1
|
Haliloğlu G, Ravenscroft G. The evolving genetic landscape of neuromuscular fetal akinesias. J Neuromuscul Dis 2025:22143602251339357. [PMID: 40356365 DOI: 10.1177/22143602251339357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Fetal akinesia is a broad term used to describe absent (or reduced, fetal hypokinesia) fetal movements, and it can be detected as early as the first trimester. Depending on the developmental age of onset, anything that interferes or limits the normal in utero movement results in a range of deformations affecting multiple organs and organ systems. Arthrogryposis, also termed arthrogryposis multiplex congenita (AMC), is a definitive terminology for multiple congenital contractures, with two major subgroups; amyoplasia and distal arthrogryposis (DA). The spectrum includes fetal akinesia deformation sequence (FADS), lethal congenital contracture syndrome (LCCS), and multiple pterygium syndrome (MPS). Variants in more than >400 genes are known to cause AMC, and it is increasingly recognized that variants in genes encoding critical components (including ventral horn cell, peripheral nerve, neuromuscular junction, skeletal muscle) of the extended motor unit underlie ∼40% of presentations. With unbiased screening approaches, including sequencing of comprehensive disease gene panels, exomes and genomes, novel genes and phenotypic expansions associated with known human disease genes have been uncovered in the setting of fetal akinesia. Autosomal-recessive titinopathy is the most frequent genetic cause of AMC. Accurate genetic diagnosis is critical to genetic counseling and informing family planning. Around 50% remain undiagnosed following comprehensive prenatal, diagnostic or research screening. Comprehensive phenotyping and periodic reanalysis with appropriate genomic tools are valuable strategies when faced with initial inconclusive results. There are likely many novel causative genes still to identify, which will inform our understanding of the molecular pathways underlying early human development and in utero movement.
Collapse
Affiliation(s)
- Göknur Haliloğlu
- Division of Pediatric Neurology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gianina Ravenscroft
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Rare Disease Genetics and Functional Genomics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Lefèvre CR, Collardeau-Frachon S, Streichenberger N, Berenguer-Martin S, Clémenson A, Massardier J, Prieur F, Laurichesse H, Laffargue F, Acquaviva-Bourdain C, Froissart R, Pettazzoni M. Severe neuromuscular forms of glycogen storage disease type IV: Histological, clinical, biochemical, and molecular findings in a large French case series. J Inherit Metab Dis 2024; 47:255-269. [PMID: 38012812 DOI: 10.1002/jimd.12692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Glycogen storage disease type IV (GSD IV), also called Andersen disease, or amylopectinosis, is a highly heterogeneous autosomal recessive disorder caused by a glycogen branching enzyme (GBE, 1,4-alpha-glucan branching enzyme) deficiency secondary to pathogenic variants on GBE1 gene. The incidence is evaluated to 1:600 000 to 1:800 000 of live births. GBE deficiency leads to an excessive deposition of structurally abnormal, amylopectin-like glycogen in affected tissues (liver, skeletal muscle, heart, nervous system, etc.). Diagnosis is often guided by histological findings and confirmed by GBE activity deficiency and molecular studies. Severe neuromuscular forms of GSD IV are very rare and of disastrous prognosis. Identification and characterization of these forms are important for genetic counseling for further pregnancies. Here we describe clinical, histological, enzymatic, and molecular findings of 10 cases from 8 families, the largest case series reported so far, of severe neuromuscular forms of GSD IV along with a literature review. Main antenatal features are: fetal akinesia deformation sequence or arthrogryposis/joint contractures often associated with muscle atrophy, decreased fetal movement, cystic hygroma, and/or hydrops fetalis. If pregnancy is carried to term, the main clinical features observed at birth are severe hypotonia and/or muscle atrophy, with the need for mechanical ventilation, cardiomyopathy, retrognathism, and arthrogryposis. All our patients were stillborn or died within 1 month of life. In addition, we identified five novel GBE1 variants.
Collapse
Affiliation(s)
- Charles R Lefèvre
- Department of Biochemistry and Molecular Biology, Hospices Civils de Lyon, Bron, France
- Department of Biochemistry and Toxicology, University Hospital, Rennes, France
| | - Sophie Collardeau-Frachon
- Department of Pathology, Hospices Civils de Lyon and Soffoet (Société Française de Fœtopathologie), Bron, France
| | - Nathalie Streichenberger
- Department of Pathology, Hospices Civils de Lyon - Université Claude Bernard Lyon1 - Institut NeuroMyogène CNRS UMR 5261 - INSERM U1315, France
| | | | - Alix Clémenson
- Department of Pathology, University Hospital, Saint-Etienne, France
| | - Jérôme Massardier
- Multidisciplinary Center for Prenatal Diagnosis, Department of Obstetrics and Gynecology, Hospices Civils de Lyon, Femme Mere Enfant University Hospital, Bron, France
| | - Fabienne Prieur
- Department of Clinical, Chromosomal and Molecular Genetics, University Hospital, Saint-Etienne, France
| | | | - Fanny Laffargue
- Department of Genetics, University Hospital, Clermont-Ferrand, France
| | | | - Roseline Froissart
- Department of Biochemistry and Molecular Biology, Hospices Civils de Lyon, Bron, France
| | - Magali Pettazzoni
- Department of Biochemistry and Molecular Biology, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
3
|
Oliwa A, Langlands G, Sarkozy A, Munot P, Stewart W, Phadke R, Topf A, Straub V, Duncan R, Wigley R, Petty R, Longman C, Farrugia ME. Glycogen storage disease type IV without detectable polyglucosan bodies: importance of broad gene panels. Neuromuscul Disord 2023; 33:98-105. [PMID: 37598009 DOI: 10.1016/j.nmd.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/21/2023]
Abstract
Glycogen storage disease type IV (GSD IV) is caused by mutations in the glycogen branching enzyme 1 (GBE1) gene and is characterized by accumulation of polyglucosan bodies in liver, muscle and other tissues. We report three cases with neuromuscular forms of GSD IV, none of whom had polyglucosan bodies on muscle biopsy. The first case had no neonatal problems and presented with delayed walking. The other cases presented at birth: one with arthrogryposis, hypotonia, and respiratory distress, the other with talipes and feeding problems. All developed a similar pattern of axial weakness, proximal upper limb weakness and scapular winging, and much milder proximal lower limb weakness. Our cases expand the phenotypic spectrum of neuromuscular GSD IV, highlight that congenital myopathy and limb girdle weakness can be caused by mutations in GBE1, and emphasize that GSD IV should be considered even in the absence of characteristic polyglucosan bodies on muscle biopsy.
Collapse
Affiliation(s)
- Agata Oliwa
- Undergraduate Medical School, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Gavin Langlands
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Anna Sarkozy
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Pinki Munot
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Willie Stewart
- Department of Neuropathology, Laboratory Medicine Building, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Rahul Phadke
- Department of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Ana Topf
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Roderick Duncan
- Department of Orthopaedics, Royal Hospital for Sick Children, Glasgow, G51 4TF, UK
| | - Ralph Wigley
- Department of Chemical Pathology, Great Ormond Street Hospital Trust, London, WC1N 3JH, UK
| | - Richard Petty
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Cheryl Longman
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Maria Elena Farrugia
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| |
Collapse
|
4
|
Bezirganoglu H, Adanur Saglam K. An Unusual Case of Neonatal Hypotonia and Femur Fracture: Neuromuscular Variant of Glycogen Storage Disease Type IV. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1375. [PMID: 37628374 PMCID: PMC10453659 DOI: 10.3390/children10081375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Glycogen storage disease type IV (GSD IV) (OMIM #232500) is an autosomal recessive disorder caused by deficiency of the glycogen-branching enzyme. Here, we report a patient presenting with prematurity and severe hypotonia resulting from a complicated pregnancy with polyhydramnios. During her stay in the neonatal unit, the infant remained dependent on a ventilator, and her movements were mostly absent, except for occasional small movements of her fingers. A spontaneous fracture of femur shaft occurred in the postnatal fourth week. Whole-exome sequencing of DNA from the patient revealed a homozygous missense variant in the GBE1 gene (c.1693C>T, p.Arg565Trp). The variation detected in the index case was also confirmed by Sanger sequencing in the patient and respective parents. This study showed that the neuromuscular subtypes of GSD-IV should be considered as a possible differential diagnosis in severe neonatal hypotonia cases.
Collapse
Affiliation(s)
- Handan Bezirganoglu
- Division of Neonatology, Trabzon Kanuni Training and Research Hospital, Trabzon 61080, Türkiye
| | - Kubra Adanur Saglam
- Department of Medical Genetics, Karadeniz Technical University Medical Faculty, Trabzon 61080, Türkiye
| |
Collapse
|
5
|
Oddsson A, Sulem P, Sveinbjornsson G, Arnadottir GA, Steinthorsdottir V, Halldorsson GH, Atlason BA, Oskarsson GR, Helgason H, Nielsen HS, Westergaard D, Karjalainen JM, Katrinardottir H, Fridriksdottir R, Jensson BO, Tragante V, Ferkingstad E, Jonsson H, Gudjonsson SA, Beyter D, Moore KHS, Thordardottir HB, Kristmundsdottir S, Stefansson OA, Rantapää-Dahlqvist S, Sonderby IE, Didriksen M, Stridh P, Haavik J, Tryggvadottir L, Frei O, Walters GB, Kockum I, Hjalgrim H, Olafsdottir TA, Selbaek G, Nyegaard M, Erikstrup C, Brodersen T, Saevarsdottir S, Olsson T, Nielsen KR, Haraldsson A, Bruun MT, Hansen TF, Steingrimsdottir T, Jacobsen RL, Lie RT, Djurovic S, Alfredsson L, Lopez de Lapuente Portilla A, Brunak S, Melsted P, Halldorsson BV, Saemundsdottir J, Magnusson OT, Padyukov L, Banasik K, Rafnar T, Askling J, Klareskog L, Pedersen OB, Masson G, Havdahl A, Nilsson B, Andreassen OA, Daly M, Ostrowski SR, Jonsdottir I, Stefansson H, Holm H, Helgason A, Thorsteinsdottir U, Stefansson K, Gudbjartsson DF. Deficit of homozygosity among 1.52 million individuals and genetic causes of recessive lethality. Nat Commun 2023; 14:3453. [PMID: 37301908 PMCID: PMC10257723 DOI: 10.1038/s41467-023-38951-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Genotypes causing pregnancy loss and perinatal mortality are depleted among living individuals and are therefore difficult to find. To explore genetic causes of recessive lethality, we searched for sequence variants with deficit of homozygosity among 1.52 million individuals from six European populations. In this study, we identified 25 genes harboring protein-altering sequence variants with a strong deficit of homozygosity (10% or less of predicted homozygotes). Sequence variants in 12 of the genes cause Mendelian disease under a recessive mode of inheritance, two under a dominant mode, but variants in the remaining 11 have not been reported to cause disease. Sequence variants with a strong deficit of homozygosity are over-represented among genes essential for growth of human cell lines and genes orthologous to mouse genes known to affect viability. The function of these genes gives insight into the genetics of intrauterine lethality. We also identified 1077 genes with homozygous predicted loss-of-function genotypes not previously described, bringing the total set of genes completely knocked out in humans to 4785.
