1
|
Karakuş F, Kuzu B. Mechanistic Analysis of Decabromodiphenyl Ether-Induced Neurotoxicity in Humans Using Network Toxicology and Molecular Docking. Neurotox Res 2025; 43:17. [PMID: 40123016 PMCID: PMC11930881 DOI: 10.1007/s12640-025-00741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Commercial decabromodiphenyl ether (c-decaBDE) is a widely used additive flame retardant in textiles and plastics. This formulation predominantly consists of the congener BDE-209, with trace amounts of other brominated diphenyl ether congeners, such as nonabromodiphenyl ether and octabromodiphenyl ether. Recognized as a persistent organic pollutant due to its potential for long-range environmental transport, c-decaBDE poses significant environmental threats and serious human health risks, including endocrine, reproductive, developmental, and neurotoxic effects. The mechanisms underlying its neurotoxicity remain largely undefined. This study investigates the neurotoxic effects of BDE-209 in humans through network toxicology, multi-level bioinformatics approaches, and molecular docking analyses. Prediction results indicate that BDE-209 can cross the blood-brain barrier, entering the central nervous system and inducing neurotoxic effects. A comprehensive analysis has identified 294 potential targets linked to the neurotoxicity induced by BDE-209. Gene-gene interaction and pathway enrichment analyses revealed significant associations related to cellular responses to chemical stress and synaptic transmission. Further investigation of protein-protein interactions, combined with centrality analysis, identified 14 hub targets, including CaMK-II alpha, PSD-95, GluR-1, and GluN2B, as key proteins in this process. Molecular docking results indicate that BDE-209 exhibits a stronger binding affinity to GluN2B, a subunit of the N-methyl-D-aspartate (NMDA) receptors, compared to other key targets. These findings suggest that BDE-209 may disrupt the function of GluN2B-containing NMDA receptors, potentially leading to their inhibition. Such inhibition could result in reduced excitatory neurotransmission, impairing synaptic potentiation and plasticity, and ultimately contributing to neurotoxicity.
Collapse
Affiliation(s)
- Fuat Karakuş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Türkiye.
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Van Yuzuncu Yil University, Tuşba-Van, 65080, Türkiye.
| | - Burak Kuzu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Türkiye
| |
Collapse
|
2
|
Gupta P, Gupta RK, Gandhi BS, Singh P. Differential binding of CREB and REST/NRSF to NMDAR1 promoter is associated with the sex-selective cognitive deficit following postnatal PBDE-209 exposure in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38710-38722. [PMID: 37002525 DOI: 10.1007/s11356-023-26107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Neonatal exposure to decabromodiphenyl ether (PBDE-209), a widely used flame retardant, affects cognitive performances in the later stage of life in a sex-dependent manner. PBDE-209 interferes with glutamatergic signaling and N-methyl-D-aspartate receptor (NMDAR) subunits with unresolved regulatory mechanisms. This study exposed male and female mice pups through postnatal day (PND) 3-10 to PBDE-209 (oral dose: 0, 6, or 20 mg/kg body weight). The frontal cortex and hippocampus, collected from neonate (PND 11) and young (PND 60) mice, were analyzed for cAMP response element-binding protein (CREB) and RE1-silencing transcription factor/ Neuron-restrictive silencer factor (REST/NRSF) binding to NMDAR1 promoter and expression of NMDAR1 gene by electrophoretic mobility shift assay and semi-quantitative RT-PCR respectively. Behavioral changes were assessed using spontaneous alternation behavior and novel object recognition tests in young mice. In neonates, the binding of CREB was increased, while REST/NRSF was decreased significantly to their cognate NMDAR1 promoter sequences at the high dose of PBDE-209 in both the sexes. This reciprocal pattern of CREB and REST/NRSF interactions correlates with the up-regulation of NMDAR1 expression. Young males followed a similar pattern of CREB and REST/NRSF binding and NMDAR1 expression as in neonates. Surprisingly, young females did not show any alteration when compared to age-matched controls. Also, we found that only young males showed working and recognition memory deficits. These results indicate that early exposure to PBDE-209 interferes with CREB- and REST/NRSF-dependent regulation of the NMDAR1 gene in an acute setting. However, long-term effects persist only in young males that could be associated with cognitive impairment.
Collapse
Affiliation(s)
- Priya Gupta
- Department of Zoology, Women's College, Banaras Hindu University, Varanasi, UP, India
| | - Rajaneesh K Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, India
| | - Behrose S Gandhi
- Department of Zoology, Women's College, Banaras Hindu University, Varanasi, UP, India
| | - Poonam Singh
- Department of Zoology, Women's College, Banaras Hindu University, Varanasi, UP, India.
| |
Collapse
|
3
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
4
|
Eriksson P, Johansson N, Viberg H, Buratovic S, Fredriksson A. Perfluorinated chemicals (PFOA) can, by interacting with highly brominated diphenyl ethers (PBDE 209) during a defined period of neonatal brain development, exacerbate neurobehavioural defects. Neurotoxicol Teratol 2023; 96:107150. [PMID: 36584763 DOI: 10.1016/j.ntt.2022.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Perfluorinated compounds (PFCs) and polybrominated diphenyl ethers (PBDEs) are ubiquitous persistent environmental compounds, present in humans and at higher levels in infants/children than in adults. This study shows that co-exposure to pentadecafluorooctanoic acid (PFOA) and 2,2',3,3',4,4',5,5',6,6'-decaBDE (PBDE 209) can significantly exacerbate developmental neurobehavioural defects. Neonatal male NMRI mice, 3 and 10 days old, were exposed perorally to PBDE 209 (1.4 or 8.0 μmol/kg bw), PFOA (1.4 or 14 μmol/kg bw), co-exposed to PBDE 209 and PFOA (at the given doses), or a vehicle (20% fat emulsion) and observed for spontaneous behaviour in a novel home environment when 2 and 4 months old. The behavioural defects observed included hyperactivity and reduced habituation indicating cognitive defects. This interaction appears most likely dependent on the presence of PBDE 209 and/or its metabolites together with PFOA, during a defined critical period of neonatal brain development, corresponding to the perinatal and newborn period in humans.
Collapse
Affiliation(s)
- Per Eriksson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden.
| | - Niclas Johansson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Henrik Viberg
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Sonja Buratovic
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Anders Fredriksson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Khidkhan K, Mizukawa H, Ikenaka Y, Nakayama SMM, Nomiyama K, Yokoyama N, Ichii O, Takiguchi M, Tanabe S, Ishizuka M. Biological effects related to exposure to polychlorinated biphenyl (PCB) and decabromodiphenyl ether (BDE-209) on cats. PLoS One 2023; 18:e0277689. [PMID: 36662783 PMCID: PMC9858064 DOI: 10.1371/journal.pone.0277689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/01/2022] [Indexed: 01/21/2023] Open
Abstract
As an animal familiar to humans, cats are considered to be sensitive to chemicals; cats may be exposed to polychlorinated biphenyls (PCBs) and decabromodiphenyl ether (BDE-209) from indoor dust, household products, and common pet food, leading to adverse endocrine effects, such as thyroid hormone dysfunction. To elucidate the general biological effects resulting from exposure of cats to PCBs and PBDEs, cats were treated with a single i.p. dose of a principal mixture of 12 PCBs and observed for a short-term period. Results revealed that the testis weight, serum albumin, and total protein of the treated group decrease statistically in comparison with those in the control group. The negative correlations suggested that the decrease in the total protein and albumin levels may be disturbed by 4'OH-CB18, 3'OH-CB28 and 3OH-CB101. Meanwhile, the serum albumin level and relative brain weight decreased significantly for cats subjected to 1-year continuous oral administration of BDE-209 in comparison to those of control cats. In addition, the subcutaneous fat as well as serum high-density lipoprotein (HDL) and triglycerides (TG) levels increased in cats treated with BDE-209 and down-regulation of stearoyl-CoA desaturase mRNA expression in the liver occurred. These results suggested that chronic BDE-209 treatment may restrain lipolysis in the liver, which is associated with lipogenesis in the subcutaneous fat. Evidence of liver and kidney cell damage was not observed as there was no significant difference in the liver enzymes, blood urea nitrogen and creatinine levels between the two groups of both experiments. To the best of our knowledge, this is the first study that provides information on the biochemical effects of organohalogen compounds in cats. Further investigations on risk assessment and other potential health effects of PCBs and PBDEs on the reproductive system, brain, and lipid metabolism in cats are required.
Collapse
Affiliation(s)
- Kraisiri Khidkhan
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hazuki Mizukawa
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Yoshinori Ikenaka
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Nozomu Yokoyama
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Osamu Ichii
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Mayumi Ishizuka
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
6
|
Guarnotta V, Amodei R, Frasca F, Aversa A, Giordano C. Impact of Chemical Endocrine Disruptors and Hormone Modulators on the Endocrine System. Int J Mol Sci 2022; 23:ijms23105710. [PMID: 35628520 PMCID: PMC9145289 DOI: 10.3390/ijms23105710] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
There is growing concern regarding the health and safety issues of endocrine-disrupting chemicals (EDCs). Long-term exposure to EDCs has alarming adverse health effects through both hormone-direct and hormone-indirect pathways. Non-chemical agents, including physical agents such as artificial light, radiation, temperature, and stress exposure, are currently poorly investigated, even though they can seriously affect the endocrine system, by modulation of hormonal action. Several mechanisms have been suggested to explain the interference of EDCs with hormonal activity. However, difficulty in quantifying the exposure, low standardization of studies, and the presence of confounding factors do not allow the establishment of a causal relationship between endocrine disorders and exposure to specific toxic agents. In this review, we focus on recent findings on the effects of EDCs and hormone system modulators on the endocrine system, including the thyroid, parathyroid glands, adrenal steroidogenesis, beta-cell function, and male and female reproductive function.
