1
|
Zhou Z, Huang X, Tang X, Chen W, Chen Q, Zhang C, Li Y, Zhao D, Zheng Z, Hu S, Wang J, Kullo IJ, Ding K. Heterozygous nonsense variants in laminin subunit 3α resulting in Ebstein's anomaly. HGG ADVANCES 2023; 4:100227. [PMID: 37635785 PMCID: PMC10450520 DOI: 10.1016/j.xhgg.2023.100227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Ebstein's anomaly is a rare congenital heart disease characterized by tricuspid valve downward displacement and is associated with additional cardiac phenotypes such as left ventricle non-compaction. The genetic basis of Ebstein's anomaly has yet to be fully elucidated, although several genes (e.g., NKX2-5, MYH7, TPM1, and FLNA) may contribute to Ebstein's anomaly. Here, in two Ebstein's anomaly families (a three-generation family and a trio), we identified independent heterozygous nonsense variants in laminin subunit 3 α (LAMA3), cosegregated with phenotypes in families with reduced penetrance. Furthermore, knocking out Lama3 in mice revealed that haploinsufficiency of Lama3 led to Ebstein's malformation of the tricuspid valve and an abnormal basement membrane structure. In conclusion, we identified a novel gene-disease association of LAMA3 implicated in Ebstein's anomaly, and the findings extended our understanding of the role of the extracellular matrix in Ebstein's anomaly etiology.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Xumei Huang
- Department of Cardiovascular Diseases, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Xia Tang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Wen Chen
- Department of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Qianlong Chen
- Department of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Chaohui Zhang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yuxin Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Dachun Zhao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Zhe Zheng
- Department of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Shengshou Hu
- Department of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Jikui Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Iftikhar J. Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Keyue Ding
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Vahidnezhad H, Youssefian L, Harvey N, Tavasoli AR, Saeidian AH, Sotoudeh S, Varghaei A, Mahmoudi H, Mansouri P, Mozafari N, Zargari O, Zeinali S, Uitto J. Mutation update: The spectra of PLEC sequence variants and related plectinopathies. Hum Mutat 2022; 43:1706-1731. [PMID: 35815343 PMCID: PMC9771971 DOI: 10.1002/humu.24434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 01/24/2023]
Abstract
Plectin, encoded by PLEC, is a cytoskeletal linker of intermediate filaments expressed in many cell types. Plectin consists of three main domains that determine its functionality: the N-terminal domain, the Rod domain, and the C-terminal domain. Molecular defects of PLEC correlating with the functional aspects lead to a group of rare heritable disorders, plectinopathies. These multisystem disorders include an autosomal dominant form of epidermolysis bullosa simplex (EBS-Ogna), limb-girdle muscular dystrophy (LGMD), aplasia cutis congenita (ACC), and an autosomal recessive form of EBS, which may associate with muscular dystrophy (EBS-MD), pyloric atresia (EBS-PA), and/or congenital myasthenic syndrome (EBS-MyS). In this study, genotyping of over 600 Iranian patients with epidermolysis bullosa by next-generation sequencing identified 15 patients with disease-causing PLEC variants. This mutation update analyzes the clinical spectrum of PLEC in our cohort and in the literature and demonstrates the relationship between PLEC genotype and phenotypic manifestations. This study has integrated our seven novel PLEC variants and phenotypic findings with previously published data totaling 116 variants to provide the most complete overview of pathogenic PLEC variants and related disorders.
