1
|
Huynh TT, Feng Y, Meshaw R, Zhao XG, Rosenfeld L, Vaidyanathan G, Papo N, Zalutsky MR. PSMA-reactive NB7 single domain antibody fragment: A potential scaffold for developing prostate cancer theranostics. Nucl Med Biol 2024; 134-135:108913. [PMID: 38703588 DOI: 10.1016/j.nucmedbio.2024.108913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Single domain antibody fragments (sdAbs) are an appealing scaffold for radiopharmaceutical development due to their small size (~15 kDa), high solubility, high stability, and excellent tumor penetration. Previously, we developed NB7 sdAb, which has very high affinity for an epitope on PSMA that is different from those targeted by small molecule PSMA inhibitors. Herein, we evaluated NB7 after radioiodination using [*I]SGMIB (1,3,4-isomer) and iso-[*I]SGMIB (1,3,5-isomer), as well as their 211At-labeled analogues. METHODS [*I]SGMIB, iso-[*I]SGMIB, [211At]SAGMB, and iso-[211At]SAGMB conjugates of NB7 sdAb were synthesized and their binding affinity, cell uptake and internalization were assessed in PSMA+ PC3 PIP and PSMA- PC3 flu cells. Biodistribution studies were performed in mice bearing PSMA+ PC3 PIP xenografts. First, a single-label experiment evaluated the tissue distribution of a NB7 bearing a His6-tag (NB7H6) and labeled with iso-[125I]SGMIB. Three paired-label experiments then were performed to compare: a) NB7 labeled using [*I]SGMIB and iso-[*I]SGMIB, b) 131I- vs 211At-labeled NB7 conjugates and c) [125I]SGMIB-NB7H6 to the small molecule PSMA inhibitor [131I]YF2. RESULTS All NB7 radioconjugates bound specifically to PSMA with dissociation constants, Kd, in the low nM range (1.4-6.4 nM). An initial biodistribution study demonstrated good tumor uptake for iso-[125I]SGMIB-NB7H6 (7.2 ± 1.5 % ID/g at 1 h) and no deleterious effect of the His6-tag on renal activity levels, which declined to 3.1 ± 1.1 % ID/g by 4 h. Paired-label biodistribution found no distinction between the two SGMIB isomer NB7 conjugates with the [131I]SGMIB-NB7-to-iso-[125I]SGMIB-NB7 tumor uptake ratios not significantly different from unity: 1.06 ± 0.08 at 1 h, 1.04 ± 0.12 at 4 h, and 1.07 ± 0.09 at 24 h. Both isomer conjugates cleared rapidly from normal tissues and exhibited very low uptake in thyroid, lacrimal and salivary glands. Paired-label biodistribution of [131I]SGMIB-NB7H6 and [211At]SAGMB-NB7H6 demonstrated similar tumor uptake and kidney clearance for the two radioconjugates. However, levels of 211At in thyroid, stomach, salivary and lacrimal glands were significantly higher (P < 0.05) that those for 131I suggesting greater dehalogenation for [211At]SAGMB-NB7H6. Finally, co-administration of [125I]SGMIB-NB7H6 and [131I]YF2 demonstrated good tumor uptake for both with considerably more rapid renal clearance for the NB7 radioconjugate. CONCLUSION NB7 radioconjugates exhibited good accumulation in PSMA-positive xenografts with rapid clearance from kidney and other normal tissues. We conclude that NB7 is a potentially useful scaffold for developing PSMA-targeted theranostics with different characteristics than current small molecule and antibody-based approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Niv Papo
- Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | |
Collapse
|
2
|
Bolcaen J, Nair S, Driver CHS, Boshomane TMG, Ebenhan T, Vandevoorde C. Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma. Pharmaceuticals (Basel) 2021; 14:626. [PMID: 34209513 PMCID: PMC8308832 DOI: 10.3390/ph14070626] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) remains the most fatal brain tumor characterized by a high infiltration rate and treatment resistance. Overexpression and/or mutation of receptor tyrosine kinases is common in GB, which subsequently leads to the activation of many downstream pathways that have a critical impact on tumor progression and therapy resistance. Therefore, receptor tyrosine kinase inhibitors (RTKIs) have been investigated to improve the dismal prognosis of GB in an effort to evolve into a personalized targeted therapy strategy with a better treatment outcome. Numerous RTKIs have been approved in the clinic and several radiopharmaceuticals are part of (pre)clinical trials as a non-invasive method to identify patients who could benefit from RTKI. The latter opens up the scope for theranostic applications. In this review, the present status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB is presented. The focus will be on seven tyrosine kinase receptors, based on their central role in GB: EGFR, VEGFR, MET, PDGFR, FGFR, Eph receptor and IGF1R. Finally, by way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, four small molecule RTKIs were selected based on their potential to become new therapeutic GB radiopharmaceuticals.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Cathryn H. S. Driver
