1
|
Ahmed AN, Rawlins LE, Khan N, Jan Z, Ubeyratna N, Voutsina N, Azeem A, Khan S, Baple EL, Crosby AH, Saleha S. Expanding the genetic spectrum of hereditary motor sensory neuropathies in Pakistan. BMC Neurol 2024; 24:394. [PMID: 39415096 PMCID: PMC11481789 DOI: 10.1186/s12883-024-03882-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Hereditary motor and sensory neuropathy (HMSN) refers to a group of inherited progressive peripheral neuropathies characterized by reduced nerve conduction velocity with chronic segmental demyelination and/or axonal degeneration. HMSN is highly clinically and genetically heterogeneous with multiple inheritance patterns and phenotypic overlap with other inherited neuropathies and neurodegenerative diseases. Due to this high complexity and genetic heterogeneity, this study aimed to elucidate the genetic causes of HMSN in Pakistani families using Whole Exome Sequencing (WES) for variant identification and Sanger sequencing for validation and segregation analysis, facilitating accurate clinical diagnosis. METHODS Families from Khyber Pakhtunkhwa with at least two members showing HMSN symptoms, who had not previously undergone genetic analysis, were included. Referrals for genetic investigations were based on clinical features suggestive of HMSN by local neurologists. WES was performed on affected individuals from each family, with Sanger sequencing used to validate and analyze the segregation of identified variants among family members. Clinical data including age of onset were assessed for variability among affected individuals, and the success rate of genetic diagnosis was compared with existing literature using proportional differences and Cohen's h. RESULTS WES identified homozygous pathogenic variants in GDAP1 (c.310 + 4 A > G, p.?), SETX (c.5948_5949del, p.(Asn1984Profs*30), IGHMBP2 (c.1591 C > A, p.(Pro531Thr) and NARS1 (c.1633 C > T, p.(Arg545Cys) as causative for HMSN in five out of nine families, consistent with an autosomal recessive inheritance pattern. Additionally, in families with HMSN, a SETX variant was found to cause cerebellar ataxia, while a NARS1 variant was linked to intellectual disability. Based on American College of Medical Genetics and Genomics criteria, the GDAP1 variant is classified as a variant of uncertain significance, while variants in SETX and IGHMBP2 are classified as pathogenic, and the NARS1 variant is classified as likely pathogenic. The age of onset ranged from 1 to 15 years (Mean = 5.13, SD = 3.61), and a genetic diagnosis was achieved in 55.56% of families with HMSN, with small effect sizes compared to previous studies. CONCLUSIONS This study expands the molecular genetic spectrum of HMSN and HMSN plus type neuropathies in Pakistan and facilitates accurate diagnosis, genetic counseling, and clinical management for affected families.
Collapse
Affiliation(s)
- Asif Naveed Ahmed
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Lettie E Rawlins
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK.
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK.
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Zakir Jan
- Department of Neurology, Pakistan Institute of Medical Science, Islamabad, 44000, Pakistan
| | - Nishanka Ubeyratna
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Nikol Voutsina
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Arfa Azeem
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Emma L Baple
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Andrew H Crosby
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan.
| |
Collapse
|
2
|
Tabatabaii SA, Kianparsa J, Zavareh MHG, Khosravi A, Bahadori AR, Farahbakhsh N. Noninvasive ventilation and laser-assisted unilateral posterior cordotomy as novel multidisciplinary approaches for Charcot-Marie-Tooth disease 4B vocal cord paralysis: a case report. J Med Case Rep 2024; 18:401. [PMID: 39217382 PMCID: PMC11366128 DOI: 10.1186/s13256-024-04742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Charcot-Marie-Tooth disease (CMT) is one of the most common inherited neuropathies. The disease is generally characterized by sensory loss most prominent in distal extremities, muscle weakness, and muscle wasting. There is still no effective therapy for Charcot-Marie-Tooth disease. CASE PRESENTATION The patient is a 6-year-old Iranian girl, of Fars ethnicity, who was admitted with a chief complaint of hoarseness and an impression of Charcot-Marie-Tooth disease type 4B. She was initially treated with noninvasive ventilation and, after a year, electively underwent cordotomy as a novel therapeutic approach. CONCLUSIONS Charcot-Marie-Tooth disease type 4B is a less common but important cause of stridor. Noninvasive ventilation treatment and unilateral posterior cordotomy can be utilized for hereditary neuropathies.
