenetic silencing of TPM2 contributes to colorectal cancer progression upon RhoA activation. Tumour Biol 2016; 37:12477-12483. [PMID: 27333992 DOI: 10.1007/s13277-016-5103-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 06/09/2016] [Indexed: 12/30/2022] Open
Abstract
Beta-tropomyosin (β-tropomyosin, TPM2) has been found to be downregulated in colorectal cancer (CRC) in previous studies. In this study, we aimed to investigate the mechanisms and potential biological consequences of the downregulation of TPM2 in colorectal cancer. TPM2 expression in colorectal cancer was assessed by qRT-PCR and immunostaining. The biological functions of TPM2 were assessed in cell lines either overexpressing or underexpressingTPM2. Aberrant DNA methylation in the promoter region is associated with suppression of TPM2 expression in primary colorectal cancer tissue samples. Treatment with the demethylation agent 5-AZA can induceTPM2 expression in colorectal cancer cell lines. Reconstitution of TPM2 suppresses cell proliferation and migration in colorectal cancer cell lines, whereas the loss of TPM2 expression is associated with increased tumor proliferation and migration in vitro, which was accompanied by RhoA activation. In summary, our findings indicate that TPM2 appears to be commonly silenced by aberrant DNA methylation in colon cancer. TPM2 loss is associated with RhoA activation and tumor proliferation.
Collapse
|
29
|
Jin Y, Peng Y, Lin Z, Chen YC, Wei L, Hacker TA, Larsson L, Ge Y. Comprehensive analysis of tropomyosin isoforms in skeletal muscles by top-down proteomics. J Muscle Res Cell Motil 2016; 37:41-52. [PMID: 27090236 PMCID: PMC4955698 DOI: 10.1007/s10974-016-9443-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/07/2016] [Indexed: 01/09/2023]
Abstract
Mammalian skeletal muscles are heterogeneous in nature and are capable of performing various functions. Tropomyosin (Tpm) is a major component of the thin filament in skeletal muscles and plays an important role in controlling muscle contraction and relaxation. Tpm is known to consist of multiple isoforms resulting from different encoding genes and alternative splicing, along with post-translational modifications. However, a systematic characterization of Tpm isoforms in skeletal muscles is still lacking. Therefore, we employed top-down mass spectrometry (MS) to identify and characterize Tpm isoforms present in different skeletal muscles from multiple species, including swine, rat, and human. Our study revealed that Tpm1.1 and Tpm2.2 are the two major Tpm isoforms in swine and rat skeletal muscles, whereas Tpm1.1, Tpm2.2, and Tpm3.12 are present in human skeletal muscles. Tandem MS was utilized to identify the sequences of the major Tpm isoforms. Furthermore, quantitative analysis revealed muscle-type specific differences in the abundance of un-modified and modified Tpm isoforms in rat and human skeletal muscles. This study represents the first systematic investigation of Tpm isoforms in skeletal muscles, which not only demonstrates the capabilities of top-down MS for the comprehensive characterization of skeletal myofilament proteins but also provides the basis for further studies on these Tpm isoforms in muscle-related diseases.
Collapse
Affiliation(s)
- Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
| | - Ying Peng
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705, USA
- Human Proteomics Program, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705, USA
- Human Proteomics Program, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Yi-Chen Chen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
| | - Liming Wei
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705, USA
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P.R. China
| | - Timothy A Hacker
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Lars Larsson
- Department of Physiology and Pharmacology, Department of Clinical Neuroscience, Clinical Neurophysiology Section, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA.
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705, USA.
- Human Proteomics Program, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705, USA.