- Radiochemistry, South African Nuclear Energy Corporation, Pelindaba, Brits 0240, South Africa;
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Thomas Ebenhan
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Preclinical Drug Development Platform, Department of Science and Technology, North West University, Potchefstroom 2520, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| |
Collapse
|
3
|
Rios X, Compte M, Gómez-Vallejo V, Cossío U, Baz Z, Morcillo MÁ, Ramos-Cabrer P, Alvarez-Vallina L, Llop J. Immuno-PET Imaging and Pharmacokinetics of an Anti-CEA scFv-based Trimerbody and Its Monomeric Counterpart in Human Gastric Carcinoma-Bearing Mice. Mol Pharm 2019; 16:1025-1035. [PMID: 30726099 DOI: 10.1021/acs.molpharmaceut.8b01006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Monoclonal antibodies (mAbs) are currently used as therapeutic agents in different types of cancer. However, mAbs and antibody fragments developed so far show suboptimal properties in terms of circulation time and tumor penetration/retention. Here, we report the radiolabeling, pharmacokinetic evaluation, and determination of tumor targeting capacity of the previously validated anti-CEA MFE23-scFv-based N-terminal trimerbody (MFE23N-trimerbody), and the results are compared to those obtained for the monomeric MFE23-scFv. Dissection and gamma-counting studies performed with the 131I-labeled protein scaffolds in normal mice showed slower blood clearance for the trimerbody, and accumulation in the kidneys, the spleen, and the liver for both species. These, together with a progressive uptake in the small intestine, confirm a combined elimination scheme with hepatobiliary and urinary excretion. Positron emission tomography studies performed in a xenograft mouse model of human gastric adenocarcinoma, generated by subcutaneous administration of CEA-positive human MKN45 cells, showed higher tumor accumulation and tumor-to-muscle (T/M) ratios for 124I-labeled MFE23N-trimerbody than for MFE23-scFv. Specific uptake was not detected with PET imaging in CEA negative xenografts as indicated by low T/M ratios. Our data suggest that engineered intermediate-sized trivalent antibody fragments could be promising candidates for targeted therapy and imaging of CEA-positive tumors.
Collapse
Affiliation(s)
- Xabier Rios
- Radiochemistry and Nuclear Imaging Group , CIC biomaGUNE , 20014 San Sebastián , Guipúzcoa , Spain
| | - Marta Compte
- Molecular Immunology Unit , Hospital Universitario Puerta de Hierro Majadahonda , Manuel de Falla 1, 28222 Majadahonda, Madrid , Spain
| | | | - Unai Cossío
- Radiochemistry and Nuclear Imaging Group , CIC biomaGUNE , 20014 San Sebastián , Guipúzcoa , Spain
| | - Zuriñe Baz
- Radiochemistry and Nuclear Imaging Group , CIC biomaGUNE , 20014 San Sebastián , Guipúzcoa , Spain
| | - Miguel Ángel Morcillo
- Biomedical Applications of Radioisotopes and Pharmacokinetics Unit , CIEMAT , 28040 Madrid , Spain
| | - Pedro Ramos-Cabrer
- Magnetic Resonance Imaging Group , CIC biomaGUNE , 20014 San Sebastián , Guipúzcoa Spain.,Ikerbasque, The Basque Foundation for Science , 48013 Bilbao , Spain
| | - Luis Alvarez-Vallina
- Immunotherapy and Cell Engineering Group, Department of Engineering , Aarhus University , Gustav WiedsVej 10 , 8000 C Aarhus , Denmark
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group , CIC biomaGUNE , 20014 San Sebastián , Guipúzcoa , Spain
| |
Collapse
|
4
|
Vivier D, Sharma SK, Zeglis BM. Understanding the in vivo fate of radioimmunoconjugates for nuclear imaging. J Labelled Comp Radiopharm 2018; 61:672-692. [PMID: 29665104 PMCID: PMC6432633 DOI: 10.1002/jlcr.3628] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/16/2018] [Accepted: 04/03/2018] [Indexed: 12/17/2022]
Abstract
Over the past 25 years, antibodies have emerged as extraordinarily promising vectors for the delivery of radionuclides to tumors for nuclear imaging. While radioimmunoconjugates often produce very high activity concentrations in target tissues, they also are frequently characterized by elevated activity concentrations in healthy organs as well. The root of this background uptake lies in the complex network of biological interactions between the radioimmunoconjugate and the subject. In this review, we seek to provide an overview of these interactions and thus paint a general picture of the in vivo fate of radioimmunoconjugates. To cover the entire story, we have divided our discussion into 2 parts. First, we will address the path of the entire radioimmunoconjugate as it travels through the body. And second, we will cover the fate of the radionuclide itself, as its course can diverge from the antibody under certain circumstances. Ultimately, our goal is to provide the nuclear imaging field with a resource covering these important-yet often underestimated-pathways.