Collapse
Affiliation(s)
- Seyed Ahmad Tabatabaii
- Department of Pediatric Pulmonology, Mofid Pediatrics Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Joben Kianparsa
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| | | | - Abolfazl Khosravi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nazanin Farahbakhsh
- Department of Pediatric Pulmonology, Mofid Pediatrics Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Tariq A, Piontkivska H. Reovirus infection induces transcriptome-wide unique A-to-I editing changes in the murine fibroblasts. Virus Res 2024; 346:199413. [PMID: 38848818 PMCID: PMC11225029 DOI: 10.1016/j.virusres.2024.199413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/26/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
The conversion of Adenosine (A) to Inosine (I), by Adenosine Deaminases Acting on RNA or ADARs, is an essential post-transcriptional modification that contributes to proteome diversity and regulation in metazoans including humans. In addition to its transcriptome-regulating role, ADARs also play a major part in immune response to viral infection, where an interferon response activates interferon-stimulated genes, such as ADARp150, in turn dynamically regulating host-virus interactions. A previous report has shown that infection from reoviruses, despite strong activation of ADARp150, does not influence the editing of some of the major known editing targets, while likely editing others, suggesting a potentially nuanced editing pattern that may depend on different factors. However, the results were based on a handful of selected editing sites and did not cover the entire transcriptome. Thus, to determine whether and how reovirus infection specifically affects host ADAR editing patterns, we analyzed a publicly available deep-sequenced RNA-seq dataset, from murine fibroblasts infected with wild-type and mutant reovirus strains that allowed us to examine changes in editing patterns on a transcriptome-wide scale. To the best of our knowledge, this is the first transcriptome-wide report on host editing changes after reovirus infection. Our results demonstrate that reovirus infection induces unique nuanced editing changes in the host, including introducing sites uniquely edited in infected samples. Genes with edited sites are overrepresented in pathways related to immune regulation, cellular signaling, metabolism, and growth. Moreover, a shift in editing targets has also been observed, where the same genes are edited in infection and control conditions but at different sites, or where the editing rate is increased for some and decreased for other differential targets, supporting the hypothesis of dynamic and condition-specific editing by ADARs.
Collapse
Affiliation(s)
- Ayesha Tariq
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA; Healthy Communities Research Institute, Kent State University, Kent, OH, USA.
| |
Collapse
|
4
|
Du N, Wang X, Wang Z, Liu H, Liu H, Duan H, Zhao S, Banerjee S, Zhang X. Identification of a Novel Homozygous Mutation in MTMR2 Gene Causes Very Rare Charcot-Marie-Tooth Disease Type 4B1. Appl Clin Genet 2024; 17:71-84. [PMID: 38835974 PMCID: PMC11149649 DOI: 10.2147/tacg.s448084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/01/2024] [Indexed: 06/06/2024] Open
Abstract
Background Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders involving peripheral nervous system. Charcot-Marie-Tooth disease 4B1 (CMT4B1) is a rare subtype of CMT. CMT4B1 is an axonal demyelinating polyneuropathy with an autosomal recessive mode of inheritance. Patients with CMT4B1 usually manifested with dysfunction of the motor and sensory systems which leads to gradual and progressive muscular weakness and atrophy, starting from the peroneal muscles and finally affecting the distal muscles. Germline mutations in MTMR2 gene causes CMT4B1. Material and Methods In this study, we investigated a 4-year-old Chinese boy with gradual and progressive weakness and atrophy of both proximal and distal muscles. The proband's parents did not show any abnormalities. Whole-exome sequencing and Sanger sequencing were performed. Results Whole-exome sequencing identified a novel homozygous nonsense mutation (c.118A>T; p.Lys40*) in exon 2 of MTMR2 gene in the proband. This novel mutation leads to the formation of a truncated MTMR2 protein of 39 amino acids instead of the wild- type MTMR2 protein of 643 amino acids. This mutation is predicted to cause the complete loss of the PH-GRAM domain, phosphatase domain, coiled-coil domain, and PDZ-binding motif of the MTMR2 protein. Sanger sequencing revealed that the proband's parents carried the mutation in a heterozygous state. This mutation was absent in 100 healthy control individuals. Conclusion This study reports the first mutation in MTMR2 associated with CMT4B1 in a Chinese population. Our study also showed the importance of whole-exome sequencing in identifying candidate genes and disease-causing variants in patients with CMT4B1.