Collapse
Affiliation(s)
| | | | | | - Gudny A Arnadottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | - Henriette Svarre Nielsen
- Deptartment of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - David Westergaard
- Deptartment of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Methods and Analysis, Statistics Denmark, Copenhagen, Denmark
| | - Juha M Karjalainen
- Institute for Molecular Medicine, Finland, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | - Kristjan H S Moore
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Helga B Thordardottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Ida Elken Sonderby
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- NORMENT Centre, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | - Maria Didriksen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pernilla Stridh
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center of Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Bergen Center of Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Laufey Tryggvadottir
- Icelandic Cancer Registry, Icelandic Cancer Society, Reykjavik, Iceland
- Faculty of Medicine, BMC, Laeknagardur, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Oleksandr Frei
- NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | | | - Ingrid Kockum
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center of Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Hjalgrim
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Geir Selbaek
- Norwegian National Centre of Ageing and Health, Vestfold Hospital Trust, Tonsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mette Nyegaard
- Deptartment of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thorsten Brodersen
- Department of Clinical Immunology, Zealand University Hospital, Koge, Denmark
| | - Saedis Saevarsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center of Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Kaspar Rene Nielsen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Asgeir Haraldsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Children's Hospital Iceland, Landspitali University Hospital, Reykjavik, Iceland
| | - Mie Topholm Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Thomas Folkmann Hansen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Thora Steingrimsdottir
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Rikke Louise Jacobsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- NORMENT Centre, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Soren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pall Melsted
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | | | | | - Leonid Padyukov
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Johan Askling
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lars Klareskog
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ole Birger Pedersen
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Koge, Denmark
| | | | - Alexandra Havdahl
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Bjorn Nilsson
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund, Sweden
| | - Ole A Andreassen
- NORMENT Centre, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Mark Daly
- Institute for Molecular Medicine, Finland, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Deptartment of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Hilma Holm
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | - Agnar Helgason
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| |
Collapse
|
6
|
Filges I, Jünemann S, Viehweger E, Tercanli S. Fetal arthrogryposis-what do we tell the prospective parents? Prenat Diagn 2023; 43:798-805. [PMID: 36588183 DOI: 10.1002/pd.6299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/11/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Arthrogryposis, also termed arthrogryposis multiplex congenita, is a descriptive term for conditions with multiple congenital contractures (MCC). The etiology is extremely heterogeneous. More than 400 specific disorders have been identified so far, which may lead to or are associated with MCC and/or fetal hypo- and akinesia as a clinical sign. With improved sensitivity of prenatal ultrasound and expanding prenatal diagnostic options, clinicians are tasked with providing early detection in order to counsel the prospective parents regarding further prenatal diagnostic as well as management options. We summarize the most important knowledge to raise awareness for early detection in pregnancy. We review essential points for counseling when MCC is detected in order to provide answers to common questions, which, however, cannot replace interdisciplinary expert opinion in the individual case.
Collapse
Affiliation(s)
- Isabel Filges
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stephanie Jünemann
- Pediatric Neurology and Developmental Medicine, University Children's Hospital Basel UKBB and University of Basel, Basel, Switzerland
| | - Elke Viehweger
- Pediatric Orthopedics, Neuro-Orthopedics and Movement Analysis Center, University Children's Hospital Basel UKBB and University of Basel, Basel, Switzerland
| | - Sevgi Tercanli
- Center for Prenatal Ultrasound, Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Malik R, Beaufort N, Frerich S, Gesierich B, Georgakis MK, Rannikmäe K, Ferguson AC, Haffner C, Traylor M, Ehrmann M, Sudlow CLM, Dichgans M. Whole-exome sequencing reveals a role of HTRA1 and EGFL8 in brain white matter hyperintensities. Brain 2021; 144:2670-2682. [PMID: 34626176 PMCID: PMC8557338 DOI: 10.1093/brain/awab253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/01/2021] [Accepted: 06/19/2021] [Indexed: 11/13/2022] Open
Abstract
White matter hyperintensities (WMH) are among the most common radiological abnormalities in the ageing population and an established risk factor for stroke and dementia. While common variant association studies have revealed multiple genetic loci with an influence on their volume, the contribution of rare variants to the WMH burden in the general population remains largely unexplored. We conducted a comprehensive analysis of this burden in the UK Biobank using publicly available whole-exome sequencing data (n up to 17 830) and found a splice-site variant in GBE1, encoding 1,4-alpha-glucan branching enzyme 1, to be associated with lower white matter burden on an exome-wide level [c.691+2T>C, β = -0.74, standard error (SE) = 0.13, P = 9.7 × 10-9]. Applying whole-exome gene-based burden tests, we found damaging missense and loss-of-function variants in HTRA1 (frequency of 1 in 275 in the UK Biobank population) to associate with an increased WMH volume (P = 5.5 × 10-6, false discovery rate = 0.04). HTRA1 encodes a secreted serine protease implicated in familial forms of small vessel disease. Domain-specific burden tests revealed that the association with WMH volume was restricted to rare variants in the protease domain (amino acids 204-364; β = 0.79, SE = 0.14, P = 9.4 × 10-8). The frequency of such variants in the UK Biobank population was 1 in 450. The WMH volume was brought forward by ∼11 years in carriers of a rare protease domain variant. A comparison with the effect size of established risk factors for WMH burden revealed that the presence of a rare variant in the HTRA1 protease domain corresponded to a larger effect than meeting the criteria for hypertension (β = 0.26, SE = 0.02, P = 2.9 × 10-59) or being in the upper 99.8% percentile of the distribution of a polygenic risk score based on common genetic variants (β = 0.44, SE = 0.14, P = 0.002). In biochemical experiments, most (6/9) of the identified protease domain variants resulted in markedly reduced protease activity. We further found EGFL8, which showed suggestive evidence for association with WMH volume (P = 1.5 × 10-4, false discovery rate = 0.22) in gene burden tests, to be a direct substrate of HTRA1 and to be preferentially expressed in cerebral arterioles and arteries. In a phenome-wide association study mapping ICD-10 diagnoses to 741 standardized Phecodes, rare variants in the HTRA1 protease domain were associated with multiple neurological and non-neurological conditions including migraine with aura (odds ratio = 12.24, 95%CI: 2.54-35.25; P = 8.3 × 10-5]. Collectively, these findings highlight an important role of rare genetic variation and the HTRA1 protease in determining WMH burden in the general population.
Collapse
Affiliation(s)
- Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Nathalie Beaufort
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Simon Frerich
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Benno Gesierich
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Marios K Georgakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Kristiina Rannikmäe
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh EH16 4TL, UK
| | - Amy C Ferguson
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh EH16 4TL, UK
| | - Christof Haffner
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Matthew Traylor
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
- The Barts Heart Centre and NIHR Barts Biomedical Research Centre - Barts Health NHS Trust, The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen 45141, Germany
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Cathie L M Sudlow
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh EH16 4TL, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4TL, UK
- Health Data Research UK Scotland, University of Edinburgh, Edinburgh EH16 4TL, UK
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology, Munich 81377, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich 81377, Germany
| |
Collapse
|
8
|
Dahan-Oliel N, Dieterich K, Rauch F, Bardai G, Blondell TN, Gustafson AG, Hamdy R, Latypova X, Shazand K, Giampietro PF, van Bosse H. The Clinical and Genotypic Spectrum of Scoliosis in Multiple Pterygium Syndrome: A Case Series on 12 Children. Genes (Basel) 2021; 12:genes12081220. [PMID: 34440395 PMCID: PMC8391526 DOI: 10.3390/genes12081220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Multiple pterygium syndrome (MPS) is a genetically heterogeneous rare form of arthrogryposis multiplex congenita characterized by joint contractures and webbing or pterygia, as well as distinctive facial features related to diminished fetal movement. It is divided into prenatally lethal (LMPS, MIM253290) and nonlethal (Escobar variant MPS, MIM 265000) types. Developmental spine deformities are common, may present early and progress rapidly, requiring regular fo llow-up and orthopedic management. Methods: Retrospective chart review and prospective data collection were conducted at three hospital centers. Molecular diagnosis was confirmed with whole exome or whole genome sequencing. Results: This case series describes the clinical features and scoliosis treatment on 12 patients from 11 unrelated families. A molecular diagnosis was confirmed in seven; two with MYH3 variants and five with CHRNG. Scoliosis was present in all but our youngest patient. The remaining 11 patients spanned the spectrum between mild (curve ≤ 25°) and malignant scoliosis (≥50° curve before 4 years of age); the two patients with MYH3 mutations presented with malignant scoliosis. Bracing and serial spine casting appear to be beneficial for a few years; non-fusion spinal instrumentation may be needed to modulate more severe curves during growth and spontaneous spine fusions may occur in those cases. Conclusions: Molecular diagnosis and careful monitoring of the spine is needed in children with MPS.
Collapse
Affiliation(s)
- Noémi Dahan-Oliel
- Shriners Hospitals for Children, Montreal, QC H4A 0A9, Canada; (F.R.); (G.B.); (R.H.)
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
- Correspondence: (N.D.-O.); (H.v.B.)
| | - Klaus Dieterich
- Inserm, U1216, Grenoble Institut Neurosciences, Génétique médicale, Université Grenoble Alpes, CHU Grenoble Alpes, 38000 Grenoble, France; (K.D.); (X.L.)
| | - Frank Rauch
- Shriners Hospitals for Children, Montreal, QC H4A 0A9, Canada; (F.R.); (G.B.); (R.H.)