| |
Collapse
|
30
|
Crone M, Thomas MA. 9p13.1p13.3 interstitial deletion: A case report and further delineation of a rare condition. Am J Med Genet A 2016; 170A:1095-8. [DOI: 10.1002/ajmg.a.37534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 12/07/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Megan Crone
- Section of Pediatrics; Department of Neurology; Cumming School of Medicine; Alberta Children's Hospital; University of Calgary; Calgary Alberta Canada
| | - Mary Ann Thomas
- Department of Medical Genetics; Cumming School of Medicine; Alberta Children's Hospital; University of Calgary; Calgary Alberta Canada
- Alberta Children's Hospital Research Institute for Child and Maternal Health; University of Calgary; Calgary Alberta Canada
| |
Collapse
|
31
|
Borovikov YS, Avrova SV, Rysev NA, Sirenko VV, Simonyan AO, Chernev AA, Karpicheva OE, Piers A, Redwood CS. Aberrant movement of β-tropomyosin associated with congenital myopathy causes defective response of myosin heads and actin during the ATPase cycle. Arch Biochem Biophys 2015; 577-578:11-23. [PMID: 25978979 DOI: 10.1016/j.abb.2015.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/22/2015] [Accepted: 05/07/2015] [Indexed: 01/07/2023]
Abstract
We have investigated the effect of the E41K, R91G, and E139del β-tropomyosin (TM) mutations that cause congenital myopathy on the position of TM and orientation of actin monomers and myosin heads at different mimicked stages of the ATPase cycle in troponin-free ghost muscle fibers by polarized fluorimetry. A multi-step shifting of wild-type TM to the filament center accompanied by an increase in the amount of switched on actin monomers and the strongly bound myosin heads was observed during the ATPase cycle. The R91G mutation shifts TM further towards the inner and outer domains of actin at the strong- and weak-binding stages, respectively. The E139del mutation retains TM near the inner domains, while the E41K mutation captures it near the outer domains. The E41K and R91G mutations can induce the strong binding of myosin heads to actin, when TM is located near the outer domains. The E139del mutation inhibits the amount of strongly bound myosin heads throughout the ATPase cycle.
Collapse
Affiliation(s)
- Yurii S Borovikov
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia.
| | - Stanislava V Avrova
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - Nikita A Rysev
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - Vladimir V Sirenko
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - Armen O Simonyan
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia; Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg 199034, Russia
| | - Aleksey A Chernev
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia; Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg 199034, Russia
| | - Olga E Karpicheva
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - Adam Piers
- University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Charles S Redwood
- University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
32
|
Rodríguez Cruz PM, Sewry C, Beeson D, Jayawant S, Squier W, McWilliam R, Palace J. Congenital myopathies with secondary neuromuscular transmission defects; A case report and review of the literature. Neuromuscul Disord 2014; 24:1103-10. [DOI: 10.1016/j.nmd.2014.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/27/2014] [Accepted: 07/18/2014] [Indexed: 01/14/2023]
|
33
|
Impact of tropomyosin isoform composition on fast skeletal muscle thin filament regulation and force development. J Muscle Res Cell Motil 2014; 36:11-23. [PMID: 25380572 DOI: 10.1007/s10974-014-9394-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/17/2014] [Indexed: 01/05/2023]
Abstract
Tropomyosin (Tm) plays a central role in the regulation of muscle contraction and is present in three main isoforms in skeletal and cardiac muscles. In the present work we studied the functional role of α- and βTm on force development by modifying the isoform composition of rabbit psoas skeletal muscle myofibrils and of regulated thin filaments for in vitro motility measurements. Skeletal myofibril regulatory proteins were extracted (78%) and replaced (98%) with Tm isoforms as homogenous ααTm or ββTm dimers and the functional effects were measured. Maximal Ca(2+) activated force was the same in ααTm versus ββTm myofibrils, but ββTm myofibrils showed a marked slowing of relaxation and an impairment of regulation under resting conditions compared to ααTm and controls. ββTm myofibrils also showed a significantly shorter slack sarcomere length and a marked increase in resting tension. Both these mechanical features were almost completely abolished by 10 mM 2,3-butanedione 2-monoxime, suggesting the presence of a significant degree of Ca(2+)-independent cross-bridge formation in ββTm myofibrils. Finally, in motility assay experiments in the absence of Ca(2+) (pCa 9.0), complete regulation of thin filaments required greater ββTm versus ααTm concentrations, while at full activation (pCa 5.0) no effect was observed on maximal thin filament motility speed. We infer from these observations that high contents of ββTm in skeletal muscle result in partial Ca(2+)-independent activation of thin filaments at rest, and longer-lasting and less complete tension relaxation following Ca(2+) removal.