Collapse
Affiliation(s)
- Nan Du
- Department of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| | - Xiaolei Wang
- Department of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| | - Zhaohui Wang
- Center for Children Health Care, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| | - Hongwei Liu
- Department of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| | - Hui Liu
- Department of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| | - Hongfang Duan
- Department of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| | - Shaozhi Zhao
- Department of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| | - Santasree Banerjee
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Xinwen Zhang
- Department of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, 710004, People's Republic of China
| |
Collapse
|
5
|
Asif M, Chiou CC, Hussain MF, Hussain M, Sajid Z, Gulsher M, Raheem A, Khan A, Nasreen N, Kloczkowski A, Hassan M, Iqbal F, Chen CC. Homozygous Mutations in GDAP1 and MFN2 Genes Resulted in Autosomal Recessive Forms of Charcot-Marie-Tooth Disease in Consanguineous Pakistani Families. DNA Cell Biol 2023; 42:697-708. [PMID: 37797217 PMCID: PMC11262584 DOI: 10.1089/dna.2023.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/09/2023] [Accepted: 08/23/2023] [Indexed: 10/07/2023] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a heritable neurodegenerative disease of peripheral nervous system diseases in which more than 100 genes and their mutations are associated. Two consanguineous families Dera Ghazi Khan (PAK-CMT1-DG KHAN) and Layyah (PAK-CMT2-LAYYAH) with multiple CMT-affected subjects were enrolled from Punjab province in Pakistan. Basic epidemiological data were collected for the subjects. Nerve conduction study (NCS) and electromyography (EMG) were performed for the patients. Whole-exome sequencing (WES) followed by Sanger sequencing was applied to report the genetic basic of CMT. The NCS findings revealed that sensory and motor nerve conduction velocities for both families were <38 m/s. EMG presented denervation, neuropathic motor unit potential, and reduced interference pattern of peripheral nerves. WES identified that a novel nonsense mutation (c. 226 G>T) in GADP1 gene and a previously known missense mutation in MFN2 gene (c. 334 G>A) cause CMT4A (Charcot-Marie-Tooth disease type 4A) in the PAK-CMT1-DG KHAN family and CMT2A (Charcot-Marie-Tooth disease type 2A) in the PAK-CMT2-LAYYAH family, respectively. Mutations followed Mendelian pattern with autosomal recessive mode of inheritance. Multiple sequence alignment by Clustal Omega indicated that mutation-containing domain in both genes is highly conserved, and in situ analysis revealed that both mutations are likely to be pathogenic. We reported that a novel nonsense mutation and a previously known missense mutation in GAPD1 gene and MFN2 gene, respectively, cause CMT in consanguineous Pakistani families.
Collapse
Affiliation(s)
- Muhammad Asif
- Institute of Molecular Biology and Biotechnology. Bahauddin Zakariya University, Multan, Pakistan
- Institute of Zoology, Bahauddin Zakariya University, Multan, Pakistan
| | - Chien-Chun Chiou
- Department of Dermatology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | | | - Manzoor Hussain
- Orthopedic Unit 1, Nishter Medical University Multan, Pakistan
| | - Zureesha Sajid
- Institute of Molecular Biology and Biotechnology. Bahauddin Zakariya University, Multan, Pakistan
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Gulsher
- Children Hospital and Institute of Child Health, Multan, Pakistan
| | - Afifa Raheem
- Institute of Zoology, Bahauddin Zakariya University, Multan, Pakistan
| | - Adil Khan
- Department of Botany and Zoology, Bacha Khan University, Charsadda, Pakistan
| | - Nasreen Nasreen
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Furhan Iqbal
- Institute of Zoology, Bahauddin Zakariya University, Multan, Pakistan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Cook S, Hooser BN, Williams DC, Kortz G, Aleman M, Minor K, Koziol J, Friedenberg SG, Cullen JN, Shelton GD, Ekenstedt KJ. Canine models of Charcot-Marie-Tooth: MTMR2, MPZ, and SH3TC2 variants in golden retrievers with congenital hypomyelinating polyneuropathy. Neuromuscul Disord 2023; 33:677-691. [PMID: 37400349 PMCID: PMC10530471 DOI: 10.1016/j.nmd.2023.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Congenital hypomyelinating polyneuropathy (HPN) restricted to the peripheral nervous system was reported in 1989 in two Golden Retriever (GR) littermates. Recently, four additional cases of congenital HPN in young, unrelated GRs were diagnosed via neurological examination, electrodiagnostic evaluation, and peripheral nerve pathology. Whole-genome sequencing was performed on all four GRs, and variants from each dog were compared to variants found across >1,000 other dogs, all presumably unaffected with HPN. Likely causative variants were identified for each HPN-affected GR. Two cases shared a homozygous splice donor site variant in MTMR2, with a stop codon introduced within six codons following the inclusion of the intron. One case had a heterozygous MPZ isoleucine to threonine substitution. The last case had a homozygous SH3TC2 nonsense variant predicted to truncate approximately one-half of the protein. Haplotype analysis using 524 GR established the novelty of the identified variants. Each variant occurs within genes that are associated with the human Charcot-Marie-Tooth (CMT) group of heterogeneous diseases, affecting the peripheral nervous system. Testing a large GR population (n = >200) did not identify any dogs with these variants. Although these variants are rare within the general GR population, breeders should be cautious to avoid propagating these alleles.