Collapse
Affiliation(s)
- Valentina Guarnotta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), Section of Endocrinology, University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (V.G.); (R.A.)
| | - Roberta Amodei
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), Section of Endocrinology, University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (V.G.); (R.A.)
| | - Francesco Frasca
- Endocrinology Section, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, 95122 Catania, Italy;
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, Section of Endocrinology, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Carla Giordano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), Section of Endocrinology, University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (V.G.); (R.A.)
- Correspondence: ; Tel.: +39-0916552110
| |
Collapse
|
7
|
Buser MC, Pohl HR, Abadin HG. Windows of sensitivity to toxic chemicals in the development of the endocrine system: an analysis of ATSDR's toxicological profile database. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:437-454. [PMID: 32495642 PMCID: PMC7714698 DOI: 10.1080/09603123.2020.1772204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
This review utilizes the robust database of literature contained in toxicological profiles developed by the Agency for Toxic Substances and Disease Registry. The aim was to use this database to identify developmental toxicity studies reporting alterations in hormone levels in the developing fetus and offspring and identify windows of sensitivity. We identified 74 oral exposure studies in rats that provided relevant information on 30 chemicals from 21 profiles. Most studies located provided information on thyroid hormones, with fewer studies on anterior pituitary, adrenal medulla, ovaries, and testes. No studies pertaining to hormones of the posterior pituitary, pancreas, or adrenal cortex were located. The results demonstrate that development of the endocrine system may be affected by exposure to environmental contaminants at many different points, including gestational and/or lactational exposure. Moreover, this review demonstrates the need for more developmental toxicity studies focused on the endocrine system and specifically alterations in hormone levels.
Collapse
Affiliation(s)
- M C Buser
- US Department of Health and Human Services, Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, USA
| | - H R Pohl
- US Department of Health and Human Services, Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, USA
| | - H G Abadin
- US Department of Health and Human Services, Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, USA
| |
Collapse
|
8
|
Carbone BE, Abouleish M, Watters KE, Vogel S, Ribic A, Schroeder OHU, Bader BM, Biederer T. Synaptic Connectivity and Cortical Maturation Are Promoted by the ω-3 Fatty Acid Docosahexaenoic Acid. Cereb Cortex 2021; 30:226-240. [PMID: 31034037 DOI: 10.1093/cercor/bhz083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/20/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022] Open
Abstract
Brain development is likely impacted by micronutrients. This is supported by the effects of the ω-3 fatty acid docosahexaenoic acid (DHA) during early neuronal differentiation, when it increases neurite growth. Aiming to delineate DHA roles in postnatal stages, we selected the visual cortex due to its stereotypic maturation. Immunohistochemistry showed that young mice that received dietary DHA from birth exhibited more abundant presynaptic and postsynaptic specializations. DHA also increased density and size of synapses in a dose-dependent manner in cultured neurons. In addition, dendritic arbors of neurons treated with DHA were more complex. In agreement with improved connectivity, DHA enhanced physiological parameters of network maturation in vitro, including bursting strength and oscillatory behavior. Aiming to analyze functional maturation of the cortex, we performed in vivo electrophysiological recordings from awake mice to measure responses to patterned visual inputs. Dietary DHA robustly promoted the developmental increase in visual acuity, without altering light sensitivity. The visual acuity of DHA-supplemented animals continued to improve even after their cortex had matured and DHA abolished the acuity plateau. Our findings show that the ω-3 fatty acid DHA promotes synaptic connectivity and cortical processing. These results provide evidence that micronutrients can support the maturation of neuronal networks.
Collapse
Affiliation(s)
- Beatrice E Carbone
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Malik Abouleish
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Katherine E Watters
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Seth Vogel
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Adema Ribic
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | | | | | - Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
9
|
Edwards CM, Small D, Bell T, David-Drori J, Hansen C, Morris-Schaffer K, Canale C, Ng J, Markowski VP. Early postnatal decabromodiphenyl ether exposure reduces thyroid hormone and astrocyte density in the juvenile mouse dentate gyrus. Physiol Behav 2020; 216:112798. [PMID: 31926943 DOI: 10.1016/j.physbeh.2020.112798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/15/2022]
Abstract
Decabromodiphenyl ether (decaBDE) is a flame retardant that was widely-applied to many consumer products for decades. Consequently, decaBDE and other members of its class have become globally-distributed environmental contaminants. Epidemiological and animal studies indicate that decaBDE exposure during critical periods of brain development produces long-term behavioral impairments. The current study was designed to identify potential neuroendocrine mechanisms for learning and response inhibition deficits observed by our lab in a previous study. C57BL6/J mouse pups were given a single daily oral dose of 0 or 20 mg/kg decaBDE from day 1 to 21. Serum thyroid hormone levels and astrocyte-specific staining in three regions of the hippocampus were measured on day 22. DecaBDE exposure significantly reduced serum triiodothyronine, thyroxine, and astrocyte density in the subgranular zone but not the hilus or granular layer in both male and female mice. The reduction of thyroid hormone and/or glia activity could impair hippocampal development, leading to behavior dysfunction.
Collapse
Affiliation(s)
- Caitlyn M Edwards
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Deena Small
- Department of Biochemistry, University of New England, Biddeford, ME 04005, United States
| | - Tyler Bell
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Julian David-Drori
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Christina Hansen
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Keith Morris-Schaffer
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Charlene Canale
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - John Ng
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Vincent P Markowski
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States.
| |
Collapse
|
10
|
Nesan D, Kurrasch DM. Gestational Exposure to Common Endocrine Disrupting Chemicals and Their Impact on Neurodevelopment and Behavior. Annu Rev Physiol 2019; 82:177-202. [PMID: 31738670 DOI: 10.1146/annurev-physiol-021119-034555] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endocrine disrupting chemicals are common in our environment and act on hormone systems and signaling pathways to alter physiological homeostasis. Gestational exposure can disrupt developmental programs, permanently altering tissues with impacts lasting into adulthood. The brain is a critical target for developmental endocrine disruption, resulting in altered neuroendocrine control of hormonal signaling, altered neurotransmitter control of nervous system function, and fundamental changes in behaviors such as learning, memory, and social interactions. Human cohort studies reveal correlations between maternal/fetal exposure to endocrine disruptors and incidence of neurodevelopmental disorders. Here, we summarize the major literature findings of endocrine disruption of neurodevelopment and concomitant changes in behavior by four major endocrine disruptor classes:bisphenol A, polychlorinated biphenyls, organophosphates, and polybrominated diphenyl ethers. We specifically review studies of gestational and/or lactational exposure to understand the effects of early life exposure to these compounds and summarize animal studies that help explain human correlative data.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Medical Genetics, University of Calgary, Calgary, Alberta T2N 4N1, Canada; , .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, Alberta T2N 4N1, Canada; , .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
11
|
Johansson HK, Boberg J, Dybdahl M, Axelstad M, Vinggaard AM. Chemical risk assessment based on in vitro and human biomonitoring data: A case study on thyroid toxicants. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2018.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Eskola M, Elliott CT, Hajšlová J, Steiner D, Krska R. Towards a dietary-exposome assessment of chemicals in food: An update on the chronic health risks for the European consumer. Crit Rev Food Sci Nutr 2019; 60:1890-1911. [PMID: 31094210 DOI: 10.1080/10408398.2019.1612320] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An informed opinion to a hugely important question, whether the food on the Europeans' plate is safe to eat, is provided. Today, the Europeans face food-borne health risks from non-communicable diseases induced by excess body weight, outbreaks caused by pathogens, antimicrobial resistance and exposures to chemical contaminants. In this review, these risks are first put in an order of importance. Then, not only potentially injurious dietary chemicals are discussed but also beneficial factors of the food. This review can be regarded as an attempt towards a dietary-exposome evaluation of the chemicals, the average European adult consumers could chronically expose to during their life-times. Risk ranking reveals that currently the European adults are chronically exposed to a mixture of potentially genotoxic-carcinogenic contaminants, particularly food process contaminants, at the potential risk levels. Furthermore, several of the contaminants whose dietary exposures pose risks appear to be carcinogens operating with a genotoxic mode of action targeting the liver. This suggests that combined health risks from the exposure to a mixture of the chemical contaminants poses a greater potential risk than the risks assessed for single compounds. Over 100 European-level risk assessments are examined. Finally, the importance of a diversified and balanced diet is emphasized.
Collapse
Affiliation(s)
- Mari Eskola
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Jana Hajšlová
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague 6, Czech Republic
| | - David Steiner
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
13
|
Vuong AM, Yolton K, Poston KL, Xie C, Webster GM, Sjödin A, Braun JM, Dietrich KN, Lanphear BP, Chen A. Childhood polybrominated diphenyl ether (PBDE) exposure and executive function in children in the HOME Study. Int J Hyg Environ Health 2018; 221:87-94. [PMID: 29055520 PMCID: PMC5726937 DOI: 10.1016/j.ijheh.2017.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/09/2022]
Abstract
Prenatal exposure to polybrominated diphenyl ethers (PBDEs) have been reported to impair executive function in children, but little is known whether childhood PBDE exposures play a role. Using the Health Outcomes and Measures of the Environment (HOME) Study, a prospective birth cohort in the greater Cincinnati area, we investigated the association between repeated measures of PBDEs during childhood and executive function at 8 years in 208 children and whether effect modification by child sex was present. We used child serum collected at 1, 2, 3, 5, and 8 years to measure PBDEs. The Behavior Rating Inventory of Executive Function was completed by parents to assess executive function at 8 years. We used multiple informant models to examine childhood PBDEs during several exposure windows. Null associations were observed between early childhood PBDEs and executive function. However, we observed significant adverse associations between a 10-fold increase in concurrent concentrations of BDE-28 (β=4.6, 95% CI 0.5, 8.7) and BDE-153 (β=4.8, 95% CI 0.8, 8.8) with behavioral regulation. In addition, PBDEs at 8 years were significantly associated with poorer emotional and impulse control. No associations were noted between childhood PBDEs and metacognition or global executive function. However, child sex significantly modified the associations, with significantly poorer executive function among males with higher concurrent BDE-153, and null associations in females. Our study findings suggest that concurrent PBDE exposures during childhood may be associated with poorer executive function, specifically behavior regulation. Males may also be more sensitive to adverse associations of concurrent PBDEs on executive function.