Collapse
Affiliation(s)
- Delphine Vivier
- Department of Chemistry, Hunter College and the Graduate Center of the City University of New York, New York, NY, USA
| | - Sai Kiran Sharma
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian M. Zeglis
- Department of Chemistry, Hunter College and the Graduate Center of the City University of New York, New York, NY, USA
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
5
|
Cavina L, van der Born D, Klaren PHM, Feiters MC, Boerman OC, Rutjes FPJT. Design of Radioiodinated Pharmaceuticals: Structural Features Affecting Metabolic Stability towards in Vivo Deiodination. European J Org Chem 2017; 2017:3387-3414. [PMID: 28736501 PMCID: PMC5499721 DOI: 10.1002/ejoc.201601638] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 11/09/2022]
Abstract
Radioiodinated pharmaceuticals are convenient tracers for clinical and research investigations because of the relatively long half-lives of radioactive iodine isotopes (i.e., 123I, 124I, and 131I) and the ease of their chemical insertion. Their application in radionuclide imaging and therapy may, however, be hampered by poor in vivo stability of the C-I bond. After an overview of the use of iodine in biology and nuclear medicine, we present here a survey of the catabolic pathways for iodinated xenobiotics, including their biodistribution, accumulation, and biostability. We summarize successful rational improvements in the biostability and conclude with general guidelines for the design of stable radioiodinated pharmaceuticals. It appears to be necessary to consider the whole molecule, rather than the radioiodinated fragment alone. Iodine radionuclides are generally retained in vivo on sp2 carbon atoms in iodoarenes and iodovinyl moieties, but not in iodinated heterocycles or on sp3 carbon atoms. Iodoarene substituents also have an influence, with increased in vivo deiodination in the cases of iodophenols and iodoanilines, whereas methoxylation and difluorination improve biostability.
Collapse
Affiliation(s)
- Lorenzo Cavina
- Institute of Molecules and MaterialsFaculty of ScienceRadboud UniversityHeyendaalseweg 1356525 AJ NijmegenNetherlands
- FutureChemistry Holding BV6525 ECNijmegenNetherlands
- Department of Animal Ecology & PhysiologyInstitute of Water & Wetland ResearchFaculty of ScienceRadboud UniversityPOB 90106500 GLNijmegenNetherlands
| | | | - Peter H. M. Klaren
- Department of Animal Ecology & PhysiologyInstitute of Water & Wetland ResearchFaculty of ScienceRadboud UniversityPOB 90106500 GLNijmegenNetherlands
| | - Martin C. Feiters
- Institute of Molecules and MaterialsFaculty of ScienceRadboud UniversityHeyendaalseweg 1356525 AJ NijmegenNetherlands
| | - Otto C. Boerman
- Department of Radiology & Nuclear MedicineRadboud University Medical Center6500 HBNijmegenthe Netherlands
| | - Floris P. J. T. Rutjes
- Institute of Molecules and MaterialsFaculty of ScienceRadboud UniversityHeyendaalseweg 1356525 AJ NijmegenNetherlands
| |
Collapse
|
6
|
Lee FT, Burvenich IJG, Guo N, Kocovski P, Tochon-Danguy H, Ackermann U, O'Keefe GJ, Gong S, Rigopoulos A, Liu Z, Gan HK, Scott AM. L-Tyrosine Confers Residualizing Properties to a d-Amino Acid-Rich Residualizing Peptide for Radioiodination of Internalizing Antibodies. Mol Imaging 2016; 15:1536012116647535. [PMID: 27457521 PMCID: PMC5470130 DOI: 10.1177/1536012116647535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/28/2015] [Accepted: 03/17/2016] [Indexed: 12/01/2022] Open
Abstract
