1
|
Bian KJ, Bao X, Li XD, Bonne D, Zou LW. Recent progress of proline endopeptidase ligands and their effects on protein-protein interactions. Chem Biol Interact 2025; 416:111557. [PMID: 40374138 DOI: 10.1016/j.cbi.2025.111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/02/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Proline endopeptidase (PREP), as a serine protease, plays a crucial role in human physiology and pathology, and is intricately linked to the genesis and progression of a spectrum of illnesses. The fluorescent substrates currently used for PREP lack ideal specificity and are unable to specifically detect PREP activity under physiological conditions. This limitation, to some extent, hinders the in-depth investigation of its physiological and pathophysiological functions. Beyond its enzymatic capabilities, PREP's physiological functions extend to the modulation of protein-protein interactions (PPIs), a dimension whose significance is only beginning to be recognized, and investigations into how PREP inhibitors might influence these PPIs remain sparse. Therefore, based on the outline of the distribution and structural characteristics of PREP, this review systematically summarized the structure-activity relationship (SAR) of PREP ligands concerning their potency and specificity, the associated recognition mechanisms, as well as the regulatory impact of PREP ligands on PPIs. Finally, the obstacles and future prospects of PREP ligands were emphasized, in order to provide suggestions and help for the design and development of PREP specific substrates and inhibitors.
Collapse
Affiliation(s)
- Kun-Jie Bian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Xiaoze Bao
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, China; CNRS, Centrale Med, ISM2, Aix Marseille Univ, 13013, Marseille, France.
| | - Xiao-Dong Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Damien Bonne
- CNRS, Centrale Med, ISM2, Aix Marseille Univ, 13013, Marseille, France
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| |
Collapse
|
2
|
Xiao Y, Gu L, Zhang W, Jiang Y, Chen C, Tao W, Chen F. Identification of Prolyl endopeptidase as a novel anti-depression target of Genipin-1-b-D-gentiobioside in brain tissues. Behav Brain Res 2025; 484:115511. [PMID: 40024486 DOI: 10.1016/j.bbr.2025.115511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/28/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Depression is a serious mood disease that causes global impairment and mortality. In traditional Chinese medicine, herb compounds decoction with Gardenia jasminoides (GJ) as the main ingredient to treat depression has a history of hundreds of years in East Asian countries. Although the antidepressant effect of GJ has been well established, the antidepressant effect and target of its main component Genipin-1-b-D-gentiobioside (GG) remain unknown. In the present study, using a mouse chronic unpredictable mild stress (CUMS) model, we first examined the antidepressant effectiveness of GG. Next, we identified potential target proteins of GG in brain tissue using liquid chromatography-mass spectrometry (LC-MS)-based drug affinity responsive target stability (DARTS), and we intersected these targets with databases of depression targets to obtain GG's antidepressant protein targets. Finally, Prolyl endopeptidase (PREP) was initially confirmed as a potential antidepressant target of GG in brain tissue by molecular docking and biolayer interferometry (BLI). The results showed that GG administration reduced depression-like behavior in CUMS mice and increased the mRNA and protein expression levels of BDNF in the hippocampus of CUMS mice. Subsequently, there was an overlapping protein target between LC-MS-based DARTS and the databases of depression targets. Finally, molecular docking and BLI kinetic analysis indicated that GG specifically bound to PREP. According to the aforementioned research, PREP is a potential antidepressant protein target of GG in the brain. This conclusion could offer a chemical and biological foundation for future research on treating depression by focusing on PREP.
Collapse
Affiliation(s)
- Yang Xiao
- School of Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ling Gu
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjing Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yucui Jiang
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cuihua Chen
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Tao
- School of Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Feiyan Chen
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
3
|
Butuzova DA, Kulebyakina MA, Basalova NA, Efimenko AY. Fibroblast Activation Protein Alpha (FAPα) as a Promising Target in the Diagnostics and Treatment of Cancer and Fibrotic Diseases: Recent Approaches to Imaging and Assessment of Functional Activity. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S135-S145. [PMID: 40164156 DOI: 10.1134/s000629792460279x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 04/02/2025]
Abstract
Fibroblast activation protein alpha (FAPα) is a transmembrane serine peptidase and a well-known marker of activated fibroblasts that are formed during onco- and fibrogenesis and play an important role in the progression of cancer and fibrosis. Identification of FAPα-positive cells is widely used to visualize pathological changes in the stroma in the diagnosis and treatment of cancer diseases. Recent evidence suggests that FAPα itself contributes to the development of tumors and fibrosis-associated diseases through its enzymatic activity and other mechanisms. Various methods for visualization and evaluation of FAPα enzymatic activity are being developed, which are essential for deciphering the role of FAPα in the development of stromal pathologies. Here we discuss current approaches to visualization and regulation of FAPα enzymatic activity.
Collapse
Affiliation(s)
- Daria A Butuzova
- Medical Research and Educational Institute, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Maria A Kulebyakina
- Medical Research and Educational Institute, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nataliya A Basalova
- Medical Research and Educational Institute, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anastasia Yu Efimenko
- Medical Research and Educational Institute, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
4
|
Briot J, Pons C, Foucher A, Goudounèche D, Gaudenzio N, Donovan M, Bernard D, Méchin MC, Simon M. Prolyl Endopeptidase Is Involved in Filaggrinolysis and Cornification. J Invest Dermatol 2025; 145:98-108.e15. [PMID: 38879153 DOI: 10.1016/j.jid.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 08/12/2024]
Abstract
FLG is a well-known biomarker of atopic dermatitis and skin dryness. Its full proteolysis (or filaggrinolysis) produces the major constituents of the natural moisturizing factor. Some proteases/peptidases remain to be identified in this multistep process. Mining 16 omics analyses, we identified prolyl endopeptidase (PREP) as a candidate peptidase. Indirect immunofluorescence and confocal analysis demonstrated its localization in the granular and deep cornified layers, where it colocalized with FLG. Tandem mass spectroscopy and fluorescent quenching activity assays showed that PREP cleaved several synthetic peptides derived from the FLG sequence, at the carboxyl side of an internal proline. Deimination of these peptides increased PREP enzymatic efficiency. Specific inhibition of PREP in reconstructed human epidermis using benzyloxycarbonyl-pro-prolinal induced the accumulation of FLG monomers. Downregulation of PREP expression in reconstructed human epidermis using RNA interference confirmed the impact of PREP on FLG metabolism and highlighted a more general role of PREP in keratinocyte differentiation. Indeed, quantitative global proteomic, western blotting, and RT-qPCR analyses showed a strong reduction in the expression of bleomycin hydrolase, known to be involved in filaggrinolysis, and of several other actors of cornification such as loricrin. Consequently, at the functional level, the transepidermal electric resistance was drastically reduced.
Collapse
Affiliation(s)
- Julie Briot
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), University of Toulouse, INSERM UMR1291 - CNRS UMR5051, Toulouse, France
| | - Carole Pons
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), University of Toulouse, INSERM UMR1291 - CNRS UMR5051, Toulouse, France
| | - Aude Foucher
- L'Oréal Research & Innovation, Aulnay-sous-Bois, France
| | - Dominique Goudounèche
- Centre de Microscopie Electronique Appliquée à la Biologie (CMEAB), Toulouse III University, Toulouse, France
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), University of Toulouse, INSERM UMR1291 - CNRS UMR5051, Toulouse, France; Genoskin SAS, Toulouse, France
| | - Mark Donovan
- L'Oréal Research & Innovation, Aulnay-sous-Bois, France
| | | | - Marie-Claire Méchin
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), University of Toulouse, INSERM UMR1291 - CNRS UMR5051, Toulouse, France
| | - Michel Simon
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), University of Toulouse, INSERM UMR1291 - CNRS UMR5051, Toulouse, France.
| |
Collapse
|
5
|
Tahara K, Nakamura A, Wang X, Mitamura K, Ichihashi Y, Kano K, Mishiro-Sato E, Aoki K, Urano Y, Komatsu T, Tsukiji S. γ-Secretase Cleaves Bifunctional Fatty Acid-Conjugated Small Molecules with Amide Bonds in Mammalian Cells. ACS Chem Biol 2024; 19:2438-2450. [PMID: 39567846 DOI: 10.1021/acschembio.4c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Connecting two small molecules, such as ligands, fluorophores, or lipids, together via a linker with amide bonds is a widely used strategy to generate synthetic bifunctional molecules for various biological and biomedical applications. Such bifunctional molecules have been used in live-cell experiments under the assumption that they should be stable in cells. However, we recently found that a membrane-targeting bifunctional molecule, composed of a lipopeptide and the small-molecule ligand trimethoprim, referred to as mgcTMP, underwent amide-bond cleavage in mammalian cells. In this work, we first identified γ-secretase as the major protease degrading mgcTMP in cells. We next investigated the intracellular degradation of several different types of amide-linked bifunctional compounds and found that N-terminally fatty acid-conjugated small molecules are susceptible to γ-secretase-mediated amide-bond cleavage. In contrast, amide-linked bifunctional molecules composed of two small molecules, such as ligands and hydrophobic groups, which lack lipid modification, did not undergo intracellular degradation. These findings highlight a previously overlooked consideration for the development and application of lipid-based bifunctional molecules in chemical biology research.
Collapse
Affiliation(s)
- Kai Tahara
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Akinobu Nakamura
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Xiaotong Wang
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Keishi Mitamura
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Yuki Ichihashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiko Kano
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| | - Emi Mishiro-Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Center for Living Systems Information Science (CeLiSIS), Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinya Tsukiji
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
6
|
Neves RL, Branquinho J, Arata JG, Bittencourt CA, Gomes CP, Riguetti M, da Mata GF, Fernandes DE, Icimoto MY, Kirsztajn GM, Pesquero JB. ACE2, ACE, DPPIV, PREP and CAT L enzymatic activities in COVID-19: imbalance of ACE2/ACE ratio and potential RAAS dysregulation in severe cases. Inflamm Res 2023; 72:1719-1731. [PMID: 37537367 DOI: 10.1007/s00011-023-01775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/07/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
OBJECTIVE AND DESIGN Circulating enzymatic activity and RAAS regulation in severe cases of COVID-19 remains unclear, therefore we measured the serum activity of several proteases as potential targets to control the SARS-CoV-2 infection. MATERIAL OR SUBJECTS 152 patients with COVID-19-like symptoms were grouped according to the severity of symptoms (COVID-19 negative, mild, moderate and severe). METHODS Serum samples of COVID-19 patients and controls were subjected to biochemical analysis and enzymatic assays of ACE2, ACE, DPPIV, PREP and CAT L. One-way ANOVA and multivariate logistic regression analysis were used. Statistical significance was accepted at p < 0.05. RESULTS We detected a positive correlation among comorbidities, higher C-reactive protein (CRP) and D-dimer levels with disease severity. Enzymatic assays revealed an increase in serum ACE2 and CAT L activities in severe COVID-19 patients, while ACE, DPPIV and PREP activities were significantly reduced. Notably, analysis of ACE2/ACE activity ratio suggests a possible imbalance of ANG II/ANG(1-7) ratio, in a positive association with the disease severity. CONCLUSION Our findings reveal a correlation between proteases activity and the severity of COVID-19. These enzymes together contribute to the activation of pro-inflammatory pathways, trigger a systemic activation of inflammatory mediators, leading to a RAAS dysregulation and generating a significant damage in several organs, contributing to poor outcomes of severe cases.