Collapse
Affiliation(s)
- Ann M Vuong
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH, 45267, USA
| | - Kimberly Yolton
- Division of General and Community Pediatrics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7035, Cincinnati, OH, 45229, USA
| | - Kendra L Poston
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH, 45267, USA
| | - Changchun Xie
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH, 45267, USA
| | - Glenys M Webster
- BC Children's Hospital Research Institute and Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Andreas Sjödin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Mail Stop F-20, 4770 Buford Highway NE, Atlanta, GA, 30341, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, 121 South Main St, Box G-S121-2, Providence, RI, 02912, USA
| | - Kim N Dietrich
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH, 45267, USA
| | - Bruce P Lanphear
- BC Children's Hospital Research Institute and Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Aimin Chen
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH, 45267, USA.
| |
Collapse
|
14
|
Li J, Tao Y, Chen S, Li H, Chen P, Wei MZ, Wang H, Li K, Mazzeo M, Duan Y. A flexible plasma-treated silver-nanowire electrode for organic light-emitting devices. Sci Rep 2017; 159:1-8. [PMID: 29184113 DOI: 10.1016/j.envres.2017.07.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 04/29/2023] Open
Abstract
Silver nanowires (AgNWs) are a promising candidate to replace indium tin oxide (ITO) as transparent electrode material. However, the loose contact at the junction of the AgNWs and residual surfactant polyvinylpyrrolidone (PVP) increase the sheet resistance of the AgNWs. In this paper, an argon (Ar) plasma treatment method is applied to pristine AgNWs to remove the PVP layer and enhance the contact between AgNWs. By adjusting the processing time, we obtained AgNWs with a sheet resistance of 7.2Ω/□ and a transmittance of 78% at 550 nm. To reduce the surface roughness of the AgNWs, a peel-off process was used to transfer the AgNWs to a flexible NOA63 substrate. Then, an OLED was fabricated with the plasma-treated AgNWs electrode as anode. The highest brightness (27000 cd/m2) and current efficiency (11.8 cd/A) was achieved with a 30 nm thick light emitting layer of tris-(8-hydroxyquinoline) aluminum doped with 1% 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5 H,11H-(1)-benzopyropyrano(6,7-8-I,j)quinolizin-11-one. Compared to thermal annealing, the plasma-treated AgNW film has a lower sheet resistance, a shorter processing time, and a better hole-injection. Our results indicate that plasma treatment is an effective and efficient method to enhance the conductivity of AgNW films, and the plasma-treated AgNW electrode is suitable to manufacture flexible organic optoelectronic devices.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Jilin, 130012, China
| | - Ye Tao
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Jilin, 130012, China
| | - Shufen Chen
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Nation Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9Wenyuan Road, Nanjing, 210023, China
| | - Huiying Li
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Ping Chen
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Jilin, 130012, China
| | - Meng-Zhu Wei
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Jilin, 130012, China
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Nation Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9Wenyuan Road, Nanjing, 210023, China
| | - Hu Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Jilin, 130012, China
| | - Kun Li
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Jilin, 130012, China
| | - Marco Mazzeo
- Istituto di Nanotecnologia, CNR-Nanotec, c/o Campus Ecotekne via Monteroni, Lecce, 73100, Italy
| | - Yu Duan
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Jilin, 130012, China.
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Nation Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
15
|
Ding G, Yu J, Chen L, Wang C, Zhou Y, Hu Y, Shi R, Zhang Y, Cui C, Gao Y, Tian Y, Liu F. Polybrominated diphenyl ethers (PBDEs) and thyroid hormones in cord blood. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017. [PMID: 28628864 DOI: 10.1016/j.envpol.2017.05.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Human exposure to polybrominated diphenyl ethers (PBDEs) has been increasing over the last three decades in China and around the world. Animal studies suggest that PBDEs could reduce blood levels of thyroid hormones, but it is unclear whether PBDEs disrupt thyroid function in humans. We used data from a prospective birth cohort of 123 pregnant women who were enrolled between September 2010 and March 2011 in Shandong, China. We measured the concentrations of eight PBDE congeners (n = 106) and five thyroid hormones (n = 107) in cord serum samples. We examined the relationship between prenatal exposure to PBDEs and thyroid function (n = 90). Median concentrations of BDEs 47, 99, 100, and 153 (detection frequencies > 75%) were 3.96, 8.27, 3.31, and 1.89 ng/g lipid, respectively. A 10-fold increase in BDE-99 and Σ4 PBDEs (the sum of BDEs 47, 99, 100, and 153) concentrations was associated with a 0.41 μg/dL (95% confidence interval [CI]: 0.10 to 0.72) and 0.37 μg/dL (95% CI: 0.06 to 0.68) increase in total thyroxine levels (TT4), respectively. No associations were found between other individual congeners and any of the five thyroid hormones. Our study suggests that prenatal exposure to PBDEs may be associated with higher TT4 in cord blood. Given the inconsistent findings across existing studies, our results need to be confirmed in additional studies.
Collapse
Affiliation(s)
- Guodong Ding
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pediatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Yu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital East Campus Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Limei Chen
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caifeng Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijun Zhou
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Hu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Shi
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Cui
- Research Base of Key Laboratory of Surveillance and Early-warning on Infectious Disease in China CDC, Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fang Liu
- Department of Pediatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Xu M, Huang Y, Li K, Cheng X, Li G, Liu M, Nie Y, Geng S, Zhao S. Developmental exposure of decabromodiphenyl ether impairs subventricular zone neurogenesis and morphology of granule cells in mouse olfactory bulb. Arch Toxicol 2017; 92:529-539. [DOI: 10.1007/s00204-017-2059-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/31/2017] [Indexed: 11/29/2022]
|
17
|
Pereira LC, Souza AO, Tasso MJ, Oliveira AMC, Duarte FV, Palmeira CM, Dorta DJ. Exposure to decabromodiphenyl ether (BDE-209) produces mitochondrial dysfunction in rat liver and cell death. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1129-1144. [PMID: 28880749 DOI: 10.1080/15287394.2017.1357370] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polybrominated diphenyl ethers (PBDE) are ubiquitous environmental pollutants. Exposure to these chemicals has been associated with developmental neurotoxicity, endocrine dysfunctions, reproductive disorders, and hepatotoxicity. The widespread use of PBDE as flame retardants has culminated in daily exposure of humans and wildlife to these contaminants and resulted in their banned use. Thus assessment of the potential effects of each PBDE congener on living organisms has become cause for concern. The aim of this study was to (1) examine the effects of decabromodiphenyl ether (BDE)-209 on different functions of HepG2 cells and (2) investigate whether this congener is involved in mitochondrial toxicity. The use of multiple methods was employed to (i) study the influence of BDE-209 on mitochondrial permeability transition (MPT) process in mitochondria isolated from rat liver and (ii) determine the consequential cellular damage. Our results showed that BDE-209 induced matrix swelling related to MPT with 10 µM and ATP depletion with 0.1 µM. In addition, 0.5 μM BDE-209 reduced HepG2 cell viability, produced collapse of membrane potential, but increased levels of reactive oxygen species (ROS) after 48 h incubation. After 24 h with 5 μM treatment elevated levels of ROS, DNA fragmentation and cytochrome c release, accompanied by caspase 9 and caspase 3 activation was noted. Taken together, these results suggest that short-duration exposure (24 or 48 h) to 0.5 μM or 5 μM BDE-209 concentrations diminished HepG2 cell viability due to apoptosis associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Lilian C Pereira
- a School of Pharmaceutical Sciences of Ribeirão Preto, Departament of Clinical Analysis, Toxicological and Bromatological , University of São Paulo , Ribeirão Preto , São Paulo , Brazil
- b Faculty of Agronomic Sciences of Botucatu, Department of Bioprocesses and Biotechnology , São Paulo State University , Botucatu , São Paulo , Brazil
| | - Alecsandra O Souza
- c Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto , Departamento de Química, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brazil
| | - Maria J Tasso
- c Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto , Departamento de Química, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brazil
| | - Alana M C Oliveira
- c Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto , Departamento de Química, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brazil
| | - Filipe V Duarte
- d CNC - Center for Neuroscience and Cell Biology, University of Coimbra , Faculty of Medicine , Coimbra , Portugal
- e Department of Life Sciences , University of Coimbra , Coimbra , Portugal
| | - Carlos M Palmeira
- d CNC - Center for Neuroscience and Cell Biology, University of Coimbra , Faculty of Medicine , Coimbra , Portugal
- e Department of Life Sciences , University of Coimbra , Coimbra , Portugal
| | - Daniel J Dorta
- c Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto , Departamento de Química, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brazil
| |
Collapse
|
18
|
Markowski VP, Miller-Rhodes P, Cheung R, Goeke C, Pecoraro V, Cohen G, Small DJ. Motor deficits, impaired response inhibition, and blunted response to methylphenidate following neonatal exposure to decabromodiphenyl ether. Neurotoxicol Teratol 2017; 63:51-59. [PMID: 28764964 DOI: 10.1016/j.ntt.2017.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 12/30/2022]
Abstract
Decabromodiphenyl ether (decaBDE) is an applied brominated flame retardant that is widely-used in electronic equipment. After decades of use, decaBDE and other members of its polybrominated diphenyl ether class have become globally-distributed environmental contaminants that can be measured in the atmosphere, water bodies, wildlife, food staples and human breastmilk. Although it has been banned in Europe and voluntarily withdrawn from the U.S. market, it is still used in Asian countries. Evidence from epidemiological and animal studies indicate that decaBDE exposure targets brain development and produces behavioral impairments. The current study examined an array of motor and learning behaviors in a C57BL6/J mouse model to determine the breadth of the developmental neurotoxicity produced by decaBDE. Mouse pups were given a single daily oral dose of 0 or 20mg/kg decaBDE from postnatal day 1 to 21 and were tested in adulthood. Exposed male mice had impaired forelimb grip strength, altered motor output in a circadian wheel-running procedure, increased response errors during an operant differential reinforcement of low rates (DRL) procedure and a blunted response to an acute methylphenidate challenge administered before DRL testing. With the exception of altered wheel-running output, exposed females were not affected. Neither sex had altered somatic growth, motor coordination impairments on the Rotarod, gross learning deficits during operant lever-press acquisition, or impaired food motivation. The overall pattern of effects suggests that males are more sensitive to developmental decaBDE exposure, especially when performing behaviors that require effortful motor output or when learning tasks that require sufficient response inhibition for their successful completion.