PURPOSE The aims of the study were to develop and evaluate a novel residualizing peptide for labeling internalizing antibodies with (124)I to support clinical development using immuno-positron emission tomography (PET). METHODS The anti-epidermal growth factor receptor antibody ch806 was radiolabeled directly or indirectly with isotopes and various residualizing peptides. Azido-derivatized radiolabeled peptides were conjugated to dibenzylcyclooctyne-derivatized ch806 antibody via click chemistry. The radiochemical purities, antigen-expressing U87MG.de2-7 human glioblastoma cell-binding properties, and targeting of xenografts at 72 hours post injection of all radioconjugates were compared. Biodistribution of (124)I-PEG4-tptddYddtpt-ch806 and immuno-PET imaging were evaluated in tumor-bearing mice. RESULTS Biodistribution studies using xenografts at 72 hours post injection showed that (131)I-PEG4-tptddYddtpt-ch806 tumor uptake was similar to (111)In-CHX-A″-DTPA-ch806. (125)I-PEG4-tptddyddtpt-ch806 showed a lower tumor uptake value but higher than directly labeled (125)I-ch806. (124)I-PEG4-tptddYddtpt-ch806 was produced at 23% labeling efficiency, 98% radiochemical purity, 25.9 MBq/mg specific activity, and 64% cell binding in the presence of antigen excess. Tumor uptake for (124)I-PEG4-tptddYddtpt-ch806 was similar to (111)In-CHX-A″-DTPA-ch806. High-resolution immuno-PET/magnetic resonance imaging of tumors showed good correlation with biodistribution data. CONCLUSIONS The mixed d/l-enantiomeric peptide, dThr-dPro-dThr-dAsp-dAsp-Tyr-dAsp-dAsp-dThr-dPro-dThr, is suitable for radiolabeling antibodies with radiohalogens such as (124)I for high-resolution immuno-PET imaging of tumors and for evaluation in early-phase clinical trials.
Collapse
Affiliation(s)
- Fook T Lee
- Tumour Targeting Program, Ludwig Institute For Cancer Research and Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Ingrid J G Burvenich
- Tumour Targeting Program, Ludwig Institute For Cancer Research and Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Nancy Guo
- Tumour Targeting Program, Ludwig Institute For Cancer Research and Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Pece Kocovski
- Tumour Targeting Program, Ludwig Institute For Cancer Research and Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Henri Tochon-Danguy
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Uwe Ackermann
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Graeme J O'Keefe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Sylvia Gong
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Angela Rigopoulos
- Tumour Targeting Program, Ludwig Institute For Cancer Research and Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Zhanqi Liu
- Tumour Targeting Program, Ludwig Institute For Cancer Research and Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Hui K Gan
- Tumour Targeting Program, Ludwig Institute For Cancer Research and Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Andrew M Scott
- Tumour Targeting Program, Ludwig Institute For Cancer Research and Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
7
|
Pruszynski M, Koumarianou E, Vaidyanathan G, Revets H, Devoogdt N, Lahoutte T, Lyerly HK, Zalutsky MR. Improved tumor targeting of anti-HER2 nanobody through N-succinimidyl 4-guanidinomethyl-3-iodobenzoate radiolabeling. J Nucl Med 2014; 55:650-6. [PMID: 24578241 DOI: 10.2967/jnumed.113.127100] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Nanobodies are approximately 15-kDa proteins based on the smallest functional fragments of naturally occurring heavy chain-only antibodies and represent an attractive platform for the development of molecularly targeted agents for cancer diagnosis and therapy. Because the human epidermal growth factor receptor type 2 (HER2) is overexpressed in breast and ovarian carcinoma, as well as in other malignancies, HER2-specific Nanobodies may be valuable radiodiagnostics and therapeutics for these diseases. The aim of the present study was to evaluate the tumor-targeting potential of anti-HER2 5F7GGC Nanobody after radioiodination with the residualizing agent N-succinimidyl 4-guanidinomethyl 