Collapse
Affiliation(s)
- Raquel Leão Neves
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Jéssica Branquinho
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Júlia Galanakis Arata
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Clarissa Azevedo Bittencourt
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Caio Perez Gomes
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Michelle Riguetti
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Gustavo Ferreira da Mata
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | - João Bosco Pesquero
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Lin SZ, Wu WJ, Cheng YQ, Zhang JB, Jiang DX, Ren TY, Ding WJ, Liu M, Chen YW, Fan JG. Prolyl endopeptidase remodels macrophage function as a novel transcriptional coregulator and inhibits fibrosis. Exp Mol Med 2023; 55:1437-1450. [PMID: 37394591 PMCID: PMC10394032 DOI: 10.1038/s12276-023-01027-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 07/04/2023] Open
Abstract
Macrophages are immune cells crucial for host defense and homeostasis maintenance, and their dysregulation is involved in multiple pathological conditions, such as liver fibrosis. The transcriptional regulation in macrophage is indispensable for fine-tuning of macrophage functions, but the details have not been fully elucidated. Prolyl endopeptidase (PREP) is a dipeptidyl peptidase with both proteolytic and non-proteolytic functions. In this study, we found that Prep knockout significantly contributed to transcriptomic alterations in quiescent and M1/M2-polarized bone marrow-derived macrophages (BMDMs), as well as aggravated fibrosis in an experimental nonalcoholic steatohepatitis (NASH) model. Mechanistically, PREP predominantly localized to the macrophage nuclei and functioned as a transcriptional coregulator. Using CUT&Tag and co-immunoprecipitation, we found that PREP was mainly distributed in active cis-regulatory genomic regions and physically interacted with the transcription factor PU.1. Among PREP-regulated downstream genes, genes encoding profibrotic cathepsin B and D were overexpressed in BMDMs and fibrotic liver tissue. Our results indicate that PREP in macrophages functions as a transcriptional coregulator that finely tunes macrophage functions, and plays a protective role against liver fibrosis pathogenesis.
Collapse
Affiliation(s)
- Shuang-Zhe Lin
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Wei-Jie Wu
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Gastrointestinal Endoscopy Center, Fujian Provincial Hospital South Branch, Fuzhou, 350003, Fujian, China
| | - Yu-Qing Cheng
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jian-Bin Zhang
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Dai-Xi Jiang
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Tian-Yi Ren
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China
| | - Wen-Jin Ding
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Yuan-Wen Chen
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China.
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China.
| | - Jian-Gao Fan
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China.
| |
Collapse
|
8
|
Zhu R, Jiang G, Tang W, Zhao X, Chen F, Zhang X, Ye N. Aporphines: A privileged scaffold in CNS drug discovery. Eur J Med Chem 2023; 256:115414. [PMID: 37172474 DOI: 10.1016/j.ejmech.2023.115414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
Aporphine alkaloids embedded in 4H-dibenzo[de,g]quinoline four-ring structures belong to one of the largest subclasses of isoquinoline alkaloids. Aporphine is a privileged scaffold in the field of organic synthesis and medicinal chemistry for the discovery of new therapeutic agents for central nervous system (CNS) diseases, cancer, metabolic syndrome, and other diseases. In the past few decades, aporphine has attracted continuing interest to be widely used to develop selective or multitarget directed ligands (MTDLs) targeting the CNS (e.g., dopamine D1/2/5, serotonin 5-HT1A/2A/2C and 5-HT7, adrenergic α/β receptors, and cholinesterase enzymes), thereby serving as valuable pharmacological probes for mechanism studies or as potential leads for CNS drug discovery. The aims of the present review are to highlight the diverse CNS activities of aporphines, discuss their SAR, and briefly summarize general synthetic routes, which will pave the way for the design and development of new aporphine derivatives as promising CNS active drugs in the future.
Collapse
Affiliation(s)
- Rongfeng Zhu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Guangqian Jiang
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wanyu Tang
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaobao Zhao
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Fan Chen
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaoya Zhang
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Na Ye
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
9
|
Eteläinen TS, Silva MC, Uhari-Väänänen JK, De Lorenzo F, Jäntti MH, Cui H, Chavero-Pieres M, Kilpeläinen T, Mechtler C, Svarcbahs R, Seppälä E, Savinainen JR, Puris E, Fricker G, Gynther M, Julku UH, Huttunen HJ, Haggarty SJ, Myöhänen TT. A prolyl oligopeptidase inhibitor reduces tau pathology in cellular models and in mice with tauopathy. Sci Transl Med 2023; 15:eabq2915. [PMID: 37043557 DOI: 10.1126/scitranslmed.abq2915] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Tauopathies are neurodegenerative diseases that are characterized by accumulation of hyperphosphorylated tau protein, higher-order aggregates, and tau filaments. Protein phosphatase 2A (PP2A) is a major tau dephosphorylating phosphatase, and a decrease in its activity has been demonstrated in tauopathies, including Alzheimer's disease. Prolyl oligopeptidase is a serine protease that is associated with neurodegeneration, and its inhibition normalizes PP2A activity without toxicity under pathological conditions. Here, we assessed whether prolyl oligopeptidase inhibition could protect against tau-mediated toxicity in cellular models in vitro and in the PS19 transgenic mouse model of tauopathy carrying the human tau-P301S mutation. We show that inhibition of prolyl oligopeptidase with the inhibitor KYP-2047 reduced tau aggregation in tau-transfected HEK-293 cells and N2A cells as well as in human iPSC-derived neurons carrying either the P301L or tau-A152T mutation. Treatment with KYP-2047 resulted in increased PP2A activity and activation of autophagic flux in HEK-293 cells and N2A cells and in patient-derived iNeurons, as indicated by changes in autophagosome and autophagy receptor markers; this contributed to clearance of insoluble tau. Furthermore, treatment of PS19 transgenic mice for 1 month with KYP-2047 reduced tau burden in the brain and cerebrospinal fluid and slowed cognitive decline according to several behavioral tests. In addition, a reduction in an oxidative stress marker was seen in mouse brains after KYP-2047 treatment. This study suggests that inhibition of prolyl oligopeptidase could help to ameliorate tau-dependent neurodegeneration.
Collapse
Affiliation(s)
- Tony S Eteläinen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - M Catarina Silva
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Johanna K Uhari-Väänänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Francesca De Lorenzo
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Maria H Jäntti
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Hengjing Cui
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Marta Chavero-Pieres
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Tommi Kilpeläinen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Christina Mechtler
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Reinis Svarcbahs
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Erin Seppälä
- School of Medicine / Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Juha R Savinainen
- School of Medicine / Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Elena Puris
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht Karls University, Heidelberg D-69120, Germany
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht Karls University, Heidelberg D-69120, Germany
| | - Mikko Gynther
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht Karls University, Heidelberg D-69120, Germany
| | - Ulrika H Julku
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Henri J Huttunen
- Neuroscience Center, University of Helsinki, Helsinki 00014, Finland
- Herantis Pharma Plc., Espoo 02600, Finland
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| |
Collapse
|
10
|
Bhattacharjee A, Bachovchin DA. DPP8/9 are not Required to Cleave Most Proline-Containing Peptides. Isr J Chem 2023; 63:e202200117. [PMID: 37982048 PMCID: PMC10655806 DOI: 10.1002/ijch.202200117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Indexed: 02/16/2023]
Abstract
Small molecule inhibitors of the intracellular serine peptidases DPP8 and DPP9 (DPP8/9) activate the NLRP1 and CARD8 inflammasomes, but the key DPP8/9 substrates have not yet been identified. DPP8/9 cleave after proline to remove N-terminal dipeptides from peptides or proteins, and studies using pseudo-peptide reporter substrates have suggested that these enzymes may play key roles in the catabolism of many proline-containing peptides generated by the proteasome. Here, we evaluated the degradation of a wide array of actual peptides in cell lysates, and discovered that DPP8/9 are not in fact involved in the processing of the vast majority of proline-containing peptides. Overall, these results indicate that DPP8/9 have a much more limited substrate scope than previously thought, and likely specifically cleave some critically important, but as yet unknown, intracellular peptide or protein that regulates inflammasome activation.
Collapse
Affiliation(s)
- Abir Bhattacharjee
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, 10065, USA
| | - Daniel A Bachovchin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, 10065, USA
- Pharmacology Program of the Weill Cornell, Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, 10065, USA
| |
Collapse
|
11
|
Thymus transplantation regulates blood pressure and alleviates hypertension-associated heart and kidney damage via transcription factors FoxN1 pathway. Int Immunopharmacol 2023; 116:109798. [PMID: 36738681 DOI: 10.1016/j.intimp.2023.109798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Previous studies have found that thymus is involved in the process of hypertension. However, whether thymus transplantation alleviates target organ damage in hypertensive mice remains unknown. The aim of this study was to evaluate the effects of thymus transplantation on blood pressure and target organ changes in mice with hypertension. Mice were randomly divided into normal control group (Con), hypertensive group (HTN) and thymus transplantation group (HTN + Trans). Thymus of neonatal mice was transplanted into the renal capsule of the transplantation group. After transplantation, the mouse tail noninvasive pressure was measured and heart function was evaluated weekly. Then mice were euthanized and organs or tissues were harvested at 4 weeks post-transplantation. The blood pressure of HTN + Trans group was lower than that in the HTN group. The expression of FoxN1, Aire, ATRAP, thymosin β4 and the content of sjTREC in thymus of HTN group was decreased and the number of naïve T cells in HTN group was lower compared with other two groups. The ratio of cTEC/mTEC in HTN group was higher than that in Con group and lower than that in HTN + Trans group. Cardiac pathology showed cardiac hypertrophy and fibrosis in HTN group whereas thymus transplantation improved heart function and structure. Altogether, our findings demonstrated thymus transplantation could improve thymus function of hypertensive mice, which increased the expression of thymus transcription factor FoxN1, affected the proportion of T cell subsets, and increased thymosin β4 thereby reducing blood pressure and reversing the progression of target organ damage.
Collapse
|
12
|
Taraszkiewicz A, Sinkiewicz I, Sommer A, Staroszczyk H. The biological role of prolyl oligopeptidase and the procognitive potential of its peptidic inhibitors from food proteins. Crit Rev Food Sci Nutr 2023; 64:6567-6580. [PMID: 36798052 DOI: 10.1080/10408398.2023.2170973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Prolyl oligopeptidase (POP) is a conserved serine protease belonging to proline-specific peptidases. It has both enzymatic and non-enzymatic activity and is involved in numerous biological processes in the human body, playing a role in e.g., cellular growth and differentiation, inflammation, as well as the development of some neurodegenerative and neuropsychiatric disorders. This article describes the physiological and pathological aspects of POP activity and the state-of-art of its peptidic inhibitors originating from food proteins, with a particular focus on their potential as cognition-enhancing agents. Although some milk, meat, fish, and plant protein-derived peptides have the potential to be applied as natural, procognitive nutraceuticals, their effectiveness requires further evaluation, especially in clinical trials. We demonstrated that the important features of the most promising POP-inhibiting peptides are very short sequence, high content of hydrophobic amino acids, and usually the presence of proline residue.