Collapse
|
34
|
Castiglioni C, Cassandrini D, Fattori F, Bellacchio E, D'Amico A, Alvarez K, Gejman R, Diaz J, Santorelli FM, Romero NB, Bertini E, Bevilacqua JA. Muscle magnetic resonance imaging and histopathology in ACTA1-related congenital nemaline myopathy. Muscle Nerve 2014; 50:1011-6. [PMID: 25088345 DOI: 10.1002/mus.24353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2014] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Muscle biopsy is usually diagnostic in nemaline myopathy (NM), but some patients may show nonspecific findings, leading to pitfalls in diagnosis. Muscle MRI is a helpful complementary tool. METHODS We assessed the clinical, histopathological, MRI, and molecular findings in a 19-year-old patient with NM in whom 2 muscle biopsies with ultrastructural examination showed no nemaline bodies. We analyzed the degree and pattern of muscle MRI involvement of the entire body, including the tongue and pectoral muscles. RESULTS Muscle MRI abnormalities in sartorius, adductor magnus, and anterior compartment muscles of the leg suggested NM. A previously unreported fatty infiltration of the tongue was found. A third biopsy after the muscle MRI showed scant nemaline bodies. A novel heterozygous de novo ACTA1 c.611C>T/p.Thr204Ile mutation was detected. CONCLUSIONS We highlight the contribution of muscle imaging in addressing the genetic diagnosis of ACTA1-related NM.
Collapse
Affiliation(s)
- Claudia Castiglioni
- Unidad de Neurología. Departamento de Pediatría, Clínica las Condes, Lo Fontecilla 441, Las Condes, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Golbus JR, Puckelwartz MJ, Dellefave-Castillo L, Fahrenbach JP, Nelakuditi V, Pesce LL, Pytel P, McNally EM. Targeted analysis of whole genome sequence data to diagnose genetic cardiomyopathy. ACTA ACUST UNITED AC 2014; 7:751-759. [PMID: 25179549 DOI: 10.1161/circgenetics.113.000578] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of >50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift toward comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. METHODS AND RESULTS Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused on 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1 to 14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and segregation analysis, where available. Three of 3 previously identified primary mutations were detected by this analysis. In 6 subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and had additional pathological correlation to provide evidence for causality. For 2 subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. CONCLUSIONS These pilot data demonstrate that ≈30 to 40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.
Collapse
Affiliation(s)
- Jessica R Golbus
- Department of Medicine, Department of Human Genetics, Department of Pathology, The Computation Institute, The University of Chicago & Argonne National Laboratories, Chicago, IL
| | - Megan J Puckelwartz
- Department of Medicine, Department of Human Genetics, Department of Pathology, The Computation Institute, The University of Chicago & Argonne National Laboratories, Chicago, IL
| | - Lisa Dellefave-Castillo
- Department of Medicine, Department of Human Genetics, Department of Pathology, The Computation Institute, The University of Chicago & Argonne National Laboratories, Chicago, IL
| | - John P Fahrenbach
- Department of Medicine, Department of Human Genetics, Department of Pathology, The Computation Institute, The University of Chicago & Argonne National Laboratories, Chicago, IL
| | - Viswateja Nelakuditi
- Department of Medicine, Department of Human Genetics, Department of Pathology, The Computation Institute, The University of Chicago & Argonne National Laboratories, Chicago, IL
| | - Lorenzo L Pesce
- Department of Medicine, Department of Human Genetics, Department of Pathology, The Computation Institute, The University of Chicago & Argonne National Laboratories, Chicago, IL
| | - Peter Pytel
- Department of Medicine, Department of Human Genetics, Department of Pathology, The Computation Institute, The University of Chicago & Argonne National Laboratories, Chicago, IL
| | - Elizabeth M McNally
- Department of Medicine, Department of Human Genetics, Department of Pathology, The Computation Institute, The University of Chicago & Argonne National Laboratories, Chicago, IL
| |
Collapse
|
36
|
Marttila M, Lehtokari VL, Marston S, Nyman TA, Barnerias C, Beggs AH, Bertini E, Ceyhan-Birsoy O, Cintas P, Gerard M, Gilbert-Dussardier B, Hogue JS, Longman C, Eymard B, Frydman M, Kang PB, Klinge L, Kolski H, Lochmüller H, Magy L, Manel V, Mayer M, Mercuri E, North KN, Peudenier-Robert S, Pihko H, Probst FJ, Reisin R, Stewart W, Taratuto AL, de Visser M, Wilichowski E, Winer J, Nowak K, Laing NG, Winder TL, Monnier N, Clarke NF, Pelin K, Grönholm M, Wallgren-Pettersson C. Mutation update and genotype-phenotype correlations of novel and previously described mutations in TPM2 and TPM3 causing congenital myopathies. Hum Mutat 2014; 35:779-90. [PMID: 24692096 DOI: 10.1002/humu.22554] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 03/17/2014] [Indexed: 01/14/2023]