Collapse
Affiliation(s)
- Shawna Cook
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
| | - Blair N Hooser
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - D Colette Williams
- The William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, Davis, CA, USA
| | - Gregg Kortz
- VCA Sacramento Veterinary Referral Center, Sacramento CA, USA
| | - Monica Aleman
- The William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, Davis, CA, USA
| | - Katie Minor
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Jennifer Koziol
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, USA
| | - Steven G Friedenberg
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Jonah N Cullen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kari J Ekenstedt
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
7
|
Cahalan SD, Boehm I, Jones RA, Piercy RJ. Recognising the potential of large animals for modelling neuromuscular junction physiology and disease. J Anat 2022; 241:1120-1132. [PMID: 36056593 PMCID: PMC9558152 DOI: 10.1111/joa.13749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/28/2022] Open
Abstract
The aetiology and pathophysiology of many diseases of the motor unit remain poorly understood and the role of the neuromuscular junction (NMJ) in this group of disorders is particularly overlooked, especially in humans, when these diseases are comparatively rare. However, elucidating the development, function and degeneration of the NMJ is essential to uncover its contribution to neuromuscular disorders, and to explore potential therapeutic avenues to treat these devastating diseases. Until now, an understanding of the role of the NMJ in disease pathogenesis has been hindered by inherent differences between rodent and human NMJs: stark contrasts in body size and corresponding differences in associated axon length underpin some of the translational issues in animal models of neuromuscular disease. Comparative studies in large mammalian models, including examination of naturally occurring, highly prevalent animal diseases and evaluation of their treatment, might provide more relevant insights into the pathogenesis and therapy of equivalent human diseases. This review argues that large animal models offer great potential to enhance our understanding of the neuromuscular system in health and disease, and in particular, when dealing with diseases for which nerve length dependency might underly the pathogenesis.
Collapse
Affiliation(s)
- Stephen D Cahalan
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
| | - Ines Boehm
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Biozentrum University of Basel, Basel, Switzerland
| | - Ross A Jones
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Richard J Piercy
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
| |
Collapse
|
8
|
Pathological evidence of demyelination in the recurrent laryngeal, phrenic, and oculomotor nerves in Charcot-Marie-Tooth disease 4F. eNeurologicalSci 2022; 25:100358. [PMID: 34993357 PMCID: PMC8713021 DOI: 10.1016/j.ensci.2021.100358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/05/2021] [Accepted: 07/11/2021] [Indexed: 11/22/2022] Open
Abstract
We present pathology of the peripheral nerves of a patient with Adult-onset Charcot-Marie-Tooth disease 4F caused by periaxin gene mutation p.D651N. The patient was a 72-year-old woman. She had hoarseness and underwent continuous positive airway pressure therapy at night due to sleep apnea. The patient died abruptly. Remarkable demyelination with tomacula formation was found in the phrenic nerve, vagal nerve, recurrent laryngeal nerve, and oculomotor nerves. The cause of death could have been insufficient reactivity to the aspiration or sudden onset of bilateral vocal cord palsy. We must pay attention to respiratory function and cranial nerve palsies in hereditary demyelinating neuropathies.
Collapse
|
9
|
Kanwal S, Choi YJI, Lim SO, Choi HJ, Park JH, Nuzhat R, Khan A, Perveen S, Choi BO, Chung KW. Novel homozygous mutations in Pakistani families with Charcot-Marie-Tooth disease. BMC Med Genomics 2021; 14:174. [PMID: 34193129 PMCID: PMC8247155 DOI: 10.1186/s12920-021-01019-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Charcot-Marie-Tooth disease (CMT) is a group of genetically and clinically heterogeneous peripheral nervous system disorders. Few studies have identified genetic causes of CMT in the Pakistani patients. METHODS This study was performed to identify pathogenic mutations in five consanguineous Pakistani CMT families negative for PMP22 duplication. Genomic screening was performed by application of whole exome sequencing. RESULTS We identified five pathogenic or likely pathogenic homozygous mutations in four genes: c.2599C > T (p.Gln867*) and c.3650G > A (p.Gly1217Asp) in SH3TC2, c.19C > T (p.Arg7*) in HK1, c.247delG (p.Gly83Alafs*44) in REEP1, and c.334G > A (p.Val112Met) in MFN2. These mutations have not been reported in CMT patients. Mutations in SH3TC2, HK1, REEP1, and MFN2 have been reported to be associated with CMT4C, CMT4G, dHMN5B (DSMA5B), and CMT2A, respectively. The genotype-phenotype correlations were confirmed in all the examined families. We also confirmed that both alleles from the homozygous variants originated from a single ancestor using homozygosity mapping. CONCLUSIONS This study found five novel mutations as the underlying causes of CMT. Pathogenic mutations in SH3TC2, HK1, and REEP1 have been reported rarely in other populations, suggesting ethnic-specific distribution. This study would be useful for the exact molecular diagnosis and treatment of CMT in Pakistani patients.