Collapse
Affiliation(s)
- Antoni Taraszkiewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Izabela Sinkiewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Agata Sommer
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Hanna Staroszczyk
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
13
|
Perrone S, Grassi F, Caporilli C, Boscarino G, Carbone G, Petrolini C, Gambini LM, Di Peri A, Moretti S, Buonocore G, Esposito SMR. Brain Damage in Preterm and Full-Term Neonates: Serum Biomarkers for the Early Diagnosis and Intervention. Antioxidants (Basel) 2023; 12:antiox12020309. [PMID: 36829868 PMCID: PMC9952571 DOI: 10.3390/antiox12020309] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The Brain is vulnerable to numerous insults that can act in the pre-, peri-, and post-natal period. There is growing evidence that demonstrate how oxidative stress (OS) could represent the final common pathway of all these insults. Fetuses and newborns are particularly vulnerable to OS due to their inability to active the antioxidant defenses. Specific molecules involved in OS could be measured in biologic fluids as early biomarkers of neonatal brain injury with an essential role in neuroprotection. Although S-100B seems to be the most studied biomarker, its use in clinical practice is limited by the complexity of brain damage etiopathogenesis and the time of blood sampling in relation to the brain injury. Reliable early specific serum markers are currently lacking in clinical practice. It is essential to determine if there are specific biomarkers that can help caregivers to monitor the progression of the disease in order to active an early neuroprotective strategy. We aimed to describe, in an educational review, the actual evidence on serum biomarkers for the early identification of newborns at a high risk of neurological diseases. To move the biomarkers from the bench to the bedside, the assays must be not only be of a high sensitivity but suitable for the very rapid processing and return of the results for the clinical practice to act on. For the best prognosis, more studies should focus on the association of these biomarkers to the type and severity of perinatal brain damage.
Collapse
Affiliation(s)
- Serafina Perrone
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Correspondence:
| | - Federica Grassi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Caporilli
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Giovanni Boscarino
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Giulia Carbone
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Petrolini
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Lucia Maria Gambini
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Antonio Di Peri
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Sabrina Moretti
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
14
|
Khan A, Waqas M, Khan M, Halim SA, Rehman NU, Al-Harrasi A. Identification of novel prolyl oligopeptidase inhibitors from resin of Boswella papyrifera (Del.) Hochst. and their mechanism: Virtual and biochemical studies. Int J Biol Macromol 2022; 213:751-767. [DOI: 10.1016/j.ijbiomac.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 11/05/2022]
|
15
|
Walczewska-Szewc K, Rydzewski J, Lewkowicz A. Inhibition-mediated changes in prolyl oligopeptidase dynamics possibly related to α-synuclein aggregation. Phys Chem Chem Phys 2022; 24:4366-4373. [PMID: 35112120 DOI: 10.1039/d1cp05238a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of protein aggregates is one of the leading causes of neuronal malfunction and subsequent brain damage in many neurodegenerative diseases. In Parkinson's disease, α-synucleins are involved in the accumulation of aggregates. The origin of aggregation is unknown, but there is convincing evidence that it can be reduced by prolyl oligopeptidase (PREP) inhibition. This effect cannot simply be related to the inhibition of the enzyme's catalytic function since not all PREP inhibitors stop α-synuclein aggregation. Finding differences in the dynamics of the enzyme inhibited by different compounds would allow us to identify the protein regions involved in the interaction between PREP and α-synuclein. Here, we investigate the effects of three PREP inhibitors, each of which affects α-synuclein aggregation to a different extent. We use molecular dynamics modelling to identify the molecular mechanisms underlying PREP inhibition and find structural differences between inhibitor-PREP systems. We suggest that even subtle variations in enzyme dynamics affect its interactions with α-synucleins. Our identification of these regions may therefore be biologically relevant in preventing α-synuclein aggregate formation.
Collapse
Affiliation(s)
- Katarzyna Walczewska-Szewc
- Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland.
| | - Jakub Rydzewski
- Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland.
| | - Aneta Lewkowicz
- Faculty of Mathematics, Physics and Informatics, Gdansk University, Wita Stwosza 57, 80-952 Gdańsk, Poland
| |
Collapse
|
16
|
Vrabec R, Maříková J, Ločárek M, Korábečný J, Hulcová D, Hošťálková A, Kuneš J, Chlebek J, Kučera T, Hrabinová M, Jun D, Soukup O, Andrisano V, Jenčo J, Šafratová M, Nováková L, Opletal L, Cahlíková L. Monoterpene indole alkaloids from Vinca minor L. (Apocynaceae): Identification of new structural scaffold for treatment of Alzheimer's disease. PHYTOCHEMISTRY 2022; 194:113017. [PMID: 34798410 DOI: 10.1016/j.phytochem.2021.113017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 05/24/2023]
Abstract
One undescribed indole alkaloid together with twenty-two known compounds have been isolated from aerial parts of Vinca minor L. (Apocynaceae). The chemical structures of the isolated alkaloids were determined by a combination of MS, HRMS, 1D, and 2D NMR techniques, and by comparison with literature data. The NMR data of several alkaloids have been revised, corrected, and missing data have been supplemented. Alkaloids isolated in sufficient quantity were screened for their in vitro acetylcholinesterase (AChE; E.C. 3.1.1.7) and butyrylcholinesterase (BuChE; E.C. 3.1.1.8) inhibitory activity. Selected compounds were also evaluated for prolyl oligopeptidase (POP; E.C. 3.4.21.26), and glycogen synthase 3β-kinase (GSK-3β; E.C. 2.7.11.26) inhibition potential. Significant hBuChE inhibition activity has been shown by (-)-2-ethyl-3[2-(3-ethylpiperidinyl)-ethyl]-1H-indole with an IC50 value of 0.65 ± 0.16 μM. This compound was further studied by enzyme kinetics, along with in silico techniques, to reveal the mode of inhibition. This compound is also predicted to cross the blood-brain barrier (BBB) through passive diffusion.
Collapse
Affiliation(s)
- Rudolf Vrabec
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic; Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Jana Maříková
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Miroslav Ločárek
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Jan Korábečný
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Daniela Hulcová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic; Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Anna Hošťálková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Jiří Kuneš
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Jakub Chlebek
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Tomáš Kučera
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic
| | - Martina Hrabinová
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic
| | - Ondřej Soukup
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Vincenza Andrisano
- Department for Life Quality Studies, University of Bologna, 47921, Rimini, Italy
| | - Jaroslav Jenčo
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Marcela Šafratová
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Lubomír Opletal
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Lucie Cahlíková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
17
|
Zolotov NN, Schepetkin IA, Voronina TA, Pozdnev VF, Khlebnikov AI, Krylova IV, Quinn MT. Therapeutic Effect of Novel Cyanopyrrolidine-Based Prolyl Oligopeptidase Inhibitors in Rat Models of Amnesia. Front Chem 2022; 9:780958. [PMID: 35004610 PMCID: PMC8727363 DOI: 10.3389/fchem.2021.780958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/06/2021] [Indexed: 01/03/2023] Open
Abstract
Prolyl oligopeptidase (POP) is a large cytosolic serine peptidase that is altered in patients with Alzheimer’s disease, Parkinsonian syndrome, muscular dystrophies, and other denervating diseases. Thus, POP may represent a relevant therapeutic target for treatment of neuropsychiatric disorders and neurodegenerative diseases. Here, we report the characterization of five novel cyanopyrrolidine-based compounds (BocTrpPrdN, BocGlyPrdN, CbzMetPrdN, CbzGlnPrdN, and CbzAlaPrdN) and show that they are potent inhibitors of POP and are predicted to penetrate the blood-brain barrier (BBB). Indeed, we show that CbzMetPrdN penetrates the rat BBB and effectively inhibits POP in the brain when administered intraperitoneally. Furthermore, molecular modeling confirmed these compounds likely inhibit POP via interaction with the POP catalytic site. We evaluated protective effects of the cyanopyrrolidine-based POP inhibitors using scopolamine- and maximal electroshock-induced models of amnesia in rats and showed that BocTrpPrdN, BocGlyPrdN, CbzMetPrdN, and CbzGlnPrdN significantly prolonged conditioned passive avoidance reflex (CPAR) retention time when administered intraperitoneally (1 and 2 mg/kg) before evaluation in both models of amnesia, although CbzAlaPrdN was not effective in scopolamine-induced amnesia. Our data support previous reports on the antiamnesic effects of prolinal-based POP inhibitors and indicate an important role of POP in the regulation of learning and memory processes in the CNS.
Collapse
Affiliation(s)
| | - Igor A Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | | | | | - Andrei I Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, Russia.,Institute of Pharmacy, Altai State Medical University, Barnaul, Russia
| | | | - Mark T Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
18
|
Protein Hydrolysis and Glycosylation as Strategies to Produce Bioactive Ingredients from Unmarketable Prawns. Foods 2021; 10:foods10112844. [PMID: 34829125 PMCID: PMC8625146 DOI: 10.3390/foods10112844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 11/17/2022] Open
Abstract
The present work shows a procedure to valorize non-commercial boiled shrimp to produce functional ingredients, using a combined treatment based on enzymatic hydrolysis and subsequent glycation under mild conditions. Antioxidant and prolyl endopeptidase-inhibiting activities were determined as a function of hydrolysis and glycation times (0-120 min and 0-180 min, respectively). The reaction products were characterized by determining the degree of hydrolysis, browning, fluorescent compounds, free amino acids, phenol content, Fourier transform infrared spectroscopy (FTIR), and molecular weight of the different fractions obtained. Enzymatic hydrolysis generated hydrolysates with significant antioxidant and prolyl endopeptidase-inhibiting activities. Glycation under mild conditions was used as a strategy to improve the antioxidant and potential nootropic properties of the hydrolysates. During glycation, the free amino acid content decreased, total phenols and fluorescent compounds increased significantly, and low molecular weight melanoidins were formed. The presence of peptide-glucose conjugates was also confirmed by FTIR. Glycation increased the antioxidant activities of the hydrolysates; however, their prolyl-endopeptidase-inhibiting activity was lost. Results showed that compounds with promising antioxidant (hydrolysis and glycation) and potential nootropic (hydrolysis) activities and applications in food systems were obtained from the biotechnological strategy used.
Collapse
|
19
|
Pätsi HT, Kilpeläinen TP, Auno S, Dillemuth PMJ, Arja K, Lahtela-Kakkonen MK, Myöhänen TT, Wallén EAA. 2-Imidazole as a Substitute for the Electrophilic Group Gives Highly Potent Prolyl Oligopeptidase Inhibitors. ACS Med Chem Lett 2021; 12:1578-1584. [PMID: 34671446 PMCID: PMC8521653 DOI: 10.1021/acsmedchemlett.1c00399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 11/28/2022] Open
Abstract
![]()
Different five-membered
nitrogen-containing heteroaromatics in
the position of the typical electrophilic group in prolyl oligopeptidase
(PREP) inhibitors were investigated and compared to tetrazole. The
2-imidazoles were highly potent inhibitors of the proteolytic activity.
