1
|
Marraudino M, Nasini S, Porte C, Bonaldo B, Macchi E, Ponti G, Keller M, Gotti S. Infant mice fed soy-based formulas exhibit alterations in anxiety-like behaviours and the 5-HT system. Toxicology 2025; 511:154035. [PMID: 39708922 DOI: 10.1016/j.tox.2024.154035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Genistein (GEN) is a phytoestrogen with oestrogen-like activity found in many plants. Classified as an endocrine disruptor, GEN is potentially hazardous, particularly during developmental stages. It induces alterations in anxious behaviour, fertility, and energy metabolism, alongside modifications in specific brain circuits. As the serotonin (5-HT) system is critically involved in many of these behaviours, we hypothesised that some of GEN's behavioural effects might results from disruptions in the development of the 5-HT system. To test this, we examined the impact of early postnatal exposure to GEN at a dose of 50 mg/kg body weight, mimicking the exposure level of infants consuming soy-based formulas, on anxiety-related behaviours and 5-HT neuronal populations in the raphe nucleus. Male and female CD1 mice were treated orally with GEN or a vehicle during the first 8 days of life. On postnatal day 60, one cohort underwent anxiety behaviour testing, while another was euthanised for immunohistochemical analysis. Behavioural testing revealed that male control mice exhibited higher anxiety levels than females, whereas GEN exposure produced sex-specific effects: anxiolytic in males and anxiogenic in females. Immunohistochemical analysis of the raphe nuclei demonstrated significant alterations in 5-HT neuronal numbers in GEN-treated animals. Specifically, GEN exposure affected dorsal and median raphe 5-HT neuronal populations in a sexually dimorphic manner, with females showing a reduction and males an increase in 5-HT neurones compared to controls. These findings indicate that the regulation of anxiety-related behaviours and the 5-HT system are key targets of early phytoestrogen exposure at levels comparable to those in soy-based infant formulas.
Collapse
Affiliation(s)
- M Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano, Torino 10043, Italy; Department of Neuroscience 'Rita Levi Montalcini', University of Torino, Via Cherasco 15, Torino 10126, Italy
| | - S Nasini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti 2, Padua, PD 35131, Italy
| | - C Porte
- UMR Physiologie de la Reproduction et des Comportements, Institut National de Recherche pour l'agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly 37380, France
| | - B Bonaldo
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - E Macchi
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, Grugliasco, Torino, Italy
| | - G Ponti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano, Torino 10043, Italy
| | - M Keller
- UMR Physiologie de la Reproduction et des Comportements, Institut National de Recherche pour l'agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly 37380, France
| | - S Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano, Torino 10043, Italy; Department of Neuroscience 'Rita Levi Montalcini', University of Torino, Via Cherasco 15, Torino 10126, Italy.
| |
Collapse
|
2
|
Üstay Ö, Elbasan O, Erel P, Bulut NS, Yorguner N. Endocrine-disrupting effects of bisphenol-A, thiamethoxam, and fipronil in hormone-naïve transmen compared to cis-women. Hormones (Athens) 2024; 23:375-383. [PMID: 38990460 DOI: 10.1007/s42000-024-00574-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Current evidence suggests that the etiology of gender dysphoria (GD) is multifactorial: this, however, remains unclear. Endocrine-disrupting chemicals (EDCs) are one of the etiological hypotheses. OBJECTIVES In this study, we aimed to evaluate the urinary levels of bisphenol A (BPA), thiamethoxam, and fipronil in hormone-naïve transmen compared with case-matched cis-women as well as the relation between sex hormone levels and EDCs. METHODS Drug-naïve transmen diagnosed with GD and who were referred from the psychiatry outpatient clinic to the outpatient clinic of the Department of Endocrinology, Marmara University Hospital, were included in the study. These individuals were assessed for eligibility; 38 drug-naïve transmen and 22 cis-women were recruited as the control group. After anthropometric evaluation laboratory tests for FSH, LH, total testosterone, and estradiol were carried out, spot urine samples were collected to evaluate the urine metabolic excretion of BPA, thiamethoxam, and fipronil. RESULTS We found that androgens, total testosterone, androstenedione, and DHEAS levels were significantly higher in transmen than in cis-women. Thiamethoxam was considerably higher in cis-women than in transmen, whereas fipronil and BPA levels were similar in both groups. A negative correlation was found between thiamethoxam and testosterone and between thiamethoxam and BPA levels. CONCLUSION The available data suggest that the EDCs that we are most exposed to in our lives are not the only factor in GD development. Even transmen who have not taken hormone replacement have high testosterone levels; however, the mechanism has not as yet been elucidated. The challenge is to determine whether this is a factor leading to GD or a condition that develops in common with GD.
Collapse
Affiliation(s)
- Özlem Üstay
- Department of Endocrinology and Metabolism, School of Medicine, Marmara University, Istanbul, Turkey
| | - Onur Elbasan
- Clinics of Endocrinology and Metabolism, Sinop Ataturk State Hospital, Sinop, Turkey.
| | - Pınar Erel
- Department of Internal Medicine, Koç University, Istanbul, Turkey
| | - Necati Serkut Bulut
- Department of Psychiatry, School of Medicine, Marmara University, Istanbul, Turkey
| | - Neşe Yorguner
- Department of Psychiatry, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
3
|
Chaichian S, Khodabandehloo F, Haghighi L, Govahi A, Mehdizadeh M, Ajdary M, Varma RS. Toxicological Impact of Bisphenol A on Females' Reproductive System: Review Based on Experimental and Epidemiological Studies. Reprod Sci 2024; 31:1781-1799. [PMID: 38532232 DOI: 10.1007/s43032-024-01521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
The study encompassing research papers documented in the last two decades pertaining to the possible influence of bisphenol A (BPA) on the fertility of females are appraised with emphasis on the influence of BPA in reproductive organs (uterus and ovaries) and pregnancy outcomes including discussion on the reproductive process (implantation, estrous cycle, hormone secretion); outcomes reveal a connection amongst BPA and female infertility. Ovary, uterus, and its shape as well as function can alter a person's ability to become pregnant by influencing the hypothalamus-pituitary axis in the ovarian model. Additionally, implantation and the estrous cycle may be affected by BPA. However, more research is warranted to comprehend the underlying action mechanisms and to promptly identify any imminent reproductive harm.
Collapse
Affiliation(s)
- Shahla Chaichian
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khodabandehloo
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ladan Haghighi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Govahi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
4
|
Howdeshell KL, Beverly BEJ, Blain RB, Goldstone AE, Hartman PA, Lemeris CR, Newbold RR, Rooney AA, Bucher JR. Evaluating endocrine disrupting chemicals: A perspective on the novel assessments in CLARITY-BPA. Birth Defects Res 2023; 115:1345-1397. [PMID: 37646438 DOI: 10.1002/bdr2.2238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND The Consortium Linking Academic and Regulatory Insights on Bisphenol A Toxicity (CLARITY-BPA) was a collaborative research effort to better link academic research with governmental guideline studies. This review explores the secondary goal of CLARITY-BPA: to identify endpoints or technologies from CLARITY-BPA and prior/concurrent literature from these laboratories that may enhance the capacity of rodent toxicity studies to detect endocrine disrupting chemicals (EDCs). METHODS A systematic literature search was conducted with search terms for BPA and the CLARITY-BPA participants. Relevant studies employed a laboratory rodent model and reported results on 1 of the 10 organs/organ systems evaluated in CLARITY-BPA (brain and behavior, cardiac, immune, mammary gland, ovary, penile function, prostate gland and urethra, testis and epididymis, thyroid hormone and metabolism, and uterus). Study design and findings were summarized, and a risk-of-bias assessment was conducted. RESULTS Several endpoints and methods were identified as potentially helpful to detect effects of EDCs. For example, molecular and quantitative morphological approaches were sensitive in detecting alterations in early postnatal development of the brain, ovary, and mammary glands. Hormone challenge studies mimicking human aging reported increased susceptibility of the prostate to disease following developmental BPA exposure. Statistical analyses for nonmonotonic dose responses, and computational approaches assessing multiple treatment-related outcomes concurrently in linked hormone-sensitive organ systems, reported effects at low BPA doses. CONCLUSIONS This review provided an opportunity to evaluate the unique insights provided by nontraditional assessments in CLARITY-BPA to identify technologies and endpoints to enhance detection of EDCs in future studies.
Collapse
Affiliation(s)
- Kembra L Howdeshell
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - Brandiese E J Beverly
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | - Retha R Newbold
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| | - Andrew A Rooney
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - John R Bucher
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| |
Collapse
|
5
|
Singh S, Sharma P, Pal N, Kumawat M, Shubham S, Sarma DK, Tiwari RR, Kumar M, Nagpal R. Impact of Environmental Pollutants on Gut Microbiome and Mental Health via the Gut–Brain Axis. Microorganisms 2022; 10:microorganisms10071457. [PMID: 35889175 PMCID: PMC9317668 DOI: 10.3390/microorganisms10071457] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Over the last few years, the microbiome has emerged as a high-priority research area to discover missing links between brain health and gut dysbiosis. Emerging evidence suggests that the commensal gut microbiome is an important regulator of the gut–brain axis and plays a critical role in brain physiology. Engaging microbiome-generated metabolites such as short-chain fatty acids, the immune system, the enteric nervous system, the endocrine system (including the HPA axis), tryptophan metabolism or the vagus nerve plays a crucial role in communication between the gut microbes and the brain. Humans are exposed to a wide range of pollutants in everyday life that impact our intestinal microbiota and manipulate the bidirectional communication between the gut and the brain, resulting in predisposition to psychiatric or neurological disorders. However, the interaction between xenobiotics, microbiota and neurotoxicity has yet to be completely investigated. Although research into the precise processes of the microbiota–gut–brain axis is growing rapidly, comprehending the implications of environmental contaminants remains challenging. In these milieus, we herein discuss how various environmental pollutants such as phthalates, heavy metals, Bisphenol A and particulate matter may alter the intricate microbiota–gut–brain axis thereby impacting our neurological and overall mental health.
Collapse
Affiliation(s)
- Samradhi Singh
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Poonam Sharma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Namrata Pal
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Manoj Kumawat
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Swasti Shubham
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Devojit Kumar Sarma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Rajnarayan R. Tiwari
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Manoj Kumar
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
- Correspondence: (M.K.); (R.N.)
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32302, USA
- Correspondence: (M.K.); (R.N.)
| |
Collapse
|
6
|
Maternal and developmental toxicity of Bisphenol-A in SWR/J mice. Saudi J Biol Sci 2022; 29:1543-1549. [PMID: 35280563 PMCID: PMC8913423 DOI: 10.1016/j.sjbs.2021.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
Bisphenol-A (BPA), an organic compound with two phenol functional groups, is a widely used industrial plasticizer with known estrogenic properties. It is used in the manufacture of epoxy resins and polycarbonate plastics. This study was designed to evaluate and assess the possible toxicity arising from the oral administration of BPA to pregnant mice. Pregnant SWR/J mice (15 mice/group) were administrated oral doses of BPA (125, 250 and 500 mg/kg/day) over the course of five-day intervals during gestation (D1-5, D6-10 and D11-15), while control groups received only corn oil. The results indicated that BPA was associated with a reduction in the body weight of the pregnant mice from around 2–3 days after administration until the end of gestation. The greatest effects were evident when the BPA was given during the later stages of pregnancy, and with higher doses. They also showed marked reduction in food intake and, to a lesser extent, in water intake. Furthermore, doses of BPA induced a reduction in implantation sites, lower foetal body weight and increased mortality rates. Abortion and foetal resorption rates were not affected by BPA administration, however. The above findings were concluded by discussing the possible mechanisms involved in producing these effects.