3-(125/131)I-iodobenzoate (*I-SGMIB). METHODS The 5F7GGC Nanobody was radiolabeled using *I-SGMIB and, for comparison, with N(ε)-(3-*I-iodobenzoyl)-Lys(5)-N(α)-maleimido-Gly(1)-GEEEK (*I-IB-Mal-d-GEEEK), another residualizing agent, and by direct radioiodination using IODO-GEN ((125)I-Nanobody). The 3 labeled Nanobodies were evaluated in affinity measurements, and paired-label internalization assays were performed on HER2-expressing BT474M1 breast carcinoma cells and in paired-label tissue distribution measurements in mice bearing subcutaneous BT474M1 xenografts. RESULTS *I-SGMIB-Nanobody was produced in 50.4% ± 3.6% radiochemical yield and exhibited a dissociation constant of 1.5 ± 0.5 nM. Internalization assays demonstrated that intracellular retention of radioactivity was up to 1.5-fold higher for *I-SGMIB-Nanobody than for coincubated (125)I-Nanobody or *I-IB-Mal-d-GEEEK-Nanobody. Peak tumor uptake for *I-SGMIB-Nanobody was 24.50% ± 9.89% injected dose/g at 2 h, 2- to 4-fold higher than observed with other labeling methods, and was reduced by 90% with trastuzumab blocking, confirming the HER2 specificity of localization. Moreover, normal-organ clearance was fastest for *I-SGMIB-Nanobody, such that tumor-to-normal-organ ratios greater than 50:1 were reached by 24 h in all tissues except lungs and kidneys, for which the values were 10.4 ± 4.5 and 5.2 ± 1.5, respectively. CONCLUSION Labeling anti-HER2 Nanobody 5F7GGC with *I-SGMIB yields a promising new conjugate for targeting HER2-expressing malignancies. Further research is needed to determine the potential utility of *I-SGMIB-5F7GGC labeled with (124)I, (123)I, and (131)I for PET and SPECT imaging and for targeted radiotherapy, respectively.
Collapse
Affiliation(s)
- Marek Pruszynski
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Shah DK, Betts AM. Antibody biodistribution coefficients: inferring tissue concentrations of monoclonal antibodies based on the plasma concentrations in several preclinical species and human. MAbs 2013; 5:297-305. [PMID: 23406896 DOI: 10.4161/mabs.23684] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Tissue vs. plasma concentration profiles have been generated from a physiologically-based pharmacokinetic model of monoclonal antibody (mAb). Based on the profiles, we hypothesized that a linear relationship between the plasma and tissue concentrations of non-binding mAbs could exist; and that the relationship may be generally constant irrespective of the absolute mAb concentration, time, and animal species being analyzed. The hypothesis was verified for various tissues in mice, rat, monkey, and human using mAb or antibody-drug conjugate tissue distribution data collected from diverse literature. The relationship between the plasma and various tissue concentrations was mathematically characterized using the antibody biodistribution coefficient (ABC). Estimated ABC values suggest that typically the concentration of mAb in lung is 14.9%, heart 10.2%, kidney 13.7%, muscle 3.97%, skin 15.7%, small intestine 5.22%, large intestine 5.03%, spleen 12.8%, liver 12.1%, bone 7.27%, stomach 4.98%, lymph node 8.46%, adipose 4.78%, brain 0.351%, pancreas 6.4%, testes 5.88%, thyroid 67.5% and thymus is 6.62% of the plasma concentration. The validity of using the ABC to predict mAb concentrations in different tissues of mouse, rat, monkey, and human species was evaluated by generating validation data sets, which demonstrated that predicted concentrations were within 2-fold of the observed concentrations. The use of ABC to infer tissue concentrations of mAbs and related molecules provides a valuable tool for investigating preclinical or clinical disposition of these molecules. It can also help eliminate or optimize biodistribution studies, and interpret efficacy or toxicity of the drug in a particular tissue.