The binding mode for the basic imidazole was studied by molecular
docking as it was expected to differ from the acidic tetrazole. A
new putative noncovalent binding mode with an interaction to His680
was found for the 2-imidazoles. Inhibition of the proteolytic activity
did not correlate with the modulating effect on protein–protein-interaction-derived
functions of PREP (i.e., dimerization of alpha-synuclein and autophagy).
Among the highly potent PREP inhibiting 2-imidazoles, only one was
also a potent modulator of PREP-catalyzed alpha-synuclein dimerization,
indicating that the linker length on the opposite side of the molecule
from the five-membered heteroaromatic is critical for the disconnected
structure–activity relationships.
Collapse
Affiliation(s)
- Henri T. Pätsi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Tommi P. Kilpeläinen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Samuli Auno
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Pyry M. J. Dillemuth
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Khaled Arja
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Maija K. Lahtela-Kakkonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland
| | - Timo T. Myöhänen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Kiinanmyllynkatu 10, 20014 Turku, Finland
| | - Erik A. A. Wallén
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| |
Collapse
|
20
|
Duclot F, Kabbaj M. Epigenetics of Aggression. Curr Top Behav Neurosci 2021; 54:283-310. [PMID: 34595741 DOI: 10.1007/7854_2021_252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aggression is a complex behavioral trait modulated by both genetic and environmental influences on gene expression. By controlling gene expression in a reversible yet potentially lasting manner in response to environmental stimulation, epigenetic mechanisms represent prime candidates in explaining both individual differences in aggression and the development of elevated aggressive behaviors following life adversity. In this manuscript, we review the evidence for an epigenetic basis in the development and expression of aggression in both humans and related preclinical animal models. In particular, we discuss reports linking DNA methylation, histone post-translational modifications, as well as non-coding RNA, to the regulation of a variety of genes implicated in the neurobiology of aggression including neuropeptides, the serotoninergic and dopaminergic systems, and stress response related systems. While clinical reports do reveal interesting patterns of DNA methylation underlying individual differences and experience-induced aggressive behaviors, they do, in general, face the challenge of linking peripheral observations to central nervous system regulations. Preclinical studies, on the other hand, provide detailed mechanistic insights into the epigenetic reprogramming of gene expression following life adversities. Although the functional link to aggression remains unclear in most, these studies together do highlight the involvement of epigenetic events driven by DNA methylation, histone modifications, and non-coding RNA in the neuroadaptations underlying the development and expression of aggression.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
21
|
Qian XK, Zhang J, Li XD, Song PF, Zou LW. Research Progress on Dipeptidyl Peptidase Family: Structure, Function and Xenobiotic Metabolism. Curr Med Chem 2021; 29:2167-2188. [PMID: 34525910 DOI: 10.2174/0929867328666210915103431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/22/2022]
Abstract
Prolyl-specific peptidases or proteases, including Dipeptidyl Peptidase 2, 4, 6, 8, 9, 10, Fibroblast Activation Protein, prolyl endopeptidase and prolyl carboxypeptidase, belong to the dipeptidyl peptidase family. In human physiology and anatomy, they have homology amino acid sequences, similarities in structure, but play distinct functions and roles. Some of them also play important roles in the metabolism of drugs containing endogenous peptides, xenobiotics containing peptides, and exogenous peptides. The major functions of these peptidases in both the metabolism of human health and bioactive peptides are of significant importance in the development of effective inhibitors to control the metabolism of endogenous bioactive peptides. The structural characteristics, distribution of tissue, endogenous substrates, and biological functions were summarized in this review. Furthermore, the xenobiotics metabolism of the dipeptidyl peptidase family is illustrated. All the evidence and information summarized in this review would be very useful for researchers to extend the understanding of the proteins of these families and offer advice and assistance in physiology and pathology studies.
Collapse
Affiliation(s)
- Xing-Kai Qian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Jing Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Xiao-Dong Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Pei-Fang Song
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| |
Collapse
|
22
|
Recent Progress on Biological Activity of Amaryllidaceae and Further Isoquinoline Alkaloids in Connection with Alzheimer's Disease. Molecules 2021; 26:molecules26175240. [PMID: 34500673 PMCID: PMC8434202 DOI: 10.3390/molecules26175240] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive age-related neurodegenerative disease recognized as the most common form of dementia among elderly people. Due to the fact that the exact pathogenesis of AD still remains to be fully elucidated, the treatment is only symptomatic and available drugs are not able to modify AD progression. Considering the increase in life expectancy worldwide, AD rates are predicted to increase enormously, and thus the search for new AD drugs is urgently needed. Due to their complex nitrogen-containing structures, alkaloids are considered to be promising candidates for use in the treatment of AD. Since the introduction of galanthamine as an antidementia drug in 2001, Amaryllidaceae alkaloids (AAs) and further isoquinoline alkaloids (IAs) have been one of the most studied groups of alkaloids. In the last few years, several compounds of new structure types have been isolated and evaluated for their biological activity connected with AD. The present review aims to comprehensively summarize recent progress on AAs and IAs since 2010 up to June 2021 as potential drugs for the treatment of AD.
Collapse
|
23
|
Structure-activity relationship and biochemical evaluation of novel fibroblast activation protein and prolyl endopeptidase inhibitors with α-ketoamide warheads. Eur J Med Chem 2021; 224:113717. [PMID: 34371463 DOI: 10.1016/j.ejmech.2021.113717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 01/21/2023]
Abstract
Peptidomimetic inhibitors of fibroblast activation protein (FAP) are regarded as promising tools for tumor targeting in vivo. Even though several peptidomimetic compounds with nanomolar potency have been described, broad chemical space for further modification remained unexplored. Therefore, we set to analyze the structure-activity relationship (SAR) of pseudopeptide compound series with α-ketoamide warheads in order to explore the contributions of the P1' and P2' moieties to the inhibitory potency. A series of novel inhibitors bearing varied P1' and/or P2' moieties was synthesized by combining a Passerini reaction-Amine Deprotection-Acyl Migration (PADAM) approach with peptide coupling and subsequent oxidation. The resulting compounds inhibited FAP and the related prolyl endopeptidase (PREP) with potencies in the nanomolar to sub-nanomolar range. The most potent FAP inhibitor IOCB22-AP446 (6d, IC50 = 89 pM) had about 36-fold higher inhibition potency than the most potent inhibitor published to date. The compounds were selective over FAP's closest homolog DPP-IV, were stable in human and mouse plasma and in mouse microsomes, and displayed minimal cytotoxicity in tissue cultures.
Collapse
|
24
|
Mehranfard D, Perez G, Rodriguez A, Ladna JM, Neagra CT, Goldstein B, Carroll T, Tran A, Trivedi M, Speth RC. Alterations in Gene Expression of Renin-Angiotensin System Components and Related Proteins in Colorectal Cancer. J Renin Angiotensin Aldosterone Syst 2021; 2021:9987115. [PMID: 34285715 PMCID: PMC8277508 DOI: 10.1155/2021/9987115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/13/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
MATERIALS AND METHODS Quantitative expression of the RNA of these 17 genes in normal and cancerous tissues obtained using chip arrays from the public functional genomics data repository, Gene Expression Omnibus (GEO) application, was compared statistically. RESULTS Expression of four genes, AGT (angiotensinogen), ENPEP (aminopeptidase A) MME (neprilysin), and PREP (prolyl endopeptidase), was significantly upregulated in CRC specimens. Expression of REN (renin), THOP (thimet oligopeptidase), NLN (neurolysin), PRCP (prolyl carboxypeptidase), ANPEP (aminopeptidase N), and MAS1 (Mas receptor) was downregulated in CRC specimens. CONCLUSIONS Presuming gene expression parallel protein expression, these results suggest that increased production of the angiotensinogen precursor of angiotensin (ANG) peptides, with the reduction of the enzymes that metabolize it to ANG II, can lead to accumulation of angiotensinogen in CRC tissues. Downregulation of THOP, NLN, PRCP, and MAS1 gene expression, whose proteins contribute to the ACE2/ANG 1-7/Mas axis, suggests that reduced activity of this RAS branch could be permissive for oncogenicity. Components of the RAS may be potential therapeutic targets for treatment of CRC.
Collapse
Affiliation(s)
- Danial Mehranfard
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Gabriela Perez
- Department of Internal Medicine, Palmetto General Hospital, Hialeah, FL, USA
| | - Andres Rodriguez
- Department of Internal Medicine, University of Miami/Jackson Memorial Hospital, Miami, FL, USA
| | | | | | | | - Timothy Carroll
- College of Psychology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Alice Tran
- Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Malav Trivedi
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Robert C. Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
25
|
Myöhänen TT, Mertens F, Norrbacka S, Cui H. Deletion or inhibition of prolyl oligopeptidase blocks lithium-induced phosphorylation of GSK3b and Akt by activation of protein phosphatase 2A. Basic Clin Pharmacol Toxicol 2021; 129:287-296. [PMID: 34196102 DOI: 10.1111/bcpt.13632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/15/2021] [Accepted: 06/27/2021] [Indexed: 11/27/2022]
Abstract
Alterations in prolyl oligopeptidase (PREP) activity have been connected, for example, with bipolar and major depressive disorder, and several studies have reported that lack or inhibition of PREP blocks the effects of lithium on inositol 1,4,5-triphosphate (IP3 ) levels. However, the impact of PREP modulation on other intracellular targets of lithium, such as glycogen synthase kinase 3 beta (GSK3b) or protein kinase B (Akt), has not been studied. We recently found that PREP regulates protein phosphatase 2A (PP2A), and because GSK3b and Akt are PP2A substrates, we studied if PREP-related lithium insensitivity is dependent on PP2A. To assess this, HEK-293 and SH-SY5Y cells with PREP deletion or PREP inhibition (KYP-2047) were exposed to lithium, and thereafter, the phosphorylation levels of GSK3b and Akt were measured by Western blot. As expected, PREP deletion and inhibition blocked the lithium-induced phosphorylation on GSK3b and Akt in both cell lines. When lithium exposure was combined with okadaic acid, a PP2A inhibitor, KYP-2047 did not have effect on lithium-induced GSK3b and Akt phosphorylation. Therefore, we conclude that PREP deletion or inhibition blocks the intracellular effects of lithium on GSK3b and Akt via PP2A activation.