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| | - Ghalib Bardai
- Shriners Hospitals for Children, Montreal, QC H4A 0A9, Canada; (F.R.); (G.B.); (R.H.)
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| | | | | | - Reggie Hamdy
- Shriners Hospitals for Children, Montreal, QC H4A 0A9, Canada; (F.R.); (G.B.); (R.H.)
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| | - Xenia Latypova
- Inserm, U1216, Grenoble Institut Neurosciences, Génétique médicale, Université Grenoble Alpes, CHU Grenoble Alpes, 38000 Grenoble, France; (K.D.); (X.L.)
| | - Kamran Shazand
- Shriners Hospitals for Children Headquarters, Tampa, FL 33607, USA; (A.G.G.); (K.S.)
| | | | - Harold van Bosse
- Shriners Hospitals for Children, Philadelphia, PA 19140, USA;
- Correspondence: (N.D.-O.); (H.v.B.)
| |
Collapse
|
9
|
Liu Z, Wang Y, Yang F, Yang Q, Mo X, Burstein E, Jia D, Cai XT, Tu Y. GMPPB-congenital disorders of glycosylation associate with decreased enzymatic activity of GMPPB. MOLECULAR BIOMEDICINE 2021; 2:13. [PMID: 35006422 PMCID: PMC8607393 DOI: 10.1186/s43556-021-00027-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
The congenital disorders of glycosylation (CDG) are a family of metabolic diseases in which glycosylation of proteins or lipids is deficient. GDP-mannose pyrophosphorylase B (GMPPB) mutations lead to CDG, characterized by neurological and muscular defects. However, the genotype-phenotype correlation remains elusive, limiting our understanding of the underlying mechanism and development of therapeutic strategy. Here, we report a case of an individual presenting congenital muscular dystrophy with cerebellar involvement, who presents two heterozygous GMPPB mutations (V111G and G214S). The V111G mutation significantly decreases GMPPB’s enzymatic activity. By measuring enzymatic activities of 17 reported GMPPB mutants identified in patients diagnosed with GMPPB-CDG, we discover that all tested GMPPB variants exhibit significantly decreased enzymatic activity. Using a zebrafish model, we find that Gmppb is required for neuronal and muscle development, and further demonstrate that enzymatic activity of GMPPB mutants correlates with muscular and neuronal phenotypes in zebrafish. Taken together, our findings discover the importance of GMPPB enzymatic activity for the pathogenesis of GMPPB-CDG, and shed light for the development of additional indicators and therapeutic strategy.
Collapse
Affiliation(s)
- Zhe Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Fan Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Qin Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xianming Mo
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xiao-Tang Cai
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Laquerriere A, Jaber D, Abiusi E, Maluenda J, Mejlachowicz D, Vivanti A, Dieterich K, Stoeva R, Quevarec L, Nolent F, Biancalana V, Latour P, Sternberg D, Capri Y, Verloes A, Bessieres B, Loeuillet L, Attie-Bitach T, Martinovic J, Blesson S, Petit F, Beneteau C, Whalen S, Marguet F, Bouligand J, Héron D, Viot G, Amiel J, Amram D, Bellesme C, Bucourt M, Faivre L, Jouk PS, Khung S, Sigaudy S, Delezoide AL, Goldenberg A, Jacquemont ML, Lambert L, Layet V, Lyonnet S, Munnich A, Van Maldergem L, Piard J, Guimiot F, Landrieu P, Letard P, Pelluard F, Perrin L, Saint-Frison MH, Topaloglu H, Trestard L, Vincent-Delorme C, Amthor H, Barnerias C, Benachi A, Bieth E, Boucher E, Cormier-Daire V, Delahaye-Duriez A, Desguerre I, Eymard B, Francannet C, Grotto S, Lacombe D, Laffargue F, Legendre M, Martin-Coignard D, Mégarbané A, Mercier S, Nizon M, Rigonnot L, Prieur F, Quélin C, Ranjatoelina-Randrianaivo H, Resta N, Toutain A, Verhelst H, Vincent M, Colin E, Fallet-Bianco C, Granier M, Grigorescu R, Saada J, Gonzales M, Guiochon-Mantel A, Bessereau JL, Tawk M, Gut I, Gitiaux C, Melki J. Phenotypic spectrum and genomics of undiagnosed arthrogryposis multiplex congenita. J Med Genet 2021; 59:559-567. [PMID: 33820833 PMCID: PMC9132874 DOI: 10.1136/jmedgenet-2020-107595] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/23/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Arthrogryposis multiplex congenita (AMC) is characterised by congenital joint contractures in two or more body areas. AMC exhibits wide phenotypic and genetic heterogeneity. Our goals were to improve the genetic diagnosis rates of AMC, to evaluate the added value of whole exome sequencing (WES) compared with targeted exome sequencing (TES) and to identify new genes in 315 unrelated undiagnosed AMC families. METHODS Several genomic approaches were used including genetic mapping of disease loci in multiplex or consanguineous families, TES then WES. Sanger sequencing was performed to identify or validate variants. RESULTS We achieved disease gene identification in 52.7% of AMC index patients including nine recently identified genes (CNTNAP1, MAGEL2, ADGRG6, ADCY6, GLDN, LGI4, LMOD3, UNC50 and SCN1A). Moreover, we identified pathogenic variants in ASXL3 and STAC3 expanding the phenotypes associated with these genes. The most frequent cause of AMC was a primary involvement of skeletal muscle (40%) followed by brain (22%). The most frequent mode of inheritance is autosomal recessive (66.3% of patients). In sporadic patients born to non-consanguineous parents (n=60), de novo dominant autosomal or X linked variants were observed in 30 of them (50%). CONCLUSION New genes recently identified in AMC represent 21% of causing genes in our cohort. A high proportion of de novo variants were observed indicating that this mechanism plays a prominent part in this developmental disease. Our data showed the added value of WES when compared with TES due to the larger clinical spectrum of some disease genes than initially described and the identification of novel genes.
Collapse
Affiliation(s)
- Annie Laquerriere
- Normandie Univ, UNIROUEN, INSERM U1245; Rouen University Hospital, Department of Pathology, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Dana Jaber
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France
| | - Emanuela Abiusi
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France.,Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico and Sezione di Medicina Genomica, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Jérome Maluenda
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France
| | - Dan Mejlachowicz
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France
| | - Alexandre Vivanti
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France
| | - Klaus Dieterich
- Univ. Grenoble Alpes, Inserm, U1209, CHU Grenoble Alpes, Grenoble, France
| | - Radka Stoeva
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France.,Department of Medical Genetics, Le Mans Hospital, Le Mans, France
| | - Loic Quevarec
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France
| | - Flora Nolent
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France
| | - Valerie Biancalana
- Laboratoire Diagnostic Génétique, CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Illkirch, France
| | - Philippe Latour
- Centre de Biologie Est, Hospices Civils de Lyon, Bron, France
| | - Damien Sternberg
- Service de Biochimie Métabolique et Centre de Génétique, APHP. Sorbonne Université, GH Pitié-Salpêtrière; Centre of Research in Myology, Sorbonne University, UMRS 974, Paris, France
| | - Yline Capri
- Département de Génétique, Assistance publique-Hopitaux de Paris (AP-HP), Hopital Robert Debré, Paris, France
| | - Alain Verloes
- Département de Génétique, Assistance publique-Hopitaux de Paris (AP-HP), Hopital Robert Debré, Paris, France
| | - Bettina Bessieres
- Unité d'Embryofoetopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Laurence Loeuillet
- Unité d'Embryofoetopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Tania Attie-Bitach
- Unité d'Embryofoetopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Jelena Martinovic
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France.,Unité d'Embryofoetopathologie, Hôpital Antoine Béclère, APHP, Clamart, France
| | - Sophie Blesson
- Service de Génétique, Unité de Génétique Clinique, CHRU de Tours, Hôpital Bretonneau, Tours, France
| | - Florence Petit
- Service de Génétique Clinique Guy Fontaine, CHU Lille, Lille, France
| | - Claire Beneteau
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes; Institut du Thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Sandra Whalen
- UF de Génétique clinique et Centre de Référence Maladies Rares des Anomalies du Développement et Syndromes Malformatifs, APHP. Sorbonne Université, Hôpital Armand Trousseau, Paris, France
| | - Florent Marguet
- Normandie Univ, UNIROUEN, INSERM U1245; Rouen University Hospital, Department of Pathology, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Jerome Bouligand
- Laboratoire de Génétique moléculaire, Pharmacogénétique et Hormonologie, Hôpital Bicêtre, APHP Université Paris Saclay, Le Kremlin-Bicêtre; Inserm UMR_S 1185, Faculté de médecine Paris Saclay, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Delphine Héron
- Département de Génétique, APHP Sorbonne Université, Hôpital Pitié-Salpêtrière et Trousseau, PARIS, France
| | - Géraldine Viot
- Unité de Génétique, Clinique de la Muette, Paris, France
| | - Jeanne Amiel
- Service de Génétique Clinique, Centre de référence pour les maladies osseuses constitutionnelles APHP, Hôpital Necker-Enfants Malades; Université de Paris, UMR1163, INSERM, Institut Imagine, Paris, France
| | - Daniel Amram
- Unité de Génétique Clinique, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Céline Bellesme
- Department of Pediatric Neurology, APHP-Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Martine Bucourt
- Service d'Histologie, Embryologie, et Cytogénétique, Hôpital Jean Verdier, APHP, Bondy, France
| | - Laurence Faivre
- Centre de Génétique et Centre de référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'Enfants, CHU Dijon; UMR-Inserm 1231 GAD team, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pierre-Simon Jouk
- Univ. Grenoble Alpes, Inserm, U1209, CHU Grenoble Alpes, Grenoble, France
| | - Suonavy Khung
- Unité Fonctionnelle de Fœtopathologie, Hôpital Universitaire Robert Debré; Inserm UMR 1141, Paris, France
| | - Sabine Sigaudy
- Département de Génétique Médicale, Hôpital Timone Enfant, Marseille, France
| | - Anne-Lise Delezoide
- Unité Fonctionnelle de Fœtopathologie, Hôpital Universitaire Robert Debré; Inserm UMR 1141, Paris, France
| | - Alice Goldenberg
- Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Marie-Line Jacquemont