Abstract
Mutations affecting skeletal muscle isoforms of the tropomyosin genes may cause nemaline myopathy, cap myopathy, core-rod myopathy, congenital fiber-type disproportion, distal arthrogryposes, and Escobar syndrome. We correlate the clinical picture of these diseases with novel (19) and previously reported (31) mutations of the TPM2 and TPM3 genes. Included are altogether 93 families: 53 with TPM2 mutations and 40 with TPM3 mutations. Thirty distinct pathogenic variants of TPM2 and 20 of TPM3 have been published or listed in the Leiden Open Variant Database (http://www.dmd.nl/). Most are heterozygous changes associated with autosomal-dominant disease. Patients with TPM2 mutations tended to present with milder symptoms than those with TPM3 mutations, DA being present only in the TPM2 group. Previous studies have shown that five of the mutations in TPM2 and one in TPM3 cause increased Ca(2+) sensitivity resulting in a hypercontractile molecular phenotype. Patients with hypercontractile phenotype more often had contractures of the limb joints (18/19) and jaw (6/19) than those with nonhypercontractile ones (2/22 and 1/22), whereas patients with the non-hypercontractile molecular phenotype more often (19/22) had axial contractures than the hypercontractile group (7/19). Our in silico predictions show that most mutations affect tropomyosin-actin association or tropomyosin head-to-tail binding.
Collapse
Affiliation(s)
- Minttu Marttila
- The Folkhälsan Institute of Genetics and the Department of Medical Genetics, University of Helsinki, Haartman Institute, Biomedicum Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW This article reviews recent advances in the understanding of nemaline myopathy, with a focus on the genetic basis of the disorder, histology, and pathogenesis. RECENT FINDINGS Pathogenic mutations have been identified in eight genes and there is evidence of further genetic heterogeneity in nemaline myopathy. Clinical presentation, histological features on skeletal muscle biopsy, and pattern of changes on muscle MRI may guide prioritization of molecular genetic testing. It is anticipated that use of new technologies such as whole exome sequencing and comparative genomic hybridization will increase the number of genes associated with nemaline myopathy and the proportion of patients in whom the genetic basis of the disorder is identified. Single fiber studies and animal models continue to add to understanding of the pathogenesis of this disorder. Current management focuses on supportive treatment; however, encouraging advances are emerging for the future. SUMMARY Recent advances in understanding of nemaline myopathy have important implications for clinical practice and for genetic diagnosis of patients with nemaline myopathy.
Collapse
|
38
|
Abdul-Hussein S, Rahl K, Moslemi AR, Tajsharghi H. Phenotypes of myopathy-related beta-tropomyosin mutants in human and mouse tissue cultures. PLoS One 2013; 8:e72396. [PMID: 24039757 PMCID: PMC3769345 DOI: 10.1371/journal.pone.0072396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 07/11/2013] [Indexed: 02/03/2023] Open
Abstract
Mutations in TPM2 result in a variety of myopathies characterised by variable clinical and morphological features. We used human and mouse cultured cells to study the effects of β-TM mutants. The mutants induced a range of phenotypes in human myoblasts, which generally changed upon differentiation to myotubes. Human myotubes transfected with the E41K-β-TM(EGFP) mutant showed perinuclear aggregates. The G53ins-β-TM(EGFP) mutant tended to accumulate in myoblasts but was incorporated into filamentous structures of myotubes. The K49del-β-TM(EGFP) and E122K-β-TM(EGFP) mutants induced the formation of rod-like structures in human cells. The N202K-β-TM(EGFP) mutant failed to integrate into thin filaments and formed accumulations in myotubes. The accumulation of mutant β-TM(EGFP) in the perinuclear and peripheral areas of the cells was the striking feature in C2C12. We demonstrated that human tissue culture is a suitable system for studying the early stages of altered myofibrilogenesis and morphological changes linked to myopathy-related β-TM mutants. In addition, the histopathological phenotype associated with expression of the various mutant proteins depends on the cell type and varies with the maturation of the muscle cell. Further, the phenotype is a combinatorial effect of the specific amino acid change and the temporal expression of the mutant protein.