Collapse
Affiliation(s)
- Dhaval K Shah
- Translational Research Group, Department of Pharmacokinetics Dynamics and Metabolism, Pfizer Global Research and Development, Groton, CT, USA.
| | | |
Collapse
|
9
|
Pruszynski M, Koumarianou E, Vaidyanathan G, Revets H, Devoogdt N, Lahoutte T, Zalutsky MR. Targeting breast carcinoma with radioiodinated anti-HER2 Nanobody. Nucl Med Biol 2013; 40:52-9. [PMID: 23159171 PMCID: PMC3551612 DOI: 10.1016/j.nucmedbio.2012.08.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/25/2012] [Accepted: 08/07/2012] [Indexed: 11/25/2022]
Abstract
INTRODUCTION With a molecular weight an order of magnitude lower than antibodies but possessing comparable affinities, Nanobodies (Nbs) are attractive as targeting agents for cancer diagnosis and therapy. An anti-HER2 Nb could be utilized to determine HER2 status in breast cancer patients prior to trastuzumab treatment. This provided motivation for the generation of HER2-specific 5F7GGC Nb, its radioiodination and evaluation for targeting HER2 expressing tumors. METHODS 5F7GGC Nb was radioiodinated with ¹²⁵I using Iodogen and with ¹³¹I using the residualizing agent N(ɛ)-(3-[¹³¹I]iodobenzoyl)-Lys⁵-N(α)-maleimido-Gly¹-GEEEK ([¹³¹I]IB-Mal-D-GEEEK) used previously successfully with intact antibodies. Paired-label internalization assays using BT474M1 cells and tissue distribution experiments in athymic mice bearing BT474M1 xenografts were performed to compare the two labeled Nb preparations. RESULTS The radiochemical yields for Iodogen and [¹³¹I]IB-Mal-D-GEEEK labeling were 83.6±5.0% (n=10) and 59.6±9.4% (n=15), respectively. The immunoreactivity of labeled proteins was preserved as confirmed by in vitro and in vivo binding to tumor cells. Biodistribution studies showed that Nb radiolabeled using [¹³¹I]IB-Mal-D-GEEEK, compared with the directly labeled Nb, had a higher tumor uptake (4.65±0.61% ID/g vs. 2.92±0.24% ID/g at 8h), faster blood clearance, lower accumulation in non-target organs except kidneys, and as a result, higher concomitant tumor-to-blood and tumor-to-tissue ratios. CONCLUSIONS Taken together, these results demonstrate that 5F7GGC anti-HER2 Nb labeled with residualizing [¹³¹I]IB-Mal-D-GEEEK had better tumor targeting properties compared to the directly labeled Nb suggesting the potential utility of this Nb conjugate for SPECT (¹²⁹I) and PET imaging (¹²⁴I) of patients with HER2-expressing tumors.
Collapse
Affiliation(s)
- Marek Pruszynski
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tony Lahoutte
- In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Michael R. Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
10
|
Persson M, Sivaev I, Winberg KJ, Gedda L, Malmström PU, Tolmachev V. In VitroEvaluation of Two Polyhedral Boron Anion Derivatives as Linkers for Attachment of Radioiodine to the Anti-HER2 Monoclonal Antibody Trastuzumab. Cancer Biother Radiopharm 2007; 22:585-96. [DOI: 10.1089/cbr.2006.338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mikael Persson
- Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Unit of Experimental Urology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Igor Sivaev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Uppsala University, Uppsala, Sweden
| | | | - Lars Gedda
- Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Unit of Experimental Urology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Per-Uno Malmström
- Unit of Experimental Urology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
SUN L, CHU T, WANG Y, WANG X. Radiolabeling and biodistribution of a nasopharyngeal carcinoma-targeting peptide identified by in vivo phage display. Acta Biochim Biophys Sin (Shanghai) 2007; 39:624-32. [PMID: 17687498 DOI: 10.1111/j.1745-7270.2007.00321.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A dodecapeptide EDIKPKTSLAFR ligand targeting CEN-1 human nasopharyngeal carcinoma (NPC) was identified by in vivo phage display. Two tridecapeptides and their derivatives, named YR13 (YEDIKPKTSLAFR), EY13 (EDIKPKTSLAFRY), EY13-NH2 (EDIKPKTSLAFRY-NH2) and Fmoc-YR13 (Fmoc-YEDIKPKTSLAFR), were synthesized and radiolabeled with 131I. The stability in vitro, biodistribution and tissue distribution of selected phage particles in mice bearing NPC tumor were determined, and plasma metabolites analysis of radiolabeled peptides was carried out. Although Fmoc and NH2 groups could protect the peptide from deiodination, only Fmoc group inhibited the binding of Fmoc-YR13 to NPC tumors. The compound EY13-NH2, the C-terminal amide of peptide EY13, had the greatest serum stability, the least deiodination, and showed favorable tumor/blood ratios. The selected phage particles (phage 3 or phage 5) were more concentrated in NPC tumors than the control phage (initial phage display peptide library). EY13 could also inhibit the binding of selected phage particles to tumors. The results indicated that EDIKPKTSLAFR was a good candidate in diagnostic and therapeutic NPC.