- UF de Génétique Médicale, CHU la Réunion, site GHSR, Ile de La Réunion, Saint-Pierre, France
| | | | - Valérie Layet
- Consultations de Génétique, Groupe Hospitalier du Havre, Le Havre, France
| | - Stanislas Lyonnet
- Imagine Institute, INSERM UMR 1163, Université de Paris; Fédération de Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Arnold Munnich
- Imagine Institute, INSERM UMR 1163, Université de Paris; Fédération de Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | | | - Juliette Piard
- Centre de Génétique Humaine, Université de Franche-Comté, Besançon, France
| | - Fabien Guimiot
- Unité Fonctionnelle de Fœtopathologie, Hôpital Universitaire Robert Debré; Inserm UMR 1141, Paris, France
| | - Pierre Landrieu
- Department of Pediatric Neurology, APHP-Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Pascaline Letard
- Service d'Histologie, Embryologie, et Cytogénétique, Hôpital Jean Verdier, APHP, Bondy, France
| | - Fanny Pelluard
- UMR U1053, INSERM et Université de Bordeaux; Unité de fœtopathologie, Service de pathologie, CHU de Bordeaux, Bordeaux, France
| | - Laurence Perrin
- Département de Génétique, Assistance publique-Hopitaux de Paris (AP-HP), Hopital Robert Debré, Paris, France
| | - Marie-Hélène Saint-Frison
- Unité Fonctionnelle de Fœtopathologie, Hôpital Universitaire Robert Debré; Inserm UMR 1141, Paris, France
| | - Haluk Topaloglu
- Yeditepe University Deparment of Pediatrics, Istanbul, Turkey
| | | | | | - Helge Amthor
- Neuromuscular Reference Centre, Pediatric Department, University Hospital Raymond Poincaré, Garches, France
| | - Christine Barnerias
- Service de Neuropédiatrie, CR Neuromusculaire Necker, Hôpital Necker- Enfants Malades, Paris, France
| | - Alexandra Benachi
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France.,Service de Gynécologie-Obstétrique, Hôpital Antoine Béclère, AP-HP, Clamart, France
| | - Eric Bieth
- Service de Génétique Médicale, Hopital Purpan, Toulouse, France
| | - Elise Boucher
- Centre de Génétique Humaine, Université de Franche-Comté, Besançon, France
| | - Valerie Cormier-Daire
- Service de Génétique Clinique, Centre de référence pour les maladies osseuses constitutionnelles APHP, Hôpital Necker-Enfants Malades; Université de Paris, UMR1163, INSERM, Institut Imagine, Paris, France
| | - Andrée Delahaye-Duriez
- Service d'Histologie, Embryologie, et Cytogénétique, Hôpital Jean Verdier, APHP, Bondy, France.,Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Isabelle Desguerre
- Service de Neuropédiatrie, CR Neuromusculaire Necker, Hôpital Necker- Enfants Malades, Paris, France
| | - Bruno Eymard
- Sorbonne Université, GH Pitié-Salpêtrière, Paris, France
| | - Christine Francannet
- Service de génétique médicale et centre de référence des anomalies du développement et des déficits intellectuels rares, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Sarah Grotto
- Maternité Port-Royal, AP-HP, Hôpital Cochin, Paris, France
| | - Didier Lacombe
- Service de Génétique Médicale, CHU Bordeaux, Hopital Pellegrin, Bordeaux, France
| | - Fanny Laffargue
- Service de génétique médicale et centre de référence des anomalies du développement et des déficits intellectuels rares, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Marine Legendre
- Service de Génétique Médicale, CHU Bordeaux, Hopital Pellegrin, Bordeaux, France
| | | | - André Mégarbané
- Department of Human Genetics, Gilbert and Rose-Marie Ghagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Sandra Mercier
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes; Institut du Thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Mathilde Nizon
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes; Institut du Thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Luc Rigonnot
- Service de gynécologie obstétrique, Centre Hospitalier Sud Francilien, Corbeil Essonnes, France
| | - Fabienne Prieur
- Service de Génétique Clinique, CHU de Saint Etienne, Saint-Etienne, France
| | - Chloé Quélin
- Service de Génétique Clinique, CLAD Ouest, CHU Rennes, F-35033 RENNES, France
| | | | - Nicoletta Resta
- Department of Biomedical Sciences and Human Oncology (DIMO), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Annick Toutain
- Service de Génétique, Centre Hospitalier Universitaire de Tours; UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Helene Verhelst
- Department of Pediatrics, Division of Pediatric Neurology, Ghent University Hospital, Ghent, Belgium
| | - Marie Vincent
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes; Institut du Thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Estelle Colin
- Service de Génétique Médicale, CHU d'Angers, Angers, France
| | | | - Michèle Granier
- Neonatology and Neonatal Intensive Care Unit, Centre Hospitalier Sud Francilien, Corbeil Essonnes, France
| | - Romulus Grigorescu
- Unité de Génétique du Développement fœtal, Département de Génétique et Embryologie médicales, CHU Paris Est, Hôpital d'Enfants Armand-Trousseau, Paris, France
| | - Julien Saada
- Service de Gynécologie-Obstétrique, Hôpital Antoine Béclère, AP-HP, Clamart, France
| | - Marie Gonzales
- Unité d'Embryofoetopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Anne Guiochon-Mantel
- Laboratoire de Génétique moléculaire, Pharmacogénétique et Hormonologie, Hôpital Bicêtre, APHP Université Paris Saclay, Le Kremlin-Bicêtre; Inserm UMR_S 1185, Faculté de médecine Paris Saclay, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Jean-Louis Bessereau
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| | - Marcel Tawk
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cyril Gitiaux
- Unité de Neurophysiologie Clinique, Centre de référence des maladies neuromusculaires, Hôpital Necker Enfants Malades, APHP, Université de Paris, Paris, France
| | - Judith Melki
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin-Bicetre, France .,Unité de Génétique Médicale, Centre de référence des anomalies du développement et syndromes malformatifs d'Île-de-France, APHP, Le Kremlin Bicêtre, France
| |
Collapse
|
11
|
Johal J, Castro Apolo R, Johnson MW, Persch MR, Edwards A, Varade P, Yacoub H. Adult polyglucosan body disease: an acute presentation leading to unmasking of this rare disorder. Hosp Pract (1995) 2021; 50:244-250. [PMID: 33412965 DOI: 10.1080/21548331.2021.1874182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Adult polyglucosan body disease (APBD) is an autosomal recessive leukodystrophy caused by abnormal intracellular accumulation of glycogen byproducts. This disorder is linked to a deficiency in glycogen branching enzyme-1 (GBE-1). Neurologic manifestations include upper and lower motor neuron signs, dementia, and peripheral neuropathy. APBD is typically a progressive disease. In this report, we discuss a novel case of APBD in a patient who had a sudden onset of spastic quadriparesis preceded by gradual difficulty with gait. Genetic and postmortem analysis confirmed the diagnosis of APBD.Case report: A 65-year-old man was evaluated for a new-onset of spastic quadriparesis, right-gaze preference, and left-sided beat nystagmus. Magnetic resonance imaging (MRI) of the brain revealed areas of white matter hyperintensities most prominent in the brainstem and periventricular regions. MRI of the cervical spine showed marked cord atrophy. Laboratory workup and cerebrospinal fluid analysis were unremarkable. Genetic testing supported the diagnosis of APBD due to GBE-1 deficiency. Postmortem analysis showed multiple white matter abnormalities suggestive of a leukodystrophy syndrome, and histopathologic testing revealed abnormal accumulation of polyglucosan bodies in samples from the patient's central nervous system supporting the diagnosis of APBD.Conclusion: APBD is a rare disorder that can affect the nervous system. The diagnosis can be confirmed with a combination of genetic testing and pathologic analysis of affected brain tissue.
Collapse
Affiliation(s)
- Jaspreet Johal
- Department of Neurology, Lehigh Valley Health Network, Allentown, PA, USA
| | | | - Michael W Johnson
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Pathology and Laboratory Medicine, Lehigh Valley Health Network, Allentown, PA, USA
| | - Michael R Persch
- St. George's University School of Medicine, West Indies, Grenada
| | - Adam Edwards
- Department of Neurology, Lehigh Valley Health Network, Allentown, PA, USA.,Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Preet Varade
- Department of Neurology, Lehigh Valley Health Network, Allentown, PA, USA.,Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Hussam Yacoub
- Department of Neurology, Lehigh Valley Health Network, Allentown, PA, USA.,Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
12
|
A Pooling Genome-Wide Association Study Identifies Susceptibility Loci and Signaling Pathways of Immune Thrombocytopenia in Chinese Han Population. Int J Genomics 2020; 2020:7531876. [PMID: 32258092 PMCID: PMC7086454 DOI: 10.1155/2020/7531876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/08/2020] [Accepted: 02/10/2020] [Indexed: 01/19/2023] Open
Abstract
Immune thrombocytopenia (ITP) is an acquired bleeding disease due to immune-mediated destruction of antilogous platelets and ineffective thrombopoiesis. Although the etiology of ITP remains unknown, genetic variants are thought to predispose individuals to the disease. Several candidate gene analyses have identified several loci that increased ITP susceptibility, but no systematic genetic analysis on a genome-wide scope. To extend the genetic evidence and to identify novel candidates of ITP, we performed a pooling genome-wide association study (GWAS) by IlluminaHumanOmniZhongHua-8 combining pathway analysis in 200 ITP cases and 200 controls from Chinese Han population (CHP). The results revealed that 4 novel loci (rs117503120, rs5998634, rs4483616, and rs16866133) were strongly associated with ITP (P < 1.0 × 10−7). Expect for rs4483616, other three loci were validated by the TaqMan probe genotyping assay (P < 0.05) in another cohort including 250 ITP cases and 250 controls. And rs5998634 T allele was more sensitive to glucocorticoids for ITP patients (χ2 = 7.30, P < 0.05). Moreover, we identified three overrepresented signaling pathways including the neuroactive ligand-receptor interaction, pathways in cancer, and the JAK-STAT pathway, which involved in the etiology of ITP. In conclusion, our results revealed four novel loci and three pathways related to ITP and provided new clues to explore the pathogenesis of ITP.