Collapse
Affiliation(s)
| | - Karin Rahl
- Department of Pathology, University of Gothenburg, Gothenburg, Sweden
| | - Ali-Reza Moslemi
- Department of Pathology, University of Gothenburg, Gothenburg, Sweden
| | - Homa Tajsharghi
- Department of Pathology, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical and Medical Genetics, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
39
|
Janco M, Suphamungmee W, Li X, Lehman W, Lehrer SS, Geeves MA. Polymorphism in tropomyosin structure and function. J Muscle Res Cell Motil 2013; 34:177-87. [PMID: 23832280 PMCID: PMC4509547 DOI: 10.1007/s10974-013-9353-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/28/2013] [Indexed: 12/18/2022]
Abstract
Tropomyosins (Tm) in humans are expressed from four distinct genes and by alternate splicing >40 different Tm polypeptide chains can be made. The functional Tm unit is a dimer of two parallel polypeptide chains and these can be assembled from identical (homodimer) or different (heterodimer) polypeptide chains provided both chains are of the same length. Since most cells express multiple isoforms of Tm, the number of different homo and heterodimers that can be assembled becomes very large. We review the mechanism of dimer assembly and how preferential assembly of some heterodimers is driven by thermodynamic stability. We examine how in vitro studies can reveal functional differences between Tm homo and heterodimers (stability, actin affinity, flexibility) and the implication for how there could be selection of Tm isomers in the assembly on to an actin filament. The role of Tm heterodimers becomes more complex when mutations in Tm are considered, such as those associated with cardiomyopathies, since mutations can appear in only one of the chains.
Collapse
Affiliation(s)
- Miro Janco
- School of Biosciences, University of Kent, Canterbury, Kent, UK
| | | | | | | | | | | |
Collapse
|
40
|
Marston S, Memo M, Messer A, Papadaki M, Nowak K, McNamara E, Ong R, El-Mezgueldi M, Li X, Lehman W. Mutations in repeating structural motifs of tropomyosin cause gain of function in skeletal muscle myopathy patients. Hum Mol Genet 2013; 22:4978-87. [PMID: 23886664 DOI: 10.1093/hmg/ddt345] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The congenital myopathies include a wide spectrum of clinically, histologically and genetically variable neuromuscular disorders many of which are caused by mutations in genes for sarcomeric proteins. Some congenital myopathy patients have a hypercontractile phenotype. Recent functional studies demonstrated that ACTA1 K326N and TPM2 ΔK7 mutations were associated with hypercontractility that could be explained by increased myofibrillar Ca(2+) sensitivity. A recent structure of the complex of actin and tropomyosin in the relaxed state showed that both these mutations are located in the actin-tropomyosin interface. Tropomyosin is an elongated molecule with a 7-fold repeated motif of around 40 amino acids corresponding to the 7 actin monomers it interacts with. Actin binds to tropomyosin electrostatically at two points, through Asp25 and through a cluster of amino acids that includes Lys326, mutated in the gain-of-function mutation. Asp25 interacts with tropomyosin K6, next to K7 that was mutated in the other gain-of-function mutation. We identified four tropomyosin motifs interacting with Asp25 (K6-K7, K48-K49, R90-R91 and R167-K168) and three E-E/D-K/R motifs interacting with Lys326 (E139, E181 and E218), and we predicted that the known skeletal myopathy mutations ΔK7, ΔK49, R91G, ΔE139, K168E and E181K would cause a gain of function. Tests by an in vitro motility assay confirmed that these mutations increased Ca(2+) sensitivity, while mutations not in these motifs (R167H, R244G) decreased Ca(2+) sensitivity. The work reported here explains the molecular mechanism for 6 out of 49 known disease-causing mutations in the TPM2 and TPM3 genes, derived from structural data of the actin-tropomyosin interface.