Collapse
Affiliation(s)
- Vincent P Markowski
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States.
| | - Patrick Miller-Rhodes
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Randy Cheung
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Calla Goeke
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Vincent Pecoraro
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Gideon Cohen
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Deena J Small
- Department of Biochemistry, University of New England, Biddeford, ME 04005, United States
| |
Collapse
|
19
|
Sarkar D, Singh SK. Maternal exposure to polybrominated diphenyl ether (BDE-209) during lactation affects germ cell survival with altered testicular glucose homeostasis and oxidative status through down-regulation of Cx43 and p27Kip1 in prepubertal mice offspring. Toxicology 2017; 386:103-119. [DOI: 10.1016/j.tox.2017.05.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/12/2017] [Accepted: 05/27/2017] [Indexed: 11/29/2022]
|
20
|
Jung YS, Lee J, Seo J, Hwang GS. Metabolite profiling study on the toxicological effects of polybrominated diphenyl ether in a rat model. ENVIRONMENTAL TOXICOLOGY 2017; 32:1262-1272. [PMID: 27442109 DOI: 10.1002/tox.22322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are commonly used to retard the combustion of materials such as foam padding, textiles, or plastics, and numerous studies have confirmed the accumulation thereof in the environment and in fish, mammals, and humans. In this study, we used metabolomics to conduct an environmental risk assessment of the PBDE-209. We profiled the urinary metabolites of control and PBDE-treated rats (exposed to PBDE-209) using nuclear magnetic resonance (NMR) and mass spectrometry (MS). Global metabolic profiling indicated that the effects of PBDE-209 on the urinary metabolic profile were not significant. However, targeted metabolic profiling revealed progressive effects of PBDE-209 over a 7-day PBDE-209 treatment. Moreover, despite the weak PBDE-209 effects, we observed that choline, acetylcholine, 3-indoxylsulfate, creatinine, urea, and dimethyl sulfone levels were decreased, whereas that of pyruvate was significantly increased. Furthermore, we suggest that the increased pyruvate level and decreased levels of choline, acetylcholine, and uremic toxins were suggestive of endocrine disruption and neurodevelopmental toxicity caused by PBDEs. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1262-1272, 2017.
Collapse
Affiliation(s)
- Young-Sang Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
| | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Jungju Seo
- Mass Spectrometry & Advanced Instrumentation Group, Ochang Headquters, Korea Basic Science Institute, Cheongju, 363-886, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 120-750, Republic of Korea
| |
Collapse
|
21
|
Tung EWY, Kawata A, Rigden M, Bowers WJ, Caldwell D, Holloway AC, Robaire B, Hales BF, Wade MG. Gestational and Lactational Exposure to an Environmentally-Relevant Mixture of Brominated Flame Retardants: Effects on Neurodevelopment and Metabolism. Birth Defects Res 2017; 109:497-512. [PMID: 28398660 PMCID: PMC5434666 DOI: 10.1002/bdr2.1021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/02/2017] [Accepted: 02/02/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Developmental exposure to brominated flame retardants (BFRs), including polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD), has been associated with impaired neurodevelopment and some symptoms of metabolic syndrome. However, there are inconsistencies in studies reporting neurodevelopmental effects with studies of pure substances more likely to report effects than studies of technical products. In addition, the influence of early BFR exposures on later development of metabolic disease-like symptoms has not been investigated. This study examined the effects of perinatal exposure to an environmentally relevant mixture of BFRs based on relative levels observed in house dust, on several markers of neurodevelopment and metabolism in offspring. METHODS Sprague-Dawley female rats were fed a diet estimated to deliver daily doses of 0, 0.06, 20, or 60 mg/kg of a mixture of PBDEs and HBCDD from before mating to weaning. Offspring were weaned to control diet and subjected to neurobehavioral and metabolic assessments. RESULTS Exposure to BFRs decreased vertical movement in at postnatal day (PND) 32 and increased time to emerge to a lighted area on PND 105 in offspring of both sexes. Although early life exposure to the BFR mixture did not impact measures of glucose or insulin action, male offspring had significantly decreased fat pad weights at PND 46. Total cholesterol was increased in male and female offspring exposed to the highest dose at PND 21. CONCLUSIONS These results suggest that gestational and lactational exposure to an environmentally relevant BFR mixture may induce changes in neurodevelopment and lipid metabolism in offspring. Birth Defects Research 109:497-512, 2017.© 2017 The Authors Birth Defects Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emily W Y Tung
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Alice Kawata
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Marc Rigden
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Wayne J Bowers
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Don Caldwell
- Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada.,Department of Obstetrics and Gynecology, McGill University, Montréal, Quebec, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
22
|
Immunohistochemistry of aberrant neuronal development induced by 6-propyl-2-thiouracil in rats. Toxicol Lett 2016; 261:59-71. [DOI: 10.1016/j.toxlet.2016.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/03/2016] [Accepted: 08/19/2016] [Indexed: 11/20/2022]
|
23
|
Schug TT, Johnson AF, Birnbaum LS, Colborn T, Guillette LJ, Crews DP, Collins T, Soto AM, Vom Saal FS, McLachlan JA, Sonnenschein C, Heindel JJ. Minireview: Endocrine Disruptors: Past Lessons and Future Directions. Mol Endocrinol 2016; 30:833-47. [PMID: 27477640 PMCID: PMC4965846 DOI: 10.1210/me.2016-1096] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/12/2016] [Indexed: 11/19/2022] Open
Abstract
Within the past few decades, the concept of endocrine-disrupting chemicals (EDCs) has risen from a position of total obscurity to become a focus of dialogue, debate, and concern among scientists, physicians, regulators, and the public. The emergence and development of this field of study has not always followed a smooth path, and researchers continue to wrestle with questions about the low-dose effects and nonmonotonic dose responses seen with EDCs, their biological mechanisms of action, the true pervasiveness of these chemicals in our environment and in our bodies, and the extent of their effects on human and wildlife health. This review chronicles the development of the unique, multidisciplinary field of endocrine disruption, highlighting what we have learned about the threat of EDCs and lessons that could be relevant to other fields. It also offers perspectives on the future of the field and opportunities to better protect human health.
Collapse
Affiliation(s)
- Thaddeus T Schug
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - Anne F Johnson
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - Linda S Birnbaum
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - Theo Colborn
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - Louis J Guillette
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - David P Crews
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - Terry Collins
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - Ana M Soto
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - Frederick S Vom Saal
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - John A McLachlan
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - Carlos Sonnenschein
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - Jerrold J Heindel
- National Institute of Environmental Health Sciences/National Institutes of Health (T.T.S., J.J.H.), Division of Extramural Research, Research Triangle Park, North Carolina 27560; 2MDB, Inc (A.F.J.), Durham, North Carolina 27713; National Cancer Institute and National Institute of Environmental Health Sciences (L.S.B.), National Institutes of Health, Research Triangle Park, North Carolina 27709; The Endocrine Disruption Exchange (T.Colb.), Paonia, Colorado 81428; Department of Obstetrics and Gynecology (L.J.G.), Medical University of S Carolina, and Hollings Marine Laboratory, Charleston, South Carolina 29425; Section of Integrative Biology (D.C.), University of Texas at Austin, Austin, Texas 78712; Department of Chemistry (T.Coll.), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Department of Anatomy and Cellular Biology (A.M.S., C.S.), Tufts University School of Medicine, Boston, Massachusetts 02155; Division of Biological Sciences and Department (F.S.v.S.),University of Missouri-Columbia, Columbia, Missouri 65211; and Department of Pharmacology (J.A.M.), Tulane University School of Medicine, New Orleans, Louisiana 70118
| |
Collapse
|
24
|
Gill S, Hou Y, Li N, Pulido O, Bowers W. Developmental neurotoxicity of polybrominated diphenyl ethers mixture de71 in Sprague-Dawley rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:482-93. [PMID: 27294297 DOI: 10.1080/15287394.2016.1182001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Polybrominated diphenyl ethers (PBDE) are a class of brominated flame retardants that are recognized as global environmental contaminants and a potential adverse health risk. The objective of this study was to evaluate the developmental impacts on rat Sprague-Dawley (SD) pups at postnatal day (PND) 11, 21, 50, 105, and 250 after perinatal exposure to a DE71 mixture. These PNDs corresponded to juveniles, young, and mature adults, respectively. The analysis included histopathological, transcriptional evaluation, and Western blots in both hippocampus and midbrain. There were no marked histopathological changes, but significant transcriptional alterations were observed at PND 21 and 250 in midbrain. These changes occurred in a number of the markers of the cholinergic system, including acetylcholinesterase, muscarinic and nicotinic receptors, and structural gene,s including those of neurofilaments, cell adhesion molecules including N-cadherin and CAMKII, and cytokines. The markers were upregulated at least twofold or greater at PND 21. These biomarkers were predominantly altered in males at low dose (0.3 mg/kg), whereas females were affected only at high concentration (30 mg/kg). At PND 250 both males and females showed downregulation of markers in both intermediate- and high-dose groups. Our results support the findings that in utero and lactational exposure to DE71 mixture leads to transcriptional alterations in midbrain of adult SD rats.