Collapse
Affiliation(s)
- Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Nailah Harvey
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Ali Reza Tavasoli
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
- Pediatric Neurology Division, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Soheila Sotoudeh
- Department of Dermatology, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Varghaei
- Department of Dermatology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamidreza Mahmoudi
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvin Mansouri
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikoo Mozafari
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
3
|
Collyer J, Xu F, Munkhsaikhan U, Alberson NF, Orgil BO, Zhang W, Czosek RJ, Lu L, Jefferies JL, Towbin JA, Purevjav E. Combining whole exome sequencing with in silico analysis and clinical data to identify candidate variants in pediatric left ventricular noncompaction. Int J Cardiol 2022; 347:29-37. [PMID: 34752814 DOI: 10.1016/j.ijcard.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Understanding the overall variant burden in pediatric patients with left ventricular noncompaction (LVNC) has clinical implications. Whole exome sequencing (WES) allows detection of coding variants in both candidate cardiomyopathy genes and those included on commercial panels. Other lines of evidence, including in silico analysis, are necessary to reduce the overwhelming number of variants to those most likely having a phenotypic impact. METHODS Five families, including five pediatric probands with LVNC, 5 other affected, and 10 unaffected family members, had WES performed, followed by bioinformatics filtering and Sanger sequencing. Review of the HGMD, variant classification by ACMG guidelines, and clinical information were used to further refine complex genotypes. RESULTS One nonsense and eleven missense variants were identified. In Family 1, affected siblings carried digenic heterozygous variants: E1350K-MYH7 and A276V-ANKRD1. The proband also carried heterozygous W143X-NRG1. Four affected members of Family 2 carried K184Q-MYH7 while unaffected members did not. In Family 3, homozygous A161T-MYH7 and heterozygous P4935T-OBSCN variants were identified in the proband with the latter being absent in his unaffected brother. In Family 4, proband's father and half-sibling have mild hypertrabeculation and carry T3796I-PLEC. The proband, carrying T3796I-PLEC and V2878A-OBSCN, demonstrated higher trabeculation burden. The proband in Family 5 carried four variants, R3247W-PLEC, C92Y-ERG, T1233M-NCOR2, and E54K-HIST1H4B. Application of ACMG criteria and clinical data revealed that W143X-NRG1, P4935T-OBSCN, and V2878A-OBSCN likely have no phenotypic role. CONCLUSIONS We report nine variants, including novel T3796I-PLEC and biallelic A161T-MYH7, likely contributing to phenotypes ranging from asymptomatic hypertrabeculation to severe LVNC with heart failure.
Collapse
Affiliation(s)
- John Collyer
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States of America
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America; School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Undral Munkhsaikhan
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States of America
| | - Neely F Alberson
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States of America
| | - Buyan-Ochir Orgil
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States of America
| | - Wenying Zhang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America; Laboratory of Genetics and Genomics, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Richard J Czosek
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - John L Jefferies
- Division of Adult Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN, United States of America; Pediatric Cardiology, Le Bonheur Children's Hospital, Memphis, TN, United States of America; Pediatric Cardiology, St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Jeffrey A Towbin
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America; Pediatric Cardiology, Le Bonheur Children's Hospital, Memphis, TN, United States of America; Pediatric Cardiology, St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Enkhsaikhan Purevjav
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States of America.
| |
Collapse
|
4
|
Hon KL, Chu S, Leung AKC. Epidermolysis Bullosa: Pediatric Perspectives. Curr Pediatr Rev 2022; 18:182-190. [PMID: 34036913 DOI: 10.2174/1573396317666210525161252] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 11/22/2022]
Abstract
Epidermolysis bullosa (EB) is a group of rare congenital genetic conditions that result in painful blistering of the skin and mucous membranes, which occur with minor trauma or friction. There are many types and subtypes of EB that need to be distinguished, as the management and prognosis of each can vary significantly. We aim to perform an up-to-date literature review on congenital EB for healthcare providers in pediatrics. We performed a review of existing literature in the English language on EB via PubMed Clinical Queries, using key words such as "epidermolysis bullosa", "congenital" and "children". We reviewed EB based on the following subheadings: epidemiology, diagnosis, therapy, prognosis, and clinical prediction guidelines. EB is due to mutation in a number of genes, some types are autosomal dominant while others are autosomal recessive. The underlying mechanism is a defect in attachment between or within the epidermis and dermis of the skin. There are four main types: epidermolysis bullosa simplex, dystrophic epidermolysis bullosa, junctional epidermolysis bullosa, and Kindler syndrome. The diagnosis is suspected based on symptoms and confirmed by skin biopsy and definitive genetic testing. The severity of EB can range from mild to fatal. Severe complications may arise in some EB types and subtypes within the eye, ear, nose, upper airway, gastrointestinal and genitourinary tracts. There is no cure for the condition to date. Optimal management must be multidisciplinary, and involves wound care, pain control, controlling infections, nutritional support, and prevention and treatment of complications. EB presents in different forms. Treatment is supportive. The prognosis of milder forms is good. Children severely affected with EB and their families live a misery life with impaired quality of life. Health care workers must be aware of the suffering in these families and proactively support them.