Collapse
|
7
|
Vandenberg LN, Turgeon JL. Endocrine disrupting chemicals: Understanding what matters. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:xiii-xxiv. [PMID: 34452698 DOI: 10.1016/s1054-3589(21)00051-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Judith L Turgeon
- Department of Internal Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of California Davis, Davis, CA, United States
| |
Collapse
|
8
|
Musachio EAS, de Freitas Couto S, Poetini MR, Bortolotto VC, Dahleh MMM, Janner DE, Araujo SM, Ramborger BP, Rohers R, Guerra GP, Prigol M. Bisphenol A exposure during the embryonic period: Insights into dopamine relationship and behavioral disorders in Drosophila melanogaster. Food Chem Toxicol 2021; 157:112526. [PMID: 34461193 DOI: 10.1016/j.fct.2021.112526] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022]
Abstract
Environmental factors are involved in the pathogenesis of neurodevelopmental disorders in addition to genetic factors. In this sense, we demonstrated here that the embryonic exposure of Drosophila melanogaster to Bisphenol A (BPA) 1 mM resulted in changes in development, behavior, and biochemical markers punctuated below. BPA did not alter the oviposition and viability of the eggs, however, it was evidenced a decrease in the rate of pupal eclosion and life span of the hatched flies of the generation filial 1 (F1). F1 flies also developed behavioral changes such as incompatibility in the social interaction between them, and hyperactivity demonstrated by increased locomotion in open field tests, increased grooming, and aggression episodes. Furthermore, decreases in dopamine levels and tyrosine hydroxylase activity have also been observed in flies' heads, possibly related to oxidative damage. Through analyzes of oxidative stress biomarkers, carried out on samples of flies' heads, we observed an increase in malondialdehyde and reactive species, decrease in the activity of the superoxide dismutase and catalase, which possibly culminated in the reduction of cell viability. Thus, it is important to emphasize that BPA developed atypical behaviors in Drosophila melanogaster, reinforce the importance of the environmental factor in the development of neurobehavioral diseases.
Collapse
Affiliation(s)
- Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Shanda de Freitas Couto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil; Department of Nutrition, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Marcia Rósula Poetini
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Dieniffer Espinosa Janner
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Stífani Machado Araujo
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Bruna Piaia Ramborger
- Interdisciplinary Group of Research in Teaching Practice, Federal University of Pampa, Uruguaiana Campus, RS, Brazil
| | - Rafael Rohers
- Interdisciplinary Group of Research in Teaching Practice, Federal University of Pampa, Uruguaiana Campus, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil; Department of Nutrition, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil; Department of Nutrition, Federal University of Pampa, Itaqui Campus, RS, Brazil.
| |
Collapse
|
9
|
Early Postnatal Genistein Administration Affects Mice Metabolism and Reproduction in a Sexually Dimorphic Way. Metabolites 2021; 11:metabo11070449. [PMID: 34357343 PMCID: PMC8303179 DOI: 10.3390/metabo11070449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022] Open
Abstract
The phytoestrogen genistein (GEN) may interfere with permanent morphological changes in the brain circuits sensitive to estrogen. Due to the frequent use of soy milk in the neonatal diet, we aimed to study the effects of early GEN exposure on some physiological and reproductive parameters. Mice of both sexes from PND1 to PND8 were treated with GEN (50 mg/kg body weight, comparable to the exposure level in babies fed with soy-based formulas). When adult, we observed, in GEN-treated females, an advanced pubertal onset and an altered estrous cycle, and, in males, a decrease of testicle weight and fecal testosterone concentration. Furthermore, we observed an increase in body weight and altered plasma concentrations of metabolic hormones (leptin, ghrelin, triiodothyronine) limited to adult females. Exposure to GEN significantly altered kisspeptin and POMC immunoreactivity only in females and orexin immunoreactivity in both sexes. In conclusion, early postnatal exposure of mice to GEN determines long-term sex-specific organizational effects. It impairs the reproductive system and has an obesogenic effect only in females, which is probably due to the alterations of neuroendocrine circuits controlling metabolism; thus GEN, should be classified as a metabolism disrupting chemical.
Collapse
|
10
|
Patisaul HB. Endocrine disrupting chemicals (EDCs) and the neuroendocrine system: Beyond estrogen, androgen, and thyroid. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:101-150. [PMID: 34452685 DOI: 10.1016/bs.apha.2021.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hundreds of anthropogenic chemicals occupy our bodies, a situation that threatens the health of present and future generations. This chapter focuses on endocrine disrupting compounds (EDCs), both naturally occurring and man-made, that affect the neuroendocrine system to adversely impact health, with an emphasis on reproductive and metabolic pathways. The neuroendocrine system is highly sexually dimorphic and essential for maintaining homeostasis and appropriately responding to the environment. Comprising both neural and endocrine components, the neuroendocrine system is hormone sensitive throughout life and touches every organ system in the body. The integrative nature of the neuroendocrine system means that EDCs can have multi-system effects. Additionally, because gonadal hormones are essential for the sex-specific organization of numerous neuroendocrine pathways, endocrine disruption of this programming can lead to permanent deficits. Included in this review is a brief history of the neuroendocrine disruption field and a thorough discussion of the most common and less well understood neuroendocrine disruption modes of action. Also provided are extensive examples of how EDCs are likely contributing to neuroendocrine disorders such as obesity, and evidence that they have the potential for multi-generational effects.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
11
|
Siddique MAB, Harrison SM, Monahan FJ, Cummins E, Brunton NP. Bisphenol A and Metabolites in Meat and Meat Products: Occurrence, Toxicity, and Recent Development in Analytical Methods. Foods 2021; 10:foods10040714. [PMID: 33801667 PMCID: PMC8066211 DOI: 10.3390/foods10040714] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Bisphenol A (BPA) is a commonly used compound in many industries and has versatile applications in polycarbonate plastics and epoxy resins production. BPA is classified as endocrine-disrupting chemical which can hamper fetal development during pregnancy and may have long term negative health outcomes in humans. Dietary sources, main route of BPA exposure, can be contaminated by the migration of BPA into food during processing. The global regulatory framework for using this compound in food contact materials is currently not harmonized. This review aims to outline, survey, and critically evaluate BPA contamination in meat products, including level of BPA and/or metabolites present, exposure route, and recent advancements in the analytical procedures of these compounds from meat and meat products. The contribution of meat and meat products to the total dietary exposure of BPA ranges between 10 and 50% depending on the country and exposure scenario considered. From can lining materials of meat products, BPA migrates towards the solid phase resulting higher BPA concentration in solid phase than the liquid phase of the same can. The analytical procedure is comprised of meat sample pre-treatment, followed by cleaning with solid phase extraction (SPE), and chromatographic analysis. Considering several potential sources of BPA in industrial and home culinary practices, BPA can also accumulate in non-canned or raw meat products. Very few scientific studies have been conducted to identify the amount in raw meat products. Similarly, analysis of metabolites and identification of the origin of BPA contamination in meat products is still a challenge to overcome.
Collapse
Affiliation(s)
- Md Abu bakar Siddique
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (M.A.b.S.); (S.M.H.); (F.J.M.)
| | - Sabine M. Harrison
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (M.A.b.S.); (S.M.H.); (F.J.M.)
| | - Frank J. Monahan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (M.A.b.S.); (S.M.H.); (F.J.M.)
| | - Enda Cummins
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Nigel P. Brunton
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (M.A.b.S.); (S.M.H.); (F.J.M.)
- Correspondence: ; Tel.: +353-017167603
| |
Collapse
|
12
|
Qiu W, Liu S, Chen H, Luo S, Xiong Y, Wang X, Xu B, Zheng C, Wang KJ. The comparative toxicities of BPA, BPB, BPS, BPF, and BPAF on the reproductive neuroendocrine system of zebrafish embryos and its mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124303. [PMID: 33121856 DOI: 10.1016/j.jhazmat.2020.124303] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/10/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine disruptor that has elicited great concern because of its potential toxic effects in organisms. In this study, the effects of BPA and several BPA structural analogs, including BPB, BPS, BPF, and BPAF, on the reproductive neuroendocrine system were evaluated during zebrafish embryonic and larval development. Our results showed that the numbers of gonadotropin-releasing hormone 3 neurons in zebrafish embryos increased after 100 μg/L BPA analog treatment, and exposure to BPA or its analogs at 1 or 100 μg/L increased the expression of reproductive neuroendocrine-related genes and the levels of typical hormones such as LH, FSH, E2, and GH. Moreover, the effects were associated with increases in the activities of erα, erβ, and cyp19a genes. The respective estrogen receptors (ER) and aromatase (AROM) antagonists significantly attenuated the stimulation of lhβ, fshβ, LH, and FSH expression, thereby proving that BPA analogs affect the reproductive neuroendocrine system via ERs and AROM pathway. Furthermore, we observed that the reproductive neuroendocrine toxicity of BPAF was more similar to that of BPA. This was the first study to comparatively explore the reproductive neuroendocrine toxicities of bisphenols in aquatic organism.
Collapse
Affiliation(s)
- Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Municipal Engineering Lab of Environmental IoT Technologies, Southern University of Science and Technology, Guangdong Province, Shenzhen 518055, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.
| | - Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China.
| | - Honghong Chen
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Shusheng Luo
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ying Xiong
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xuejing Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Bentuo Xu
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
13
|
Singha SP, Memon S, Kazi SAF, Nizamani GS. Gamma aminobutyric acid signaling disturbances and altered astrocytic morphology associated with Bisphenol A induced cognitive impairments in rat offspring. Birth Defects Res 2021; 113:911-924. [PMID: 33655713 DOI: 10.1002/bdr2.1886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Bisphenol A (BPA) is a well-recognized endocrine disruptor and is globally used in the manufacture of many plastic items. Multiple studies suggest links between prenatal BPA exposure and alterations in neurodevelopment and behaviors in children, even at lower levels. This study was conducted to reveal the role of astrocyte morphology and Gamma aminobutyric acid (GABA) signaling in BPA induced cognitive defects in the offspring of Wistar albino rats when exposed during the prenatal and postnatal periods. METHODS Dams of Wistar albino rats were exposed to a dose of 5 mg/kg body weight of BPA throughout the pregnancy and lactation period until the third postnatal day (PND). After delivery of pups, cognitive tests were carried out on the 21st, 24th, and 28th PNDs. Blood samples were collected for measurement of serum GABA levels. On the same day as the blood collections, pups were sacrificed and their right frontal cortices were dissected out. Immunohistochemical analysis for glial fibrillar acidic protein + astrocytes was conducted. RESULTS Pre and postnatal BPA exposure led to anxiety like behavior in pups. This exposure also resulted in reduced serum GABA concentrations. Immunohistochemical analysis revealed reduced astrocyte numbers as well as decreased numbers of dendritic spines in the BPA exposed pups. CONCLUSION BPA exposure during critical periods of development leads to cognitive impairments that correlate with the defects in the GABA signaling pathways and deteriorated morphology of the astrocytes in the offspring of the Wistar rats.
Collapse
Affiliation(s)
| | - Samreen Memon
- Department of Anatomy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | | | - Ghulam Shah Nizamani
- Department of Basic Medical Sciences, In Charge, Clinical Laboratory and Blood Bank, Isra University Hyderabad, Sindh, Pakistan
| |
Collapse
|
14
|
Win-Shwe TT, Yanagisawa R, Koike E, Takano H. Dietary exposure to bisphenol A affects memory function and neuroimmune biomarkers in allergic asthmatic mice. J Appl Toxicol 2021; 41:1527-1536. [PMID: 33474794 DOI: 10.1002/jat.4143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/28/2020] [Accepted: 01/13/2021] [Indexed: 01/24/2023]
Abstract
Bisphenol A (BPA) is a raw material of polycarbonate and epoxy resin. It is used for various household electrical appliances, electronic equipment, office automation equipment, medical equipment, mobile phones, paints for automobiles, internal surface coating of cans, and adhesives for civil engineering and construction. BPA is a well-known endocrine-disrupting chemical, and it was reported that BPA has an adverse effect on the nervous and immune systems. However, BPA-induced memory impairment and changes in neuroimmune biomarkers in the allergic asthmatic subject are not known yet. We aim to investigate the dietary exposure effect of BPA on brain function and biomarkers using allergic an asthmatic mouse model. Five-week-old male C3H/HeJSlc mice were fed two doses of BPA [0.901, 9.01 μg/kg/day] contained chow diet from 5 to 11 weeks old and ovalbumin (OVA) was given by intratracheal instillation every 2 weeks. Memory function was determined by a novel object recognition test. Genes related to memory and immune markers in the hippocampus were investigated with the real-time polymerase chain reaction (RT-PCR) method. In this study, impaired novel object recognition occurred in BPA-exposed mice in the presence of an allergen. Moreover, upregulation of expression level of neuroimmune biomarkers such as N-methyl-D-aspartate receptor, tumor necrosis factor-α, ionized calcium-binding adapter molecule-1, cyclooxygenase-2, and heme oxygenase-1 in the hippocampus was observed in BPA-exposed allergic asthmatic mice. These findings show that BPA exposure can induce neuroinflammation and which triggers impairment of memory function in mice with allergic asthma. Our study indicated that dietary exposure to BPA may affect higher brain functions by modulating neuroimmune biomarkers in allergic asthmatic subjects.