Collapse
Affiliation(s)
- Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland.,Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Turku, Finland.,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Freke Mertens
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Susanna Norrbacka
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Hengjing Cui
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland.,Department of Pharmacy, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Kohelová E, Maříková J, Korábečný J, Hulcová D, Kučera T, Jun D, Chlebek J, Jenčo J, Šafratová M, Hrabinová M, Ritomská A, Malaník M, Peřinová R, Breiterová K, Kuneš J, Nováková L, Opletal L, Cahlíková L. Alkaloids of Zephyranthes citrina (Amaryllidaceae) and their implication to Alzheimer's disease: Isolation, structural elucidation and biological activity. Bioorg Chem 2020; 107:104567. [PMID: 33387730 DOI: 10.1016/j.bioorg.2020.104567] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022]
Abstract
Twenty known Amaryllidaceae alkaloids of various structural types, and one undescribed alkaloid of narcikachnine-type, named narcieliine (3), have been isolated from fresh bulbs of Zephyranthes citrina. The chemical structures of the isolated alkaloids were elucidated by a combination of MS, HRMS, 1D and 2D NMR, and CD spectroscopic techniques, and by comparison with literature data. The absolute configuration of narcieliine (3) has also been determined. Compounds isolated in a sufficient quantity were evaluated for their in vitro acetylcholinesterase (AChE; E.C. 3.1.1.7), butyrylcholinesterase (BuChE; E.C. 3.1.1.8), and prolyl oligopeptidase (POP; E.C. 3.4.21.26) inhibition activities. Significant human AChE/BuChE (hAChE/hBuChE) inhibitory activity was demonstrated by the newly described alkaloid narcieliine (3), with IC50 values of 18.7 ± 2.3 µM and 1.34 ± 0.31 µM, respectively. This compound is also predicted to cross the blood-brain barrier (BBB) through passive diffusion. The in vitro data were further supported by in silico studies of 3 in the active site of hAChE/hBuChE.
Collapse
Affiliation(s)
- Eliška Kohelová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jana Maříková
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jan Korábečný
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Daniela Hulcová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Tomáš Kučera
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jakub Chlebek
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jaroslav Jenčo
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Marcela Šafratová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Martina Hrabinová
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Aneta Ritomská
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Milan Malaník
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého třída 1946/1, 61200 Brno, Czech Republic
| | - Rozálie Peřinová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Kateřina Breiterová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jiří Kuneš
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Lubomír Opletal
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Lucie Cahlíková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
27
|
Brennen WN, J Thorek DL, Jiang W, Krueger TE, Antony L, Denmeade SR, Isaacs JT. Overcoming stromal barriers to immuno-oncological responses via fibroblast activation protein-targeted therapy. Immunotherapy 2020; 13:155-175. [PMID: 33148078 DOI: 10.2217/imt-2020-0066] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The tumor microenvironment contributes to disease progression through multiple mechanisms, including immune suppression mediated in part by fibroblast activation protein (FAP)-expressing cells. Herein, a review of FAP biology is presented, supplemented with primary data. This includes FAP expression in prostate cancer and activation of latent reservoirs of TGF-β and VEGF to produce a positive feedback loop. This collectively suggests a normal wound repair process subverted during cancer pathophysiology. There has been immense interest in targeting FAP for diagnostic, monitoring and therapeutic purposes. Until recently, this development has outpaced an understanding of the biology; impeding optimal translation into the clinic. A summary of these applications is provided with an emphasis on eliminating tumor-infiltrating FAP-positive cells to overcome stromal barriers to immuno-oncological responses.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| | - Daniel L J Thorek
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63310, USA.,Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63310, USA
| | - Wen Jiang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Timothy E Krueger
- Department of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lizamma Antony
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| | - Samuel R Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| | - John T Isaacs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
28
|
Ka S, Koirala M, Mérindol N, Desgagné-Penix I. Biosynthesis and Biological Activities of Newly Discovered Amaryllidaceae Alkaloids. Molecules 2020; 25:E4901. [PMID: 33113950 PMCID: PMC7660210 DOI: 10.3390/molecules25214901] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022] Open
Abstract
Alkaloids are an important group of specialized nitrogen metabolites with a wide range of biochemical and pharmacological effects. Since the first publication on lycorine in 1877, more than 650 alkaloids have been extracted from Amaryllidaceae bulbous plants and clustered together as the Amaryllidaceae alkaloids (AAs) family. AAs are specifically remarkable for their diverse pharmaceutical properties, as exemplified by the success of galantamine used to treat the symptoms of Alzheimer's disease. This review addresses the isolation, biological, and structure activity of AAs discovered from January 2015 to August 2020, supporting their therapeutic interest.
Collapse
Affiliation(s)
- Seydou Ka
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada; (S.K.); (M.K.); (N.M.)
| | - Manoj Koirala
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada; (S.K.); (M.K.); (N.M.)
| | - Natacha Mérindol
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada; (S.K.); (M.K.); (N.M.)
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada; (S.K.); (M.K.); (N.M.)
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada
| |
Collapse
|
29
|
The effect of prolyl oligopeptidase inhibitors on alpha-synuclein aggregation and autophagy cannot be predicted by their inhibitory efficacy. Biomed Pharmacother 2020; 128:110253. [DOI: 10.1016/j.biopha.2020.110253] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 02/07/2023] Open
|
30
|
García-Horsman JA. The role of prolyl oligopeptidase, understanding the puzzle. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:983. [PMID: 32953783 PMCID: PMC7475498 DOI: 10.21037/atm-20-3412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Sobolova K, Hrabinova M, Hepnarova V, Kucera T, Kobrlova T, Benkova M, Janockova J, Dolezal R, Prchal L, Benek O, Mezeiova E, Jun D, Soukup O, Korabecny J. Discovery of novel berberine derivatives with balanced cholinesterase and prolyl oligopeptidase inhibition profile. Eur J Med Chem 2020; 203:112593. [PMID: 32688201 DOI: 10.1016/j.ejmech.2020.112593] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
Berberine, a naturally occurring compound, possesses an interesting multipotent pharmacological profile potentially applicable for Alzheimer's disease (AD) treatment. In this study, a series of novel 22 berberine derivatives was developed and tested in vitro. Berberine core was substituted at position 9-O of its aromatic ring region. All the hybrids under the study revealed multi-targeted profile inhibiting prolyl oligopeptidase, acetylcholinesterase and butyrylcholinesterase highlighting 4a, 4g, 4j, 4l and 4s possessing balanced activities in the micromolar range. The top-ranked candidates in terms of the most pronounced potency against POP, AChE and BChE can be classified as 4d, 4u and 4v, bearing 4-methylbenzyl, (naphthalen-2-yl)methylene and 1-phenoxyethyl moieties, respectively. In vitro data were corroborated by detailed kinetic analysis of the selected lead molecules. 4d, 4u and 4v were also inspected for their potential to inhibit aggregation of two abberant proteins in AD, namely amyloid beta and tau, indicating their potential disease-modifying properties. To explain the results of our study, we carried out docking simulation to the active sites of the respective enzyme with the best berberine derivatives, along with QSAR study. We also investigated compounds' potential permeability through blood-brain barrier by applying parallel artificial membrane permeation assay and addressed their cytotoxicity profile.
Collapse
Affiliation(s)
- Katerina Sobolova
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic
| | - Martina Hrabinova
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic
| | - Tereza Kobrlova
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Marketa Benkova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Jana Janockova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Rafael Dolezal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Ondrej Benek
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Jan Korabecny
- Department of Toxicology and Military Pharmacy, Department of Military Medical Service Organisation and Management, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
32
|
Da’adoosh B, Kaito K, Miyashita K, Sakaguchi M, Goldblum A. Computational design of substrate selective inhibition. PLoS Comput Biol 2020; 16:e1007713. [PMID: 32196495 PMCID: PMC7112232 DOI: 10.1371/journal.pcbi.1007713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 04/01/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
Most enzymes act on more than a single substrate. There is frequently a need to block the production of a single pathogenic outcome of enzymatic activity on a substrate but to avoid blocking others of its catalytic actions. Full blocking might cause severe side effects because some products of that catalysis may be vital. Substrate selectivity is required but not possible to achieve by blocking the catalytic residues of an enzyme. That is the basis of the need for "Substrate Selective Inhibitors" (SSI), and there are several molecules characterized as SSI. However, none have yet been designed or discovered by computational methods. We demonstrate a computational approach to the discovery of Substrate Selective Inhibitors for one enzyme, Prolyl Oligopeptidase (POP) (E.C 3.4.21.26), a serine protease which cleaves small peptides between Pro and other amino acids. Among those are Thyrotropin Releasing Hormone (TRH) and Angiotensin-III (Ang-III), differing in both their binding (Km) and in turnover (kcat). We used our in-house "Iterative Stochastic Elimination" (ISE) algorithm and the structure-based "Pharmacophore" approach to construct two models for identifying SSI of POP. A dataset of ~1.8 million commercially available molecules was initially reduced to less than 12,000 which were screened by these models to a final set of 20 molecules which were sent for experimental validation (five random molecules were tested for comparison). Two molecules out of these 20, one with a high score in the ISE model, the other successful in the pharmacophore model, were confirmed by in vitro measurements. One is a competitive inhibitor of Ang-III (increases its Km), but non-competitive towards TRH (decreases its Vmax). Many proteins are enzymes—"catalytic machines" performing chemical reactions on "substrates"–which may be small or large molecules. Evolution optimized the speed of enzyme reactions, but mutations or excessive enzyme production could lead to non-controlled, accelerated activity, which must be blocked to avoid a product that promotes disease. Many inhibitors of enzymatic activity became drugs which can block the production of the aberrant product, due to blocking the enzymatic "machinery", the amino acids involved in catalysis. Most enzymes have several substrates and so, those other substrates are blocked too. Those may be vital to the well-being of cells and life and total inhibition is prone to cause serious side effects. It is therefore essential to solve the need for inhibition of a single substrate without inhibiting others. We have thus developed computational methods to block specifically the "culprit" substrate while allowing the enzyme machine to act on other substrates. By applying these computational methods, we predicted candidates for inhibiting one out of two substrates ("substrate selective inhibition") of a well-known enzyme reaction. In collaboration with a research group that excels in studying that specific enzyme (prolyl oligopeptidase) we found that two candidates out of a set of twenty that we picked out of 1.8 million molecules by filtering through computer models—are indeed selective to one substrate vis-a-vis the other (five random molecules were tested for comparison). This may be the first example of a computational method leading to substrate selective inhibitor drugs which could avoid side effects.
Collapse
Affiliation(s)
- Benny Da’adoosh
- Molecular Modeling Laboratory, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kon Kaito
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| | - Keishi Miyashita
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| | - Minoru Sakaguchi
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| | - Amiram Goldblum
- Molecular Modeling Laboratory, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
33
|
Yang Q, Hua R, Qian J, Yi S, Shen F, Zhang Q, Li M, Yi S, Luo J, Fan X. PREPL Deficiency: A Homozygous Splice Site PREPL Mutation in a Patient With Congenital Myasthenic Syndrome and Absence of Ovaries and Hypoplasia of Uterus. Front Genet 2020; 11:198. [PMID: 32218803 PMCID: PMC7078161 DOI: 10.3389/fgene.2020.00198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/20/2020] [Indexed: 11/13/2022] Open
Abstract
Prolyl endopeptidase-like (PREPL) deficiency (MIM 616224) is a very rare congenital disorder characterized by neonatal hypotonia and feeding difficulties, ptosis, neuromuscular symptoms, cognitive impairments, growth hormone deficiency, short stature, and hypergonadotropic hypogonadism. This syndrome is an autosomal recessive disease resulting from mutations in the PREPL gene. Previous reports have associated PREPL deficiency with only one nucleotide substitution, the deletion of four nucleotides, and eight small microdeletions in the PREPL gene In this study, we used whole exome sequencing (WES) to identify a novel homozygous splicing mutation (c.616 + 1G > T) in a 14-year-old Chinese girl with PREPL deficiency. Sequencing of the RT-PCR products from the patient’s blood sample revealed that the c.616 + 1G > T variant disrupted normal splicing in intron 4 leading to an aberrant inclusion of 43 nucleotides in intron, a frameshift, and premature termination codon. Our patient exhibited several of the common phenotypes, including severe neonatal hypotonia, growth impairment and cognitive problems. However, we also observed several unusual phenotypic characteristics: absence of the ovaries, hypoplasia of the uterus, microcephaly and a short neck in patient is alsoobserved. These results provide further evidence for the involvement of PREPL development of the ovaries and uterus. Our findings may provide further insight into the relationship between the genotype and phenotype in collagen-associated diseases and improve the clinical diagnosis of Prolyl endopeptidase-like deficiency.