Collapse
|
13
|
Filges I, Tercanli S, Hall JG. Fetal arthrogryposis: Challenges and perspectives for prenatal detection and management. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:327-336. [PMID: 31318155 DOI: 10.1002/ajmg.c.31723] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/23/2019] [Accepted: 06/27/2019] [Indexed: 12/28/2022]
Abstract
Antenatal identification of fetuses with multiple congenital contractures or arthrogryposis multiplex congenita (AMC) may be challenging. The first clinical sign is often reduced fetal movement and/or contractures, as seen on prenatal ultrasounds. This can be apparent at any point, from early to late pregnancy, may range from mild to severe involvement, with or without associated other structural anomalies. Possible etiologies and their prognosis need to be interpreted with respect to developmental timing. The etiology of AMC is highly heterogeneous and making the specific diagnosis will guide prognosis, counseling and prenatal and perinatal management. Current ultrasound practice identifies only approximately 25% of individuals with arthrogryposis prenatally before 24 weeks of pregnancy in a general obstetrics care population. There are currently no studies and guidelines that address the question of when and how to assess for fetal contractures and movements during pregnancy. The failure to identify fetuses with arthrogryposis before 24 weeks of pregnancy means that physicians and families are denied reproductive options and interventions that may improve outcome. We review current practice and recommend adjusting the current prenatal imaging and genetic diagnostic strategies to achieve early prenatal detection and etiologic diagnosis. We suggest exploring options for in utero therapy to increase fetal movement for ongoing pregnancies.
Collapse
Affiliation(s)
- Isabel Filges
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital and University of Basel, Basel, Switzerland
| | - Sevgi Tercanli
- Center for Prenatal Ultrasound, Basel and University of Basel, Basel, Switzerland
| | - Judith G Hall
- Department of Medical Genetics and Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Novel pathogenic variants in GBE1 causing fetal akinesia deformation sequence and severe neuromuscular form of glycogen storage disease type IV. Clin Dysmorphol 2019; 28:17-21. [PMID: 30303820 DOI: 10.1097/mcd.0000000000000248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glycogen storage disease IV (GSD IV), caused by a defect in GBE1, is a clinically heterogeneous disorder. A classical hepatic form and a neuromuscular form have been described. The severe neuromuscular form presents as a fetal akinesia deformation sequence or a congenital subtype. We ascertained three unrelated families with fetuses/neonates who presented with fetal akinesia deformation sequence to our clinic for genetic counseling. We performed a detailed clinical evaluation, exome sequencing, and histopathology examination of two fetuses and two neonates from three unrelated families presenting with these perinatally lethal neuromuscular forms of GSD IV. Exome sequencing in the affected fetuses/neonates identified four novel pathogenic variants (c.1459G>T, c.144-1G>A, c.1680C>G, and c.1843G>C) in GBE1 (NM_000158). Histopathology examination of tissues from the affected fetuses/neonate was consistent with the diagnosis. Here, we add three more families with the severe perinatally lethal neuromuscular forms of GSD IV to the GBE1 mutation spectrum.
Collapse
|
15
|
Schene IF, Korenke CG, Huidekoper HH, van der Pol L, Dooijes D, Breur JMPJ, Biskup S, Fuchs SA, Visser G. Glycogen Storage Disease Type IV: A Rare Cause for Neuromuscular Disorders or Often Missed? JIMD Rep 2018; 45:99-104. [PMID: 30569318 DOI: 10.1007/8904_2018_148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/14/2018] [Accepted: 10/18/2018] [Indexed: 01/01/2023] Open
Abstract
Advancements in genetic testing now allow early identification of previously unresolved neuromuscular phenotypes. To illustrate this, we here present diagnoses of glycogen storage disease IV (GSD IV) in two patients with hypotonia and delayed development of gross motor skills. Patient 1 was diagnosed with congenital myopathy based on a muscle biopsy at the age of 6 years. The genetic cause of his disorder (two compound heterozygous missense mutations in GBE1 (c.[760A>G] p.[Thr254Ala] and c.[1063C>T] p.[Arg355Cys])), however, was only identified at the age of 17, after panel sequencing of 314 genes associated with neuromuscular disorders. Thanks to the availability of next-generation sequencing, patient 2 was diagnosed before the age of 2 with two compound heterozygous mutations in GBE1 (c.[691+2T>C] (splice donor variant) and the same c.[760A>G] p.[Thr254Ala] mutation as patient 1). GSD IV is an autosomal recessive metabolic disorder with a broad and expanding clinical spectrum, which hampers targeted diagnostics. The current cases illustrate the value of novel genetic testing for rare genetic disorders with neuromuscular phenotypes, especially in case of clinical heterogeneity. We argue that genetic testing by gene panels or whole exome sequencing should be considered early in the diagnostic procedure of unresolved neuromuscular disorders.
Collapse
Affiliation(s)
- Imre F Schene
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Christoph G Korenke
- Department of Neuropediatrics, Children's Hospital Klinikum Oldenburg, Oldenburg, Germany
| | - Hidde H Huidekoper
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ludo van der Pol
- Department of Neurology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Dennis Dooijes
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johannes M P J Breur
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Saskia Biskup
- CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Sabine A Fuchs
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Gepke Visser
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Adam S, Coetzee M, Honey EM. Pena-Shokeir syndrome: current management strategies and palliative care. APPLICATION OF CLINICAL GENETICS 2018; 11:111-120. [PMID: 30498368 PMCID: PMC6207248 DOI: 10.2147/tacg.s154643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pena-Shokeir syndrome (PSS) type 1, also known as fetal akinesia deformation sequence, is a rare genetic syndrome that almost always results in intrauterine or early neonatal death. It is characterized by markedly decreased fetal movements, intrauterine growth restriction, joint contractures, short umbilical cord, and features of pulmonary hypoplasia. Antenatal diagnosis can be difficult. Ultrasound features are varied and may overlap with those of Trisomy 18. The poor prognosis of PSS is due to pulmonary hypoplasia, which is an important feature that distinguishes PSS from arthrogryposis multiplex congenital without pulmonary hypoplasia, which has a better prognosis. If diagnosed in the antenatal period, a late termination of pregnancy can be considered following ethical discussion (if the law allows). In most cases, a diagnosis is only made in the neonatal period. Parents of a baby affected with PSS require detailed counseling that includes information on the imprecise recurrence risks and a plan for subsequent pregnancies.
Collapse
Affiliation(s)
- Sumaiya Adam
- Department of Obstetrics and Gynaecology, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa,
| | - Melantha Coetzee
- Division of Neonatology, Department of Pediatrics and Child Health, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Engela Magdalena Honey
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
17
|
Iijima H, Iwano R, Tanaka Y, Muroya K, Fukuda T, Sugie H, Kurosawa K, Adachi M. Analysis of GBE1 mutations via protein expression studies in glycogen storage disease type IV: A report on a non-progressive form with a literature review. Mol Genet Metab Rep 2018; 17:31-37. [PMID: 30228975 PMCID: PMC6140619 DOI: 10.1016/j.ymgmr.2018.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 11/26/2022] Open
Abstract
Background Glycogen storage disease type IV (GSD IV), caused by GBE1 mutations, has a quite wide phenotypic variation. While the classic hepatic form and the perinatal/neonatal neuromuscular forms result in early mortality, milder manifestations include non-progressive form (NP-GSD IV) and adult polyglucosan body disease (APBD). Thus far, only one clinical case of a patient with compound heterozygous mutations has been reported for the molecular analysis of NP-GSD IV. This study aimed to elucidate the molecular basis in a NP-GSD IV patient via protein expression analysis and to obtain a clearer genotype-phenotype relationship in GSD IV. Case presentation A Japanese boy presented hepatosplenomegaly at 2 years of age. Developmental delay, neurological symptoms, and cardiac dysfunction were not apparent. Observation of hepatocytes with periodic acid-Schiff-positive materials resistant to diastase, coupled with resolution of hepatosplenomegaly at 8 years of age, yielded a diagnosis of NP-GSD IV. Glycogen branching enzyme activity was decreased in erythrocytes. At 13 years of age, he developed epilepsy, which was successfully controlled by carbamazepine. Molecular analysis In this study, we identified compound heterozygous GBE1 mutations (p.Gln46Pro and p.Glu609Lys). The branching activities of the mutant proteins expressed using E. coli were examined in a reaction with starch. The result showed that both mutants had approximately 50% activity of the wild type protein. Conclusion This is the second clinical report of a NP-GSD IV patient with a definite molecular elucidation. Based on the clinical and genotypic overlapping between NP-GSD IV and APBD, we suggest both are in a continuum.