Collapse
Affiliation(s)
- Tin-Tin Win-Shwe
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Rie Yanagisawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Eiko Koike
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Hirohisa Takano
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Wang Z, Alderman MH, Asgari C, Taylor HS. Fetal Bisphenol-A Induced Changes in Murine Behavior and Brain Gene Expression Persisted in Adult-aged Offspring. Endocrinology 2020; 161:bqaa164. [PMID: 32926169 PMCID: PMC7609133 DOI: 10.1210/endocr/bqaa164] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022]
Abstract
In utero Bisphenol A (BPA) exposure has been linked to many deficits during brain development, including sexual differentiation, behavior, and motor coordination. Yet, how BPA induces these disorders and whether its effects are long lasting are largely unknown. In this study, using a mouse model, we demonstrated that in utero exposure to an environmentally relevant dose of BPA induced locomotor deficits, anxiety-like behavior, and declarative memory impairments that persisted into old age (18 months). Compared to the control animals, the BPA-exposed mice had a significant decrease in locomotor activity, exploratory tendencies, and long-term memory, and an increase in anxiety. The global brain gene expression profile was altered permanently by BPA treatment and showed regional and sexual differences. The BPA-treated male mice had more changes in the hippocampus, while female mice experienced more changes in the cortex. Overall, we demonstrate that in utero exposure to BPA induces permanent changes in brain gene expression in a region-specific and sex-specific manner, including a significant decrease in locomotor activity, learning ability, long-term memory, and an increase in anxiety. Fetal/early life exposures permanently affect neurobehavioral functions that deteriorate with age; BPA exposure may compound the effects of aging.
Collapse
Affiliation(s)
- Zhihao Wang
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Myles H Alderman
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Cyrus Asgari
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
16
|
Heindel JJ, Belcher S, Flaws JA, Prins GS, Ho SM, Mao J, Patisaul HB, Ricke W, Rosenfeld CS, Soto AM, Vom Saal FS, Zoeller RT. Data integration, analysis, and interpretation of eight academic CLARITY-BPA studies. Reprod Toxicol 2020; 98:29-60. [PMID: 32682780 PMCID: PMC7365109 DOI: 10.1016/j.reprotox.2020.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/03/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
"Consortium Linking Academic and Regulatory Insights on BPA Toxicity" (CLARITY-BPA) was a comprehensive "industry-standard" Good Laboratory Practice (GLP)-compliant 2-year chronic exposure study of bisphenol A (BPA) toxicity that was supplemented by hypothesis-driven independent investigator-initiated studies. The investigator-initiated studies were focused on integrating disease-associated, molecular, and physiological endpoints previously found by academic scientists into an industry standard guideline-compliant toxicity study. Thus, the goal of this collaboration was to provide a more comprehensive dataset upon which to base safety standards and to determine whether industry-standard tests are as sensitive and predictive as molecular and disease-associated endpoints. The goal of this report is to integrate the findings from the investigator-initiated studies into a comprehensive overview of the observed impacts of BPA across the multiple organs and systems analyzed. For each organ system, we provide the rationale for the study, an overview of methodology, and summarize major findings. We then compare the results of the CLARITY-BPA studies across organ systems with the results of previous peer-reviewed studies from independent labs. Finally, we discuss potential influences that contributed to differences between studies. Developmental exposure to BPA can lead to adverse effects in multiple organs systems, including the brain, prostate gland, urinary tract, ovary, mammary gland, and heart. As published previously, many effects were at the lowest dose tested, 2.5μg/kg /day, and many of the responses were non-monotonic. Because the low dose of BPA affected endpoints in the same animals across organs evaluated in different labs, we conclude that these are biologically - and toxicologically - relevant.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies Commonweal, Bolinas, CA 94924, United States.
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Gail S Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago IL 60612, United States
| | - Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati, Cincinnati OH 45267, United States; Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Jiude Mao
- Biomedical Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - William Ricke
- Department of Urology, University of Wisconsin, Madison WI 53705, United States
| | - Cheryl S Rosenfeld
- Biomedical Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Ana M Soto
- Tufts University, Boston, MA 02111, United States
| | - Frederick S Vom Saal
- Department of Biology, University of Missouri, Columbia, MO 65211, United States
| | - R Thomas Zoeller
- Department of Biology, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
17
|
Frankfurt M, Luine V, Bowman RE. A potential role for dendritic spines in bisphenol-A induced memory impairments during adolescence and adulthood. VITAMINS AND HORMONES 2020; 114:307-329. [PMID: 32723549 DOI: 10.1016/bs.vh.2020.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Developmental exposure to Bisphenol A (BPA), an endocrine disrupting chemical, alters many behaviors and neural parameters in rodents and non-human-primates. The effects of BPA are mediated via gonadal hormone, primarily, estrogen receptors, and are not limited to the perinatal period since recent studies show impairments further into development. The studies described in this chapter address the effects of BPA administration during early adolescence on memory and dendritic spine density in intact male and female rats as well as ovariectomized (OVX) rats in late adolescence and show that some of these adolescent induced changes endure into adulthood. In general, BPA impairs spatial memory and induces decreases in dendritic spine density in the hippocampus and the medial prefrontal cortex, two areas important for memory. The effects of adolescent BPA in intact females are compared to OVX females in an attempt to address the importance of estrogens in the mechanism(s) underlying the profound neuronal alterations occurring during adolescent development. In addition, potential mechanisms by which acute and chronic BPA induce structural alterations are discussed. These studies suggest a complex interaction between low doses of BPA, gonadal state and neural development.
Collapse
Affiliation(s)
- Maya Frankfurt
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| | | | | |
Collapse
|
18
|
Jeminiwa BO, Knight RM, Braden TD, Cruz-Espindola C, Boothe DM, Akingbemi BT. Regulation of the neuroendocrine axis in male rats by soy-based diets is independent of age and due specifically to isoflavone action†. Biol Reprod 2020; 103:892-906. [PMID: 32520353 DOI: 10.1093/biolre/ioaa101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 11/13/2022] Open
Abstract
Soy-based foods are consumed for their health beneficial effects, implying that the population is exposed to soy isoflavones in the diet. Herein, male rats at 21, 35, and 75 days of age were maintained either on a casein control diet, soybean meal (SBM), or control diet supplemented with daidzin and genistin (G + D) for 14 days. Feeding of SBM and G + D diets decreased testicular testosterone (T) secretion regardless of age. Altered androgen secretion was due to decreased (P < 0.05) Star and Hsd17β protein in the testes and was associated with increased (P < 0.05) Lhβ and Fshβ subunit protein expression in pituitary glands. Second, male rats were fed either a casein control diet, control diet + daidzin, control diet + genistin, or control diet + genistin + daidzin (G + D). Compared to control, feeding of all isoflavone-containing diets decreased (P < 0.05) testicular T concentrations, and more so in the G + D diet group. Interestingly, Esr1 and androgen receptor protein and pituitary Fshβ with Lhβ subunit protein were increased (P < 0.05) by feeding of genistin and G + D diets, but not the daidzin diet. However, daidzein and genistein both caused a concentration dependent inhibition (P < 0.05) of T secretion by Leydig cells in vitro with IC50 of 184 ηM and 36 ηM, respectively. Results demonstrated that altered testicular steroidogenic capacity and pituitary FSHβ and LHβ subunit expression due to soy-based diets result from specific actions by genistein and daidzein. Experiments to assess effects of isoflavone regulation of intratesticular androgen concentrations on male fertility are warranted.
Collapse
Affiliation(s)
- Bamidele O Jeminiwa
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Rachel M Knight
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Tim D Braden
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Crisanta Cruz-Espindola
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Dawn M Boothe
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Benson T Akingbemi
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
19
|
Bizzozzero-Hiriart M, Di Giorgio NP, Libertun C, Lux-Lantos V. GABAergic input through GABA B receptors is necessary during a perinatal window to shape gene expression of factors critical to reproduction such as Kiss1. Am J Physiol Endocrinol Metab 2020; 318:E901-E919. [PMID: 32286880 DOI: 10.1152/ajpendo.00547.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lack of GABAB receptors in GABAB1 knockout mice decreases neonatal ARC kisspeptin 1 (Kiss1) expression in the arcuate nucleus of the hypothalamus (ARC) in females, which show impaired reproduction as adults. Our aim was to selectively impair GABAB signaling during a short postnatal period to evaluate its impact on the reproductive system. Neonatal male and female mice were injected with the GABAB antagonist CGP 55845 (CGP, 1 mg/kg body wt sc) or saline from postnatal day 2 (PND2) to PND6, three times per day (8 AM, 1 PM, and 6 PM). One group was killed on PND6 for collection of blood samples (hormones by radioimmunoassay), brains for gene expression in the anteroventral periventricular nucleus-periventricular nucleus continuum (AVPV/PeN), and ARC micropunches [quantitative PCR (qPCR)] and gonads for qPCR, hormone contents, and histology. A second group of mice was injected with CGP (1 mg/kg body wt sc) or saline from PND2 to PND6, three times per day (8 AM, 1 PM, and 6 PM), and left to grow to adulthood. We measured body weight during development and parameters of sexual differentiation, puberty onset, and estrous cycles. Adult mice were killed, and trunk blood (hormones), brains for qPCR, and gonads for qPCR and hormone contents were obtained. Our most important findings on PND6 include the CGP-induced decrease in ARC Kiss1 and increase in neurokinin B (Tac2) in both sexes; the decrease in AVPV/PeN tyrosine hydroxylase (Th) only in females; the increase in gonad estradiol content in both sexes; and the increase in primordial follicles and decrease in primary and secondary follicles. Neonatally CGP-treated adults showed decreased ARC Kiss1 and ARC gonadotropin-releasing hormone (Gnrh1) and increased ARC glutamic acid decarboxylase 67 (Gad1) only in males; increased ARC GABAB receptor subunit 1 (Gabbr1) in both sexes; and decreased AVPV/PeN Th only in females. We demonstrate that ARC Kiss1 expression is chronically downregulated in males and that the normal sex difference in AVPV/PeN Th expression is abolished. In conclusion, neonatal GABAergic input through GABAB receptors shapes gene expression of factors critical to reproduction.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Arcuate Nucleus of Hypothalamus/drug effects
- Arcuate Nucleus of Hypothalamus/metabolism
- Estradiol/metabolism
- Female
- Follicle Stimulating Hormone/metabolism
- GABA-B Receptor Antagonists/pharmacology
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Glutamate Decarboxylase/genetics
- Glutamate Decarboxylase/metabolism
- Gonadotropin-Releasing Hormone/genetics
- Gonadotropin-Releasing Hormone/metabolism
- Hypothalamus, Anterior/drug effects
- Hypothalamus, Anterior/metabolism
- Kisspeptins/genetics
- Kisspeptins/metabolism
- Luteinizing Hormone/metabolism
- Male
- Mice
- Ovary/drug effects
- Ovary/metabolism
- Phosphinic Acids/pharmacology
- Propanolamines/pharmacology
- Protein Precursors/genetics
- Protein Precursors/metabolism
- Puberty/drug effects
- Puberty/genetics
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, GABA-B/genetics
- Receptors, GABA-B/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Reproduction/drug effects
- Reproduction/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sex Differentiation/drug effects
- Sex Differentiation/genetics
- Tachykinins/genetics
- Tachykinins/metabolism
- Testis/drug effects
- Testis/metabolism
- Testosterone/metabolism
- Tyrosine 3-Monooxygenase/genetics
- Tyrosine 3-Monooxygenase/metabolism
Collapse
Affiliation(s)
- Marianne Bizzozzero-Hiriart
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Noelia P Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Carlos Libertun
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Victoria Lux-Lantos
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
20
|
Vandenberg LN, Prins GS, Patisaul HB, Zoeller RT. The Use and Misuse of Historical Controls in Regulatory Toxicology: Lessons from the CLARITY-BPA Study. Endocrinology 2020; 161:5613539. [PMID: 31690949 PMCID: PMC7182062 DOI: 10.1210/endocr/bqz014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022]
Abstract
For many endocrine-disrupting chemicals (EDCs) including Bisphenol A (BPA), animal studies show that environmentally relevant exposures cause harm; human studies are consistent with these findings. Yet, regulatory agencies charged with protecting public health continue to conclude that human exposures to these EDCs pose no risk. One reason for the disconnect between the scientific consensus on EDCs in the endocrinology community and the failure to act in the regulatory community is the dependence of the latter on so-called "guideline studies" to evaluate hazards, and the inability to incorporate independent scientific studies in risk assessment. The Consortium Linking Academic and Regulatory Insights on Toxicity (CLARITY) study was intended to bridge this gap, combining a "guideline" study with independent hypothesis-driven studies designed to be more appropriate to evaluate EDCs. Here we examined an aspect of "guideline" studies, the use of so-called "historical controls," which are essentially control data borrowed from prior studies to aid in the interpretation of current findings. The US Food and Drug Administration authors used historical controls to question the plausibility of statistically significant BPA-related effects in the CLARITY study. We examined the use of historical controls on 5 outcomes in the CLARITY "guideline" study: mammary neoplasms, pituitary neoplasms, kidney nephropathy, prostate inflammation and adenomas, and body weight. Using US Food and Drug Administration-proposed historical control data, our evaluation revealed that endpoints used in "guideline" studies are not as reproducible as previously held. Combined with other data comparing the effects of ethinyl estradiol in 2 "guideline" studies including CLARITY-BPA, we conclude that near-exclusive reliance on "guideline" studies can result in scientifically invalid conclusions.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts–Amherst, Amherst, Massachusetts
- Correspondence: Laura N. Vandenberg, PhD, Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts–Amherst, 171C Goessmann, 686 North Pleasant Street, Amherst, Massachusetts 01003. E-mail:
| | - Gail S Prins
- Department of Urology, School of Medicine; Division of Epidemiology & Biostatistics, School of Public Health University of Illinois at Chicago, Chicago, Illinois
| | - Heather B Patisaul
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - R Thomas Zoeller
- Department of Biology, University of Massachusetts–Amherst, Amherst, Massachusetts
| |
Collapse
|
21
|
Martini M, Corces VG, Rissman EF. Mini-review: Epigenetic mechanisms that promote transgenerational actions of endocrine disrupting chemicals: Applications to behavioral neuroendocrinology. Horm Behav 2020; 119:104677. [PMID: 31927019 PMCID: PMC9942829 DOI: 10.1016/j.yhbeh.2020.104677] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/26/2022]
Abstract
It is our hope this mini-review will stimulate discussion and new research. Here we briefly examine the literature on transgenerational actions of endocrine disrupting chemicals (EDCs) on brain and behavior and their underlying epigenetic mechanisms including: DNA methylation, histone modifications, and non-coding RNAs. We stress that epigenetic modifications need to be examined in a synergistic manner, as they act together in situ on chromatin to change transcription. Next we highlight recent work from one of our laboratories (VGC). The data provide new evidence that the sperm genome is poised for transcription. In developing sperm, gene enhancers and promoters are accessible for transcription and these activating motifs are also found in preimplantation embryos. Thus, DNA modifications associated with transcription factors during fertilization, in primordial germ cells (PGCs), and/or during germ cell maturation may be passed to offspring. We discuss the implications of this model to EDC exposures and speculate on whether natural variation in hormone levels during fertilization and PGC migration may impart transgenerational effects on brain and behavior. Lastly we discuss how this mechanism could apply to neural sexual differentiation.