Collapse
Affiliation(s)
- Kam Lun Hon
- Department of Paediatrics, The Chinese University of Hong Kong, and Department of Paediatrics and Adolescent Medicine, The Hong Kong Children's Hospital, Kowloon, Hong Kong
| | - Samantha Chu
- Faculty of Medicine, The Chinese University of Hong Kong, Shenzhen, Hong Kong
| | - Alexander K C Leung
- Department of Pediatrics, The University of Calgary, and The Alberta Children's Hospital, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Kiritsi D, Tsakiris L, Schauer F. Plectin in Skin Fragility Disorders. Cells 2021; 10:cells10102738. [PMID: 34685719 PMCID: PMC8534787 DOI: 10.3390/cells10102738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Plectin is a multi-faceted, 500 kDa-large protein, which due to its expression in different isoforms and distinct organs acts diversely as a cytoskeletal crosslinker and signaling scaffold. It functions as a mediator of keratinocyte mechanical stability in the skin, primarily through linking intermediate filaments to hemidesmosomes. Skin fragility may occur through the presence of mutations in the gene encoding for plectin, PLEC, or through the presence of autoantibodies against the molecule. Below, we review the cutaneous manifestations of plectinopathies as well as their systemic involvement in specific disease subtypes. We summarize the known roles of plectin in keratinocytes and fibroblasts and provide an outlook on future perspectives for plectin-associated skin disorders.
Collapse
Affiliation(s)
- Dimitra Kiritsi
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, 79104 Freiburg, Germany;
- Correspondence:
| | | | - Franziska Schauer
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, 79104 Freiburg, Germany;
| |
Collapse
|
6
|
Zrelski MM, Kustermann M, Winter L. Muscle-Related Plectinopathies. Cells 2021; 10:2480. [PMID: 34572129 PMCID: PMC8466646 DOI: 10.3390/cells10092480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022] Open
Abstract
Plectin is a giant cytoskeletal crosslinker and intermediate filament stabilizing protein. Mutations in the human plectin gene (PLEC) cause several rare diseases that are grouped under the term plectinopathies. The most common disorder is autosomal recessive disease epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), which is characterized by skin blistering and progressive muscle weakness. Besides EBS-MD, PLEC mutations lead to EBS with nail dystrophy, EBS-MD with a myasthenic syndrome, EBS with pyloric atresia, limb-girdle muscular dystrophy type R17, or EBS-Ogna. In this review, we focus on the clinical and pathological manifestations caused by PLEC mutations on skeletal and cardiac muscle. Skeletal muscle biopsies from EBS-MD patients and plectin-deficient mice revealed severe dystrophic features with variation in fiber size, degenerative myofibrillar changes, mitochondrial alterations, and pathological desmin-positive protein aggregates. Ultrastructurally, PLEC mutations lead to a disorganization of myofibrils and sarcomeres, Z- and I-band alterations, autophagic vacuoles and cytoplasmic bodies, and misplaced and degenerating mitochondria. We also summarize a variety of genetically manipulated mouse and cell models, which are either plectin-deficient or that specifically lack a skeletal muscle-expressed plectin isoform. These models are powerful tools to study functional and molecular consequences of PLEC defects and their downstream effects on the skeletal muscle organization.
Collapse
Affiliation(s)
| | | | - Lilli Winter
- Center for Anatomy and Cell Biology, Neuromuscular Research Department, Medical University of Vienna, 1090 Vienna, Austria; (M.M.Z.); (M.K.)