Collapse
|
41
|
Memo M, Marston S. Skeletal muscle myopathy mutations at the actin tropomyosin interface that cause gain- or loss-of-function. J Muscle Res Cell Motil 2013; 34:165-9. [PMID: 23719967 DOI: 10.1007/s10974-013-9344-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/09/2013] [Indexed: 12/31/2022]
Abstract
It is well known that the regulation of muscle contraction relies on the ability of tropomyosin to switch between different positions on the actin filament, but it is still not well understood which amino acids are directly involved in the different states of the interaction. Recently the structure of the actin-tropomyosin interface has been determined both in the absence and presence of myosin heads. Interestingly, a number of mutations in tropomyosin that are associated with skeletal muscle myopathy are located within this interface. We first give an overview of the functional effect of mutations on amino acids that are involved in the contact with actin asp25, which represent a pattern repeated seven times along tropomyosin. It is explained how some of these amino acids (R167 and R244) which are thought to be involved in a salt bridge contact with actin in the closed state can produce a loss-of-function when mutated, while other positively charged tropomyosin amino acids positioned on the downstream side of the contact (K7, K49, R91, K168) can produce a gain-of-function when mutated. We then consider mutations of amino acids involved in another salt bridge contact between the two proteins in the closed state, actin K326N (which binds on five different points of tropomyosin) and tropomyosin ∆E139 and E181K, and we report how all of these mutations produce a gain-of-function. These observations can be important to validate the proposed structures and to understand more deeply how mutations affect the function of these proteins and to enable prediction of their outcomes.
Collapse
|
42
|
Ko JM, Choi IH, Baek GH, Kim KW. First Korean family with a mutation in TPM2 associated with Sheldon-Hall syndrome. J Korean Med Sci 2013; 28:780-3. [PMID: 23678273 PMCID: PMC3653094 DOI: 10.3346/jkms.2013.28.5.780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/31/2013] [Indexed: 01/22/2023] Open
Abstract
Sheldon-Hall syndrome (SHS) is a rare autosomal dominant, inherited arthrogryposis syndrome characterized by multiple congenital contractures of the distal limbs. To date, four genes that encode the skeletal muscle fiber complex have been confirmed as the causative genes. Mutations in MYH3 have been identified most frequently and few cases of SHS caused by TPM2 mutations have been reported worldwide. This report describes, for the first time, a Korean family with two generations of SHS resulting from a rare TPM2 mutation, p.R133W. The affected mother and daughter manifested typical facial features of SHS including a triangular face with downslanting palpebral fissures, small mouth, high arched palate, and prominent nasolabial folds, and showed camptodactyly of fingers and deformities of feet with congenital vertical tali. Generalized myopathy with relative sparing of the slow-twitch muscle fibers was also revealed by electromyography in the affected mother.
Collapse
Affiliation(s)
- Jung Min Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea.