Collapse
Affiliation(s)
- Qi Yang
- Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Nanning, China
| | - Rong Hua
- The Guangxi Zhang Autonomous Region Reproductive Hospital, Nanning, China
| | - Jiale Qian
- Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Nanning, China
| | - Shang Yi
- Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Nanning, China
| | - Fei Shen
- Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Nanning, China
| | - Qiang Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Nanning, China
| | - Mengting Li
- Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Nanning, China
| | - Sheng Yi
- Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Nanning, China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Nanning, China
| | - Xin Fan
- Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Nanning, China
| |
Collapse
|
34
|
Kilpeläinen TP, Tyni JK, Lahtela-Kakkonen MK, Eteläinen TS, Myöhänen TT, Wallén EAA. Tetrazole as a Replacement of the Electrophilic Group in Characteristic Prolyl Oligopeptidase Inhibitors. ACS Med Chem Lett 2019; 10:1635-1640. [PMID: 31857839 DOI: 10.1021/acsmedchemlett.9b00394] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/11/2019] [Indexed: 11/29/2022] Open
Abstract
4-Phenylbutanoyl-aminoacyl-2(S)-tetrazolylpyrrolidines were studied as prolyl oligopeptidase inhibitors. The compounds were more potent than expected from the assumption that the tetrazole would also here be a bioisostere of the carboxylic acid group and the corresponding carboxylic acids are at their best only weak inhibitors. The aminoacyl groups l-prolyl and l-alanyl gave potent inhibitors with IC50 values of 12 and 129 nM, respectively. This was in line with typical prolyl oligopeptidase inhibitors; however, we did observe a difference with N-methyl-l-alanyl, which gave potent inhibitors in typical prolyl oligopeptidase inhibitors but not in our novel compound series. Furthermore, all studied 4-phenylbutanoyl-aminoacyl-2(S)-tetrazolylpyrrolidines decreased α-synuclein dimerization at the concentration of 10 μM, also when they were only weak inhibitors of the proteolytic activity of the enzyme with an IC50 value of 205 μM. Molecular docking studies revealed that the compounds are likely to bind differently to the enzyme compared to typical prolyl oligopeptidase inhibitors represented in this study by 4-phenylbutanoyl-aminoacyl-2(S)-cyanopyrrolidines.
Collapse
Affiliation(s)
- Tommi P. Kilpeläinen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Jonna K. Tyni
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland
| | - Maija K. Lahtela-Kakkonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland
| | - Tony S. Eteläinen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Timo T. Myöhänen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Erik A. A. Wallén
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| |
Collapse
|
35
|
Serfozo P, Wysocki J, Gulua G, Schulze A, Ye M, Liu P, Jin J, Bader M, Myöhänen T, García-Horsman JA, Batlle D. Ang II (Angiotensin II) Conversion to Angiotensin-(1-7) in the Circulation Is POP (Prolyloligopeptidase)-Dependent and ACE2 (Angiotensin-Converting Enzyme 2)-Independent. Hypertension 2019; 75:173-182. [PMID: 31786979 DOI: 10.1161/hypertensionaha.119.14071] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Ang II (Angiotensin II)-Angiotensin-(1-7) axis of the Renin Angiotensin System encompasses 3 enzymes that form Angiotensin-(1-7) [Ang-(1-7)] directly from Ang II: ACE2 (angiotensin-converting enzyme 2), PRCP (prolylcarboxypeptidase), and POP (prolyloligopeptidase). We investigated their relative contribution to Ang-(1-7) formation in vivo and also ex vivo in serum, lungs, and kidneys using models of genetic ablation coupled with pharmacological inhibitors. In wild-type (WT) mice, infusion of Ang II resulted in a rapid increase of plasma Ang-(1-7). In ACE2-/-/PRCP-/- mice, Ang II infusion resulted in a similar increase in Ang-(1-7) as in WT (563±48 versus 537±70 fmol/mL, respectively), showing that the bulk of Ang-(1-7) formation in circulation is essentially independent of ACE2 and PRCP. By contrast, a POP inhibitor, Z-Pro-Prolinal reduced the rise in plasma Ang-(1-7) after infusing Ang II to control WT mice. In POP-/- mice, the increase in Ang-(1-7) was also blunted as compared with WT mice (309±46 and 472±28 fmol/mL, respectively P=0.01), and moreover, the rate of recovery from acute Ang II-induced hypertension was delayed (P=0.016). In ex vivo studies, POP inhibition with ZZP reduced Ang-(1-7) formation from Ang II markedly in serum and in lung lysates. By contrast, in kidney lysates, the absence of ACE2, but not POP, obliterated Ang-(1-7) formation from added Ang II. We conclude that POP is the main enzyme responsible for Ang II conversion to Ang-(1-7) in the circulation and in the lungs, whereas Ang-(1-7) formation in the kidney is mainly ACE2-dependent.
Collapse
Affiliation(s)
- Peter Serfozo
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.).,Charité-Universitätsmedizin Berlin, Germany (P.S., G.G., A.S., M.B.)
| | - Jan Wysocki
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.)
| | - Gvantca Gulua
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.).,Charité-Universitätsmedizin Berlin, Germany (P.S., G.G., A.S., M.B.)
| | - Arndt Schulze
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.).,Charité-Universitätsmedizin Berlin, Germany (P.S., G.G., A.S., M.B.)
| | - Minghao Ye
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.)
| | - Pan Liu
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.)
| | - Jing Jin
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.)
| | - Michael Bader
- Charité-Universitätsmedizin Berlin, Germany (P.S., G.G., A.S., M.B.).,Max-Delbrueck Center for Molecular Medicine Berlin, Germany (M.B.)
| | - Timo Myöhänen
- Division of Pharmacology and Pharmacotherapy (T.M.), University of Helsinki, Finland
| | | | - Daniel Batlle
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL (P.S., J.W., G.G., A.S., M.Y., P.L., J.J., D.B.)
| |
Collapse
|
36
|
Rodríguez B, Nani JV, Almeida PGC, Brietzke E, Lee RS, Hayashi MAF. Neuropeptides and oligopeptidases in schizophrenia. Neurosci Biobehav Rev 2019; 108:679-693. [PMID: 31794779 DOI: 10.1016/j.neubiorev.2019.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 12/30/2022]
Abstract
Schizophrenia (SCZ) is a complex psychiatric disorder with severe impact on patient's livelihood. In the last years, the importance of neuropeptides in SCZ and other CNS disorders has been recognized, mainly due to their ability to modulate the signaling of classical monoaminergic neurotransmitters as dopamine. In addition, a class of enzymes coined as oligopeptidases are able to cleave several of these neuropeptides, and their potential implication in SCZ was also demonstrated. Interestingly, these enzymes are able to play roles as modulators of neuropeptidergic systems, and they were also implicated in neurogenesis, neurite outgrowth, neuron migration, and therefore, in neurodevelopment and brain formation. Altered activity of oligopeptidases in SCZ was described only more recently, suggesting their possible utility as biomarkers for mental disorders diagnosis or treatment response. We provide here an updated and comprehensive review on neuropeptides and oligopeptidases involved in mental disorders, aiming to attract the attention of physicians to the potential of targeting this system for improving the therapy and for understanding the neurobiology underlying mental disorders as SCZ.
Collapse
Affiliation(s)
- Benjamín Rodríguez
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - João Victor Nani
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Priscila G C Almeida
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Elisa Brietzke
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| | - Richard S Lee
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| |
Collapse
|
37
|
The Genus Nerine Herb. (Amaryllidaceae): Ethnobotany, Phytochemistry, and Biological Activity. Molecules 2019; 24:molecules24234238. [PMID: 31766438 PMCID: PMC6930486 DOI: 10.3390/molecules24234238] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/10/2019] [Accepted: 11/19/2019] [Indexed: 11/17/2022] Open
Abstract
Nerine Herbert, family Amaryllidaceae, is a genus of about 30 species that are native to South Africa, Botswana, Lesotho, Namibia, and Swatini (formerly known as Swaziland). Species of Nerine are autumn-flowering, perennial, bulbous plants, which inhabit areas with summer rainfall and cool, dry winters. Most Nerine species have been cultivated for their elegant flowers, presenting a source of innumerable horticultural hybrids. For many years, species of Nerine have been subjected to extensive phytochemical and pharmacological investigations, which resulted in either the isolation or identification of more than fifty Amaryllidaceae alkaloids belonging to different structural types. Amaryllidaceae alkaloids are frequently studied for their interesting biological properties, including antiviral, antibacterial, antitumor, antifungal, antimalarial, analgesic, cytotoxic, and cholinesterase inhibition activities. The present review aims to summarize comprehensively the research that has been reported on the phytochemistry and pharmacology of the genus Nerine.
Collapse
|
38
|
De Matos R, Vuilleumier J, Mas C, Constant S, Staedler D, Gerber-Lemaire S. Inhibitor-conjugated harmonic nanoparticles targeting fibroblast activation protein. RSC Adv 2019; 9:31659-31669. [PMID: 35527932 PMCID: PMC9072645 DOI: 10.1039/c9ra05299b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/20/2019] [Indexed: 01/02/2023] Open
Abstract
The recent progress in the engineering of nanosized inorganic materials presenting tailored physical properties and reactive surface for post-functionalization has opened promising avenues for the use of nanoparticles (NPs) in diagnosis and therapeutic intervention. Surface decoration of metal oxide NPs with ligands modulating circulation time, cellular uptake, affinity and extravasation through active targeting led to efficient cancer specific bioimaging probes. The most relevant cancer biomarkers studied so far include surface and transmembrane cancer cell receptors. More recently, tumor microenvironments and more specifically the fibroblastic element of the tumor stroma have emerged as a valuable target for diagnosis and treatment of several types of cancers. In this study, a low molecular weight ligand targeting fibroblast activation protein α (FAP), which is specifically expressed by activated fibroblasts of the tumor stroma, was synthesized. This ligand demonstrated nanomolar inhibition of FAP with high selectivity with respect to prolyl oligopeptidase (PREP) and dipeptidyl peptidase (DPP) IV, as well as good biocompatibility toward a human lung tissue model. Bismuth ferrite (BFO) harmonic nanoparticles (HNPs) conjugated to this ligand showed target-specific association to FAP as demonstrated by reverse ELISA-type assay using Human Fibroblast Activation Protein alpha/FAP Alexa Fluor® 594-conjugated Antibody and multiphoton multispectral microscopy experiments. These functionalized HNPs may provide new nanocarriers to explore the role of FAP in tumorigenesis and to target the fibroblastic component of the tumor microenvironment.