Collapse
Affiliation(s)
- Hiroyuki Iijima
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Mutsukawa 2-138-4, Minami-ku, Yokohama 232-8555, Japan
| | - Reiko Iwano
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Mutsukawa 2-138-4, Minami-ku, Yokohama 232-8555, Japan
| | - Yukichi Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Mutsukawa 2-138-4, Minami-ku, Yokohama 232-8555, Japan
| | - Koji Muroya
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Mutsukawa 2-138-4, Minami-ku, Yokohama 232-8555, Japan
| | - Tokiko Fukuda
- Department of Pediatrics, Hamamatsu University School of Medicine, Handayama, 1-20-1 Higashi-ku, Hamamatsu 431-3192, Japan
| | - Hideo Sugie
- Faculty of Health and Medical Sciences, Tokoha University, Sena, 1-22-1 Aoi-ku, Shizuoka 420-0911, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Mutsukawa 2-138-4, Minami-ku, Yokohama 232-8555, Japan
| | - Masanori Adachi
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Mutsukawa 2-138-4, Minami-ku, Yokohama 232-8555, Japan
| |
Collapse
|
18
|
Abdalla E, Ravenscroft G, Zayed L, Beecroft SJ, Laing NG. Lethal multiple pterygium syndrome: A severe phenotype associated with a novel mutation in the nebulin gene. Neuromuscul Disord 2017; 27:537-541. [DOI: 10.1016/j.nmd.2017.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/21/2016] [Accepted: 01/15/2017] [Indexed: 11/27/2022]
|
19
|
Ravenscroft G, Davis MR, Lamont P, Forrest A, Laing NG. New era in genetics of early-onset muscle disease: Breakthroughs and challenges. Semin Cell Dev Biol 2016; 64:160-170. [PMID: 27519468 DOI: 10.1016/j.semcdb.2016.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
Early-onset muscle disease includes three major entities that present generally at or before birth: congenital myopathies, congenital muscular dystrophies and congenital myasthenic syndromes. Almost exclusively there is weakness and hypotonia, although cases manifesting hypertonia are increasingly being recognised. These diseases display a wide phenotypic and genetic heterogeneity, with the uptake of next generation sequencing resulting in an unparalleled extension of the phenotype-genotype correlations and "diagnosis by sequencing" due to unbiased sequencing. Perhaps now more than ever, detailed clinical evaluations are necessary to guide the genetic diagnosis; with arrival at a molecular diagnosis frequently occurring following dialogue between the molecular geneticist, the referring clinician and the pathologist. There is an ever-increasing blurring of the boundaries between the congenital myopathies, dystrophies and myasthenic syndromes. In addition, many novel disease genes have been described and new insights have been gained into skeletal muscle development and function. Despite the advances made, a significant percentage of patients remain without a molecular diagnosis, suggesting that there are many more human disease genes and mechanisms to identify. It is now technically- and clinically-feasible to perform next generation sequencing for severe diseases on a population-wide scale, such that preconception-carrier screening can occur. Newborn screening for selected early-onset muscle diseases is also technically and ethically-achievable, with benefits to the patient and family from early management of these diseases and should also be implemented. The need for world-wide Reference Centres to meticulously curate polymorphisms and mutations within a particular gene is becoming increasingly apparent, particularly for interpretation of variants in the large genes which cause early-onset myopathies: NEB, RYR1 and TTN. Functional validation of candidate disease variants is crucial for accurate interpretation of next generation sequencing and appropriate genetic counseling. Many published "pathogenic" variants are too frequent in control populations and are thus likely rare polymorphisms. Mechanisms need to be put in place to systematically update the classification of variants such that accurate interpretation of variants occurs. In this review, we highlight the recent advances made and the challenges ahead for the molecular diagnosis of early-onset muscle diseases.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, Nedlands, Australia
| | - Mark R Davis
- Department of Diagnostic Genomics, Pathwest, QEII Medical Centre, Nedlands, Australia
| | - Phillipa Lamont
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, Nedlands, Australia; Neurogenetic unit, Dept of Neurology, Royal Perth Hospital and The Perth Children's Hospital, Western Australia, Australia
| | - Alistair Forrest
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, Nedlands, Australia
| | - Nigel G Laing
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, Nedlands, Australia; Department of Diagnostic Genomics, Pathwest, QEII Medical Centre, Nedlands, Australia.
| |
Collapse
|
20
|
Scalco RS, Gardiner AR, Pitceathly RD, Hilton-Jones D, Schapira AH, Turner C, Parton M, Desikan M, Barresi R, Marsh J, Manzur AY, Childs AM, Feng L, Murphy E, Lamont PJ, Ravenscroft G, Wallefeld W, Davis MR, Laing NG, Holton JL, Fialho D, Bushby K, Hanna MG, Phadke R, Jungbluth H, Houlden H, Quinlivan R. CAV3 mutations causing exercise intolerance, myalgia and rhabdomyolysis: Expanding the phenotypic spectrum of caveolinopathies. Neuromuscul Disord 2016; 26:504-10. [DOI: 10.1016/j.nmd.2016.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
|
21
|
Malfatti E, Barnerias C, Hedberg-Oldfors C, Gitiaux C, Benezit A, Oldfors A, Carlier RY, Quijano-Roy S, Romero NB. A novel neuromuscular form of glycogen storage disease type IV with arthrogryposis, spinal stiffness and rare polyglucosan bodies in muscle. Neuromuscul Disord 2016; 26:681-687. [PMID: 27546458 DOI: 10.1016/j.nmd.2016.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 01/11/2023]
Abstract
Glycogen storage disease type IV (GSD IV) is an autosomal recessive disorder causing polyglucosan storage in various tissues. Neuromuscular forms present with fetal akinesia deformation sequence, lethal myopathy, or mild hypotonia and weakness. A 3-year-old boy presented with arthrogryposis, motor developmental delay, weakness, and rigid spine. Whole body MRI revealed fibroadipose muscle replacement but sparing of the sartorius, gracilis, adductor longus and vastus intermedialis muscles. Polyglucosan bodies were identified in muscle, and GBE1 gene analysis revealed two pathogenic variants. We describe a novel neuromuscular GSD IV phenotype and confirm the importance of muscle morphological studies in early onset neuromuscular disorders.
Collapse
Affiliation(s)
- Edoardo Malfatti
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, GHU La Pitié-Salpêtrière, 47 Boulevard de l'hôpital, 75013 Paris, France; Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Centre de référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France
| | - Christine Barnerias
- Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France; AP-HP, Service de Neuropédiatrie, Hôpital Necker-Enfants Malades, Paris, France; Centre de Référence Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Paris, France
| | - Carola Hedberg-Oldfors
- Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Cyril Gitiaux
- Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France; Centre de Référence Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Paris, France; AP-HP Service des Explorations Foctionnelles Neurologiques, Höpital Universitaire Necker-Enfants Malades, Paris, France
| | - Audrey Benezit
- Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France; AP-HP, Service de Neuropédiatrie, Hôpital Necker-Enfants Malades, Paris, France; Centre de Référence Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Paris, France
| | - Anders Oldfors
- Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Robert-Yves Carlier
- Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France; Centre de Référence Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Paris, France; U1179 INSERM-UVSQ, Université Versailles Saint-Quentin en Yvelines, Montigny, France; AP-HP, Service de Pédiatrie, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Paris, France
| | - Susana Quijano-Roy
- Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France; Centre de Référence Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH), Paris, France; AP-HP, Service de Pédiatrie, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Paris, France
| | - Norma B Romero
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, GHU La Pitié-Salpêtrière, 47 Boulevard de l'hôpital, 75013 Paris, France; Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Centre de référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Filière Nationale de Maladies Neuromusculaires (FILNEMUS), Marseille, France.
| |
Collapse
|
22
|
Todd EJ, Yau KS, Ong R, Slee J, McGillivray G, Barnett CP, Haliloglu G, Talim B, Akcoren Z, Kariminejad A, Cairns A, Clarke NF, Freckmann ML, Romero NB, Williams D, Sewry CA, Colley A, Ryan MM, Kiraly-Borri C, Sivadorai P, Allcock RJN, Beeson D, Maxwell S, Davis MR, Laing NG, Ravenscroft G. Next generation sequencing in a large cohort of patients presenting with neuromuscular disease before or at birth. Orphanet J Rare Dis 2015; 10:148. [PMID: 26578207 PMCID: PMC4650299 DOI: 10.1186/s13023-015-0364-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/02/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Fetal akinesia/hypokinesia, arthrogryposis and severe congenital myopathies are heterogeneous conditions usually presenting before or at birth. Although numerous causative genes have been identified for each of these disease groups, in many cases a specific genetic diagnosis remains elusive. Due to the emergence of next generation sequencing, virtually the entire coding region of an individual's DNA can now be analysed through "whole" exome sequencing, enabling almost all known and novel disease genes to be investigated for disorders such as these. METHODS Genomic DNA samples from 45 patients with fetal akinesia/hypokinesia, arthrogryposis or severe congenital myopathies from 38 unrelated families were subjected to next generation sequencing. Clinical features and diagnoses for each patient were supplied by referring clinicians. Genomic DNA was used for either whole exome sequencing or a custom-designed neuromuscular sub-exomic supercapture array containing 277 genes responsible for various neuromuscular diseases. Candidate disease-causing variants were investigated and confirmed using Sanger sequencing. Some of the cases within this cohort study have been published previously as separate studies. RESULTS A conclusive genetic diagnosis was achieved for 18 of the 38 families. Within this cohort, mutations were found in eight previously known neuromuscular disease genes (CHRND, CHNRG, ECEL1, GBE1, MTM1, MYH3, NEB and RYR1) and four novel neuromuscular disease genes were identified and have been published as separate reports (GPR126, KLHL40, KLHL41 and SPEG). In addition, novel mutations were identified in CHRND, KLHL40, NEB and RYR1. Autosomal dominant, autosomal recessive, X-linked, and de novo modes of inheritance were observed. CONCLUSIONS By using next generation sequencing on a cohort of 38 unrelated families with fetal akinesia/hypokinesia, arthrogryposis, or severe congenital myopathy we therefore obtained a genetic diagnosis for 47% of families. This study highlights the power and capacity of next generation sequencing (i) to determine the aetiology of genetically heterogeneous neuromuscular diseases, (ii) to identify novel disease genes in small pedigrees or isolated cases and (iii) to refine the interplay between genetic diagnosis and clinical evaluation and management.
Collapse
Affiliation(s)
- Emily J Todd
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, QQ Block, 6 Verdun Street, Nedlands, 6009, , WA, Australia.
| | - Kyle S Yau
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, QQ Block, 6 Verdun Street, Nedlands, 6009, , WA, Australia.
| | - Royston Ong
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, QQ Block, 6 Verdun Street, Nedlands, 6009, , WA, Australia.
| | - Jennie Slee
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, 6000, , WA, Australia.
| | - George McGillivray
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, 3052, , VIC, Australia.
| | - Christopher P Barnett
- Paediatric and Reproductive Genetics Unit, South Australia Clinical Genetics Service, Women's and Children's Hospital, North Adelaide, 5006, , SA, Australia.
| | - Goknur Haliloglu
- Department of Pediatric Neurology, Hacettepe University Children's Hospital, Ankara, 06100, Turkey.
| | - Beril Talim
- Pediatric Pathology Unit, Hacettepe University Children's Hospital, Ankara, 06100, Turkey.
| | - Zuhal Akcoren
- Pediatric Pathology Unit, Hacettepe University Children's Hospital, Ankara, 06100, Turkey.
| | - Ariana Kariminejad
- Kariminejad-Najmabadi Pathology and Genetics Centre, Tehran, 14656, Iran.
| | - Anita Cairns
- Royal Children's Hospital, Herston Road, Herson, 4029, , QLD, Australia.
| | - Nigel F Clarke
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, 2145, , NSW, Australia. .,Discipline of Paediatrics and Child Health, University of Sydney, Sydney, 2006, , NSW, Australia.
| | | | - Norma B Romero
- Unitè de Morphologie Neuromusculaire, Institut de Myologie, Institut National de la Santè et de la Recherche Mèdicale, Paris, 75651, France.
| | - Denise Williams
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, WC1N 1EH, UK. .,Wolfson Centre for Neuromuscular Disorders, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK.
| | - Caroline A Sewry
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, WC1N 1EH, UK. .,Wolfson Centre for Neuromuscular Disorders, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK.
| | - Alison Colley
- Department of Clinical Genetics, South Western Sydney Local Health District, Liverpool, 1871, , NSW, Australia.
| | - Monique M Ryan
- Department of Neurology, The Royal Children's Hospital, Melbourne, 3000, , VIC, Australia.
| | - Cathy Kiraly-Borri
- Genetic Services of Western Australia, Princess Margaret Hospital for Children and King Edward Memorial Hospital for Women, Subiaco, 6008, , WA, Australia.
| | - Padma Sivadorai
- Department of Diagnostic Genomics, Pathwest, QEII Medical Centre, Nedlands, 6009, , WA, Australia.
| | - Richard J N Allcock
- Lotterywest State Biomedical Facility Genomics and School of Pathology and Laboratory Medicine, University of Western Australia, Perth, 6000, , WA, Australia.