Collapse
Affiliation(s)
- Mariangela Martini
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States of America
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Emilie F Rissman
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States of America.
| |
Collapse
|
22
|
Patisaul HB. Achieving CLARITY on bisphenol A, brain and behaviour. J Neuroendocrinol 2020; 32:e12730. [PMID: 31063678 PMCID: PMC10947534 DOI: 10.1111/jne.12730] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 12/18/2022]
Abstract
There is perhaps no endocrine disrupting chemical more controversial than bisphenol A (BPA). Comprising a high-volume production chemical used in a variety of applications, BPA has been linked to a litany of adverse health-related outcomes, including effects on brain sexual differentiation and behaviour. Risk assessors preferentially rely on classical guideline-compliant toxicity studies over studies published by academic scientists, and have generally downplayed concerns about the potential risks that BPA poses to human health. It has been argued, however, that, because traditional toxicity studies rarely contain neural endpoints, and only a paucity of endocrine-sensitive endpoints, they are incapable of fully evaluating harm. To address current controversies on the safety of BPA, the United States National Institute of Environmental Health Sciences, the National Toxicology Program (NTP), and the US Food and Drug Administration established the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA). CLARITY-BPA performed a classical regulatory-style toxicology study (Core study) in conjunction with multiple behavioural, molecular and cellular studies conducted by academic laboratories (grantee studies) using a collaboratively devised experimental framework and the same animals and tissues. This review summarises the results from the grantee studies that focused on brain and behaviour. Evidence of altered neuroendocrine development, including age- and sex-specific expression of oestrogen receptor (ER)α and ERβ, and the abrogation of brain and behavioural sexual dimorphisms, supports the conclusion that developmental BPA exposure, even at doses below what regulatory agencies regard as "safe" for humans, contribute to brain and behavioural change. The consistency and the reproducibility of the effects across CLARITY-BPA and prior studies using the same animal strain and almost identical experimental conditions are compelling. Combined analysis of all of the data from the CLARITY-BPA project is underway at the NTP and a final report expected in late 2019.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
23
|
Ponti G, Farinetti A, Marraudino M, Panzica G, Gotti S. Postnatal genistein administration selectively abolishes sexual dimorphism in specific hypothalamic dopaminergic system in mice. Brain Res 2019; 1724:146434. [PMID: 31491419 DOI: 10.1016/j.brainres.2019.146434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/26/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022]
Abstract
As demonstrated in previous studies, early postnatal genistein (GEN) administration to mice pups of both sexes, at doses similar to that of infant soy-based formulas, may affect the development of some steroid-sensitive neuronal circuits (i.e. nitrergic and vasopressinergic systems), causing irreversible alterations in adults. Here, we investigated the hypothalamic and mesencephalic dopaminergic system (identified with tyrosine hydroxylase immunohistochemistry). GEN administration (50 mg/kg) to mice of both sexes during the first week of postnatal life specifically affected tyrosine hydroxylase immunohistochemistry in the hypothalamic subpopulation of neurons, abolishing their sexual dimorphism. On the contrary, we did not observe any effects in the mesencephalic groups. Due to the large involvement of dopamine in circuits controlling rodent sexual behavior and food intake, these results clearly indicate that the early postnatal administration of GEN may irreversibly alter the control of reproduction, of energetic metabolism, and other behaviors. These results suggest the need for a careful evaluation of the use of soy products in both human and animal newborns.
Collapse
Affiliation(s)
- Giovanna Ponti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano (TO), Italy; Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco (T0), Italy.
| | - Alice Farinetti
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano (TO), Italy
| | - Marilena Marraudino
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano (TO), Italy
| | - GianCarlo Panzica
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano (TO), Italy
| | - Stefano Gotti
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano (TO), Italy
| |
Collapse
|
24
|
Win-Shwe TT, Yanagisawa R, Koike E, Takano H. Memory Function, Neurological, and Immunological Biomarkers in Allergic Asthmatic Mice Intratracheally Exposed to Bisphenol A. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193770. [PMID: 31597243 PMCID: PMC6801617 DOI: 10.3390/ijerph16193770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/29/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023]
Abstract
Bisphenol A (BPA) is a major constituent of plastic products, including epoxy resin containers, mobile phones, dental sealants, as well as electronic and medical equipment. BPA is recognized as an endocrine system-disrupting chemical which has toxic effects on the brain and reproductive system. However, little is known about the effects of co-exposure of BPA with allergens on the memory function and neurological as well as immunological biomarker levels. In this study, we examined the effects of intratracheal instillation of BPA on the memory function and neuroimmune biomarker levels using a mouse model of allergic asthma. Male C3H/HeJ Jcl mice were given three doses of BPA (0.0625 pmol, 1.25 pmol, and 25 pmol BPA/animal) intratracheally once a week, and ovalbumin (OVA) intratracheally every other week from 5 to 11 weeks old. At 11 weeks of age, a novel object recognition test was conducted after the final administration of OVA, and the hippocampi and hypothalami of the animals were collected after 24 h. The expression levels of the memory function-related genes N-methyl-D-aspartate (NMDA) receptor subunits, inflammatory cytokines, microglia markers, estrogen receptor-alpha, and oxytocin receptor were examined by real-time RT-PCR (real-time reverse transcription polymerase chain reaction) and immunohistochemical methods. Impairment of the novel object recognition ability was observed in the high-dose BPA-exposed mice with allergic asthma. In addition, the allergic asthmatic mice also showed downregulation of neurological biomarkers, such as NMDA receptor subunit NR2B in the hippocampus but no significant effect on immunological biomarkers in the hypothalamus. These findings suggest that exposure to high-dose BPA triggered impairment of memory function in the allergic asthmatic mice. This is the first study to show that, in the presence of allergens, exposure to high-dose BPA may affect memory by modulating the memory function-related genes in the hippocampus.
Collapse
Affiliation(s)
- Tin-Tin Win-Shwe
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Rie Yanagisawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Eiko Koike
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Hirohisa Takano
- Environmental Health Sciences, Graduate School of Global Environmental Studies, Kyoto University, Kyoto 615-8540, Japan.
| |
Collapse
|
25
|
Witchey SK, Fuchs J, Patisaul HB. Perinatal bisphenol A (BPA) exposure alters brain oxytocin receptor (OTR) expression in a sex- and region- specific manner: A CLARITY-BPA consortium follow-up study. Neurotoxicology 2019; 74:139-148. [PMID: 31251963 PMCID: PMC6750986 DOI: 10.1016/j.neuro.2019.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022]
Abstract
Bisphenol A (BPA) is a well-characterized endocrine disrupting chemical (EDC) used in plastics, epoxy resins and other products. Neurodevelopmental effects of BPA exposure are a major concern with multiple rodent and human studies showing that early life BPA exposure may impact the developing brain and sexually dimorphic behaviors. The CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity) program was established to assess multiple endpoints, including neural, across a wide dose range. Studies from our lab as part of (and prior to) CLARITY-BPA have shown that BPA disrupts estrogen receptor expression in the developing brain, and some evidence of oxytocin (OT) and oxytocin receptor (OTR) disruption in the hypothalamus and amygdala. While BPA disruption of steroid hormone function is well documented, less is known about its capacity to alter nonapeptide signals. In this CLARITY-BPA follow up study, we used remaining juvenile rat tissues to test the hypothesis that developmental BPA exposure affects OTR expression across the brain. Perinatal BPA exposure (2.5, 25, or 2500 μg/kg body weight (bw)/day) spanned gestation and lactation with dams gavaged from gestational day 6 until birth and then the offspring gavaged directly through weaning. Ethinyl estradiol (0.5 μg/kg bw/day) was used as a reference estrogen. Animals of both sexes were sacrificed as juveniles and OTR expression assessed by receptor binding. Our results demonstrate prenatal exposure to BPA can eliminate sex differences in OTR expression in three hypothalamic regions, and that male OTR expression may be more susceptible. Our data also identify a sub-region of the BNST with sexually dimorphic OTR expression not previously reported in juvenile rats that is also susceptible to BPA.