| |
Collapse
|
7
|
Castañón MJ, Wiche G. Identifying Plectin Isoform Functions through Animal Models. Cells 2021; 10:cells10092453. [PMID: 34572100 PMCID: PMC8468861 DOI: 10.3390/cells10092453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/04/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Plectin, a high-molecular-weight cytoskeletal linker protein, binds with high affinity to intermediate filaments of all types and connects them to junctional complexes, organelles, and inner membrane systems. In addition, it interacts with actomyosin structures and microtubules. As a multifunctional protein, plectin has been implicated in several multisystemic diseases, the most common of which is epidermolysis bullosa simplex with muscular dystrophy (EBS-MD). A great part of our knowledge about plectin’s functional diversity has been gained through the analysis of a unique collection of transgenic mice that includes a full (null) knockout (KO), several tissue-restricted and isoform-specific KOs, three double KOs, and two knock-in lines. The key molecular features and pathological phenotypes of these mice will be discussed in this review. In summary, the analysis of the different genetic models indicated that a functional plectin is required for the proper function of striated and simple epithelia, cardiac and skeletal muscle, the neuromuscular junction, and the vascular endothelium, recapitulating the symptoms of humans carrying plectin mutations. The plectin-null line showed severe skin and muscle phenotypes reflecting the importance of plectin for hemidesmosome and sarcomere integrity; whereas the ablation of individual isoforms caused a specific phenotype in myofibers, basal keratinocytes, or neurons. Tissue-restricted ablation of plectin rendered the targeted cells less resilient to mechanical stress. Studies based on animal models other than the mouse, such as zebrafish and C. elegans, will be discussed as well.
Collapse
|
8
|
The analysis of echocardiographic results in patients suffering from epidermolysis bullosa. Postepy Dermatol Alergol 2021; 37:871-878. [PMID: 33603603 PMCID: PMC7874876 DOI: 10.5114/ada.2020.102101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/12/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Cardiac abnormalities revealed in patients suffering from epidermolysis bullosa (EB) include dilated cardiomyopathy (DC) and aortopathy. DC is a rare but serious complication associated with an increased mortality, predominantly observed in recessive dystrophic EB. Echocardiography is the most available diagnostic tool used to detect heart disease in EB patients. Aim To analyse echocardiographic results obtained in Polish EB patients and compare them between the EB group and healthy persons. Material and methods We analysed retrospectively echocardiograms of 23 patients with EB (14 F, mean age 17.3 years) performed from 2017 to 2019. The incidence of left ventricular (LV) systolic and diastolic dysfunction, right heart disease and congenital heart disease was evaluated. A comparison of echo-parameters between EB patients and 20 matched healthy subjects was performed. Results We did not find any cases of DC and aortopathy in the EB group. One bicuspid aortic valve case was revealed. Analysis of LV diastolic parameters showed that the mean value of mitral A velocity was significantly higher and the pulmonary venous flow D velocity was lower in the EB group than in controls. Tissue Doppler analysis revealed lower values of E’ velocities of mitral annulus in the EB group, what may suggest discreetly slower LV relaxation, however, this will definitely require further research. Conclusions Although most EB patients do not present cardiac symptoms, there is still a risk of developing cardiomyopathy associated with poor prognosis. It seems reasonable to perform a scheduled echocardiographic screening including LV systolic and diastolic function assessment to detect preclinical cardiac abnormalities.
Collapse
|
9
|
Finsterer J, Stöllberger C. Left Ventricular Noncompaction Syndrome: Genetic Insights and Therapeutic Perspectives. Curr Cardiol Rep 2020; 22:84. [DOI: 10.1007/s11886-020-01339-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
|
11
|
Vahidnezhad H, Youssefian L, Saeidian AH, Uitto J. Phenotypic Spectrum of Epidermolysis Bullosa: The Paradigm of Syndromic versus Non-Syndromic Skin Fragility Disorders. J Invest Dermatol 2018; 139:522-527. [PMID: 30393082 DOI: 10.1016/j.jid.2018.10.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 11/28/2022]
Abstract
The heritable forms of epidermolysis bullosa (EB), a phenotypically heterogeneous group of skin fragility disorders, is currently associated with mutations in as many as 21 distinct genes. EB is primarily a disorder affecting the epithelial layers of skin and mucous membranes, without extracutaneous manifestations, and thus is nonsyndromic. However, recent demonstrations of skin blistering in multisystem disorders with single gene defects highlight the concept of syndromic EB. Here, we review the phenotypic and genotypic features of syndromic forms of EB to delineate the concept of syndromic versus nonsyndromic skin fragility disorders.