Collapse
Affiliation(s)
- Raphaël De Matos
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Group for Functionalized Biomaterials EPFL SB ISIC SCI-SB-SG, Station 6 CH-1015 Lausanne Switzerland
| | - Jérémy Vuilleumier
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Group for Functionalized Biomaterials EPFL SB ISIC SCI-SB-SG, Station 6 CH-1015 Lausanne Switzerland
| | - Christophe Mas
- Oncotheis 18 chemin des Aulx, CH-1228 Plan-les-Ouates Geneva Switzerland
| | - Samuel Constant
- Oncotheis 18 chemin des Aulx, CH-1228 Plan-les-Ouates Geneva Switzerland
- Epithelix 18 chemin des Aulx, CH-1228 Plan-les-Ouates Geneva Switzerland
| | - Davide Staedler
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne Lausanne CH-1011 Switzerland
| | - Sandrine Gerber-Lemaire
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Group for Functionalized Biomaterials EPFL SB ISIC SCI-SB-SG, Station 6 CH-1015 Lausanne Switzerland
| |
Collapse
|
39
|
Hulcová D, Maříková J, Korábečný J, Hošťálková A, Jun D, Kuneš J, Chlebek J, Opletal L, De Simone A, Nováková L, Andrisano V, Růžička A, Cahlíková L. Amaryllidaceae alkaloids from Narcissus pseudonarcissus L. cv. Dutch Master as potential drugs in treatment of Alzheimer's disease. PHYTOCHEMISTRY 2019; 165:112055. [PMID: 31261031 DOI: 10.1016/j.phytochem.2019.112055] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/27/2019] [Accepted: 06/23/2019] [Indexed: 05/27/2023]
Abstract
Twenty-one known Amaryllidaceae alkaloids of various structural types and one undescribed alkaloid, named narcimatuline, have been isolated from fresh bulbs of Narcissus pseudonarcissus L. cv. Dutch Master. The chemical structures were elucidated by combination of MS, HRMS, 1D and 2D NMR spectroscopic techniques, and by comparison with literature data. Narcimatuline amalgamates two basic scaffolds of Amaryllidaceae alkaloids in its core, namely galanthamine and galanthindole. All isolated compounds were evaluated for their in vitro acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), prolyl oligopeptidase (POP), and glycogen synthase kinase-3β (GSK-3β) inhibitory activities. The most interesting biological profile was demonstrated by newly isolated alkaloid narcimatuline.
Collapse
Affiliation(s)
- Daniela Hulcová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic; Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jana Maříková
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jan Korábečný
- Department of Toxicoloxy and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 500 05, Hradec Králové, Czech Republic; Department Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Anna Hošťálková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Daniel Jun
- Department of Toxicoloxy and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 500 05, Hradec Králové, Czech Republic
| | - Jiří Kuneš
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jakub Chlebek
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lubomír Opletal
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Angela De Simone
- Department for Life Quality Studies, University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Vincenza Andrisano
- Department for Life Quality Studies, University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 532 10, Pardubice, Czech Republic
| | - Lucie Cahlíková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
40
|
Dos Santos MZ, de Ávila J, Morel A, Canto-Dorow TS, Mostardeiro MA, Dalcol II. Evaluation of prolyl oligopeptidase and acetylcholinesterase inhibition by Phyllanthus tenellus Roxb. from Brazil. Nat Prod Res 2019; 35:1840-1846. [PMID: 31282201 DOI: 10.1080/14786419.2019.1637869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phyllanthus tenellus Roxb. (Phyllanthaceae) is a plant used in Brazilian folk medicine for the treatment of intestinal infections and diabetes. Despite its use in traditional medicine, it was reported that P. tenellus extract may cause several effects in the central nervous system (CNS) of animals, such as agitation and signs of depression. The aim of this study was to determine the main constituents of P. tenellus methanol extract and to investigate whether the extract is able to inhibit the enzymes prolyl oligopeptidase (POP), acetylcholinesterase (AChE) and dipeptidyl peptidase-IV (DPP-IV). Corilagin (1) was isolated as the main constituent of the P. tenellus extract, along with rutin (2) and vitexin-2″-O-rhamnoside (3). The extract presented the ability to inhibit mainly POP. Dichloromethane and ethyl acetate fractions showed the highest inhibitory potency against POP (IC50 values of 1.7 ± 0.4 and 11.7 ± 2 µg/mL, respectively). All fractions were inactive against AChE. Corilagin displayed selective POP inhibition in a dose-dependent manner, with IC50= 19.7 ± 2.6 µg/mL. Corilagin exhibited moderate capacity to pass through the phospholipid membrane by passive diffusion, presenting effective permeability (Pe) of 1.26 × 10-7 cm/s.
Collapse
Affiliation(s)
- Maura Z Dos Santos
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria RS, Brazil
| | - Janaína de Ávila
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria RS, Brazil
| | - Ademir Morel
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria RS, Brazil
| | - Thais S Canto-Dorow
- Programa de Pós-Graduação em Ensino de Ciências e Matemática, Universidade Franciscana, Santa Maria RS, Brazil
| | - Marco A Mostardeiro
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria RS, Brazil
| | - Ionara I Dalcol
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria RS, Brazil
| |
Collapse
|
41
|
The development and validation of a combined kinetic fluorometric activity assay for fibroblast activation protein alpha and prolyl oligopeptidase in plasma. Clin Chim Acta 2019; 495:154-160. [PMID: 30981844 DOI: 10.1016/j.cca.2019.04.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Fibroblast activiation protein alpha (FAP) is considered a diagnostic and prognostic biomarker for various types of cancer. FAP shares substrate specificity with prolyl oligopeptidase (PREP), studied in (neuro)inflammation and neurodegeneration as well as cancer. Current assays inadequately discriminate between FAP and PREP and there is need for an assay that reliably quantitates the FAP/PREP activity ratio in plasma. METHODS FAP and PREP activities were measured in human EDTA-plasma in presence of well characterized PREP and FAP inhibitors. RESULTS A combined kinetic assay was developed in conditions to optimally measure FAP as well as PREP activity with Z-Gly-Pro-AMC as substrate. Limit of detection was 0.009 U/L and limit of quantitation was 0.027 U/L for the combined FAP-PREP assay. Within-run coefficient of variation was 3% and 4% and between-run precision was 7% and 12% for PREP and FAP, respectively. Accuracy was demonstrated by comparison with established end-point assays. Hemolysis interferes with the assay with 1.5 g/L hemoglobin as cut-off value. PREP (but not FAP) activity can increase upon lysis of platelets and red blood cells during sample preparation. CONCLUSION With this new assay, on average 67% of the Z-Gly-Pro-AMC converting activity in plasma can be attributed to FAP.
Collapse
|
42
|
A molecular mechanism of mouse placental spongiotrophoblast differentiation regulated by prolyl oligopeptidase. ZYGOTE 2019; 27:49-53. [PMID: 30714556 DOI: 10.1017/s0967199418000655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryIn eutherian mammals, the placenta plays a critical role in embryo development by supplying nutrients and hormones and mediating interaction with the mother. To establish the fine connection between mother and embryo, the placenta needs to be formed normally, but the mechanism of placental differentiation is not fully understood. We previously revealed that mouse prolyl oligopeptidase (POP) plays a role in trophoblast stem cell (TSC) differentiation into two placental cell types, spongiotrophoblasts (SpT) and trophoblast giant cells. Here, we focused on SpT differentiation and attempted to elucidate a molecular mechanism. For Ascl2, Arnt, and Egfr genes that are indispensable for SpT formation, we found that a POP-specific inhibitor, SUAM-14746, significantly decreased Ascl2 expression, which was consistent with a significant decrease in expression of Flt1, a gene downstream of Ascl2. Although this downregulation was unlikely to be mediated by the PI3K-Akt pathway, our results indicated that POP controls TSC differentiation into SpT by regulating the Ascl2 gene.
Collapse
|
43
|
New tricks of prolyl oligopeptidase inhibitors - A common drug therapy for several neurodegenerative diseases. Biochem Pharmacol 2019; 161:113-120. [PMID: 30660495 DOI: 10.1016/j.bcp.2019.01.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/15/2019] [Indexed: 12/14/2022]
Abstract
Changes in prolyl oligopeptidase (PREP) expression levels, protein distribution, and activity correlate with aging and are reported in many neurodegenerative conditions. Together with decreased neuropeptide levels observed in aging and neurodegeneration, and PREP's ability to cleave only small peptides, PREP was identified as a druggable target. Known PREP non-enzymatic functions were disregarded or attributed to PREP enzymatic activity, and several potent small molecule PREP inhibitors were developed during early stages of PREP research. These showed a lot of potential but with variable results in experimental memory models, however, the initial excitement was short-lived and all of the clinical trials were discontinued in either Phase I or II clinical trials for unknown reasons. Recently, PREP's ability to form protein-protein interactions, alter cell proliferation and autophagy has gained more attention than earlier recognized catalytical activity. Of new findings, particularly the aggregation of alpha-synuclein (aSyn) that is seen in the presence of PREP is especially interesting because PREP inhibitors are capable of altering aSyn-PREP interaction in a manner that reduces the aSyn dimerization process. Therefore, it is possible that PREP inhibitors that are altering interactions could have different characteristics than those aimed for strong inhibition of catalytic activity. Moreover, PREP co-localization with aSyn, tau, and amyloid-beta hints to PREP's possible role not only in the synucleinopathies but in other neurodegenerative diseases as well. This commentary will focus on less well-acknowledged non-enzymatic functions of PREP that may provide a better approach for the development of PREP inhibitors for the treatment of neurodegenerative disorders.
Collapse
|
44
|
Romero CA, Kumar N, Nakagawa P, Worou ME, Liao TD, Peterson EL, Carretero OA. Renal release of N-acetyl-seryl-aspartyl-lysyl-proline is part of an antifibrotic peptidergic system in the kidney. Am J Physiol Renal Physiol 2018; 316:F195-F203. [PMID: 30403163 DOI: 10.1152/ajprenal.00270.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is released from thymosin-β4 (Tβ4) by the meprin-α and prolyl oligopeptidase (POP) enzymes and is hydrolyzed by angiotensin-converting enzyme (ACE). Ac-SDKP is present in urine; however, it is not clear whether de novo tubular release occurs or if glomerular filtration is the main source. We hypothesized that Ac-SDKP is released into the lumen of the nephrons and that it exerts an antifibrotic effect. We determined the presence of Tβ4, meprin-α, and POP in the kidneys of Sprague-Dawley rats. The stop-flow technique was used to evaluate Ac-SDKP formation in different nephron segments. Finally, we decreased Ac-SDKP formation by inhibiting the POP enzyme and evaluated the long-term effect in renal fibrosis. The Tβ4 precursor and the releasing enzymes meprin-α and POP were expressed in the kidneys. POP enzyme activity was almost double that in the renal medulla compared with the renal cortex. With the use of the stop-flow technique, we detected the highest Ac-SDKP concentrations in the distal nephron. The infusion of a POP inhibitor into the kidney decreased the amount of Ac-SDKP in distal nephron segments and in the proximal nephron to a minor extent. An ACE inhibitor increased the Ac-SDKP content in all nephron segments, but the increase was highest in the distal portion. The chronic infusion of a POP inhibitor increased kidney medullary fibrosis, which was prevented by Ac-SDKP. We conclude that Ac-SDKP is released by the nephron and is part of an important antifibrotic system in the kidney.