Collapse
Affiliation(s)
- Liyan SUN
- Bejing National Laboratory for Molecular Sciences, Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
12
|
Vaidyanathan G, Alston KL, Bigner DD, Zalutsky MR. Nepsilon-(3-[*I]Iodobenzoyl)-Lys5-Nalpha-maleimido-Gly1-GEEEK ([*I]IB-Mal-D-GEEEK): a radioiodinated prosthetic group containing negatively charged D-glutamates for labeling internalizing monoclonal antibodies. Bioconjug Chem 2006; 17:1085-92. [PMID: 16848419 DOI: 10.1021/bc0600766] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel methods are needed for the radiohalogenation of cell-internalizing proteins and peptides because rapid loss of label occurs after lysosomal processing when these molecules are labeled using conventional radioiodination methodologies. We have developed a radiolabeled prosthetic group that contains multiple negatively charged D-amino acids to facilitate trapping of the radioactivity in the cell after proteolysis of the labeled protein. N(epsilon)-(3-[(125)I]iodobenzoyl)-Lys(5)-N(alpha)-maleimido-Gly(1)-GEEEK ([(125)I]IB-Mal-D-GEEEK) was synthesized via iododestannylation in 90.3 +/- 3.9% radiochemical yields. This radioiodinated agent was conjugated to iminothiolane-treated L8A4, an anti-epidermal growth factor receptor variant III (EGFRvIII) specific monoclonal antibody (mAb) in 54.3 +/- 17.7% conjugation yields. In vitro assays with the EGFRvIII-expressing U87MGDeltaEGFR glioma cell line demonstrated that the internalized radioactivity for the [(125)I]IB-Mal-D-GEEEK-L8A4 conjugate increased from 14.1% at 1 h to 44.7% at 24 h and was about 15-fold higher than that of directly radioiodinated L8A4 at 24 h. A commensurately increased tumor uptake in vivo in athymic mice bearing subcutaneous U87MGDeltaEGFR xenografts (52.6 +/- 14.3% injected dose per gram versus 17.4 +/- 3.5% ID/g at 72 h) also was observed. These results suggest that [(125)I]IB-Mal-d-GEEEK is a promising reagent for the radioiodination of internalizing mAbs.
Collapse
Affiliation(s)
- Ganesan Vaidyanathan
- Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
13
|
Sun X, Chu T, Liu X, Wang X. t-Butyloxycarbonyl: An ordinary but promising group for protecting peptides from deiodination. Appl Radiat Isot 2006; 64:645-50. [PMID: 16488150 DOI: 10.1016/j.apradiso.2005.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 12/31/2005] [Accepted: 12/31/2005] [Indexed: 11/30/2022]
Abstract
In order to protect directly radioiodinated peptides from in vivo deiodination, a novel procedure was explored. Two peptides, Try-Gly-Gly-Gly-Gly-Gly-Cys-Asn-Gly-Arg-Cys (YG5) and t-Boc-Try-Gly-Gly-Gly-Gly-Gly-Cys-Asn-Gly-Arg-Cys (t-BOC-YG5) were synthesized and radiolabeled. A paired-label biodistribution study using [131I]t-BOC-YG5 and [125I]YG5 was undertaken in normal mice. Compared to [125I]YG5, [131I]t-BOC-YG5 was quite resistant to in vivo deiodination, resulting in rapid reduction of the radioactive background and negligible radioactivity accumulation in both thyroid and stomach. [131I]t-BOC-YG5 was also stable in human serum even after 24 h. In conclusion, the t-BOC group has the potential to protect peptide from deiodination.