Collapse
Affiliation(s)
- Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Genetics, Genomics and Cancer Biology PhD Program, Thomas Jefferson University, Pennsylvania, USA
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Genetics, Genomics and Cancer Biology PhD Program, Thomas Jefferson University, Pennsylvania, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
12
|
No major role for rare plectin variants in arrhythmogenic right ventricular cardiomyopathy. PLoS One 2018; 13:e0203078. [PMID: 30161220 PMCID: PMC6117038 DOI: 10.1371/journal.pone.0203078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/14/2018] [Indexed: 11/19/2022] Open
Abstract
Aims Likely pathogenic/pathogenic variants in genes encoding desmosomal proteins play an important role in the pathophysiology of arrhythmogenic right ventricular cardiomyopathy (ARVC). However, for a substantial proportion of ARVC patients, the genetic substrate remains unknown. We hypothesized that plectin, a cytolinker protein encoded by the PLEC gene, could play a role in ARVC because it has been proposed to link the desmosomal protein desmoplakin to the cytoskeleton and therefore has a potential function in the desmosomal structure. Methods We screened PLEC in 359 ARVC patients and compared the frequency of rare coding PLEC variants (minor allele frequency [MAF] <0.001) between patients and controls. To assess the frequency of rare variants in the control population, we evaluated the rare coding variants (MAF <0.001) found in the European cohort of the Exome Aggregation Database. We further evaluated plectin localization by immunofluorescence in a subset of patients with and without a PLEC variant. Results Forty ARVC patients carried one or more rare PLEC variants (11%, 40/359). However, rare variants also seem to occur frequently in the control population (18%, 4754/26197 individuals). Nor did we find a difference in the prevalence of rare PLEC variants in ARVC patients with or without a desmosomal likely pathogenic/pathogenic variant (14% versus 8%, respectively). However, immunofluorescence analysis did show decreased plectin junctional localization in myocardial tissue from 5 ARVC patients with PLEC variants. Conclusions Although PLEC has been hypothesized as a promising candidate gene for ARVC, our current study did not show an enrichment of rare PLEC variants in ARVC patients compared to controls and therefore does not support a major role for PLEC in this disorder. Although rare PLEC variants were associated with abnormal localization in cardiac tissue, the confluence of data does not support a role for plectin abnormalities in ARVC development.
Collapse
|
13
|
Al-Thawabieh W, Lucky AW, Wong B, Motley WW. Pediatric Ophthalmoplegia and Ptosis in Epidermolysis Bullosa Simplex Associated With Muscular Dystrophy. J Pediatr Ophthalmol Strabismus 2018; 55:e26-e29. [PMID: 30180241 DOI: 10.3928/01913913-20180806-03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 07/23/2018] [Indexed: 11/20/2022]
Abstract
Oculomotor dysfunction in epidermolysis bullosa simplex associated with muscular dystrophy has been reported rarely in the ophthalmic literature. In a series of 6 patients with epidermolysis bullosa simplex associated with muscular dystrophy, 3 demonstrated ptosis, ophthalmoplegia, or both. Ptosis and ophthalmoplegia may occur early in epidermolysis bullosa simplex associated with muscular dystrophy and aid in diagnosis. [J Pediatr Ophthalmol Strabismus. 2018;55:e26-e29.].
Collapse
|
14
|
Translating emerging molecular genetic insights into clinical practice in inherited cardiomyopathies. J Mol Med (Berl) 2018; 96:993-1024. [PMID: 30128729 DOI: 10.1007/s00109-018-1685-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/22/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
Abstract
Cardiomyopathies are primarily genetic disorders of the myocardium associated with higher risk of life-threatening cardiac arrhythmias, heart failure, and sudden cardiac death. The evolving knowledge in genomic medicine during the last decade has reshaped our understanding of cardiomyopathies as diseases of multifactorial nature and complex pathophysiology. Genetic testing in cardiomyopathies has subsequently grown from primarily a research tool into an essential clinical evaluation piece with important clinical implications for patients and their families. The purpose of this review is to provide with a contemporary insight into the implications of genetic testing in diagnosis, therapy, and prognosis of patients with inherited cardiomyopathies. Here, we summarize the contemporary knowledge on genotype-phenotype correlations in inherited cardiomyopathies and highlight the recent significant achievements in the field of translational cardiovascular genetics.