Collapse
Affiliation(s)
- Cesar A Romero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Nitin Kumar
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Pablo Nakagawa
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Morel E Worou
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Tang-Dong Liao
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Hospital , Detroit, Michigan
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| |
Collapse
|
45
|
de Ávila JM, Pereira AO, Zachow LL, Gehm AZ, Santos MZ, Mostardeiro MA, Back D, Morel AF, Dalcol II. Chemical constituents from Valeriana polystachya Smith and evaluation of their effects on the acetylcholinesterase and prolyl oligopeptidase activities. Fitoterapia 2018; 131:80-85. [PMID: 30339922 DOI: 10.1016/j.fitote.2018.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 10/28/2022]
Abstract
Two new iridoids (1-2) and a new decomposition product of valepotriates (3), together with fifteen known compounds (4-18) were isolated from the roots and rhizomes of Valeriana polystachya Smith, a native species from the Pampa Biome. Their structures were elucidated by means of NMR spectroscopy, mass spectrometry and optical rotation. The structures of 3 and 18 were further confirmed by single crystal X-ray diffraction analysis. In the group of the isolated compounds, 6β-hydroxysitostenone, hydroxymaltol and isovillosol were isolated from the Valeriana genus for the first time. The extracts and isolated compounds were evaluated for their in vitro activities against acetylcholinesterase (AChE) and prolyloligopeptidase (POP). Compounds 7, 9 and 11 showed weak inhibitory activity against AChE, while 3 and 5 displayed exceptional POP inhibitory activity, with IC50 values of 5.3 ± 0.07 and 7.9 ± 0.4 μM, respectively.
Collapse
Affiliation(s)
- Janaína M de Ávila
- Department of Chemistry, Federal University of Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Alessandra O Pereira
- Department of Chemistry, Federal University of Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Lucimara L Zachow
- Department of Chemistry, Federal University of Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Adriana Z Gehm
- Department of Chemistry, Federal University of Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Maura Z Santos
- Department of Chemistry, Federal University of Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Marco A Mostardeiro
- Department of Chemistry, Federal University of Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Davi Back
- Department of Chemistry, Federal University of Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Ademir F Morel
- Department of Chemistry, Federal University of Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Ionara I Dalcol
- Department of Chemistry, Federal University of Santa Maria, Rio Grande do Sul 97105-900, Brazil.
| |
Collapse
|
46
|
Su H, Xu Y. Application of ITC-Based Characterization of Thermodynamic and Kinetic Association of Ligands With Proteins in Drug Design. Front Pharmacol 2018; 9:1133. [PMID: 30364164 PMCID: PMC6193069 DOI: 10.3389/fphar.2018.01133] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/18/2018] [Indexed: 01/20/2023] Open
Abstract
A comprehensive characterization of the thermodynamic and kinetic profiling of ligands binding to a given target protein is crucial for the hit selection as well as the hit-to-lead-to-drug evolution. Isothermal titration calorimetry (ITC), widely known as an invaluable tool to measure the thermodynamic data, has recently found its way to determine the binding kinetics too. The extensive application of ITC in measurement of both thermodynamic and kinetic data manifests unique roles of ITC in drug discovery and development. This mini-review concentrates on elaborating how to gain the thermodynamic and kinetic data using ITC, highlighting the importance of these data in lead discovery and optimization, and intends to provide an overview of the technical and conceptual advances that offer unprecedented access to protein–ligand recognition by ITC measurement.
Collapse
Affiliation(s)
- Haixia Su
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
A prolyl endopeptidase from Flammulina velutipes for the possible degradation of celiac disease provoking toxic peptides in cereal proteins. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
48
|
Luo H, Cai Q, Lüli Y, Li X, Sinha R, Hallen-Adams HE, Yang ZL. The MSDIN family in amanitin-producing mushrooms and evolution of the prolyl oligopeptidase genes. IMA Fungus 2018; 9:225-242. [PMID: 30622880 PMCID: PMC6317590 DOI: 10.5598/imafungus.2018.09.02.01] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 07/24/2018] [Indexed: 12/18/2022] Open
Abstract
The biosynthetic pathway for amanitins and related cyclic peptides in deadly Amanita (Amanitaceae) mushrooms represents the first known ribosomal cyclic peptide pathway in the Fungi. Amanitins are found outside of the genus in distantly related agarics Galerina (Strophariaceae) and Lepiota (Agaricaceae). A long-standing question in the field persists: why is this pathway present in these phylogenetically disjunct agarics? Two deadly mushrooms, A. pallidorosea and A. subjunquillea, were deep sequenced, and sequences of biosynthetic genes encoding MSDINs (cyclic peptide precursor) and prolyl oligopeptidases (POPA and POPB) were obtained. The two Amanita species yielded 29 and 18 MSDINs, respectively. In addition, two MSDIN sequences were cloned from L. brunneoincarnata basidiomes. The toxin MSDIN genes encoding amatoxins or phallotoxins from the three genera were compared, and a phylogenetic tree constructed. Prolyl oligopeptidase B (POPB), a key enzyme in the biosynthetic pathway, was used in phylogenetic reconstruction to infer the evolutionary history of the genes. Phylogenies of POPB and POPA based on both coding and amino acid sequences showed very different results: while POPA genes clearly reflected the phylogeny of the host species, POPB did not; strikingly, it formed a well-supported monophyletic clade, despite that the species belong to different genera in disjunct families. POPA, a known house-keeping gene, was shown to be restricted in a branch containing only Amanita species and the phylogeny resembled that of those Amanita species. Phylogenetic analyses of MSDIN and POPB genes showed tight coordination and disjunct distribution. A POPB gene tree was compared with a corresponding species tree, and distances and substitution rates were compared. The result suggested POPB genes have significant smaller distances and rates than the house-keeping rpb2, discounting massive gene loss. Under this assumption, the incongruency between the gene tree and species tree was shown with strong support. Additionally, k-mer analyses consistently cluster Galerina and Amanita POPB genes, while Lepiota POPB is distinct. Our result suggests that horizontal gene transfer (HGT), at least between Amanita and Galerina, was involved in the acquisition of POPB genes, which may shed light on the evolution of the α-amanitin biosynthetic pathway.
Collapse
Affiliation(s)
- Hong Luo
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Qing Cai
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Yunjiao Lüli
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Li
- Department of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650091, Yunnan, China
| | | | - Heather E Hallen-Adams
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Zhu L Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| |
Collapse
|
49
|
Dai X, Hua L, Chen Y, Wang J, Li J, Wu F, Zhang Y, Su J, Wu Z, Liang C. Mechanisms in hypertension and target organ damage: Is the role of the thymus key? (Review). Int J Mol Med 2018; 42:3-12. [PMID: 29620247 PMCID: PMC5979885 DOI: 10.3892/ijmm.2018.3605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/27/2018] [Indexed: 12/23/2022] Open
Abstract
A variety of cells and cytokines have been shown to be involved in the whole process of hypertension. Data from experimental and clinical studies on hypertension have confirmed the key roles of immune cells and inflammation in the process. Dysfunction of the thymus, which modulates the development and maturation of lymphocytes, has been shown to be associated with the severity of hypertension. Furthermore, gradual atrophy, functional decline or loss of the thymus has been revealed to be associated with aging. The restoration or enhancement of thymus function via upregulation in the expression of thymus transcription factors forkhead box N1 or thymus transplantation may provide an option to halt or reverse the pathological process of hypertension. Therefore, the thymus may be key in hypertension and associated target organ damage, and may provide a novel treatment strategy for the clinical management of patients with hypertension in addition to different commercial drugs. The purpose of this review is to summarize and discuss the advances in our understanding of the impact of thymus function on hypertension from data from animal and human studies, and the potential mechanisms.
Collapse
Affiliation(s)
| | | | | | - Jiamei Wang
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jingyi Li
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Feng Wu
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yanda Zhang
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jiyuan Su
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Zonggui Wu
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Chun Liang
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
50
|
Manzanares P, Martínez R, Garrigues S, Genovés S, Ramón D, Marcos JF, Martorell P. Tryptophan-Containing Dual Neuroprotective Peptides: Prolyl Endopeptidase Inhibition and Caenorhabditis elegans Protection from β-Amyloid Peptide Toxicity. Int J Mol Sci 2018; 19:E1491. [PMID: 29772745 PMCID: PMC5983740 DOI: 10.3390/ijms19051491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022] Open
Abstract
Neuroprotective peptides represent an attractive pharmacological strategy for the prevention or treatment of age-related diseases, for which there are currently few effective therapies. Lactoferrin (LF)-derived peptides (PKHs) and a set of six rationally-designed tryptophan (W)-containing heptapeptides (PACEIs) were characterized as prolyl endopeptidase (PEP) inhibitors, and their effect on β-amyloid peptide (Aβ) toxicity in a Caenorhabditis elegans model of Alzheimer's disease (AD) was evaluated. Two LF-derived sequences, PKH8 and PKH11, sharing a W at the C-terminal end, and the six PACEI heptapeptides (PACEI48L to PACEI53L) exhibited significant in vitro PEP inhibition. The inhibitory peptides PKH11 and PACEI50L also alleviated Aβ-induced paralysis in the in vivo C. elegans model of AD. Partial or total loss of the inhibitory effect on PEP was achieved by the substitution of W residues in PKH11 and PACEI50L and correlated with the loss of protection against Aβ toxicity, pointing out the relevance of W on the neuroprotective activity. Further experiments suggest that C. elegans protection might not be mediated by an antioxidant mechanism but rather by inhibition of Aβ oligomerization and thus, amyloid deposition. In conclusion, novel natural and rationally-designed W-containing peptides are suitable starting leads to design effective neuroprotective agents.
Collapse
Affiliation(s)
- Paloma Manzanares
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain.
| | - Roberto Martínez
- Department of Food Biotechnology; Biópolis S.L.-Archer Daniels Midland, Parc Científic Universitat de València Edif. 2, 46980 Paterna, Valencia, Spain.
| | - Sandra Garrigues
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain.
| | - Salvador Genovés
- Department of Food Biotechnology; Biópolis S.L.-Archer Daniels Midland, Parc Científic Universitat de València Edif. 2, 46980 Paterna, Valencia, Spain.
| | - Daniel Ramón
- Department of Food Biotechnology; Biópolis S.L.-Archer Daniels Midland, Parc Científic Universitat de València Edif. 2, 46980 Paterna, Valencia, Spain.
| | - Jose F Marcos
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain.
| | - Patricia Martorell
- Department of Food Biotechnology; Biópolis S.L.-Archer Daniels Midland, Parc Científic Universitat de València Edif. 2, 46980 Paterna, Valencia, Spain.
| |
Collapse
|