Collapse
Affiliation(s)
- Shannah K Witchey
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, United States
| | - Joelle Fuchs
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, United States
| | - Heather B Patisaul
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, United States; Center for Human Health and the Environment, NC State University, Raleigh, NC, 27695, United States.
| |
Collapse
|
26
|
Rosenfeld CS. Effects of Phytoestrogens on the Developing Brain, Gut Microbiota, and Risk for Neurobehavioral Disorders. Front Nutr 2019; 6:142. [PMID: 31555657 PMCID: PMC6727358 DOI: 10.3389/fnut.2019.00142] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/14/2019] [Indexed: 01/11/2023] Open
Abstract
Many pregnant and nursing women consume high amounts of soy and other plant products that contain phytoestrogens, such as genistein (GEN) and daidzein. Infants may also be provided soy based formulas. With their ability to bind and activate estrogen receptors (ESR) in the brain, such compounds can disrupt normal brain programming and lead to later neurobehavioral disruptions. However, other studies suggest that maternal consumption of soy and soy based formulas containing such phytoestrogens might lead to beneficial behavioral effects. Select gut microbes might also convert daidzein and to a lesser extent genistein to even more potent forms, e.g., equol derivatives. Thus, infant exposure to phytoestrogens may result in contrasting effects dependent upon the gut flora. It is also becoming apparent that consumption or exposure to these xenoestrogens may lead to gut dysbiosis. Phytoestrogen-induced changes in gut bacteria might in turn affect the brain through various mechanisms. This review will consider the evidence to date in rodent and other animal models and human epidemiological data as to whether developmental exposure to phytoestrogens, in particular genistein and daidzein, adversely or beneficially impact offspring neurobehavioral programming. Consideration will be given to potential mechanisms by which such compounds might affect neurobehavioral responses. A better understanding of effects perinatal exposure to phytoestrogen can exert on brain programming will permit pregnant women and those seeking to become pregnant to make better-educated choices. If phytoestrogen-induced gut dysbiosis contributes to neurobehavioral disruptions, remediation strategies may be designed to prevent such gut microbiota alterations and thereby improve neurobehavioral outcomes.
Collapse
Affiliation(s)
- Cheryl S. Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- MU Informatics Institute, University of Missouri, Columbia, MO, United States
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, United States
- Biomedical Sciences, University of Missouri, Columbia, MO, United States
- Genetics Area Program, University of Missouri, Columbia, MO, United States
| |
Collapse
|
27
|
John N, Rehman H, Razak S, David M, Ullah W, Afsar T, Almajwal A, Alam I, Jahan S. Comparative study of environmental pollutants bisphenol A and bisphenol S on sexual differentiation of anteroventral periventricular nucleus and spermatogenesis. Reprod Biol Endocrinol 2019; 17:53. [PMID: 31292004 PMCID: PMC6621953 DOI: 10.1186/s12958-019-0491-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bisphenol A is well known endocrine-disrupting chemical while Bisphenol S was considered a safe alternative. The present study aims to examine the comparative effects of xenobiotic bisphenol-A (BPA) and its substitute bisphenol-S (BPS) on spermatogenesis and development of sexually dimorphic nucleus population of dopaminergic neurons in the anteroventral periventricular nucleus (AVPV) of the hypothalamus in male pups. METHODS Sprague Dawley rat's pups were administered subcutaneously at the neonatal stage from postnatal day PND1 to PND 27. Thirty animals were divided into six experimental groups (6 animals/group). The first group served as control and was provided with normal olive oil. The four groups were treated with 2 μg/kg and 200 μg/kg of BPA and BPS, respectively. The sixth group was given with 50 μg/kg of estradiol dissolved in olive oil as a standard to find the development of dopaminergic tyrosine hydroxylase neurons in AVPV regions. Histological analysis for testicular tissues and immunohistochemistry for brain tissues was performed. RESULTS The results revealed adverse histopathological changes in testis after administration of different doses of BPA and BPS. These degenerative changes were marked by highly significant (p < 0.001) decrease in tubular and luminal diameters of seminiferous tubule and epithelial height among bisphenols treated groups as compared to control. Furthermore, significantly increased (p < 0.001) TH-ir cell bodies in the AVPV region of the brain with 200 μg/kg dose of BPA and BPS was evident. CONCLUSION It is concluded that exposure of BPA and BPS during a critical developmental period can structural impairments in testes and affects sexual differentiation of a dimorphic dopaminergic population of AVPV region of hypothalamus in the male brain.
Collapse
Affiliation(s)
- Naham John
- 0000 0001 2215 1297grid.412621.2Reproductive Physiology Lab, Department of Animal Sciences, Quaid- i- Azam University Islamabad, Islamabad, 45320 Pakistan
| | - Humaira Rehman
- 0000 0001 2215 1297grid.412621.2Reproductive Physiology Lab, Department of Animal Sciences, Quaid- i- Azam University Islamabad, Islamabad, 45320 Pakistan
| | - Suhail Razak
- 0000 0001 2215 1297grid.412621.2Reproductive Physiology Lab, Department of Animal Sciences, Quaid- i- Azam University Islamabad, Islamabad, 45320 Pakistan
- 0000 0004 1773 5396grid.56302.32Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mehwish David
- 0000 0001 2215 1297grid.412621.2Reproductive Physiology Lab, Department of Animal Sciences, Quaid- i- Azam University Islamabad, Islamabad, 45320 Pakistan
| | - Waheed Ullah
- 0000 0001 2215 1297grid.412621.2Reproductive Physiology Lab, Department of Animal Sciences, Quaid- i- Azam University Islamabad, Islamabad, 45320 Pakistan
| | - Tayyaba Afsar
- 0000 0004 1773 5396grid.56302.32Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ali Almajwal
- 0000 0004 1773 5396grid.56302.32Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Iftikhar Alam
- 0000 0004 1773 5396grid.56302.32Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sarwat Jahan
- 0000 0001 2215 1297grid.412621.2Reproductive Physiology Lab, Department of Animal Sciences, Quaid- i- Azam University Islamabad, Islamabad, 45320 Pakistan
| |
Collapse
|
28
|
Gore AC, Krishnan K, Reilly MP. Endocrine-disrupting chemicals: Effects on neuroendocrine systems and the neurobiology of social behavior. Horm Behav 2019; 111:7-22. [PMID: 30476496 PMCID: PMC6527472 DOI: 10.1016/j.yhbeh.2018.11.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/25/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
Abstract
A contribution to SBN/ICN special issue. Endocrine-disrupting chemicals (EDCs) are pervasive in the environment. They are found in plastics and plasticizers (bisphenol A (BPA) and phthalates), in industrial chemicals such as polychlorinated biphenyls (PCBs), and include some pesticides and fungicides such as vinclozolin. These chemicals act on hormone receptors and their downstream signaling pathways, and can interfere with hormone synthesis, metabolism, and actions. Because the developing brain is particularly sensitive to endogenous hormones, disruptions by EDCs can change neural circuits that form during periods of brain organization. Here, we review the evidence that EDCs affect developing hypothalamic neuroendocrine systems, and change behavioral outcomes in juvenile, adolescent, and adult life in exposed individuals, and even in their descendants. Our focus is on social, communicative and sociosexual behaviors, as how an individual behaves with a same- or opposite-sex conspecific determines that individual's ability to exist in a community, be selected as a mate, and reproduce successfully.
Collapse
Affiliation(s)
- Andrea C Gore
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Krittika Krishnan
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Michael P Reilly
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
29
|
Caceres S, Silván G, Illera MJ, Millan P, Moyano G, Illera JC. Effects of soya milk on reproductive hormones during puberty in male Wistar rats. Reprod Domest Anim 2019; 54:855-863. [DOI: 10.1111/rda.13434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/15/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Sara Caceres
- Departamento de Fisiología, Facultad de Veterinaria Universidad Complutense de Madrid Madrid Spain
| | - Gema Silván
- Departamento de Fisiología, Facultad de Veterinaria Universidad Complutense de Madrid Madrid Spain
| | - Maria J. Illera
- Departamento de Fisiología, Facultad de Veterinaria Universidad Complutense de Madrid Madrid Spain
| | - Pilar Millan
- Departamento de Fisiología, Facultad de Veterinaria Universidad Complutense de Madrid Madrid Spain
| | - Gabriel Moyano
- Departamento de Fisiología, Facultad de Veterinaria Universidad Complutense de Madrid Madrid Spain
| | - Juan C. Illera
- Departamento de Fisiología, Facultad de Veterinaria Universidad Complutense de Madrid Madrid Spain
| |
Collapse
|
30
|
Prins GS, Patisaul HB, Belcher SM, Vandenberg LN. CLARITY-BPA academic laboratory studies identify consistent low-dose Bisphenol A effects on multiple organ systems. Basic Clin Pharmacol Toxicol 2018; 125 Suppl 3:14-31. [PMID: 30207065 DOI: 10.1111/bcpt.13125] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022]
Abstract
Bisphenol A (BPA) is a high-production chemical used in a variety of applications worldwide. While BPA has been documented as an endocrine-disrupting chemical (EDC) having adverse health-related outcomes in multiple studies, risk assessment for BPA has lagged due to reliance on guideline toxicology studies over academic ones with end-points considered more sensitive and appropriate. To address current controversies on BPA safety, the United States National Institute of Environmental Health Sciences (NIEHS), the National Toxicology Program (NTP) and the Food and Drug Administration (FDA) established the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA) using the NCTR Sprague-Dawley rats. The goal of CLARITY-BPA is to perform a traditional regulatory toxicology study (Core study) in conjunction with multiple behavioural, molecular and cellular studies by academic laboratories focused on previously identified BPA-sensitive organ systems (Academic studies). Combined analysis of the data from both study types will be undertaken by the NTP with the aim of resolving uncertainties on BPA toxicity. To date, the Core study has been completed and a draft report released. Most of the academic studies have also been finalized and published in peer-reviewed journals. In light of this important milestone, the PPTOX-VI meeting held in the Faroe Islands, 27-30 May 2018 devoted a plenary session to CLARITY-BPA with presentations by multiple investigators with the purpose of highlighting key outcome. This MiniReview synthesizes the results of three academic studies presented at this plenary session, evaluates recently published findings by other CLARITY-BPA academic studies to provide an early combined overview of this emerging data and places this in the context of the Core study findings. This co-ordinated effort revealed a plethora of significant BPA effects across multiple organ systems and BPA doses with non-monotonic responses across the dose range utilized. Remarkably consistent across most studies, including the Core study, are low-dose effects (2.5, 25 and 250 μg BPA/kg body-weight). Collectively, the findings highlighted herein corroborate a significant body of evidence that documents adverse effects of BPA at doses relevant to human exposures and emphasizes the need for updated risk assessment analysis.
Collapse
Affiliation(s)
- Gail S Prins
- Departments of Urology, Pathology, and Physiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois.,Division of Epidemiology & Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois.,Chicago Center for Health and Environment (CACHET), University of Illinois at Chicago, Chicago, Illinois
| | - Heather B Patisaul
- Department of Biological Sciences and the Center for Human Health and the Environment (CHHE), North Carolina State University, Raleigh, North Carolina
| | - Scott M Belcher
- Department of Biological Sciences and the Center for Human Health and the Environment (CHHE), North Carolina State University, Raleigh, North Carolina
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, University of Massachusetts-Amherst, School of Public Health & Health Sciences, Amherst, Massachusetts
| |
Collapse
|
31
|
Acevedo N, Rubin BS, Schaeberle CM, Soto AM. Perinatal BPA exposure and reproductive axis function in CD-1 mice. Reprod Toxicol 2018; 79:39-46. [PMID: 29752986 DOI: 10.1016/j.reprotox.2018.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 11/30/2022]
Abstract
Perinatal Bisphenol-A (BPA) exposure reduces fertility and fecundity in mice. This study examined effects of early BPA exposure on activation of gonadotropin releasing hormone (GnRH) neurons in conjunction with a steroid-induced luteinizing hormone (LH) surge, characterized patterns of estrous cyclicity and fertility over time, and assessed the ovarian follicular reserve to further explore factors responsible for the reduced fertility we previously described in this model. The percent activated GnRH neurons was reduced in BPA-exposed females at 3-6 months, and periods of persistent proestrus were increased. These data suggest that perinatal exposure to BPA reduces GnRH neuronal activation required for the generation of the LH surge and estrous cyclicity. Assessments of anti-Müllerian hormone (AMH) levels failed to suggest a decline in the follicular reserve at the BPA exposure levels examined.