Collapse
|
15
|
Finsterer J, Stöllberger C. Reasons for missing noncompaction in myopathies and vice versa. Cardiovasc Pathol 2018; 35:20-22. [PMID: 29730526 DOI: 10.1016/j.carpath.2018.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/20/2018] [Accepted: 04/03/2018] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - Claudia Stöllberger
- 2nd Medical Department with Cardiology and Intensive Care Medicine, Krankenanstalt Rudolfstiftung, Vienna, Austria
| |
Collapse
|
16
|
Thorolfsdottir RB, Sveinbjornsson G, Sulem P, Helgadottir A, Gretarsdottir S, Benonisdottir S, Magnusdottir A, Davidsson OB, Rajamani S, Roden DM, Darbar D, Pedersen TR, Sabatine MS, Jonsdottir I, Arnar DO, Thorsteinsdottir U, Gudbjartsson DF, Holm H, Stefansson K. A Missense Variant in PLEC Increases Risk of Atrial Fibrillation. J Am Coll Cardiol 2017; 70:2157-2168. [PMID: 29050564 PMCID: PMC5704994 DOI: 10.1016/j.jacc.2017.09.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have yielded variants at >30 loci that associate with atrial fibrillation (AF), including rare coding mutations in the sarcomere genes MYH6 and MYL4. OBJECTIVES The aim of this study was to search for novel AF associations and in doing so gain insights into the mechanisms whereby variants affect AF risk, using electrocardiogram (ECG) measurements. METHODS The authors performed a GWAS of 14,255 AF cases and 374,939 controls, using whole-genome sequence data from the Icelandic population, and tested novel signals in 2,002 non-Icelandic cases and 12,324 controls. They then tested the AF variants for effect on cardiac electrical function by using measurements in 289,297 ECGs from 62,974 individuals. RESULTS The authors discovered 2 novel AF variants, the intergenic variant rs72700114, between the genes LINC01142 and METTL11B (risk allele frequency = 8.1%; odds ratio [OR]: 1.26; p = 3.1 × 10-18), and the missense variant p.Gly4098Ser in PLEC (frequency = 1.2%; OR: 1.55; p = 8.0 × 10-10), encoding plectin, a cytoskeletal cross-linking protein that contributes to integrity of cardiac tissue. The authors also confirmed 29 reported variants. p.Gly4098Ser in PLEC significantly affects various ECG measurements in the absence of AF. Other AF variants have diverse effects on the conduction system, ranging from none to extensive. CONCLUSIONS The discovery of a missense variant in PLEC affecting AF combined with recent discoveries of variants in the sarcomere genes MYH6 and MYL4 points to an important role of myocardial structure in the pathogenesis of the disease. The diverse associations between AF variants and ECG measurements suggest fundamentally different categories of mechanisms contributing to the development of AF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dan M Roden
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Terje R Pedersen
- Center For Preventive Medicine, Oslo University Hospital and Medical Faculty, University of Oslo, Oslo, Norway
| | - Marc S Sabatine
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland; Department of Immunology, Landspitali University Hospital, Reykjavik, Iceland
| | - David O Arnar
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland; Department of Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland; School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
17
|
Batalla A, Vicente A, Bartrons J, Prada F, Fortuny C, González-Enseñat M. Cardiomyopathy in Patients With Hereditary Bullous Epidermolysis. ACTAS DERMO-SIFILIOGRAFICAS 2017. [DOI: 10.1016/j.adengl.2017.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Szabadosova V, Boronova I, Ferenc P, Tothova I, Bernasovska J, Zigova M, Kmec J, Bernasovsky I. Analysis of selected genes associated with cardiomyopathy by next-generation sequencing. J Clin Lab Anal 2017; 32. [PMID: 28594148 DOI: 10.1002/jcla.22254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/14/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND As the leading cause of congestive heart failure, cardiomyopathy represents a heterogenous group of heart muscle disorders. Despite considerable progress being made in the genetic diagnosis of cardiomyopathy by detection of the mutations in the most prevalent cardiomyopathy genes, the cause remains unsolved in many patients. High-throughput mutation screening in the disease genes for cardiomyopathy is now possible because of using target enrichment followed by next-generation sequencing. The aim of the study was to analyze a panel of genes associated with dilated or hypertrophic cardiomyopathy based on previously published results in order to identify the subjects at risk. METHODS The method of next-generation sequencing by IlluminaHiSeq 2500 platform was used to detect sequence variants in 16 individuals diagnosed with dilated or hypertrophic cardiomyopathy. Detected variants were filtered and the functional impact of amino acid changes was predicted by computational programs. RESULTS DNA samples of the 16 patients were analyzed by whole exome sequencing. We identified six nonsynonymous variants that were shown to be pathogenic in all used prediction softwares: rs3744998 (EPG5), rs11551768 (MGME1), rs148374985 (MURC), rs78461695 (PLEC), rs17158558 (RET) and rs2295190 (SYNE1). Two of the analyzed sequence variants had minor allele frequency (MAF)<0.01: rs148374985 (MURC), rs34580776 (MYBPC3). CONCLUSION Our data support the potential role of the detected variants in pathogenesis of dilated or hypertrophic cardiomyopathy; however, the possibility that these variants might not be true disease-causing variants but are susceptibility alleles that require additional mutations or injury to cause the clinical phenotype of disease must be considered.