Collapse
Affiliation(s)
- Sumaira Kanwal
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Yu JIn Choi
- Department of Biological Sciences, Kongju National University, 56 Gongjudaehakro, Gongju, 32588, Korea
| | - Si On Lim
- Department of Biological Sciences, Kongju National University, 56 Gongjudaehakro, Gongju, 32588, Korea
| | - Hee Ji Choi
- Department of Biological Sciences, Kongju National University, 56 Gongjudaehakro, Gongju, 32588, Korea
| | - Jin Hee Park
- Department of Biological Sciences, Kongju National University, 56 Gongjudaehakro, Gongju, 32588, Korea
| | - Rana Nuzhat
- Department of Pediatric Neurology, The Children Hospital and Institute of Child Health, Multan, Pakistan
| | - Aneela Khan
- Department of Pediatric Neurology, The Children Hospital and Institute of Child Health, Multan, Pakistan
| | - Shazia Perveen
- Department of Zoology, The Women University, Multan, Pakistan
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, 56 Gongjudaehakro, Gongju, 32588, Korea.
| |
Collapse
|
10
|
Magri S, Danti FR, Balistreri F, Baratta S, Ciano C, Pagliano E, Taroni F, Moroni I. Expanding the phenotypic spectrum of TRIM2-associated Charcot-Marie-Tooth disease. J Peripher Nerv Syst 2020; 25:429-432. [PMID: 32815244 DOI: 10.1111/jns.12410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/13/2020] [Indexed: 12/26/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) is a clinically and genetically heterogeneous group of distal symmetric polyneuropathies due to progressive and length-dependent degeneration of peripheral nerves. Cranial nerve involvement has been described in association with various CMT-genes mutations, such as GDAP1, TRPV4, MFN2, MTMR2 and EGR2. Compound heterozygous mutations in the TRIM2 gene, encoding an E3 ubiquitin ligase, were previously identified in two patients with early-onset axonal CMT (CMT2). One of them also had bilateral vocal cord paralysis. The aim of this study is to further delineate the phenotypic and molecular genetic features of TRIM2-related CMT. We studied clinical, genetic and neurophysiological aspects of two unrelated CMT2 patients. Genetic analysis was performed by next generation sequencing of a multigene CMT panel. Patients presented with congenital hypotonia and bilateral clubfoot, delayed motor milestones, and severely progressive axonal neuropathy. Interestingly, along with vocal cord paralysis, they exhibited clinical features secondary to the involvement of several other cranial nerves, such as facial weakness, dysphagia, dyspnoea and acoustic impairment. Genetic analysis revealed two novel TRIM2 mutations in each patient. Our results expand the genotypic and phenotypic spectrum of TRIM2 deficiency showing that cranial nerves involvement is a core feature in this CMT2-subtype. Its finding should prompt physicians to suspect TRIM2 neuropathy. Conversely, patients carrying TRIM2 variants should be carefully evaluated for the presence of cranial nerve dysfunction in order to prevent and manage its impact on auditory and respiratory function and nutrition.
Collapse
Affiliation(s)
- Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Federica Rachele Danti
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Balistreri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Baratta
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia Ciano
- Unit of Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Emanuela Pagliano
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Isabella Moroni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
11
|
Thorpe RK, Kanotra SP. Surgical Management of Bilateral Vocal Fold Paralysis in Children: A Systematic Review and Meta-analysis. Otolaryngol Head Neck Surg 2020; 164:255-263. [PMID: 32689890 PMCID: PMC10042623 DOI: 10.1177/0194599820944892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To examine and compare the outcomes of various types of glottic widening surgery (GWS) for initial management of bilateral vocal fold paralysis (BVFP) in children, the outcomes of different GWS procedures in children who underwent initial tracheostomy, and the rate of decannulation in children who underwent tracheostomy alone versus tracheostomy followed by GWS. DATA SOURCES PubMed, Web of Science, Cochrane Library, and Embase were searched following the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-analyses) on September 9, 2019, with no date restriction. REVIEW METHODS Articles focusing on GWS or tracheostomy for initial management of BVFP were included. Articles describing patients who received no surgical intervention for BVFP were excluded. RESULTS A total of 5989 articles were reviewed: 67 articles met inclusion criteria, and 240 patients were incorporated into the analysis. Patients who underwent primary GWS had an eventual tracheostomy rate of 6.0% (5/83). There were no statistically significant differences in the rate of tracheostomy, reoperation, or mortality among cricoid split, suture lateralization, and cordectomy/cordotomy. Patients who underwent primary tracheostomy failed to achieve decannulation in 36.9% (58/157) of cases. Decannulation was more likely in tracheostomized children who received GWS than those who did not (odds ratio, 6.336; P < .0001). CONCLUSIONS Most children who undergo primary GWS for BVFP avoid tracheostomy or reoperation. These data demonstrated no differences in surgical outcomes among the most common types of GWS for BVFP. For children who receive a tracheostomy as their first intervention for BVFP, GWS is associated with a significantly improved rate of decannulation.