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| | - Susan Maxwell
- Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| | - Mark R Davis
- Department of Diagnostic Genomics, Pathwest, QEII Medical Centre, Nedlands, 6009, , WA, Australia.
| | - Nigel G Laing
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, QQ Block, 6 Verdun Street, Nedlands, 6009, , WA, Australia. .,Department of Diagnostic Genomics, Pathwest, QEII Medical Centre, Nedlands, 6009, , WA, Australia.
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, QQ Block, 6 Verdun Street, Nedlands, 6009, , WA, Australia.
| |
Collapse
|
23
|
Alamillo CL, Powis Z, Farwell K, Shahmirzadi L, Weltmer EC, Turocy J, Lowe T, Kobelka C, Chen E, Basel D, Ashkinadze E, D'Augelli L, Chao E, Tang S. Exome sequencing positively identified relevant alterations in more than half of cases with an indication of prenatal ultrasound anomalies. Prenat Diagn 2015; 35:1073-8. [PMID: 26147564 DOI: 10.1002/pd.4648] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Exome sequencing is a successful option for diagnosing individuals with previously uncharacterized genetic conditions, however little has been reported regarding its utility in a prenatal setting. The goal of this study is to describe the results from a cohort of fetuses for which exome sequencing was performed. METHODS We performed a retrospective analysis of the first seven cases referred to our laboratory for exome sequencing following fetal demise or termination of pregnancy. All seven pregnancies had multiple congenital anomalies identified by level II ultrasound. Exome sequencing was performed on trios using cultured amniocytes or products of conception from the affected fetuses. RESULTS Relevant alterations were identified in more than half of the cases (4/7). Three of the four were categorized as 'positive' results, and one of the four was categorized as a 'likely positive' result. The provided diagnoses included osteogenesis imperfecta II (COL1A2), glycogen storage disease IV (GBE1), oral-facial-digital syndrome 1 (OFD1), and RAPSN-associated fetal akinesia deformation sequence. CONCLUSION This data suggests that exome sequencing is likely to be a valuable diagnostic testing option for pregnancies with multiple congenital anomalies detected by prenatal ultrasound; however, additional studies with larger cohorts of affected pregnancies are necessary to confirm these findings.
Collapse
Affiliation(s)
| | - Zöe Powis
- Ambry Genetics, Aliso Viejo, CA, USA
| | | | | | | | - John Turocy
- Genetics Department, Kaiser Permanente, Clovis, CA, USA
| | - Thomas Lowe
- Thomas Lowe, MD, Private Practice, Boca Raton, FL, USA
| | | | - Emily Chen
- Genetics Department, Kaiser Permanente, San Francisco, CA, USA
| | - Donald Basel
- Division of Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Elena Ashkinadze
- Division of Maternal-Fetal Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | - Elizabeth Chao
- Ambry Genetics, Aliso Viejo, CA, USA.,Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Sha Tang
- Ambry Genetics, Aliso Viejo, CA, USA
| |
Collapse
|
24
|
Baynam G, Overkov A, Davis M, Mina K, Schofield L, Allcock R, Laing N, Cook M, Dawkins H, Goldblatt J. A germline MTOR mutation in Aboriginal Australian siblings with intellectual disability, dysmorphism, macrocephaly, and small thoraces. Am J Med Genet A 2015; 167:1659-67. [PMID: 25851998 DOI: 10.1002/ajmg.a.37070] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 03/06/2015] [Indexed: 11/07/2022]
Abstract
We report on three Aboriginal Australian siblings with a unique phenotype which overlaps with known megalencephaly syndromes and RASopathies, including Costello syndrome. A gain-of-function mutation in MTOR was identified and represents the first reported human condition due to a germline, familial MTOR mutation. We describe the findings in this family to highlight that (i) the path to determination of pathogenicity was confounded by the lack of genomic reference data for Australian Aboriginals and that (ii) the disease biology, functional analyses in this family, and studies on the tuberous sclerosis complex support consideration of an mTOR inhibitor as a therapeutic agent.
Collapse
Affiliation(s)
- Gareth Baynam
- Genetic Services of Western Australia, Princess Margaret and King Edward Memorial Hospitals, Perth, Western Australia, Australia
- School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia
- Office of Population Health Genomics, Department of Health, Public Health and Clinical Services Division, Government of Western Australia, Perth, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Telethon Kids Institute, Perth, Western Australia, Australia
| | - Angela Overkov
- Genetic Services of Western Australia, Princess Margaret and King Edward Memorial Hospitals, Perth, Western Australia, Australia
| | - Mark Davis
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia, Australia
- Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Perth, Western Australia, Australia
| | - Kym Mina
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia, Australia
- Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Perth, Western Australia, Australia
| | - Lyn Schofield
- Genetic Services of Western Australia, Princess Margaret and King Edward Memorial Hospitals, Perth, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Richard Allcock
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia, Australia
- Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Perth, Western Australia, Australia
| | - Nigel Laing
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Matthew Cook
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Australia and Translational Research Unit, Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Hugh Dawkins
- School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia, Australia
- Centre for Comparative Genomics, Murdoch University, Perth, Western Australia, Australia
- Centre for Population Health Research, Curtin Health Innovation Research Institute, Curtin University of Technology, Perth, Western Australia, Australia
| | - Jack Goldblatt
- Genetic Services of Western Australia, Princess Margaret and King Edward Memorial Hospitals, Perth, Western Australia, Australia
- School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia
- Office of Population Health Genomics, Department of Health, Public Health and Clinical Services Division, Government of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
25
|
Cabrera-Serrano M, Ghaoui R, Ravenscroft G, Johnsen RD, Davis MR, Corbett A, Reddel S, Sue CM, Liang C, Waddell LB, Kaur S, Lek M, North KN, MacArthur DG, Lamont PJ, Clarke NF, Laing NG. Expanding the phenotype of GMPPB mutations. ACTA ACUST UNITED AC 2015; 138:836-44. [PMID: 25681410 DOI: 10.1093/brain/awv013] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dystroglycanopathies are a heterogeneous group of diseases with a broad phenotypic spectrum ranging from severe disorders with congenital muscle weakness, eye and brain structural abnormalities and intellectual delay to adult-onset limb-girdle muscular dystrophies without mental retardation. Most frequently the disease onset is congenital or during childhood. The exception is FKRP mutations, in which adult onset is a common presentation. Here we report eight patients from five non-consanguineous families where next generation sequencing identified mutations in the GMPPB gene. Six patients presented as an adult or adolescent-onset limb-girdle muscular dystrophy, one presented with isolated episodes of rhabdomyolysis, and one as a congenital muscular dystrophy. This report expands the phenotypic spectrum of GMPPB mutations to include limb-girdle muscular dystrophies with adult onset with or without intellectual disability, or isolated rhabdomyolysis.
Collapse
Affiliation(s)
- Macarena Cabrera-Serrano
- 1 Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, WA, Australia 2 Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Roula Ghaoui
- 3 Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia 4 Discipline of Paediatrics and Child Health, University of Sydney, Sydney, NSW 2006, Australia 5 Department of Neurology, Royal North Shore Hospital, Sydney, Australia
| | - Gianina Ravenscroft
- 1 Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Russell D Johnsen
- 6 Centre for Comparative Genomics, Murdoch University, Perth, Australia
| | - Mark R Davis
- 7 Department of Diagnostic Genomics, Pathwest Laboratory Medicine WA. Perth, WA, Australia
| | - Alastair Corbett
- 8 Department of Neurology, Concord Repatriation Hospital, and Sydney Medical School, Sydney, Australia
| | - Stephen Reddel
- 8 Department of Neurology, Concord Repatriation Hospital, and Sydney Medical School, Sydney, Australia
| | - Carolyn M Sue
- 5 Department of Neurology, Royal North Shore Hospital, Sydney, Australia
| | - Christina Liang
- 5 Department of Neurology, Royal North Shore Hospital, Sydney, Australia
| | - Leigh B Waddell
- 3 Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia 4 Discipline of Paediatrics and Child Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Simranpreet Kaur
- 3 Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Monkol Lek
- 3 Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia 4 Discipline of Paediatrics and Child Health, University of Sydney, Sydney, NSW 2006, Australia 9 Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA 10 Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Kathryn N North
- 3 Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia 11 Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia 12 Department of Paediatrics, University of Melbourne, Victoria, Australia
| | - Daniel G MacArthur
- 9 Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA 10 Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Phillipa J Lamont
- 13 Neurogenetic Unit, Department of Neurology, Royal Perth Hospital, Perth, WA, Australia
| | - Nigel F Clarke
- 3 Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia 4 Discipline of Paediatrics and Child Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Nigel G Laing
- 1 Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| |
Collapse
|
26
|
Cabrera-Serrano M, Fabian VA, Boutilier J, Wise C, Faiz F, Lamont PJ, Laing NG. Adult onset distal and proximal myopathy with complete ophthalmoplegia associated with a novel de novo p.(Leu1877Pro) mutation in MYH2. Clin Genet 2015; 88:573-8. [PMID: 25529940 DOI: 10.1111/cge.12552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/19/2014] [Accepted: 12/10/2014] [Indexed: 11/29/2022]
Abstract
An MYH2 mutation p.(Glu706Lys) was originally described in a family with autosomal dominant inheritance, where the affected family members presented with multiple congenital contractures and ophthalmoplegia, progressing to a proximal myopathy in adulthood. Another patient with a dominant mutation p.(Leu1870Pro) was described, presenting as a congenital myopathy with ophthalmoplegia. Here, we present a patient with symptoms beginning at age 16 years, of prominent distal but also proximal weakness, bulbar involvement and ophthalmoplegia. Initially, clinically classified as oculopharyngodistal myopathy, the patient was found to carry a novel, de novo MYH2 mutation c.5630T>C p.(Leu1877Pro). This expands the phenotype of dominant MYH2 myopathies with the clinical phenotype overlapping the oculopharyngodistal myopathy spectrum.