Collapse
Affiliation(s)
- Viktoria Szabadosova
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Presov, Presov, Slovakia
| | - Iveta Boronova
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Presov, Presov, Slovakia
| | - Peter Ferenc
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Presov, Presov, Slovakia
| | - Iveta Tothova
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Presov, Presov, Slovakia
| | - Jarmila Bernasovska
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Presov, Presov, Slovakia
| | - Michaela Zigova
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Presov, Presov, Slovakia
| | - Jan Kmec
- Cardiocentre, Faculty Hospital of J.A. Reiman, Presov, Slovakia
| | - Ivan Bernasovsky
- Center of Languages and Cultures of National Minorities, University of Presov, Presov, Slovakia
| |
Collapse
|
19
|
Cardiomyopathy in Patients With Hereditary Bullous Epidermolysis. ACTAS DERMO-SIFILIOGRAFICAS 2017; 108:544-549. [PMID: 28364942 DOI: 10.1016/j.ad.2017.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/28/2017] [Accepted: 01/31/2017] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION AND OBJECTIVE In recent decades, an association has been reported between epidermolysis bullosa (EB) and dilated cardiomyopathy (DC). DC is typically in an advanced phase when detected, leading to a poorer prognosis. Our objective was to determine the prevalence of DC in patients with EB seen in Hospital San Joan de Déu in Barcelona, Spain, between May 1986 and April 2015. METHODS This was a descriptive, cross-sectional chart-review study in which we recorded the type and main subtypes of EB and the presence or absence of DC. RESULTS Fifty-seven patients with EB were found, 19 with EB simplex, 10 with junctional EB, 27 with dystrophic EB (14 dominant dystrophic and 13 recessive dystrophic), and just 1 with Kindler syndrome. DC was detected in only 2 patients with recessive dystrophic EB. Twenty-three patients had presented factors that could have had a causal relationship with the potential onset of DC. CONCLUSION DC is a possible complication of EB, particularly in recessive dystrophic EB. Periodic follow-up should be performed to make an early diagnosis and start treatment.
Collapse
|
20
|
Kyrova J, Kopeckova L, Buckova H, Mrazova L, Vesely K, Hermanova M, Oslejskova H, Fajkusova L. Epidermolysis bullosa simplex with muscular dystrophy. Review of the literature and a case report. J Dermatol Case Rep 2016; 10:39-48. [PMID: 28400893 DOI: 10.3315/jdcr.2016.1231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/06/2016] [Indexed: 11/11/2022]
Abstract
BACKGROUND Epidermolysis bullosa simplex associated with muscular dystrophy is a genetic skin disease caused by plectin deficiency. A case of a 19-year-old Czech patient affected with this disease and a review all previously published clinical cases are presented. MAIN OBSERVATIONS In our patient, skin signs of the disease developed after birth. Bilateral ptosis at the age of 8 years was considered as the first specific symptom of muscular dystrophy. Since then, severe scoliosis, urological and psychiatric complication have quickly developed. The signs of plectin deficiency were found by histopathological studies, electron microscopy and antigen mapping of the skin and muscular samples. Two autosomal recessive mutations in the plectin gene leading to premature termination codon were disclosed by mutation analysis. By review of all published clinical cases, 49 patients with this disease were found. 54 different mutations in the plectin gene were published, p.(Arg2319*) in exon 31 being the most frequently found. Median age of muscular dystrophy development was 9.5 years. Hoarseness and respiratory complications were the most often complications beside skin involvement. CONCLUSION Epidermolysis bullosa simplex with muscular dystrophy was diagnosed based on clinical, histopathological (skin and muscle biopsy) and mutation analysis of the plectin gene. Overview of the genetic and clinical characteristic of this disease could be presented by review of all previously published clinical cases.