Collapse
Affiliation(s)
- Ryan Kendall Thorpe
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA
| | - Sohit Paul Kanotra
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA.,University of Iowa Stead Family Children's Hospital, Iowa City, Iowa, USA
| |
Collapse
|
12
|
Guimarães-Costa R, Villar-Quiles RN, Latour P, Sole G, Husson I, Lacour A, Leonard-Louis S, Stojkovic T. Confounding clinical presentation and different disease progression in CMT4B1. Neuromuscul Disord 2020; 30:576-582. [DOI: 10.1016/j.nmd.2020.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 11/27/2022]
|
13
|
Halperin D, Sapir A, Wormser O, Drabkin M, Yogev Y, Dolgin V, Flusser H, Birk OS. Novel MTMR2 mutation causing severe Charcot-Marie-Tooth type 4B1 disease: a case report. Neurogenetics 2020; 21:301-304. [PMID: 32488727 DOI: 10.1007/s10048-020-00617-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/16/2020] [Indexed: 11/25/2022]
Abstract
Mutations in myotubularin-related protein 2 (MTMR2) were shown to underlie Charcot-Marie-Tooth type 4B1 (CMT4B1) disease, a rare autosomal recessive demyelinating neuropathy, characterized by severe early-onset motor and sensory neuropathy. We describe three siblings of consanguineous kindred presenting with hypotonia, reduced muscle tone, action tremor, dysmetria, areflexia, and skeletal deformities, consistent with a diagnosis of CMT. Whole-exome sequencing identified a novel homozygous c.336_337 insertion mutation in MTMR2, resulting in a frameshift and putative truncated protein. In this concise report, we discuss the clinical presentation of this rare disease and support the limited number of observations regarding the pathogenesis of MTMR2-related neuropathies.
Collapse
Affiliation(s)
- Daniel Halperin
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Aviad Sapir
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Max Drabkin
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yuval Yogev
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Vadim Dolgin
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Hagit Flusser
- Zusman Child Development Center, Division of Pediatrics, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
- Genetics Institute, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
14
|
First-line exome sequencing in Palestinian and Israeli Arabs with neurological disorders is efficient and facilitates disease gene discovery. Eur J Hum Genet 2020; 28:1034-1043. [PMID: 32214227 PMCID: PMC7382450 DOI: 10.1038/s41431-020-0609-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/26/2020] [Accepted: 03/10/2020] [Indexed: 12/22/2022] Open
Abstract
A high rate of consanguinity leads to a high prevalence of autosomal recessive disorders in inbred populations. One example of inbred populations is the Arab communities in Israel and the Palestinian Authority. In the Palestinian Authority in particular, due to limited access to specialized medical care, most patients do not receive a genetic diagnosis and can therefore neither receive genetic counseling nor possibly specific treatment. We used whole-exome sequencing as a first-line diagnostic tool in 83 Palestinian and Israeli Arab families with suspected neurogenetic disorders and were able to establish a probable genetic diagnosis in 51% of the families (42 families). Pathogenic, likely pathogenic or highly suggestive candidate variants were found in the following genes extending and refining the mutational and phenotypic spectrum of these rare disorders: ACO2, ADAT3, ALS2, AMPD2, APTX, B4GALNT1, CAPN1, CLCN1, CNTNAP1, DNAJC6, GAMT, GPT2, KCNQ2, KIF11, LCA5, MCOLN1, MECP2, MFN2, MTMR2, NT5C2, NTRK1, PEX1, POLR3A, PRICKLE1, PRKN, PRX, SCAPER, SEPSECS, SGCG, SLC25A15, SPG11, SYNJ1, TMCO1, and TSEN54. Further, this cohort has proven to be ideal for prioritization of new disease genes. Two separately published candidate genes (WWOX and PAX7) were identified in this study. Analyzing the runs of homozygosity (ROHs) derived from the Exome sequencing data as a marker for the rate of inbreeding, revealed significantly longer ROHs in the included families compared with a German control cohort. The total length of ROHs correlated with the detection rate of recessive disease-causing variants. Identification of the disease-causing gene led to new therapeutic options in four families.