Collapse
Affiliation(s)
- Santokh Gill
- a Regulatory Toxicology Research Division , Health Products and Foods Branch, Health Canada , Ottawa , Ontario , Canada
| | - Yangxun Hou
- a Regulatory Toxicology Research Division , Health Products and Foods Branch, Health Canada , Ottawa , Ontario , Canada
| | - Nanqin Li
- b Hazard Identification Division , Environmental Health Science and Research Bureau, Health Canada , Ottawa , Ontario , Canada
| | - Olga Pulido
- c Departmental of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , Ontario , Canada
| | - Wayne Bowers
- b Hazard Identification Division , Environmental Health Science and Research Bureau, Health Canada , Ottawa , Ontario , Canada
- d Department of Neuroscience , Carleton University , Ottawa , Ontario , Canada
| |
Collapse
|
25
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1423] [Impact Index Per Article: 142.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
26
|
Behavioral and thyroid effects of in utero and lactational exposure of Sprague–Dawley rats to the polybrominated diphenyl ether mixture DE71. Neurotoxicol Teratol 2015; 52:127-42. [DOI: 10.1016/j.ntt.2015.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 12/30/2022]
|
27
|
Ding G, Yu J, Cui C, Chen L, Gao Y, Wang C, Zhou Y, Tian Y. Association between prenatal exposure to polybrominated diphenyl ethers and young children's neurodevelopment in China. ENVIRONMENTAL RESEARCH 2015; 142:104-111. [PMID: 26133807 DOI: 10.1016/j.envres.2015.06.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/04/2015] [Accepted: 06/06/2015] [Indexed: 06/04/2023]
Abstract
The use of polybrominated diphenyl ethers (PBDEs) has been dramatically increasing over the last two decades in China. Animal studies suggest that prenatal exposure to PBDEs may result in neurodevelopmental deficits. Two hundred thirty-two participating mothers were recruited from a prospective birth cohort in rural northern China between September 2010 and February 2012. We analyzed 232 cord blood specimens for selected PBDE congeners and examined their association with children's developmental quotients (DQs) at 12 (n=192) and 24 (n=149) months of age based on the Gesell Developmental Schedules (motor, adaptive, language, and social domains). There were no substantial differences by demographic characteristics among the three time points: baseline, 12 and 24 months of age. Median cord blood levels of PBDE congeners 47, 99, 100, and 153 were 3.71, 6.70, 2.63, and 2.19 ng/g lipid, respectively. At 12 months of age, neither the individual nor total (the sum of BDEs 47, 99, 100, and 153) congener levels were associated with any of the four domain DQs. However, at 24 months of age, a 10-fold increase in BDE-99 levels was associated with a 2.16-point decrease [95% confidence interval (CI): -4.52, -0.20] in language domain DQs and a 10-fold increase in BDE-47 levels was associated with a 1.89-point decrease (95% CI: -3.75, -0.03) in social domain DQs. Prenatal exposure to PBDEs was associated with lower DQs in young children. The results contribute to the growing evidence that PBDEs could act as developmental neurotoxicants,and the findings have implications for children's environmental health in China.
Collapse
Affiliation(s)
- Guodong Ding
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pediatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Yu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chang Cui
- Research Base of Key Laboratory of Surveillance and Early-warning on Infectious Disease in China CDC, Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, China
| | - Limei Chen
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caifeng Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijun Zhou
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
28
|
CDRI-08 Attenuates REST/NRSF-Mediated Expression of NMDAR1 Gene in PBDE-209-Exposed Mice Brain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:403840. [PMID: 26413122 PMCID: PMC4564648 DOI: 10.1155/2015/403840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/16/2015] [Accepted: 02/22/2015] [Indexed: 11/17/2022]
Abstract
CDRI-08 is a standardized bacoside enriched ethanolic extract of Bacopa monnieri, a nootropic plant. We reported that CDRI-08 attenuated oxidative stress and memory impairment in mice, induced by a flame retardant, PBDE-209. In order to explore the mechanism, present study was designed to examine the role of CDRI-08 on the expression of NMDAR1 (NR1) and the binding of REST/NRSF to NR1 promoter against postnatal exposure of PBDE-209. Male mice pups were orally supplemented with CDRI-08 at the doses of 40, 80, or 120 mg/kg along with PBDE-209 (20 mg/kg) during PND 3–10 and frontal cortex and hippocampus were collected at PND 11 and 60 to study the expression and regulation of NR1 by RT-PCR and electrophoretic mobility shift assay, respectively. The findings showed upregulated expression of NR1 and decreased binding of REST/NRSF to NR1 promoter after postnatal exposure of PBDE-209. Interestingly, supplementation with CDRI-08 significantly restored the expression of NR1 and binding of REST/NRSF to NR1 promoter near to the control value at the dose of 120 mg/kg. In conclusion, the results suggest that CDRI-08 possibly acts on glutamatergic system through expression and regulation of NR1 and may restore memory, impaired by PBDE-209 as reported in our previous study.
Collapse
|
29
|
Bortel EL, Duda GN, Mundlos S, Willie BM, Fratzl P, Zaslansky P. Long bone maturation is driven by pore closing: A quantitative tomography investigation of structural formation in young C57BL/6 mice. Acta Biomater 2015; 22:92-102. [PMID: 25829108 DOI: 10.1016/j.actbio.2015.03.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/28/2015] [Accepted: 03/23/2015] [Indexed: 01/14/2023]
Abstract
During mammalian growth, long bones undergo extensive structural reorganization, transforming from primitive shapes in the limb buds into mature bones. Here we shed light on the steps involved in structural formation of the mineralized tissue in midshafts of C57BL/6 femurs, shortly after birth. By combining 3D micrometer-resolution X-ray microtomography with 2D histology, we study the transformation of the tissue from a partially-mineralized scaffold into a compact bone structure. We identify three growth phases that take place during murine long bone maturation: During a patterning phase (I) mineralized struts form a loosely connected foam-like cortical network. During a transitioning phase (II), the extensive non-mineralized tracts vanish, transforming the foam into a fully continuous mass, by 14 days of age. Concomitantly, closed porosity increases to about ∼ 1.4%, and stays at this level, also found in maturity. During a shaping phase (III), the bones gradually attain their characteristic intricate adult form. Architectured mineral depositioning--first in open foamy scaffolds, and later into solid bone material--is presumably a compromise between the mechanical needs of providing support to the body, and the biological requirements of vascularization and extensive nutritional needs in the early stages of bone formation.
Collapse
Affiliation(s)
- Emely L Bortel
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, 14476 Potsdam, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Georg N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Berlin, Ihnestraße 63-73, 14195 Berlin, Germany; Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Bettina M Willie
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, 14476 Potsdam, Germany.
| | - Paul Zaslansky
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
30
|
Kodavanti PRS, Royland JE, Osorio C, Winnik WM, Ortiz P, Lei L, Ramabhadran R, Alzate O. Developmental exposure to a commercial PBDE mixture: effects on protein networks in the cerebellum and hippocampus of rats. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:428-36. [PMID: 25616259 PMCID: PMC4421769 DOI: 10.1289/ehp.1408504] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 12/17/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) are structurally similar to polychlorinated biphenyls (PCBs) and have both central (learning and memory deficits) and peripheral (motor dysfunction) neurotoxic effects at concentrations/doses similar to those of PCBs. The cellular and molecular mechanisms for these neurotoxic effects are not fully understood; however, several studies have shown that PBDEs affect thyroid hormones, cause oxidative stress, and disrupt Ca2+-mediated signal transduction. Changes in these signal transduction pathways can lead to differential gene regulation with subsequent changes in protein expression, which can affect the development and function of the nervous system. OBJECTIVE In this study, we examined the protein expression profiles in the rat cerebellum and hippocampus following developmental exposure to a commercial PBDE mixture, DE-71. METHODS Pregnant Long-Evans rats were dosed perinatally with 0 or 30.6 mg/kg/day of DE-71 from gestation day 6 through sampling on postnatal day 14. Proteins from the cerebellum and hippocampus were extracted, expression differences were detected by two-dimensional difference gel electrophoresis, and proteins were identified by tandem mass spectrometry. Protein network interaction analysis was performed using Ingenuity® Pathway Analysis, and the proteins of interest were validated by Western blotting. RESULTS Four proteins were significantly differentially expressed in the cerebellum following DE-71 exposure, whereas 70 proteins were significantly differentially expressed in the hippocampus. Of these proteins, 4 from the cerebellum and 47 from the hippocampus, identifiable by mass spectrometry, were found to have roles in mitochondrial energy metabolism, oxidative stress, apoptosis, calcium signaling, and growth of the nervous system. CONCLUSIONS Results suggest that changes in energy metabolism and processes related to neuroplasticity and growth may be involved in the developmental neurotoxicity of PBDEs.
Collapse
Affiliation(s)
- Prasada Rao S Kodavanti
- Neurotoxicology Branch, and 2Genetic and Cellular Toxicology Branch, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Zhu B, Wang Q, Wang X, Zhou B. Impact of co-exposure with lead and decabromodiphenyl ether (BDE-209) on thyroid function in zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 157:186-195. [PMID: 25456233 DOI: 10.1016/j.aquatox.2014.10.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 06/04/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) and metals are the main contaminants at waste electrical and electronic equipment ("e-waste") recycling sites. However, the potential environmental health effects of mixtures of PBDEs and metals are not known. We investigated co-exposure of lead (Pb) with decabromodiphenyl ether (BDE-209) on thyroid function in zebrafish larvae. Seven groups of embryos/larvae of zebrafish were treated with Pb (0, 2, 5, 10, 15, 20, and 30 μg/L), six groups were exposed to BDE-209 (0, 50, 100, 200, 400, and 800 μg/L), and nine groups of zebrafish larvae were treated with Pb and BDE-209 (5, 10, and 20 μg/L Pb; 50, 100, and 200 μg/L BDE-209). Embryos/larvae were exposed from 2h post-fertilization (hpf) until 144 hpf, and thyroid hormone (TH) content measured. Pb exposure significantly decreased whole-body TH contents (triiodothyroxine (T3) and thyroxine (T4)) but BDE-209 exposure significantly increased T3 and T4 levels. Pb or BDE-209 treatment alone caused a predicted downregulation of TH transport (i.e., expression of the mRNA or proteins of transthyretin). Chemical analyses showed Pb uptake to be increased by BDE-209, but BDE-209 bioconcentration was decreased and the ability to metabolize BDE-209 was reduced in the presence of Pb. We also found that a mixture of the two chemicals had a synergistic effect on TH levels in zebrafish.