Collapse
Affiliation(s)
- Jana Kyrova
- Department of Pediatric Dermatology, Pediatric Clinic, University Hospital Brno and Masaryk University Brno, Brno, Czech Republic; ; EB Centre Czech Republic, University Hospital Brno and Masaryk University Brno, Brno, Czech Republic
| | - Lenka Kopeckova
- Centre of Molecular Biology and Gene Therapy, University Hospital Brno and Masaryk University Brno, Brno, Czech Republic
| | - Hana Buckova
- Department of Pediatric Dermatology, Pediatric Clinic, University Hospital Brno and Masaryk University Brno, Brno, Czech Republic; ; EB Centre Czech Republic, University Hospital Brno and Masaryk University Brno, Brno, Czech Republic
| | - Lenka Mrazova
- Clinic of Pediatric Neurology, University Hospital and Masaryk University Brno, Brno, Czech Republic
| | - Karel Vesely
- 1st Department of Pathological Anatomy, St. Anne´s University Hospital Brno and Masaryk University Brno, Brno, Czech Republic
| | - Marketa Hermanova
- 1st Department of Pathological Anatomy, St. Anne´s University Hospital Brno and Masaryk University Brno, Brno, Czech Republic
| | - Hana Oslejskova
- Clinic of Pediatric Neurology, University Hospital and Masaryk University Brno, Brno, Czech Republic
| | - Lenka Fajkusova
- Centre of Molecular Biology and Gene Therapy, University Hospital Brno and Masaryk University Brno, Brno, Czech Republic
| |
Collapse
|
21
|
Winter L, Türk M, Harter PN, Mittelbronn M, Kornblum C, Norwood F, Jungbluth H, Thiel CT, Schlötzer-Schrehardt U, Schröder R. Downstream effects of plectin mutations in epidermolysis bullosa simplex with muscular dystrophy. Acta Neuropathol Commun 2016; 4:44. [PMID: 27121971 PMCID: PMC4847350 DOI: 10.1186/s40478-016-0314-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/21/2016] [Indexed: 12/20/2022] Open
Abstract
Mutations of the human plectin gene (PLEC) on chromosome 8q24 cause autosomal recessive epidermolysis bullosa simplex with muscular dystrophy (EBS-MD). In the present study we analyzed the downstream effects of PLEC mutations on plectin protein expression and localization, the structure of the extrasarcomeric desmin cytoskeleton, protein aggregate formation and mitochondrial distribution in skeletal muscle tissue from three EBS-MD patients. PLEC gene analysis in a not previously reported 35-year-old EBS-MD patient with additional disease features of cardiomyopathy and malignant arrhythmias revealed novel compound heterozygous (p.(Phe755del) and p.(Lys1040Argfs*139)) mutations resulting in complete abolition of plectin protein expression. In contrast, the other two patients with different homozygous PLEC mutations showed preserved plectin protein expression with one only expressing rodless plectin variants, and the other markedly reduced protein levels. Analysis of skeletal muscle tissue from all three patients revealed severe disruption of the extrasarcomeric intermediate filament cytoskeleton, protein aggregates positive for desmin, syncoilin, and synemin, degenerative myofibrillar changes, and mitochondrial abnormalities comprising respiratory chain dysfunction and an altered organelle distribution and amount. Our study demonstrates that EBS-MD causing PLEC mutations universally result in a desmin protein aggregate myopathy phenotype despite marked differences in individual plectin protein expression patterns. Since plectin is the key cytolinker protein that regulates the structural and functional organization of desmin filaments, the defective anchorage and spacing of assembled desmin filaments is the key pathogenetic event that triggers the formation of desmin protein aggregates as well as secondary mitochondrial pathology.
Collapse
|
22
|
Finsterer J, Stöllberger C. PLEC1 mutation associated with left ventricular hypertrabeculation/noncompaction. Neuromuscul Disord 2015; 25:447-8. [PMID: 25791580 DOI: 10.1016/j.nmd.2015.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/12/2015] [Indexed: 02/03/2023]
Affiliation(s)
| | - Claudia Stöllberger
- 2nd Medical Department with Cardiology and Intensive Care Medicine, Krankenanstalt Rudolfstiftung, Vienna, Austria
| |
Collapse
|