Collapse
|
15
|
Wang H, Kaçar Bayram A, Sprute R, Ozdemir O, Cooper E, Pergande M, Efthymiou S, Nedic I, Mazaheri N, Stumpfe K, Azizi Malamiri R, Shariati G, Zeighami J, Bayram N, Naghibzadeh SK, Tajik M, Yaşar M, Sami Güven A, Bibi F, Sultan T, Salpietro V, Houlden H, Per H, Galehdari H, Shalbafan B, Jamshidi Y, Cirak S. Genotype-Phenotype Correlations in Charcot-Marie-Tooth Disease Due to MTMR2 Mutations and Implications in Membrane Trafficking. Front Neurosci 2019; 13:974. [PMID: 31680794 PMCID: PMC6807680 DOI: 10.3389/fnins.2019.00974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/30/2019] [Indexed: 11/13/2022] Open
Abstract
Charcot-Marie-Tooth type 4 (CMT4) is an autosomal recessive severe form of neuropathy with genetic heterogeneity. CMT4B1 is caused by mutations in the myotubularin-related 2 (MTMR2) gene and as a member of the myotubularin family, the MTMR2 protein is crucial for the modulation of membrane trafficking. To enable future clinical trials, we performed a detailed review of the published cases with MTMR2 mutations and describe four novel cases identified through whole-exome sequencing (WES). The four unrelated families harbor novel homozygous mutations in MTMR2 (NM_016156, Family 1: c.1490dupC; p.Phe498IlefsTer2; Family 2: c.1479+1G>A; Family 3: c.1090C>T; p.Arg364Ter; Family 4: c.883C>T; p.Arg295Ter) and present with CMT4B1-related severe early-onset motor and sensory neuropathy, generalized muscle atrophy, facial and bulbar weakness, and pes cavus deformity. The clinical description of the new mutations reported here overlap with previously reported CMT4B1 phenotypes caused by mutations in the phosphatase domain of MTMR2, suggesting that nonsense MTMR2 mutations, which are predicted to result in loss or disruption of the phosphatase domain, are associated with a severe phenotype and loss of independent ambulation by the early twenties. Whereas the few reported missense mutations and also those truncating mutations occurring at the C-terminus after the phosphatase domain cause a rather mild phenotype and patients were still ambulatory above the age 30 years. Charcot-Marie-Tooth neuropathy and Centronuclear Myopathy causing mutations have been shown to occur in proteins involved in membrane remodeling and trafficking pathway mediated by phosphoinositides. Earlier studies have showing the rescue of MTM1 myopathy by MTMR2 overexpression, emphasize the importance of maintaining the phosphoinositides equilibrium and highlight a potential compensatory mechanism amongst members of this pathway. This proved that the regulation of expression of these proteins involved in the membrane remodeling pathway may compensate each other's loss- or gain-of-function mutations by restoring the phosphoinositides equilibrium. This provides a potential therapeutic strategy for neuromuscular diseases resulting from mutations in the membrane remodeling pathway.
Collapse
Affiliation(s)
- Haicui Wang
- Department of Pediatrics, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Ayşe Kaçar Bayram
- Department of Pediatric Neurology, University of Health Sciences, Kayseri City Hospital, Kayseri, Turkey
| | - Rosanne Sprute
- Department of Pediatrics, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Ozkan Ozdemir
- Department of Pediatrics, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Emily Cooper
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St. George's, University of London, London, United Kingdom
| | - Matthias Pergande
- Department of Pediatrics, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Ivana Nedic
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St. George's, University of London, London, United Kingdom
| | - Neda Mazaheri
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran.,Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Katharina Stumpfe
- Department of Pediatrics, University Hospital Cologne, Cologne, Germany
| | - Reza Azizi Malamiri
- Paediatric Neurology, Department of Paediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Shariati
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran.,Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jawaher Zeighami
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran
| | - Nurettin Bayram
- Department of Ophthalmology, University of Health Sciences, Kayseri City Hospital, Kayseri, Turkey
| | | | - Mohamad Tajik
- Department of Neurology, Firoozgar General Hospital, University of Medical Sciences, Tehran, Iran
| | - Mehmet Yaşar
- Department of Ear Nose and Throat, University of Health Sciences, Kayseri City Hospital, Kayseri, Turkey
| | - Ahmet Sami Güven
- Department of Pediatric Neurology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Farah Bibi
- Institute of Biochemistry and Biotechnology, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Tipu Sultan
- Department of Pediatric Neurology, Institute of Child Health, The Children's Hospital Lahore, Lahore, Pakistan
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, United Kingdom.,Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Henry Houlden
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Hüseyin Per
- Department of Pediatric Neurology, Erciyes University Medical School, Kayseri, Turkey
| | - Hamid Galehdari
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Bita Shalbafan
- Iran Social Security Organization, Labafinejad Hospital, Tehran, Iran
| | - Yalda Jamshidi
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St. George's, University of London, London, United Kingdom
| | - Sebahattin Cirak