Collapse
Affiliation(s)
- Biran Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiangwei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianfeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
33
|
Reverte I, Domingo JL, Colomina MT. Neurodevelopmental effects of decabromodiphenyl ether (BDE-209) in APOE transgenic mice. Neurotoxicol Teratol 2014; 46:10-7. [DOI: 10.1016/j.ntt.2014.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 11/26/2022]
|
34
|
Costa LG, de Laat R, Tagliaferri S, Pellacani C. A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity. Toxicol Lett 2014; 230:282-94. [PMID: 24270005 PMCID: PMC4028440 DOI: 10.1016/j.toxlet.2013.11.011] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/12/2013] [Indexed: 01/01/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), extensively used in the past few decades as flame retardants in a variety of consumer products, have become world-wide persistent environmental pollutants. Levels in North America are usually higher than those in Europe and Asia, and body burden is 3-to-9-fold higher in infants and toddlers than in adults. The latter has raised concern for potential developmental toxicity and neurotoxicity of PBDEs. Experimental studies in animals and epidemiological observations in humans suggest that PBDEs may be developmental neurotoxicants. Pre- and/or post-natal exposure to PBDEs may cause long-lasting behavioral abnormalities, particularly in the domains of motor activity and cognition. The mechanisms underlying the developmental neurotoxic effects of PBDEs are not known, though several hypotheses have been put forward. One general mode of action relates to the ability of PBDEs to impair thyroid hormone homeostasis, thus indirectly affecting the developing brain. An alternative or additional mode of action involves a direct effect of PBDEs on nervous system cells; PBDEs can cause oxidative stress-related damage (DNA damage, mitochondrial dysfunction, apoptosis), and interfere with signal transduction (particularly calcium signaling), and with neurotransmitter systems. Important issues such as bioavailability and metabolism of PBDEs, extrapolation of results to low level of exposures, and the potential effects of interactions among PBDE congeners and between PBDEs and other contaminants also need to be taken into account.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Department of Neuroscience, University of Parma, Parma, Italy.
| | - Rian de Laat
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
35
|
Bansal R, Tighe D, Danai A, Rawn DFK, Gaertner DW, Arnold DL, Gilbert ME, Zoeller RT. Polybrominated diphenyl ether (DE-71) interferes with thyroid hormone action independent of effects on circulating levels of thyroid hormone in male rats. Endocrinology 2014; 155:4104-12. [PMID: 25060363 PMCID: PMC4164921 DOI: 10.1210/en.2014-1154] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are routinely found in human tissues including cord blood and breast milk. PBDEs may interfere with thyroid hormone (TH) during development, which could produce neurobehavioral deficits. An assumption in experimental and epidemiological studies is that PBDE effects on serum TH levels will reflect PBDE effects on TH action in tissues. To test whether this assumption is correct, we performed the following experiments. First, five concentrations of diphenyl ether (0-30 mg/kg) were fed daily to pregnant rats to postnatal day 21. PBDEs were measured in dam liver and heart to estimate internal dose. The results were compared with a separate study in which four concentrations of propylthiouracil (PTU; 0, 1, 2, and 3 ppm) was provided to pregnant rats in drinking water for the same duration as for diphenyl ether. PBDE exposure reduced serum T4 similar in magnitude to PTU, but serum TSH was not elevated by PBDE. PBDE treatment did not affect the expression of TH response genes in the liver or heart as did PTU treatment. PTU treatment reduced T4 in liver and heart, but PBDE treatment reduced T4 only in the heart. Tissue PBDEs were in the micrograms per gram lipid range, only slightly higher than observed in human fetal tissues. Thus, PBDE exposure reduces serum T4 but does not produce effects on tissues typical of low TH produced by PTU, demonstrating that the effects of chemical exposure on serum T4 levels may not always be a faithful proxy measure of chemical effects on the ability of thyroid hormone to regulate development and adult physiology.
Collapse
Affiliation(s)
- Ruby Bansal
- Department of Biology (R.B., D.T., A.D., T.Z.) and Molecular and Cellular Biology Program (T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; Bureau of Chemical Safety, Food Directorate, Health Products, and Food Branch (D.F.K.R., D.W.G., D.L.A.), Health Canada, Ottawa, Ontario, Canada K1A 0K9; and Toxicity Assessment Division (M.E.G.), US Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Buratovic S, Viberg H, Fredriksson A, Eriksson P. Developmental exposure to the polybrominated diphenyl ether PBDE 209: Neurobehavioural and neuroprotein analysis in adult male and female mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:570-85. [PMID: 25194327 DOI: 10.1016/j.etap.2014.08.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/13/2014] [Indexed: 05/17/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), used as flame retardants in polymer products, are reported to cause developmental neurotoxic effects in mammals. The present study have investigated neurotoxic effects arising from neonatal exposure to PBDE 209, including alterations in sex differences, spontaneous behaviour, learning and memory, neuroproteins and altered susceptibility of the cholinergic system in adults. Three-day-old NMRI mice, of both sexes, were exposed to PBDE 209 (2,2',3,3',4,4',5,5',6,6'-decaBDE at 0, 1.4, 6.0 and 14.0μmol/kg b.w.). At adult age (2-7 months) a similar developmental neurotoxic effects in both male and female mice were seen, including lack of or reduced habituation to a novel home environment, learning and memory defects, modified response to the cholinergic agent's paraoxon (males) and nicotine (females) indicating increased susceptibility of the cholinergic system. The behavioural defects were dose-response related and persistent. In mice of both sexes and showing behavioural defects, neuroprotein tau was increased.
Collapse
Affiliation(s)
- Sonja Buratovic
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-75236 Uppsala, Sweden
| | - Henrik Viberg
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-75236 Uppsala, Sweden
| | - Anders Fredriksson
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-75236 Uppsala, Sweden
| | - Per Eriksson
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-75236 Uppsala, Sweden.
| |
Collapse
|
37
|
Miller-Rhodes P, Popescu M, Goeke C, Tirabassi T, Johnson L, Markowski VP. Prenatal exposure to the brominated flame retardant hexabromocyclododecane (HBCD) impairs measures of sustained attention and increases age-related morbidity in the Long-Evans rat. Neurotoxicol Teratol 2014; 45:34-43. [PMID: 24995466 DOI: 10.1016/j.ntt.2014.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/18/2014] [Accepted: 06/24/2014] [Indexed: 01/18/2023]
Abstract
Hexabromocyclododecane (HBCD) is a brominated flame retardant that is widely-used in foam building materials and to a lesser extent, furniture and electronic equipment. After decades of use, HBCD and its metabolites have become globally-distributed environmental contaminants that can be measured in the atmosphere, water bodies, wildlife, food staples and human breastmilk. Emerging evidence suggests that HBCD can affect early brain development and produce behavioral consequences for exposed organisms. The current study examined some of the developmental and lifelong neurobehavioral effects of prenatal HBCD exposure in a rat model. Pregnant rats were gavaged with 0, 3, 10, or 30mg/kg HBCD from gestation day 1 to parturition. A functional observation battery was used to assess sensorimotor behaviors in neonates. Locomotor and operant responding under random ratio and Go/no-go schedules of food reinforcement were examined in cohorts of young adult and aged rats. HBCD exposure was associated with increased reactivity to a tailpinch in neonates, decreased forelimb grip strength in juveniles, and impaired sustained attention indicated by Go/no-go responding in aged rats. In addition, HBCD exposure was associated with a significant increase in morbidity in the aged cohort. One health complication, a progressive loss of hindleg function, was observed only in the aged, 3mg/kg HBCD animals. These effects suggest that HBCD is a developmental neurotoxicant that can produce long-term behavioral impairments that emerge at different points in the lifespan following prenatal exposure.
Collapse
Affiliation(s)
- Patrick Miller-Rhodes
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY, 14454, United States
| | - Maria Popescu
- Department of Psychology, University of Southern Maine, Portland, ME, 04104, United States
| | - Calla Goeke
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY, 14454, United States
| | - Toni Tirabassi
- Department of Psychology, University of Southern Maine, Portland, ME, 04104, United States
| | - Lauren Johnson
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY, 14454, United States
| | - Vincent P Markowski
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY, 14454, United States
| |
Collapse
|
38
|
|
39
|
Reverte I, Pujol A, Domingo JL, Colomina MT. Thyroid hormones and fear learning but not anxiety are affected in adult apoE transgenic mice exposed postnatally to decabromodiphenyl ether (BDE-209). Physiol Behav 2014; 133:81-91. [DOI: 10.1016/j.physbeh.2014.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/14/2014] [Accepted: 05/14/2014] [Indexed: 02/06/2023]
|
40
|
Abstract
Exposure to polybrominated diphenyl ethers (PBDE) during sensitive developmental windows can interfere with cognitive function and behavior, which are critical components of neurodevelopment. The association between developmental exposure to PBDEs and neurodevelopment has been extensively studied using animal models. In this review, we focus on the accumulating evidence in humans. Despite methodological, geographical, and temporal differences between studies, the majority of the epidemiologic evidence supports that early life exposure to PBDEs measured during pregnancy and/or during childhood is detrimental to child neurodevelopment in domains related to child behavior, cognition, and motor skills. While the precise mechanism of action of PBDEs on neurodevelopment is unknown, PBDE-induced neurotoxicity via thyroid hormone disruption and direct action of PBDEs on the developing brain have been proposed and tested. Additional studies are suggested to better understand how early life and/or childhood PBDE exposures, including exposure to specific PBDE congeners, impact neurodevelopmental indices.