Collapse
Affiliation(s)
- Nicole Acevedo
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, 02111, USA, USA
| | - Beverly S Rubin
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, 02111, USA, USA
| | - Cheryl M Schaeberle
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, 02111, USA, USA
| | - Ana M Soto
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, 02111, USA, USA.
| |
Collapse
|
32
|
Nesan D, Sewell LC, Kurrasch DM. Opening the black box of endocrine disruption of brain development: Lessons from the characterization of Bisphenol A. Horm Behav 2018; 101:50-58. [PMID: 29241697 DOI: 10.1016/j.yhbeh.2017.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 01/14/2023]
Abstract
Bisphenol A (BPA) is among the best-studied endocrine disrupting chemicals, known to act via multiple steroid hormone receptors to mediate a myriad of cellular effects. Pre-, peri-, and postnatal BPA exposure have been linked to a variety of altered behaviors in multiple model organisms, ranging from zebrafish to frogs to mammalian models. Given that BPA can cross the human placental barrier and has been found in the serum of human fetuses during gestation, BPA has been postulated to adversely affect ongoing neurodevelopment, ultimately leading to behavioral disorders later in life. Indeed, the brain has been identified as a key developmental target for BPA disruption. Despite these known associations between gestational BPA exposure and adverse developmental outcomes, as well as an extensive body of evidence existing in the literature, the mechanisms by which BPA induces its cellular- and tissue-specific effects on neurodevelopmental processes still remains poorly understood at a mechanistic level. In this review we will briefly summarize the effects of gestational BPA exposure on neural developmental mechanisms and resulting behaviors, and then present suggestions for how we might address gaps in our knowledge to develop a fuller understanding of endocrine neurodevelopmental disruption to better inform governmental policy against the use of BPA or other endocrine disruptors.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotckhiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Laronna C Sewell
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotckhiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotckhiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
33
|
Vilela CLS, Bassin JP, Peixoto RS. Water contamination by endocrine disruptors: Impacts, microbiological aspects and trends for environmental protection. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:546-559. [PMID: 29329096 DOI: 10.1016/j.envpol.2017.12.098] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 12/22/2017] [Accepted: 12/25/2017] [Indexed: 05/12/2023]
Abstract
Hormone active agents constitute a dangerous class of pollutants. Among them, those agents that mimic the action of estrogens on target cells and are part of the group of endocrine-disruptor compounds (EDCs) are termed estrogenic EDCs, the main focus of this review. Exposure to these compounds causes a number of negative effects, including breast cancer, infertility and animal hermaphroditism. However, especially in underdeveloped countries, limited efforts have been made to warn people about this serious issue, explain the methods of minimizing exposure, and develop feasible and efficient mitigation strategies at different levels and in various environments. For instance, the use of bioremediation processes capable of transforming EDCs into environmentally friendly compounds has been little explored. A wide diversity of estrogen-degrading microorganisms could be used to develop such technologies, which include bioremediation processes for EDCs that could be implemented in biological filters for the post-treatment of wastewater effluent. This review describes problems associated with EDCs, primarily estrogenic EDCs, including exposure as well as the present status of understanding and the effects of natural and synthetic hormones and estrogenic EDCs on living organisms. We also describe potential biotechnological strategies for EDC biodegradation, and suggest novel treatment approaches for minimizing the persistence of EDCs in the environment.
Collapse
Affiliation(s)
- Caren Leite Spindola Vilela
- Department of General Microbiology, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - João Paulo Bassin
- Chemical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Raquel Silva Peixoto
- Department of General Microbiology, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; IMAM-AquaRio - Rio de Janeiro Marine Aquarium Research Center, Rio de Janeiro, Brazil.
| |
Collapse
|
34
|
Ahsan N, Ullah H, Ullah W, Jahan S. Comparative effects of Bisphenol S and Bisphenol A on the development of female reproductive system in rats; a neonatal exposure study. CHEMOSPHERE 2018; 197:336-343. [PMID: 29407803 DOI: 10.1016/j.chemosphere.2017.12.118] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/12/2017] [Accepted: 12/18/2017] [Indexed: 05/22/2023]
Abstract
Bisphenol A (BPA) has been well documented for its endocrine disrupting potential however, very little is known about endocrine disrupting abilities of bisphenol S (BPS). The present study aimed to compare the endocrine disrupting potentials of BPS with BPA, using female rats as an experimental animal model. On postnatal day 1 (PND 1) female pups born were randomly assigned to seven different treatments. Control group received subcutaneous injection of castor oil (50 μL) from PND 1 to PND 10. Three groups of female pups were injected subcutaneously with different concentrations (0.5, 5 and 50 mg/kg in 50 μL castor oil) of BPS, while remaining three groups were treated with 0.5, 5 and 50 mg/kg BPA. Highest doses treatments of both compounds resulted in delayed puberty onset and altered estrous cyclicity. Final body weight was significantly high in the highest dose treated groups of both BPS and BPA. Gonadosomatic index, absolute and relative weight of uteri was significantly reduced in BPS (5 and 50 mg/kg) and BPA (5 and 50 mg/kg) treated groups than control. Plasma concentrations of testosterone and estradiol were significantly increased, while plasma progesterone, Luteinizing hormone (LH) and Follicle stimulating hormone (FSH) concentrations were significantly reduced in highest doses treated groups. Dose dependent increase in the number of cystic follicles in the ovaries was evident along with an increase in the number of atratic follicles. The results suggest that neonatal exposure to higher concentrations of BPS can lead to BPA like structural and endocrine alterations in female rats.
Collapse
Affiliation(s)
- Nida Ahsan
- Reproductive physiology laboratory, Department of animal sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Hizb Ullah
- Reproductive physiology laboratory, Department of animal sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Waheed Ullah
- Reproductive physiology laboratory, Department of animal sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Sarwat Jahan
- Reproductive physiology laboratory, Department of animal sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
35
|
Filice F, Lauber E, Vörckel KJ, Wöhr M, Schwaller B. 17-β estradiol increases parvalbumin levels in Pvalb heterozygous mice and attenuates behavioral phenotypes with relevance to autism core symptoms. Mol Autism 2018; 9:15. [PMID: 29507711 PMCID: PMC5833085 DOI: 10.1186/s13229-018-0199-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/14/2018] [Indexed: 01/10/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by two core symptoms: impaired social interaction and communication, and restricted, repetitive behaviors and interests. The pathophysiology of ASD is not yet fully understood, due to a plethora of genetic and environmental risk factors that might be associated with or causal for ASD. Recent findings suggest that one putative convergent pathway for some forms of ASD might be the downregulation of the calcium-binding protein parvalbumin (PV). PV-deficient mice (PV-/-, PV+/-), as well as Shank1-/-, Shank3-/-, and VPA mice, which show behavioral deficits relevant to all human ASD core symptoms, are all characterized by lower PV expression levels. Methods Based on the hypothesis that PV expression might be increased by 17-β estradiol (E2), PV+/- mice were treated with E2 from postnatal days 5-15 and ASD-related behavior was tested between postnatal days 25 and 31. Results PV expression levels were significantly increased after E2 treatment and, concomitantly, sociability deficits in PV+/- mice in the direct reciprocal social interaction and the 3-chamber social approach assay, as well as repetitive behaviors, were attenuated. E2 treatment of PV+/+ mice did not increase PV levels and had detrimental effects on sociability and repetitive behavior. In PV-/- mice, E2 obviously did not affect PV levels; tested behaviors were not different from the ones in vehicle-treated PV-/- mice. Conclusion Our results suggest that the E2-linked amelioration of ASD-like behaviors is specifically occurring in PV+/- mice, indicating that PV upregulation is required for the E2-mediated rescue of ASD-relevant behavioral impairments.
Collapse
Affiliation(s)
- Federica Filice
- Anatomy Unit, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland
| | - Emanuel Lauber
- Anatomy Unit, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland
| | - Karl Jakob Vörckel
- Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraße 18, 35032 Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraße 18, 35032 Marburg, Germany
- Marburg Center for Mind, Brain, and Behavior (MCMBB), Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Beat Schwaller
- Anatomy Unit, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland
| |
Collapse
|
36
|
Fernandez MO, Bourguignon NS, Arocena P, Rosa M, Libertun C, Lux-Lantos V. Neonatal exposure to bisphenol A alters the hypothalamic-pituitary-thyroid axis in female rats. Toxicol Lett 2018; 285:81-86. [DOI: 10.1016/j.toxlet.2017.12.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/14/2017] [Accepted: 12/31/2017] [Indexed: 11/28/2022]
|
37
|
Kundakovic M. Sex-Specific Epigenetics: Implications for Environmental Studies of Brain and Behavior. Curr Environ Health Rep 2018; 4:385-391. [PMID: 28986864 DOI: 10.1007/s40572-017-0172-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW This review discusses the current state of knowledge on sex differences in the epigenetic regulation in the brain and highlights its relevance for the environmental studies of brain and behavior. RECENT FINDINGS Recent evidence shows that epigenetic mechanisms are involved in the control of brain sexual differentiation and in memory-enhancing effects of estradiol in females. In addition, several studies have implicated epigenetic dysregulation as an underlying mechanism for sex-specific neurobehavioral effects of environmental exposures. The area of sex-specific neurepigenetics has a great potential to improve our understanding of brain function in health and disease. Future neuropigenetic studies will require the inclusion of males and females and would ideally account for the fluctuating hormonal status in females which is likely to affect the epigenome. The implementation of cutting-edge methods that include epigenomic characterization of specific cell types using latest next-generation sequencing approaches will further advance the area.
Collapse
Affiliation(s)
- Marija Kundakovic
- Department of Biological Sciences, Fordham University, 441 E. Fordham Road, Larkin Hall, Room 160, Bronx, NY, 10458, USA.
| |
Collapse
|
38
|
Ohtani N, Suda K, Tsuji E, Tanemura K, Yokota H, Inoue H, Iwano H. Late pregnancy is vulnerable period for exposure to BPA. J Vet Med Sci 2018; 80:536-543. [PMID: 29367495 PMCID: PMC5880839 DOI: 10.1292/jvms.17-0460] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bisphenol A (BPA) is among the better-known endocrine disruptors. BPA is used in various food-contacting materials and is easily eluted into food; as a result, we are exposed to BPA on a daily basis. In adults, BPA is
metabolized and eliminated rapidly from the body. However, numerous reports suggest that fetuses and young children are susceptible to BPA. One of the concerning adverse effects of BPA is disruption of behavior,
especially anxiety-like behavior. In order to study the mechanism of influences on offspring, it is important to clarify the most vulnerable gestation period. We hypothesized that offspring in late pregnancy would be
more susceptible to BPA, because late pregnancy is a critical time for functional brain development. In this study, C57BL/6 mouse fetuses were exposed prenatally by oral dosing of pregnant dams, once daily from
gestational day 5.5 to 12.5 (early pregnancy) or 11.5 to 18.5 (late pregnancy), with BPA (0 or 10 mg/kg body weight). Following birth and weaning, the resulting pups were tested using an elevated plus maze at postnatal
week 10. The behavior of the offspring was altered by prenatal BPA exposure during late pregnancy but not during early pregnancy. These results indicated that offspring are more vulnerable to exposure to BPA in late
pregnancy.
Collapse
Affiliation(s)
- Naoko Ohtani
- Laboratory of Veterinary Biochemistry, Department of Bioscience, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Koshi Suda
- Laboratory of Veterinary Biochemistry, Department of Bioscience, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Erika Tsuji
- Laboratory of Veterinary Biochemistry, Department of Bioscience, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, Japan
| | - Hiroshi Yokota
- Laboratory of Veterinary Biochemistry, Department of Bioscience, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroki Inoue
- Laboratory of Veterinary Biochemistry, Department of Bioscience, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Hidetomo Iwano
- Laboratory of Veterinary Biochemistry, Department of Bioscience, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
39
|
Mhaouty-Kodja S, Naulé L, Capela D. Sexual Behavior: From Hormonal Regulation to Endocrine Disruption. Neuroendocrinology 2018; 107:400-416. [PMID: 30326485 DOI: 10.1159/000494558] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022]
Abstract
Sexual behavior constitutes a chain of behavioral responses beginning with courtship and leading to copulation. These responses, which are exhibited in a sexually dimorphic manner by the two partners, are tightly regulated by sex steroid hormones as early as the perinatal period. Hormonal changes or exposure to exogenous factors exhibiting hormone-mimetic activities, such as endocrine disrupting compounds (EDC), can therefore interfere with their expression. Here we review the experimental studies in rodents performed to address the potential effects of exposure to EDC on sexual behavior and underlying mechanisms, with particular attention to molecules with estrogenic and/or anti-androgenic activities.