- Department of Pediatrics, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Pareyson D, Stojkovic T, Reilly MM, Leonard-Louis S, Laurà M, Blake J, Parman Y, Battaloglu E, Tazir M, Bellatache M, Bonello-Palot N, Lévy N, Sacconi S, Guimarães-Costa R, Attarian S, Latour P, Solé G, Megarbane A, Horvath R, Ricci G, Choi BO, Schenone A, Gemelli C, Geroldi A, Sabatelli M, Luigetti M, Santoro L, Manganelli F, Quattrone A, Valentino P, Murakami T, Scherer SS, Dankwa L, Shy ME, Bacon CJ, Herrmann DN, Zambon A, Tramacere I, Pisciotta C, Magri S, Previtali SC, Bolino A. A multicenter retrospective study of charcot-marie-tooth disease type 4B (CMT4B) associated with mutations in myotubularin-related proteins (MTMRs). Ann Neurol 2019; 86:55-67. [PMID: 31070812 DOI: 10.1002/ana.25500] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/23/2019] [Accepted: 05/05/2019] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Charcot-Marie-Tooth (CMT) disease 4B1 and 4B2 (CMT4B1/B2) are characterized by recessive inheritance, early onset, severe course, slowed nerve conduction, and myelin outfoldings. CMT4B3 shows a more heterogeneous phenotype. All are associated with myotubularin-related protein (MTMR) mutations. We conducted a multicenter, retrospective study to better characterize CMT4B. METHODS We collected clinical and genetic data from CMT4B subjects in 18 centers using a predefined minimal data set including Medical Research Council (MRC) scores of nine muscle pairs and CMT Neuropathy Score. RESULTS There were 50 patients, 21 of whom never reported before, carrying 44 mutations, of which 21 were novel and six representing novel disease associations of known rare variants. CMT4B1 patients had significantly more-severe disease than CMT4B2, with earlier onset, more-frequent motor milestones delay, wheelchair use, and respiratory involvement as well as worse MRC scores and motor CMT Examination Score components despite younger age at examination. Vocal cord involvement was common in both subtypes, whereas glaucoma occurred in CMT4B2 only. Nerve conduction velocities were similarly slowed in both subtypes. Regression analyses showed that disease severity is significantly associated with age in CMT4B1. Slopes are steeper for CMT4B1, indicating faster disease progression. Almost none of the mutations in the MTMR2 and MTMR13 genes, responsible for CMT4B1 and B2, respectively, influence the correlation between disease severity and age, in agreement with the hypothesis of a complete loss of function of MTMR2/13 proteins for such mutations. INTERPRETATION This is the largest CMT4B series ever reported, demonstrating that CMT4B1 is significantly more severe than CMT4B2, and allowing an estimate of prognosis. ANN NEUROL 2019.
Collapse
Affiliation(s)
- Davide Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Tanya Stojkovic
- Hôpital Pitié-Salpêtrière, AP-HP, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Paris, France
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Sarah Leonard-Louis
- Hôpital Pitié-Salpêtrière, AP-HP, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Paris, France
| | - Matilde Laurà
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Julian Blake
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Clinical Neurophysiology, Norfolk and Norwich University Hospital, Norfolk, United Kingdom
| | - Yesim Parman
- Istanbul University, Istanbul Faculty of Medicine, Neurology Dep. Istanbul, Turkey
| | - Esra Battaloglu
- Bogazici University, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Meriem Tazir
- Laboratoire de Recherche en Neurosciences Service de Neurologie, CHU, Alger, Algeria
| | - Mounia Bellatache
- Laboratoire de Recherche en Neurosciences Service de Neurologie, CHU, Alger, Algeria
| | - Nathalie Bonello-Palot
- Department of Medical Genetics, Timone Hospital, Marseille, France.2, Aix-Marseille University, INSERM, MMG, U1251, Marseille, France
| | - Nicolas Lévy
- Department of Medical Genetics, Timone Hospital, Marseille, France.2, Aix-Marseille University, INSERM, MMG, U1251, Marseille, France
| | - Sabrina Sacconi
- Université Côte d'Azur, Service Système Nerveux Périphérique, Muscle et SLA, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Raquel Guimarães-Costa
- Hôpital Pitié-Salpêtrière, AP-HP, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Paris, France
| | - Sharham Attarian
- Reference center for neuromuscular disorders and ALS, CHU La Timone, Aix-Marseille University, Marseille, France
| | - Philippe Latour
- Center of Biology and Pathology Laboratory of Molecular Neurogenetics, Hospices Civils, Lyon, France
| | - Guilhem Solé
- Reference center for neuromuscular disorders AOC (Atlantique Occitanie Caraibes), CHU de Bordeaux, Bordeaux, France
| | - André Megarbane
- Institut Jérôme Lejeune, Paris, France.,INOVIE, Beirut, Lebanon
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Giulia Ricci
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and MATERNAL Infantile Sciences, University of Genoa, and IRCCS Policlinico San Martino, Genoa, Italy
| | - Chiara Gemelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and MATERNAL Infantile Sciences, University of Genoa, and IRCCS Policlinico San Martino, Genoa, Italy
| | - Alessandro Geroldi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and MATERNAL Infantile Sciences, University of Genoa, and IRCCS Policlinico San Martino, Genoa, Italy
| | - Mario Sabatelli
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS. Centro Clinico Nemo Adulti Rome, Rome, Italy.,Università Cattolica del Sacro Cuore. Sede di Roma, Rome, Italy
| | - Marco Luigetti
- Università Cattolica del Sacro Cuore. Sede di Roma, Rome, Italy.,UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Lucio Santoro
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | - Aldo Quattrone
- Department of Neurology, Università Magna Graecia di Catanzaro, Catanzaro, Italy
| | - Paola Valentino
- Department of Neurology, Università Magna Graecia di Catanzaro, Catanzaro, Italy
| | | | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lois Dankwa
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael E Shy
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, IA
| | - Chelsea J Bacon
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, IA
| | | | - Alberto Zambon
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Irene Tramacere
- Department of Research and Clinical Development, Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pisciotta
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefano C Previtali
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessandra Bolino
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|