Collapse
Affiliation(s)
- M Cabrera-Serrano
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - V A Fabian
- Section of Neuropathology, Department of Anatomical Pathology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - J Boutilier
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - C Wise
- Department of Diagnostic Genomics, Pathwest Laboratory Medicine WA, Perth, Western Australia, Australia
| | - F Faiz
- Department of Diagnostic Genomics, Pathwest Laboratory Medicine WA, Perth, Western Australia, Australia
| | - P J Lamont
- Neurogenetic Unit, Department of Neurology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - N G Laing
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| |
Collapse
|
27
|
Filges I, Friedman JM. Exome sequencing for gene discovery in lethal fetal disorders--harnessing the value of extreme phenotypes. Prenat Diagn 2014; 35:1005-9. [PMID: 25046514 DOI: 10.1002/pd.4464] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/14/2014] [Accepted: 07/16/2014] [Indexed: 12/18/2022]
Abstract
Massively parallel sequencing has revolutionized our understanding of Mendelian disorders, and many novel genes have been discovered to cause disease phenotypes when mutant. At the same time, next-generation sequencing approaches have enabled non-invasive prenatal testing of free fetal DNA in maternal blood. However, little attention has been paid to using whole exome and genome sequencing strategies for gene identification in fetal disorders that are lethal in utero, because they can appear to be sporadic and Mendelian inheritance may be missed. We present challenges and advantages of applying next-generation sequencing approaches to gene discovery in fetal malformation phenotypes and review recent successful discovery approaches. We discuss the implication and significance of recessive inheritance and cross-species phenotyping in fetal lethal conditions. Whole exome sequencing can be used in individual families with undiagnosed lethal congenital anomaly syndromes to discover causal mutations, provided that prior to data analysis, the fetal phenotype can be correlated to a particular developmental pathway in embryogenesis. Cross-species phenotyping allows providing further evidence for causality of discovered variants in genes involved in those extremely rare phenotypes and will increase our knowledge about normal and abnormal human developmental processes. Ultimately, families will benefit from the option of early prenatal diagnosis.
Collapse
Affiliation(s)
- Isabel Filges
- Medical Genetics, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Medical Genetics, Children's and Women's Hospital, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | - Jan M Friedman
- Department of Medical Genetics, Children's and Women's Hospital, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
28
|
Barnett CP, Todd EJ, Ong R, Davis MR, Atkinson V, Allcock R, Laing N, Ravenscroft G. Distal arthrogryposis type 5D with novel clinical features and compound heterozygous mutations in ECEL1. Am J Med Genet A 2014; 164A:1846-9. [PMID: 24782201 DOI: 10.1002/ajmg.a.36342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/06/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Christopher P Barnett
- Pediatric & Reproductive Genetics, SA Clinical Genetics Service, Women's and Children's Hospital/SA Pathology, North Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW This review highlights recent contributions regarding clinical heterogeneity, pathogenic mechanisms, therapeutic trials, and animal models of the muscle glycogenoses. RECENT FINDINGS Most recent publications have dealt with the clinical effects of enzyme replacement therapy (ERT) in glycogenosis type II (Pompe disease), including the cognitive development of children with the infantile form who have reached school age. Standardized exercise testing has shown the similarity between McArdle disease and one of the most recently described muscle glycogenoses, phosphoglucomutase deficiency. Cycle ergometry in patients with glycogenosis type III (debrancher deficiency) without overt weakness has documented exercise intolerance relieved by glucose infusion, consistent with the glycogenolytic block. A mouse model of McArdle disease faithfully recapitulates most features of the human disease and will prove valuable for a better understanding of pathogenesis and therapeutic modalities. Polyglucosan body myopathy with cardiomyopathy has been associated with mutations in RBCK1, a ubiquitin ligase, which have also been reported in children with early-onset immune disorder. The role of polyglucosan storage in muscle and in both central and peripheral nervous systems has been confirmed in the infantile and late-onset forms of glycogenosis type IV (brancher enzyme deficiency). Additional novel findings include the involvement of the heart in one patient with phosphofructokinase (PFK) deficiency and the presence of tubular aggregates in a manifesting heterozygote with phosphoglycerate mutase deficiency. SUMMARY Important recent developments in the field of muscle glycogenoses include a new disease entity, a new animal model of McArdle disease, and better knowledge of the pathogenesis in some glycogenoses and of the long-term effects of enzyme replacement therapy in Pompe disease.
Collapse
|
30
|
Paradas C, Akman HO, Ionete C, Lau H, Riskind PN, Jones DE, Smith TW, Hirano M, Dimauro S. Branching enzyme deficiency: expanding the clinical spectrum. JAMA Neurol 2014; 71:41-7. [PMID: 24248152 DOI: 10.1001/jamaneurol.2013.4888] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE The neuromuscular presentation of glycogen branching enzyme deficiency includes a severe infantile form and a late-onset variant known as adult polyglucosan body disease. Herein, we describe 2 patients with adult acute onset of fluctuating neurological signs and brain magnetic resonance imaging lesions simulating multiple sclerosis. A better definition of this new clinical entity is needed to facilitate diagnosis. OBJECTIVES To describe the clinical presentation and progression of a new intermediate variant of glycogen branching enzyme deficiency and to discuss genotype-phenotype correlations. DESIGN, SETTING, AND PARTICIPANTS Clinical, biochemical, morphological, and molecular study of 2 patients followed up for 6 years and 8 years at academic medical centers. The participants were 2 patients of non-Ashkenazi descent with adult acute onset of neurological signs initially diagnosed as multiple sclerosis. MAIN OUTCOMES AND MEASURES Clinical course, muscle and nerve morphology, longitudinal study of brain magnetic resonance imaging, and glycogen branching enzyme activity and GBE1 molecular analysis. RESULTS Molecular analysis showed that one patient was homozygous (c.1544G>A) and the other patient was compound heterozygous (c.1544G>A and c.1961-1962delCA) for GBE1 mutations. Residual glycogen branching enzyme activity was 16% and 30% of normal in leukocytes. Both patients manifested acute episodes of transient neurological symptoms, and neurological impairment was mild at age 45 years and 53 years. Brain magnetic resonance imaging revealed nonprogressive white matter lesions and spinocerebellar atrophy similar to typical adult polyglucosan body disease. CONCLUSIONS AND RELEVANCE GBE1 mutations can cause an early adult-onset relapsing-remitting form of polyglucosan body disease distinct from adult polyglucosan body disease in several ways, including younger age at onset, history of infantile liver involvement, and subacute and remitting course simulating multiple sclerosis. This should orient neurologists toward the correct diagnosis.
Collapse
Affiliation(s)
- Carmen Paradas
- Department of Neurology, Columbia University Medical Center, New York, New York2Unidad de Enfermedades Neuromusculares, Servicio de Neurología, Hospital Universitario Virgen del Rocío, Instituto de Biomédicina de Sevilla, Consejo Superior de Investigación
| | - Hasan O Akman
- Department of Neurology, Columbia University Medical Center, New York, New York
| | - Carolina Ionete
- Department of Neurology, University of Massachusetts Memorial Medical Center, Worcester
| | - Heather Lau
- Rusk Institute of Rehabilitation, NYU Langone Medical Center, New York, New York
| | - Peter N Riskind
- Department of Neurology, University of Massachusetts Memorial Medical Center, Worcester
| | - David E Jones
- Department of Neurology, University of Massachusetts Memorial Medical Center, Worcester
| | - Thomas W Smith
- Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester
| | - Michio Hirano
- Department of Neurology, Columbia University Medical Center, New York, New York
| | - Salvatore Dimauro
- Department of Neurology, Columbia University Medical Center, New York, New York
| |
Collapse
|
31
|
Mutations in KLHL40 are a frequent cause of severe autosomal-recessive nemaline myopathy. Am J Hum Genet 2013; 93:6-18. [PMID: 23746549 DOI: 10.1016/j.ajhg.2013.05.004] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/25/2013] [Accepted: 05/03/2013] [Indexed: 11/22/2022] Open
Abstract
Nemaline myopathy (NEM) is a common congenital myopathy. At the very severe end of the NEM clinical spectrum are genetically unresolved cases of autosomal-recessive fetal akinesia sequence. We studied a multinational cohort of 143 severe-NEM-affected families lacking genetic diagnosis. We performed whole-exome sequencing of six families and targeted gene sequencing of additional families. We identified 19 mutations in KLHL40 (kelch-like family member 40) in 28 apparently unrelated NEM kindreds of various ethnicities. Accounting for up to 28% of the tested individuals in the Japanese cohort, KLHL40 mutations were found to be the most common cause of this severe form of NEM. Clinical features of affected individuals were severe and distinctive and included fetal akinesia or hypokinesia and contractures, fractures, respiratory failure, and swallowing difficulties at birth. Molecular modeling suggested that the missense substitutions would destabilize the protein. Protein studies showed that KLHL40 is a striated-muscle-specific protein that is absent in KLHL40-associated NEM skeletal muscle. In zebrafish, klhl40a and klhl40b expression is largely confined to the myotome and skeletal muscle, and knockdown of these isoforms results in disruption of muscle structure and loss of movement. We identified KLHL40 mutations as a frequent cause of severe autosomal-recessive NEM and showed that it plays a key role in muscle development and function. Screening of KLHL40 should be a priority in individuals who are affected by autosomal-recessive NEM and who present with prenatal symptoms and/or contractures and in all Japanese individuals with severe NEM.
Collapse
|