Collapse
|
40
|
Lin CC, Chien CJ, Tsai MS, Hsieh CJ, Hsieh WS, Chen PC. Prenatal phenolic compounds exposure and neurobehavioral development at 2 and 7years of age. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:801-810. [PMID: 28683424 DOI: 10.1016/j.scitotenv.2017.06.160] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/28/2017] [Accepted: 06/20/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Phenolic compounds such as bisphenol A (BPA), nonylphenol (NP), and octylphenol (OP) are known as endocrine-disrupting compounds and are commonly used. Their impacts on the neurodevelopment of children are inconclusive. The current study aims to investigate the association between umbilical cord blood levels of BPA, NP, OP and neurodevelopmental outcomes at 2 and 7years of age. METHODS The study was based on the Taiwan Birth Panel Study, a prospective birth cohort. We collected cord blood plasma to measure phenolic compound levels using ultra-performance liquid chromatography-tandem mass spectrometry. In the follow-up, 208 mother-child pairs with 2-year-old children and 148 mother-child pairs with 7-year-old children were recruited in this study. We used the Comprehensive Developmental Inventory for Infants and Toddlers (CDIIT) and the Wechsler Intelligence Scale for Children (WISC-IV) for neurodevelopmental assessments at 2 and 7years of age, respectively. Multiple linear regressions were used for statistical analysis. RESULTS The detection rates of BPA, NP, and OP were 55.9%, 77.6%, and 68.3%, respectively. In this study, the median BPA, NP, and OP levels in 2-year-olds were 3.3, 72.6, and 3.3 (ng/ml), respectively. However, the median levels of BPA, NP, and OP were 3.2, 49.3, and 6.6 (ng/ml), respectively. The levels of phenolic compounds were log10-transformed for statistical analysis. Gender stratification was performed. In the WISC-IV neurocognitive assessment, we found both a significant negative association and a trend between cord blood plasma BPA levels and full-scale IQ (p for trend<0.01), the verbal comprehension index (p for trend<0.01), and the perceptual reasoning index (p for trend<0.01) in the study population. After stratification by sex, significant associations were found in full-scale IQ (p for trend=0.03) and the verbal comprehension (p for trend<0.01) index in boys. In girls, prenatal BPA exposure had adverse effects on full-scale IQ (p for trend=0.02), perceptual reasoning index (p for trend<0.01), and working memory index (p for trend=0.02). None of the developmental quotients (DQs) of the CDIIT analysis were significantly associated with phenolic compound levels in cord blood based on continuous or categorical measures. CONCLUSION Prenatal exposure to BPA affects neurocognitive development, and this effect differs between 7-year-old boys and girls. More studies are needed to elucidate the relationship between phenolic compound exposure in utero and children's neurobehavioral development.
Collapse
Affiliation(s)
- Ching-Chun Lin
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Chun-Ju Chien
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Meng-Shan Tsai
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Chia-Jung Hsieh
- Department of Public Health, Tzu Chi University, Hualian County, Taiwan
| | - Wu-Shiun Hsieh
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
| | - Pau-Chung Chen
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan; Department of Public Health, National Taiwan University College of Public Health, Taipei 100, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan.
| |
Collapse
|
41
|
Lee HM, Hwang KA, Choi KC. Diverse pathways of epithelial mesenchymal transition related with cancer progression and metastasis and potential effects of endocrine disrupting chemicals on epithelial mesenchymal transition process. Mol Cell Endocrinol 2017; 457:103-113. [PMID: 28042023 DOI: 10.1016/j.mce.2016.12.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 01/04/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are natural or synthetic compounds that interfere with normal functions of natural hormones in the body, leading to a disruption of the endocrine system. Specifically, EDCs have the potential to cause formation of several hormone-dependent cancers, including breast, ovarian, and prostate cancers. Epithelial mesenchymal transition (EMT) process by which epithelial cells lose their cell polarity and cell-cell adhesion and acquire mesenchymal phenotype is closely associated with malignant transformation and the initiation of cancer metastasis. As a key epithelial marker responsible for adherens junction, E-cadherin enables the cells to maintain epithelial phenotypes. EMT event is induced by E-cadherin loss which can be carried out by many transcription factors (TFs), including Snail, Slug, ZEB1, ZEB2, Kruppel-like factor 8 (KLF8), and Twist. N-cadherin, fibronectin, and vimentin are mesenchymal markers needed for cellular migration. The EMT process is regulated by several signaling pathways mediated by transforming growth factor β (TGF-β), Wnt-β-catenin, Notch, Hedgehog, and receptor tyrosine kinases. In the present article, we reviewed the current understanding of cancer progression effects of synthetic chemical EDCs such as bisphenol A (BPA), phthalates, tetrachlorodibenzo-p-dioxin (TCDD), and triclosan by focusing their roles in the EMT process. Collectively, the majority of previous studies revealed that BPA, phthalates, TCDD, and triclosan have the potential to induce cancer metastasis through regulating EMT markers and migration via several signaling pathways associated with the EMT program. Therefore, it is considered that the exposure to these EDCs can increase the risk aggravating the disease for the patients suffering cancer and that more regulations about the use of these EDCs are needed.
Collapse
Affiliation(s)
- Hae-Miru Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
42
|
Arambula SE, Fuchs J, Cao J, Patisaul HB. Effects of perinatal bisphenol A exposure on the volume of sexually-dimorphic nuclei of juvenile rats: A CLARITY-BPA consortium study. Neurotoxicology 2017; 63:33-42. [PMID: 28890130 DOI: 10.1016/j.neuro.2017.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
Bisphenol A (BPA) is a high volume endocrine disrupting chemical found in a wide variety of products including plastics and epoxy resins. Human exposure is nearly ubiquitous, and higher in children than adults. Because BPA has been reported to interfere with sex steroid hormone signaling, there is concern that developmental exposure, even at levels below the current FDA No Observed Adverse Effect Level (NOAEL) of 5mg/kg body weight (bw)/day, can disrupt brain sexual differentiation. The current studies were conducted as part of the CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity) program and tested the hypothesis that perinatal BPA exposure would induce morphological changes in hormone sensitive, sexually dimorphic brain regions. Sprague-Dawley rats were randomly assigned to 5 groups: BPA (2.5, 25, or 2500μg/kgbw/day), a reference estrogen (0.5μg ethinylestradiol (EE2)/kgbw/day), or vehicle. Exposure occurred by gavage to the dam from gestational day 6 until parturition, and then to the offspring from birth through weaning. Unbiased stereology was used to quantify the volume of the sexually dimorphic nucleus (SDN), the anteroventral periventricular nucleus (AVPV), the posterodorsal portion of the medial amygdala (MePD), and the locus coeruleus (LC) at postnatal day 28. No appreciable effects of BPA were observed on the volume of the SDN or LC. However, AVPV volume was enlarged in both sexes, even at levels below the FDA NOAEL. Collectively, these data suggest the developing brain is vulnerable to endocrine disruption by BPA at exposure levels below previous estimates by regulatory agencies.
Collapse
Affiliation(s)
- Sheryl E Arambula
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Joelle Fuchs
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Jinyan Cao
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
43
|
Chung YH, Han JH, Lee SB, Lee YH. Inhalation Toxicity of Bisphenol A and Its Effect on Estrous Cycle, Spatial Learning, and Memory in Rats upon Whole-Body Exposure. Toxicol Res 2017; 33:165-171. [PMID: 28503266 PMCID: PMC5426503 DOI: 10.5487/tr.2017.33.2.165] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 11/20/2022] Open
Abstract
Bisphenol A (BPA) is a monomer used in a polymerization reaction in the production of polycarbonate plastics. It has been used in many consumer products, including plastics, polyvinyl chloride, food packaging, dental sealants, and thermal receipts. However, there is little information available on the inhalation toxicity of BPA. Therefore, the aim of this study was to determine its inhalation toxicity and effects on the estrous cycle, spatial learning, and memory. Sprague-Dawley rats were exposed to 0, 10, 30, and 90 mg/m3 BPA, 6 hr/day, 5 days/week for 8 weeks via whole-body inhalation. Mortality, clinical signs, body weight, hematology, serum chemistry, estrous cycle parameters, performance in the Morris water maze test, and organ weights, as well as gross and histopathological findings, were compared between the control and BPA exposure groups. Statistically significant changes were observed in serum chemistry and organ weights upon exposure to BPA. However, there was no BPA-related toxic effect on the body weight, food consumption, hematology, serum chemistry, organ weights, estrous cycle, performance in the Morris water maze test, or gross or histopathological lesions in any male or female rats in the BPA exposure groups. In conclusion, the results of this study suggested that the no observable adverse effect level (NOAEL) for BPA in rats is above 90 mg/m3/6 hr/day, 5 days/week upon 8-week exposure. Furthermore, BPA did not affect the estrous cycle, spatial learning, or memory in rats.
Collapse
Affiliation(s)
- Yong Hyun Chung
- Inhalation Toxicity Research Center, Chemical Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Daejeon, Korea
| | - Jeong Hee Han
- Inhalation Toxicity Research Center, Chemical Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Daejeon, Korea
| | - Sung-Bae Lee
- Inhalation Toxicity Research Center, Chemical Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Daejeon, Korea
| | - Yong-Hoon Lee
- Inhalation Toxicity Research Center, Chemical Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Daejeon, Korea
| |
Collapse
|
44
|
The Epigenetic Link between Prenatal Adverse Environments and Neurodevelopmental Disorders. Genes (Basel) 2017; 8:genes8030104. [PMID: 28335457 PMCID: PMC5368708 DOI: 10.3390/genes8030104] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/08/2017] [Accepted: 03/12/2017] [Indexed: 12/12/2022] Open
Abstract
Prenatal adverse environments, such as maternal stress, toxicological exposures, and viral infections, can disrupt normal brain development and contribute to neurodevelopmental disorders, including schizophrenia, depression, and autism. Increasing evidence shows that these short- and long-term effects of prenatal exposures on brain structure and function are mediated by epigenetic mechanisms. Animal studies demonstrate that prenatal exposure to stress, toxins, viral mimetics, and drugs induces lasting epigenetic changes in the brain, including genes encoding glucocorticoid receptor (Nr3c1) and brain-derived neurotrophic factor (Bdnf). These epigenetic changes have been linked to changes in brain gene expression, stress reactivity, and behavior, and often times, these effects are shown to be dependent on the gestational window of exposure, sex, and exposure level. Although evidence from human studies is more limited, gestational exposure to environmental risks in humans is associated with epigenetic changes in peripheral tissues, and future studies are required to understand whether we can use peripheral biomarkers to predict neurobehavioral outcomes. An extensive research effort combining well-designed human and animal studies, with comprehensive epigenomic analyses of peripheral and brain tissues over time, will be necessary to improve our understanding of the epigenetic basis of neurodevelopmental disorders.
Collapse
|
45
|
Fluorene-9-bisphenol is anti-oestrogenic and may cause adverse pregnancy outcomes in mice. Nat Commun 2017; 8:14585. [PMID: 28248286 PMCID: PMC5339874 DOI: 10.1038/ncomms14585] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 01/13/2017] [Indexed: 11/08/2022] Open
Abstract
Bisphenol A (BPA) is used in the production of plastic but has oestrogenic activity. Therefore, BPA substitutes, such as fluorene-9-bisphenol (BHPF), have been introduced for the production of so-called 'BPA-free' plastics. Here we show that BHPF is released from commercial 'BPA-free' plastic bottles into drinking water and has anti-oestrogenic effects in mice. We demonstrate that BHPF has anti-oestrogenic activity in vitro and, in an uterotrophic assay in mice, induces low uterine weight, atrophic endometria and causes adverse pregnancy outcomes, even at doses lower than those of BPA for which no observed adverse effect have been reported. Female mice given water containing BHPF released from plastic bottles, have detectable levels of BHPF in serum, low uterine weights and show decreased expressions of oestrogen-responsive genes. We also detect BHPF in the plasma of 7/100 individuals, who regularly drink water from plastic bottles. Our data suggest that BPA substitutes should be tested for anti-oestrogenic activity and call for further study of the toxicological effects of BHPF on human health.