Collapse
Affiliation(s)
- Xin Sun
- Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
14
|
Shankar S, Vaidyanathan G, Kuan CT, Bigner DD, Zalutsky MR. Antiepidermal growth factor variant III scFv fragment: effect of radioiodination method on tumor targeting and normal tissue clearance. Nucl Med Biol 2006; 33:101-10. [PMID: 16459265 DOI: 10.1016/j.nucmedbio.2005.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 08/24/2005] [Accepted: 08/25/2005] [Indexed: 11/16/2022]
Abstract
INTRODUCTION MR1-1 is a single-chain Fv (scFv) fragment that binds with high affinity to epidermal growth factor receptor variant III, which is overexpressed on gliomas and other tumors but is not present on normal tissues. The objective of this study was to evaluate four different methods for labeling MR1-1 scFv that had been previously investigated for the radioiodinating of an intact anti-epidermal growth factor receptor variant III (anti-EGFRvIII) monoclonal antibody (mAb) L8A4. METHODS The MR1-1 scFv was labeled with (125)I/(131)I using the Iodogen method, and was also radiohalogenated with acylation agents bearing substituents that were positively charged--N-succinimidyl-3-[*I]iodo-5-pyridine carboxylate and N-succinimidyl-4-guanidinomethyl-3-[*I]iodobenzoate ([*I]SGMIB)--and negatively charged--N-succinimidyl-3-[*I]iodo-4-phosphonomethylbenzoate ([*I]SIPMB). In vitro internalization assays were performed with the U87MGDeltaEGFR cell line, and the tissue distribution of the radioiodinated scFv fragments was evaluated in athymic mice bearing subcutaneous U87MGDeltaEGFR xenografts. RESULTS AND CONCLUSION As seen previously with the anti-EGFRvIII IgG mAb, retention of radioiodine activity in U87MGDeltaEGFR cells in the internalization assay was labeling method dependent, with SGMIB and SIPMB yielding the most prolonged retention. However, unlike the case with the intact mAb, the results of the internalization assays were not predictive of in vivo tumor localization capacity of the labeled scFv. Renal activity was dependent on the nature of the labeling method. With MR1-1 labeled using SIPMB, kidney uptake was highest and most prolonged; catabolism studies indicated that this uptake primarily was in the form of epsilon-N-3-[*I]iodo-4-phosphonomethylbenzoyl lysine.
Collapse
Affiliation(s)
- Sriram Shankar
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
The most significant recent advances in the application of monoclonal antibodies (mAbs) to oncology have been the introduction and approval of bevacizumab (Avastin), an anti-vascular endothelial growth factor antibody, and of cetuximab (Erbitux), an anti-epidermal growth factor antibody. In combination with standard chemotherapy regimens, bevacizumab significantly prolongs the survival of patients with metastatic cancers of the colorectum, breast and lung. Cetuximab, used alone or with salvage chemotherapy, produces clinically meaningful anti-tumor responses in patients with chemotherapy-refractory cancers of the colon and rectum. In addition, the anti-HER2/neu antibody trastuzumab (Herceptin), in combination with standard adjuvant chemotherapy, has been shown to reduce relapses and prolong disease-free and overall survival in high-risk patients after definitive local therapy for breast cancer. These exciting recent results provide optimism for the development of mAbs that bind novel targets, exploit novel mechanisms of action or possess improved tumor targeting. Progress in the clinical use of radioimmunoconjugates remains hindered by complexity of administration, toxicity concerns and insufficiently selective tumor targeting.
Collapse
Affiliation(s)
- Gregory P Adams
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111, USA
| | | |
Collapse
|
16
|
Chhikara BS, Kumar N, Tandon V, Mishra AK. Synthesis and evaluation of bifunctional chelating agents derived from bis(2-aminophenylthio)alkane for radioimaging with 99mTc. Bioorg Med Chem 2005; 13:4713-20. [PMID: 16052734 DOI: 10.1016/j.bmc.2005.04.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Novel bifunctional chelating agents bearing an aromatic rigid backbone have been synthesized and characterized on the basis of spectroscopic techniques. These macrocyclic multidentate chelating agents were conjugated with monoclonal antibody which forms stable complexes with 99mTc with high radiochemical purity.
Collapse
Affiliation(s)
- Bhupender S Chhikara
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | | | | | | |
Collapse
|