Collapse
|
41
|
Yang W, Fu J, Wang T, Liu H, Wang Y, Zhou Q, Jiang G. Alterations of endogenous metabolites in urine of rats exposed to decabromodiphenyl ether using metabonomic approaches. J Environ Sci (China) 2014; 26:900-908. [PMID: 25079421 DOI: 10.1016/s1001-0742(13)60533-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 06/03/2023]
Abstract
There is large usage of polybrominated diphenyl ethers (PBDEs) especially for decabromodiphenyl ether (BDE-209, Deca-BDE) in controlling the risks of fire. The toxicological effects of PBDEs are worth being concerned about. Female SD rats were daily gavaged with BDE-209 ether at the dose of 100 mg/kg for 20 days. Histological observation was performed for the screening of the target organs for BDE-209 exposure. The distribution and metabolism of PBDEs in the exposed main organs were evidenced by HRGC-HRMS. Alterations of the endogenous metabolite concentrations in urine were investigated using metabonomic approaches based on (1)H NMR spectrum. Histopathological changes including serious edema in kidney, hepatocellular spotty necrosis and perivasculitis in liver indicated that BDE-209 caused potential influences on endogenous metabolism in the exposed liver and the kidney. BDE-209 was found to be highly accumulated in lipid, ovary, kidney and liver after 20 days' exposure. Occurrence of other lower brominated PBDEs in the rats demonstrated that reductive debromination process happened in vivo. Hydroxylated and methoxylated-BDEs, as metabolism products, were also detected in the rat tissues. A total of 12 different endogenous metabolites showed obvious alterations in urine from the exposed rats, indicating the disturbance of the corresponding internal biochemical processes induced by BDE-209 exposure. These findings in vivo suggested the potential health risk might be of concern due to the toxicological effects of BDE-209 as a ubiquitous compound in the environment.
Collapse
Affiliation(s)
- Weijin Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Thanh Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hanxia Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
42
|
Chen YH, Li ZH, Tan Y, Zhang CF, Chen JS, He F, Yu YH, Chen DJ. Prenatal exposure to decabrominated diphenyl ether impairs learning ability by altering neural stem cell viability, apoptosis, and differentiation in rat hippocampus. Hum Exp Toxicol 2014:0960327113509661. [PMID: 24567298 DOI: 10.1177/0960327113509661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background:Polybrominated diphenyl ether (PBDE) levels in children and teenagers were higher than those of the adults and the highest levels were found in infants and toddlers. 2,2',3,3',4,4',5,5',6,6'-Decabrominated diphenyl ether (BDE-209) readily crosses the placental barrier and produces toxicity in the developing fetus, particularly to the developing brain.Objectives:This present study aims to investigate the potential effects of prenatal BDE-209 exposure on regulation of neurogenesis and learning function in an experimental rat model.Methods:Pregnant rats received BDE-209 (10, 30, or 50 mg kg-1 day-1) or vehicle (arachis oil) through gastric gavage from gestation day 1 to 14 (n = 10 per group). The embryonic hippocampal neural stem cells (NSCs) from five pregnant rats in each group were collected on day 14 and cultured in vitro to determine the cell viability, apoptosis, and differentiation of NSCs using cell counting kit 8 assay, flow cytometry, and immunofluorescence staining, respectively. In total, 20 male offspring on postnatal day 25 from each group were chosen to evaluate learning ability using a Morris water navigation task assay.Results:The data showed that prenatal exposure to BDE-209 decreased cell viability and differentiation of NSCs but promoted apoptosis in a dose-dependent manner. Prenatal BDE-209 exposure also impaired rat-learning acquisition in a dose-dependent manner.Conclusions:Prenatal BDE-209 exposure impairs rat-learning acquisition, possibly by affecting neurogenesis in the hippocampus during embryonic development.
Collapse
Affiliation(s)
- Y-H Chen
- 1Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Lim YW, Kim HH, Lee CS, Shin DC, Chang YS, Yang JY. Exposure assessment and health risk of poly-brominated diphenyl ether (PBDE) flame retardants in the indoor environment of elementary school students in Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 470-471:1376-1389. [PMID: 24094588 DOI: 10.1016/j.scitotenv.2013.09.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
This study assessed the health risks of elementary school students' exposure to PBDEs via different possible pathways in children's facilities. After PBDE contamination was measured, exposure was demonstrated to occur through multiple routes, including inhalation of indoor dust, dermal contact with products' surfaces and children's hands, and incidental dust ingestion. Samples were collected from various children's facilities (30 elementary schools, 31 private academies, 12 living rooms and bedrooms in houses, 5 public libraries of children's literature, and 3 large hypermalls) in summer (Jul-Sep, 2008) and winter (Jan-Feb, 2009). The hazard index (HI) was estimated for non-carcinogens and PBDEs, such as TeBDE, PeBDE, HxBDE, OcBDE, and DeBDE. PBDEs were detected in all floor dust samples, 99% of indoor air samples, 94% of product-wipe samples, and 86% of hand wipe samples. The average levels of PBDEs ranged from 0.19 to 1.06 ng/m(3) in indoor air, 4623 to 6,650 ng/g-dust in floor dust, 0.012 to 0.103 ng/cm(2) on product surfaces, and 7.89 to 25.38 ng/hand on the surface of children's hands. The HI for school children via multimedia and multipathway exposure to PBDEs did not exceed 1.0. The exposure to PBDEs at home (approximately 80%) was dominant. The contribution rates of PBDE risk were 77% and 15% via dust ingestion at home and at elementary school, respectively; thus, intake of floor dust was determined to be the primary route of exposure.
Collapse
Affiliation(s)
- Young-Wook Lim
- The Institute for Environmental Research, College of Medicine, Yonsei University, 250 Seongsan-no, Seoul, Republic of Korea
| | - Ho-Hyun Kim
- The Institute for Environmental Research, College of Medicine, Yonsei University, 250 Seongsan-no, Seoul, Republic of Korea
| | - Chung-Soo Lee
- The Institute for Environmental Research, College of Medicine, Yonsei University, 250 Seongsan-no, Seoul, Republic of Korea
| | - Dong-Chun Shin
- The Institute for Environmental Research, College of Medicine, Yonsei University, 250 Seongsan-no, Seoul, Republic of Korea; Dept. of Preventive Medicine, College of Medicine, Yonsei University, 250 Seongsan-no, Seoul, Republic of Korea
| | - Yoon-Seok Chang
- Dept. of Environmental Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Ji-Yeon Yang
- The Institute for Environmental Research, College of Medicine, Yonsei University, 250 Seongsan-no, Seoul, Republic of Korea.
| |
Collapse
|
44
|
Letcher RJ, Marteinson SC, Fernie KJ. Dietary exposure of American kestrels (Falco sparverius) to decabromodiphenyl ether (BDE-209) flame retardant: uptake, distribution, debromination and cytochrome P450 enzyme induction. ENVIRONMENT INTERNATIONAL 2014; 63:182-190. [PMID: 24317224 DOI: 10.1016/j.envint.2013.11.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 10/28/2013] [Accepted: 11/13/2013] [Indexed: 06/02/2023]
Abstract
Accumulation and evidence of debromination of the flame retardant 2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether (BDE-209) have been reported for biota, including raptorial birds, based on PBDE congener residues in tissues and eggs. However, in vivo studies with BDE-209-exposed birds are rare and unknown for a raptorial species. In the present study, males (n=22) of raptorial American kestrels (Falco sparverius) were exposed to 116,000ng of BDE-209 (high purity, >98%; in safflower oil) per day for 21days (~2,436,000ng total BDE-209 exposure over this uptake period), followed by a 25-day depuration period. Control males (n=11) received the safflower vehicle only. In the exposed birds, BDE-209 was quantifiable in all plasma (end of uptake and depuration period) as well as liver and fat (end of depuration only) samples. The mean (±SE) BDE-209 level in plasma was 1474±1145ng/g wet weight (ww) at the end of the uptake period, and was significantly (p<0.001) lower (88%) at 174±148ng/g ww after the 25day depuration period. This equates to a mean reduction rate of 52ng/g ww per day and a rough estimation of the BDE-209 half-life in plasma of approximately 14days. The mean (±SE) BDE-209 levels were 4668±6192ng/g ww in the fat, and 338±311ng/g ww in the liver, of exposed individuals, which were significantly (p≤0.001) greater than mean concentrations (25±20 in fat and 2.6±0.9ng/g ww in liver) in the control birds. In addition to BDE-209, lower brominated PBDE congeners, and mainly meta- and para-debromination products of BDE-209 were also quantified in plasma, liver and/or fat. We estimated based on the dose that at least 80% of the non-BDE-209 concentration in the kestrel tissues and plasma must be derived from BDE-209 debromination by the kestrels. Where quantifiable, lower brominated PBDE concentrations were significantly (0.023>p>0.001) higher in the exposed relative to the control bird samples (except for BDE-154 and -153 in fat). Additional PBDE congeners found in plasma included nona-BDEs (208, 207 and 206), followed by octa-BDEs (197, 196, 201 and 203), and in liver and/or fat, the hepta-BDEs 180 and 183 and BDE-153. Higher hepatic EROD activity (cytochrome P450 1A1 monooxygenase-mediation) in the exposed birds compared to control birds was strongly suggested to be PBDE-induced, and was consistent with BDE-209 and congener metabolism in the exposed kestrels. The mean EROD activity rate was 36.1pmol/min/mg protein relative to the (n=4) control birds whose activity was just above the detection limit (10.3pmol/min/mg protein). Overall, the results demonstrated that following diet exposure of kestrels to high purity BDE-209, uptake occurred as well as BDE-209 degradation via debromination to lower brominated PBDE congeners.