Collapse
|
46
|
Goldsby JA, Wolstenholme JT, Rissman EF. Multi- and Transgenerational Consequences of Bisphenol A on Sexually Dimorphic Cell Populations in Mouse Brain. Endocrinology 2017; 158:21-30. [PMID: 27841950 PMCID: PMC5412975 DOI: 10.1210/en.2016-1188] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 11/08/2016] [Indexed: 11/19/2022]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting compound used to manufacture plastics; it is present in linings of food cans, bottles, thermal receipts, and many other everyday items and is detectable in human urine and blood. Exposure to BPA during development can disrupt sexual differentiation of some brain regions. Moreover, BPA can have transgenerational effects on gene expression and behaviors. Here, we used a diet and breeding regimen that produces transgenerational effects on behaviors. C57BL/6J mice consumed control or BPA-containing diets during pregnancy. We examined vasopressin (AVP) and estrogen receptor α (ERα) immunoreactivity (ir) in sexually dimorphic brain regions from first-generation (F1) offspring and transgenerational effects of BPA in third-generation offspring. In all but one brain region examined, the expected sex differences were noted in both generations of control mice. In F1 mice, a diet by sex interaction was present for AVP-ir in the lateral septum and posterodorsal medial amygdala. In both regions, BPA exposure reduced immunoreactivity in male brains. An interaction between diet and sex for ERα-ir in the ventromedial hypothalamus was caused by reduced immunoreactivity in BPA-exposed females. Of interest, BPA had transgenerational effects on ERα-ir in the anteroventral periventricular nucleus and bed nucleus of the stria terminalis. Our data show that BPA produces immunoreactive differences in ERα-ir generations after exposure to BPA. We speculate that actions of BPA in utero on ERα-ir in brain have long-term consequences for reproduction and social behavior.
Collapse
Affiliation(s)
- Jessica A. Goldsby
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908; and
| | - Jennifer T. Wolstenholme
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908; and
| | - Emilie F. Rissman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908; and
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
47
|
Walker DM, Gore AC. Epigenetic impacts of endocrine disruptors in the brain. Front Neuroendocrinol 2017; 44:1-26. [PMID: 27663243 PMCID: PMC5429819 DOI: 10.1016/j.yfrne.2016.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/05/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022]
Abstract
The acquisition of reproductive competence is organized and activated by steroid hormones acting upon the hypothalamus during critical windows of development. This review describes the potential role of epigenetic processes, particularly DNA methylation, in the regulation of sexual differentiation of the hypothalamus by hormones. We examine disruption of these processes by endocrine-disrupting chemicals (EDCs) in an age-, sex-, and region-specific manner, focusing on how perinatal EDCs act through epigenetic mechanisms to reprogram DNA methylation and sex steroid hormone receptor expression throughout life. These receptors are necessary for brain sexual differentiation and their altered expression may underlie disrupted reproductive physiology and behavior. Finally, we review the literature on histone modifications and non-coding RNA involvement in brain sexual differentiation and their perturbation by EDCs. By putting these data into a sex and developmental context we conclude that perinatal EDC exposure alters the developmental trajectory of reproductive neuroendocrine systems in a sex-specific manner.
Collapse
Affiliation(s)
- Deena M Walker
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1065, New York, NY 10029, USA.
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, and The University of Texas at Austin, Austin, TX 78712, USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
48
|
Perera F, Nolte ELR, Wang Y, Margolis AE, Calafat AM, Wang S, Garcia W, Hoepner LA, Peterson BS, Rauh V, Herbstman J. Bisphenol A exposure and symptoms of anxiety and depression among inner city children at 10-12 years of age. ENVIRONMENTAL RESEARCH 2016; 151:195-202. [PMID: 27497082 PMCID: PMC5071142 DOI: 10.1016/j.envres.2016.07.028] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/28/2016] [Accepted: 07/19/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Experimental and epidemiological studies suggest that gestational exposure to Bisphenol A (BPA), an ubiquitous endocrine disrupting chemical, may lead to neurobehavioral problems in childhood; however, not all results have been consistent. We previously reported a positive association between prenatal BPA exposure and symptoms of anxiety/depression reported by the mother at child age 7-9 years in boys, but not girls. OBJECTIVES Here, in the same birth cohort, we investigated the association of prenatal BPA exposure with symptoms of depression and anxiety self-reported by the 10-12 year olds, hypothesizing that we would observe sex-specific differences in anxiety and depressive symptoms. METHODS African-American and Dominican women living in Northern Manhattan and their children were followed from mother's pregnancy through children's age 10-12 years. BPA was quantified in maternal urine collected during the third trimester of pregnancy and in child urine collected at ages 3 and 5 years. Children were evaluated using the Revised Children's Manifest Anxiety Scale (RCMAS) and Children's Depression Rating Scale (CDRS). We compared the children in the highest tertile of BPA concentration to those in the lower two tertiles. Associations between behavior and prenatal (maternal) BPA concentration or postnatal (child) BPA concentration were assessed in regression models stratified by sex. RESULTS Significant positive associations between prenatal BPA and symptoms of depression and anxiety were observed among boys. Postnatal BPA exposure was not significantly associated with outcomes. There was substantial co-occurrence of anxiety and depressive symptoms in this sample. CONCLUSION These results provide evidence that prenatal BPA exposure is associated with more symptoms of anxiety and depression in boys but not in girls at age 10-12 years.
Collapse
Affiliation(s)
- Frederica Perera
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168th St., New York, NY 10032, USA; Columbia Center for Children's Environmental Health, Columbia University, 722 W. 168th St., New York, NY 10032, USA.
| | - Emily L Roen Nolte
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168th St., New York, NY 10032, USA; Columbia Center for Children's Environmental Health, Columbia University, 722 W. 168th St., New York, NY 10032, USA
| | - Ya Wang
- Columbia Center for Children's Environmental Health, Columbia University, 722 W. 168th St., New York, NY 10032, USA; Department of Biostatistics, Mailman School of Public Health, Columbia University, 722 W. 168th St., New York, NY 10032, USA
| | - Amy E Margolis
- Columbia Center for Children's Environmental Health, Columbia University, 722 W. 168th St., New York, NY 10032, USA; Division of Child & Adolescent Psychiatry and the Center for Developmental Neuropsychiatry, Department of Psychiatry, The New York State Psychiatric Institute and the College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS F17, Atlanta, GA 30341, USA
| | - Shuang Wang
- Columbia Center for Children's Environmental Health, Columbia University, 722 W. 168th St., New York, NY 10032, USA; Department of Biostatistics, Mailman School of Public Health, Columbia University, 722 W. 168th St., New York, NY 10032, USA
| | - Wanda Garcia
- Columbia Center for Children's Environmental Health, Columbia University, 722 W. 168th St., New York, NY 10032, USA; The Heilbrunn Department of Population and Family Health, Columbia University, 60 Haven Avenue, New York, NY 10032, USA
| | - Lori A Hoepner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168th St., New York, NY 10032, USA; Columbia Center for Children's Environmental Health, Columbia University, 722 W. 168th St., New York, NY 10032, USA
| | - Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles and Keck School of Medicine at the University of Southern California, USA
| | - Virginia Rauh
- Columbia Center for Children's Environmental Health, Columbia University, 722 W. 168th St., New York, NY 10032, USA; The Heilbrunn Department of Population and Family Health, Columbia University, 60 Haven Avenue, New York, NY 10032, USA
| | - Julie Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168th St., New York, NY 10032, USA; Columbia Center for Children's Environmental Health, Columbia University, 722 W. 168th St., New York, NY 10032, USA
| |
Collapse
|
49
|
Arambula SE, Belcher SM, Planchart A, Turner SD, Patisaul HB. Impact of Low Dose Oral Exposure to Bisphenol A (BPA) on the Neonatal Rat Hypothalamic and Hippocampal Transcriptome: A CLARITY-BPA Consortium Study. Endocrinology 2016; 157:3856-3872. [PMID: 27571134 PMCID: PMC5045502 DOI: 10.1210/en.2016-1339] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/23/2016] [Indexed: 11/19/2022]
Abstract
Bisphenol A (BPA) is an endocrine disrupting, high volume production chemical found in a variety of products. Evidence of prenatal exposure has raised concerns that developmental BPA may disrupt sex-specific brain organization and, consequently, induce lasting changes on neurophysiology and behavior. We and others have shown that exposure to BPA at doses below the no-observed-adverse-effect level can disrupt the sex-specific expression of estrogen-responsive genes in the neonatal rat brain including estrogen receptors (ERs). The present studies, conducted as part of the Consortium Linking Academic and Regulatory Insights of BPA Toxicity program, expanded this work by examining the hippocampal and hypothalamic transcriptome on postnatal day 1 with the hypothesis that genes sensitive to estrogen and/or sexually dimorphic in expression would be altered by prenatal BPA exposure. NCTR Sprague-Dawley dams were gavaged from gestational day 6 until parturition with BPA (0-, 2.5-, 25-, 250-, 2500-, or 25 000-μg/kg body weight [bw]/d). Ethinyl estradiol was used as a reference estrogen (0.05- or 0.5-μg/kg bw/d). Postnatal day 1 brains were microdissected and gene expression was assessed with RNA-sequencing (0-, 2.5-, and 2500-μg/kg bw BPA groups only) and/or quantitative real-time PCR (all exposure groups). BPA-related transcriptional changes were mainly confined to the hypothalamus. Consistent with prior observations, BPA induced sex-specific effects on hypothalamic ERα and ERβ (Esr1 and Esr2) expression and hippocampal and hypothalamic oxytocin (Oxt) expression. These data demonstrate prenatal BPA exposure, even at doses below the current no-observed-adverse-effect level, can alter gene expression in the developing brain.
Collapse
Affiliation(s)
- Sheryl E Arambula
- Department of Biological Sciences (S.E.A., S.M.B., A.P., H.B.P.), Keck Center for Behavioral Biology (S.E.A., H.B.P.), and Center for Human Health and the Environment (S.E.A., S.M.B., A.P., H.B.P.), North Carolina State University, Raleigh, North Carolina 27695; and Department of Public Health Sciences (S.D.T.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Scott M Belcher
- Department of Biological Sciences (S.E.A., S.M.B., A.P., H.B.P.), Keck Center for Behavioral Biology (S.E.A., H.B.P.), and Center for Human Health and the Environment (S.E.A., S.M.B., A.P., H.B.P.), North Carolina State University, Raleigh, North Carolina 27695; and Department of Public Health Sciences (S.D.T.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Antonio Planchart
- Department of Biological Sciences (S.E.A., S.M.B., A.P., H.B.P.), Keck Center for Behavioral Biology (S.E.A., H.B.P.), and Center for Human Health and the Environment (S.E.A., S.M.B., A.P., H.B.P.), North Carolina State University, Raleigh, North Carolina 27695; and Department of Public Health Sciences (S.D.T.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Stephen D Turner
- Department of Biological Sciences (S.E.A., S.M.B., A.P., H.B.P.), Keck Center for Behavioral Biology (S.E.A., H.B.P.), and Center for Human Health and the Environment (S.E.A., S.M.B., A.P., H.B.P.), North Carolina State University, Raleigh, North Carolina 27695; and Department of Public Health Sciences (S.D.T.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Heather B Patisaul
- Department of Biological Sciences (S.E.A., S.M.B., A.P., H.B.P.), Keck Center for Behavioral Biology (S.E.A., H.B.P.), and Center for Human Health and the Environment (S.E.A., S.M.B., A.P., H.B.P.), North Carolina State University, Raleigh, North Carolina 27695; and Department of Public Health Sciences (S.D.T.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| |
Collapse
|
50
|
Usman A, Ahmad M. From BPA to its analogues: Is it a safe journey? CHEMOSPHERE 2016; 158:131-42. [PMID: 27262103 DOI: 10.1016/j.chemosphere.2016.05.070] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/16/2016] [Accepted: 05/22/2016] [Indexed: 05/19/2023]
Abstract
Bisphenol-A (BPA) is one of the most abundant synthetic chemicals in the world due to its uses in plastics. Its widespread exposure vis-a-vis low dose effects led to a reduction in its safety dose and imposition of ban on its use in infant feeding bottles. This restriction paved the way for the gradual market entry of its analogues. However, their structural similarity to BPA has put them under surveillance for endocrine disrupting potential. The application of these analogues is increasing and so are the studies reporting their toxicity. This review highlights the reasons which led to the ban of BPA and also reports the exposure and toxicological data available on its analogues. Hence, this compilation is expected to answer in a better way whether the replacement of BPA by these analogues is safer or more harmful?
Collapse
Affiliation(s)
- Afia Usman
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Masood Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|