| | | | | | | |
Collapse
|
43
|
Davidson AE, Siddiqui FM, Lopez MA, Lunt P, Carlson HA, Moore BE, Love S, Born DE, Roper H, Majumdar A, Jayadev S, Underhill HR, Smith CO, von der Hagen M, Hubner A, Jardine P, Merrison A, Curtis E, Cullup T, Jungbluth H, Cox MO, Winder TL, Abdel Salam H, Li JZ, Moore SA, Dowling JJ. Novel deletion of lysine 7 expands the clinical, histopathological and genetic spectrum of TPM2-related myopathies. ACTA ACUST UNITED AC 2013; 136:508-21. [PMID: 23413262 DOI: 10.1093/brain/aws344] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The β-tropomyosin gene encodes a component of the sarcomeric thin filament. Rod-shaped dimers of tropomyosin regulate actin-myosin interactions and β-tropomyosin mutations have been associated with nemaline myopathy, cap myopathy, Escobar syndrome and distal arthrogryposis types 1A and 2B. In this study, we expand the allelic spectrum of β-tropomyosin-related myopathies through the identification of a novel β-tropomyosin mutation in two clinical contexts not previously associated with β-tropomyosin. The first clinical phenotype is core-rod myopathy, with a β-tropomyosin mutation uncovered by whole exome sequencing in a family with autosomal dominant distal myopathy and muscle biopsy features of both minicores and nemaline rods. The second phenotype, observed in four unrelated families, is autosomal dominant trismus-pseudocamptodactyly syndrome (distal arthrogryposis type 7; previously associated exclusively with myosin heavy chain 8 mutations). In all four families, the mutation identified was a novel 3-bp in-frame deletion (c.20_22del) that results in deletion of a conserved lysine at the seventh amino acid position (p.K7del). This is the first mutation identified in the extreme N-terminus of β-tropomyosin. To understand the potential pathogenic mechanism(s) underlying this mutation, we performed both computational analysis and in vivo modelling. Our theoretical model predicts that the mutation disrupts the N-terminus of the α-helices of dimeric β-tropomyosin, a change predicted to alter protein-protein binding between β-tropomyosin and other molecules and to disturb head-to-tail polymerization of β-tropomyosin dimers. To create an in vivo model, we expressed wild-type or p.K7del β-tropomyosin in the developing zebrafish. p.K7del β-tropomyosin fails to localize properly within the thin filament compartment and its expression alters sarcomere length, suggesting that the mutation interferes with head-to-tail β-tropomyosin polymerization and with overall sarcomeric structure. We describe a novel β-tropomyosin mutation, two clinical-histopathological phenotypes not previously associated with β-tropomyosin and pathogenic data from the first animal model of β-tropomyosin-related myopathies.
Collapse
Affiliation(s)
- Ann E Davidson
- Department of Paediatrics, University of Michigan Medical Centre, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mokbel N, Ilkovski B, Kreissl M, Memo M, Jeffries CM, Marttila M, Lehtokari VL, Lemola E, Grönholm M, Yang N, Menard D, Marcorelles P, Echaniz-Laguna A, Reimann J, Vainzof M, Monnier N, Ravenscroft G, McNamara E, Nowak KJ, Laing NG, Wallgren-Pettersson C, Trewhella J, Marston S, Ottenheijm C, North KN, Clarke NF. K7del is a common TPM2 gene mutation associated with nemaline myopathy and raised myofibre calcium sensitivity. ACTA ACUST UNITED AC 2013; 136:494-507. [PMID: 23378224 DOI: 10.1093/brain/aws348] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutations in the TPM2 gene, which encodes β-tropomyosin, are an established cause of several congenital skeletal myopathies and distal arthrogryposis. We have identified a TPM2 mutation, p.K7del, in five unrelated families with nemaline myopathy and a consistent distinctive clinical phenotype. Patients develop large joint contractures during childhood, followed by slowly progressive skeletal muscle weakness during adulthood. The TPM2 p.K7del mutation results in the loss of a highly conserved lysine residue near the N-terminus of β-tropomyosin, which is predicted to disrupt head-to-tail polymerization of tropomyosin. Recombinant K7del-β-tropomyosin incorporates poorly into sarcomeres in C2C12 myotubes and has a reduced affinity for actin. Two-dimensional gel electrophoresis of patient muscle and primary patient cultured myotubes showed that mutant protein is expressed but incorporates poorly into sarcomeres and likely accumulates in nemaline rods. In vitro studies using recombinant K7del-β-tropomyosin and force measurements from single dissected patient myofibres showed increased myofilament calcium sensitivity. Together these data indicate that p.K7del is a common recurrent TPM2 mutation associated with mild nemaline myopathy. The p.K7del mutation likely disrupts head-to-tail polymerization of tropomyosin, which impairs incorporation into sarcomeres and also affects the equilibrium of the troponin/tropomyosin-dependent calcium switch of muscle. Joint contractures may stem from chronic muscle hypercontraction due to increased myofibrillar calcium sensitivity while declining strength in adulthood likely arises from other mechanisms, such as myofibre decompensation and fatty infiltration. These results suggest that patients may benefit from therapies that reduce skeletal muscle calcium sensitivity, and we highlight late muscle decompensation as an important cause of morbidity.
Collapse
Affiliation(s)
- Nancy Mokbel
- Institute for Neuroscience and Muscle Research, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|