Collapse
Affiliation(s)
- Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment Canada, Ottawa, Ontario K1A 0H3, Canada.
| | - Sarah C Marteinson
- Avian Science and Conservation Centre, Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Kim J Fernie
- Avian Science and Conservation Centre, Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada; Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment Canada, Burlington, Ontario, Canada
| |
Collapse
|
45
|
Xu X, Liu J, Zeng X, Lu F, Chen A, Huo X. Elevated serum polybrominated diphenyl ethers and alteration of thyroid hormones in children from Guiyu, China. PLoS One 2014; 9:e113699. [PMID: 25415336 PMCID: PMC4240651 DOI: 10.1371/journal.pone.0113699] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 10/28/2014] [Indexed: 02/05/2023] Open
Abstract
Informal electronic waste (e-waste) recycling results in serious environmental pollution of polybrominated diphenyl ethers (PBDEs) and heavy metals. This study explored whether there is an association between PBDEs, heavy metal and key growth- and development-related hormones in children from Guiyu, an e-waste area in southern China. We quantified eight PBDE congeners using gas chromatographic mass spectrometry, lead and cadmium utilizing graphite furnace atomic absorption spectrometry, three thyroids with radioimmunoassay and two types of growth hormones by an enzyme-linked immune-sorbent assay (ELISA) in 162 children, 4 to 6 years old, from Guiyu. In blood, median total PBDE was 189.99 ng/g lipid. Lead and cadmium concentrations in blood averaged 14.53±4.85 µg dL-1 and 0.77±0.35 µg L-1, respectively. Spearman partial correlation analysis illustrated that lead was positively correlated with BDE153 and BDE183. Thyroid-stimulating hormone (TSH) was positively correlated with almost all PBDE congeners and negatively correlated with insulin-like growth factor binding protein-3 (IGFBP-3), whereas free triiodothyronine (FT3) and free thyroxine (FT4) were negatively correlated with BDE154. However, no correlation between the hormones and blood lead or cadmium levels was found in this study. Adjusted multiple linear regression analysis showed that total PBDEs was negatively associated with FT3 and positively associated with TSH. Notably, FT4 was positively correlated with FT3, house functions as a workshop, and father's work involved in e-waste recycling and negatively correlated with vitamin consumptions. TSH was negatively related with FT4, paternal residence time in Guiyu, working hours of mother, and child bean products intake. IGFBP-3 was positively correlated with IGF-1 and house close to an e-waste dump. These results suggest that elevated PBDEs and heavy metals related to e-waste in Guiyu may be important risk factors for hormone alterations in children.
Collapse
Affiliation(s)
- Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Junxiao Liu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Xiang Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Fangfang Lu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Aimin Chen
- Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, United States of America
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
- * E-mail:
| |
Collapse
|
46
|
Song J, Li Z, He Y, Liu C, Sun B, Zhang C, Zeng J, Du P, Zhang H, Yu Y, Chen D. Decabrominated diphenyl ether (BDE‐209) and/or BDE‐47 exposure alters protein expression in purified neural stem/progenitor cells determined by proteomics analysis. Int J Dev Neurosci 2013; 33:8-14. [PMID: 24239914 DOI: 10.1016/j.ijdevneu.2013.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 02/08/2023] Open
Affiliation(s)
- Jie Song
- Department of Obstetrics and GynecologyThird Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory for Major Obstetric Diseases of Guangdong ProvinceGuangzhouPR China
| | - Zhi‐hua Li
- Department of Obstetrics and GynecologyThird Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory for Major Obstetric Diseases of Guangdong ProvinceGuangzhouPR China
| | - Yu‐Tian He
- Department of Obstetrics and GynecologyThird Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory for Major Obstetric Diseases of Guangdong ProvinceGuangzhouPR China
| | - Chuan‐Xin Liu
- Department of Obstetrics and GynecologyThird Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory for Major Obstetric Diseases of Guangdong ProvinceGuangzhouPR China
| | - Bin Sun
- Department of Obstetrics and GynecologyThird Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory for Major Obstetric Diseases of Guangdong ProvinceGuangzhouPR China
| | - Chun‐Fang Zhang
- Department of Obstetrics and GynecologyThird Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory for Major Obstetric Diseases of Guangdong ProvinceGuangzhouPR China
| | - Jie Zeng
- Department of Obstetrics and GynecologyThird Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory for Major Obstetric Diseases of Guangdong ProvinceGuangzhouPR China
| | - Pei‐Li Du
- Department of Obstetrics and GynecologyThird Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory for Major Obstetric Diseases of Guangdong ProvinceGuangzhouPR China
| | - Hui‐li Zhang
- Department of Obstetrics and GynecologyThird Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory for Major Obstetric Diseases of Guangdong ProvinceGuangzhouPR China
| | - Yan‐hong Yu
- Department of Obstetrics and GynecologySouthern Medical UniversityGuangzhouPR China
| | - Dun‐Jin Chen
- Department of Obstetrics and GynecologyThird Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory for Major Obstetric Diseases of Guangdong ProvinceGuangzhouPR China
| |
Collapse
|
47
|
Reverte I, Klein AB, Domingo JL, Colomina MT. Long term effects of murine postnatal exposure to decabromodiphenyl ether (BDE-209) on learning and memory are dependent upon APOE polymorphism and age. Neurotoxicol Teratol 2013; 40:17-27. [DOI: 10.1016/j.ntt.2013.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/10/2013] [Accepted: 08/22/2013] [Indexed: 01/11/2023]
|
48
|
Noyes PD, Lema SC, Macaulay LJ, Douglas NK, Stapleton HM. Low level exposure to the flame retardant BDE-209 reduces thyroid hormone levels and disrupts thyroid signaling in fathead minnows. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10012-21. [PMID: 23899252 PMCID: PMC3778448 DOI: 10.1021/es402650x] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Polybrominated diphenyl ether (PBDE) flame retardants have been shown to disrupt thyroid hormone regulation, neurodevelopment, and reproduction in some animals. However, effects of the most heavily used PBDE, decabromodiphenyl ether (BDE-209), on thyroid functioning remain unclear. This study examined low-dose effects of BDE-209 on thyroid hormone levels and signaling in fathead minnows. Adult males received dietary exposures of BDE-209 at a low dose (∼3 ng/g bw-day) and high dose (∼300 ng/g bw-day) for 28 days followed by a 14-day depuration to evaluate recovery. Compared to controls, fish exposed to the low dose for 28 days experienced a 53% and 46% decline in circulating total thyroxine (TT4) and 3,5,3'-triiodothyronine (TT3), respectively, while TT4 and TT3 deficits at the high dose were 59% and 62%. Brain deiodinase activity (T4-ORD) was reduced by ∼65% at both doses. BDE-209 elevated the relative mRNA expression of genes encoding deiodinases, nuclear thyroid receptors, and membrane transporters in the brain and liver in patterns that varied with time and dose, likely in compensation to hypothyroidism. Declines in the gonadal-somatic index (GSI) and increased mortality were also measured. Effects at the low dose were consistent with the high dose, suggesting nonlinear relationships between BDE-209 exposures and thyroid dysfunction.
Collapse
Affiliation(s)
- Pamela D. Noyes
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Sean C. Lema
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Laura J. Macaulay
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Nora K. Douglas
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC, USA
- Phone: 919-613-8717; Fax: 919-684-8741;
| |
Collapse
|
49
|
Fujimoto H, Woo GH, Morita R, Itahashi M, Akane H, Nishikawa A, Shibutani M. Increased cellular distribution of vimentin and ret in the cingulum of rat offspring after developmental exposure to decabromodiphenyl ether or 1,2,5,6,9,10-hexabromocyclododecane. J Toxicol Pathol 2013; 26:119-29. [PMID: 23914054 PMCID: PMC3695334 DOI: 10.1293/tox.26.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 01/04/2013] [Indexed: 01/19/2023] Open
Abstract
Abstract: To determine effects of developmental exposure to brominated flame
retardants (BFRs), weak thyroid hormone disruptors, on white matter development, white
matter-specific global gene expression analysis was performed using microdissection
techniques and microarrays in male rats exposed maternally to decabromodiphenyl ether
(DBDE), one of the representative BFRs, at 10, 100 or 1000 ppm. Based on previous gene
expression profiles of developmental hypothyroidism and DBDE-exposed cases,
vimentin+ immature astrocytes and ret proto-oncogene (Ret)+
oligodendrocytes were immunohistochemically examined after developmental exposure to
representative BFRs, i.e., DBDE, 1,2,5,6,9,10-hexabromocyclododecane (HBCD; 100, 1000 or
10,000 ppm) and tetrabromobisphenol A (TBBPA; 100, 1000 or 10,000 ppm).
Vimentin+ and Ret+ cell populations increased at ≥ 100 ppm and ≥
10 ppm DBDE, respectively. Vimentin+ and Ret+ cells increased at ≥
1000 ppm HBCD, with no effect of TBBPA. The highest dose of DBDE and HBCD revealed subtle
fluctuations in serum thyroid-related hormone concentrations. Thus, DBDE and HBCD may
exert direct effects on glial cell development at ≥ middle doses. At high doses,
hypothyroidism may additionally be an inducing mechanism, although its contribution is
rather minor.
Collapse
Affiliation(s)
- Hitoshi Fujimoto
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Xie X, Qian Y, Wu Y, Yin J, Zhai J. Effects of decabromodiphenyl ether (BDE-209) on the avoidance response, survival, growth and reproduction of earthworms (Eisenia fetida). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 90:21-27. [PMID: 23312040 DOI: 10.1016/j.ecoenv.2012.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 11/26/2012] [Accepted: 12/10/2012] [Indexed: 06/01/2023]
Abstract
The effects of decabromodiphenyl ether (BDE-209) on avoidance response, survival, growth, and reproduction of earthworms (Eisenia fetida) were investigated under laboratory conditions using natural and artificial soils as substrate. Results showed that no significant avoidance response was observed when earthworms were exposed to 0.1-1000 mg/kg of BDE-209 for 48 h. After 28-days exposure, no significant effects on survival and growth of adult earthworms was induced by 0.1-1000 mg/kg of BDE-209 indicating the Lowest Observed Effect Level (LOEL) of BDE-209 on their survival and body weight was more than 1000 mg/kg. Except for a significant decrease in the number of juveniles per hatched cocoon in artificial soils at 1000 mg/kg of BDE-209, no significant effects on reproductive parameters (e.g. cocoon production per earthworms, weight per cocoon and cocoon hatchability) were observed. These results suggest that adult earthworms have a strong tolerance for BDE-209 exposure in soils, but a potential toxicity does exist for earthworm embryos or juveniles.
Collapse
Affiliation(s)
- Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, Nanjing University, Nanjing, PR China.
| | | | | | | | | |
Collapse
|