1
|
Jones J, Do V, Lu Y, van Dam RM. Accelerating radiochemistry development: Automated robotic platform for performing up to 64 droplet radiochemical reactions in a morning. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 468:143524. [PMID: 37576334 PMCID: PMC10421640 DOI: 10.1016/j.cej.2023.143524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The growing discovery and development of novel radiopharmaceuticals and radiolabeling methods requires an increasing capacity for radiochemistry experiments. However, such studies typically rely on radiosynthesizers designed for clinical batch production rather than research, greatly limiting throughput. Two general solutions are being pursued to address this: developing new synthesis optimization algorithms to minimize how many experiments are needed, and developing apparatus with enhanced experiment throughput. We describe here a novel high-throughput system based on performing arrays of droplet-based reactions at 10 μL volume scale in parallel. The automatic robotic platform can perform a set of 64 experiments in ~3 h (from isotope loading to crude product, plus sampling onto TLC plates), plus ~1 h for off-line radio-TLC analysis and radioactivity measurements, rather than the weeks or months that would be needed using a conventional system. We show the high repeatability and low crosstalk of the platform and demonstrate optimization studies for two 18F-labeled tracers. This novel automated platform greatly increases the practicality of performing arrays of droplet reactions by eliminating human error, vastly reducing tedium and fatigue, minimizing radiation exposure, and freeing up radiochemist time for other intellectually valuable pursuits.
Collapse
Affiliation(s)
- Jason Jones
- Crump Institute of Molecular Imaging, University of California Los Angeles (UCLA),Los Angeles, CA, USA
- Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, UCLA, US
| | - Viviann Do
- Crump Institute of Molecular Imaging, University of California Los Angeles (UCLA),Los Angeles, CA, USA
- Department of Biochemistry, UCLA, USA
| | - Yingqing Lu
- Crump Institute of Molecular Imaging, University of California Los Angeles (UCLA),Los Angeles, CA, USA
- Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, UCLA, US
| | - R Michael van Dam
- Crump Institute of Molecular Imaging, University of California Los Angeles (UCLA),Los Angeles, CA, USA
- Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, UCLA, US
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, UCLA, USA
| |
Collapse
|
2
|
KSNM60: The History of Radiopharmaceutical Sciences in Korea. Nucl Med Mol Imaging 2022; 56:114-126. [DOI: 10.1007/s13139-022-00744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/17/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022] Open
|
3
|
Synthesis and Evaluation of 18F-Labeled Fluoroalkyl Triphenylphosphonium Salts as Mitochondrial Voltage Sensors in PET Myocardial Imaging. Methods Mol Biol 2021. [PMID: 34118031 DOI: 10.1007/978-1-0716-1262-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
We have previously reported that radiolabeled phosphonium cations accumulate in the mitochondria down a transmembrane potential gradient. We present an optimized procedure for synthesis of three [18F]-labeled fluoroalkyl triphenylphosphonium salts ([18F]FATPs) via two-step simple nucleophilic substitution reactions to develop new myocardial imaging agents for positron emission tomography (PET) . The total reaction time of [18F]FATPs was within 60 min, and the overall decay-corrected radiochemical yield was approximately 15-30% (decay corrected). Radiochemical purity was >98% according to analytical high-performance liquid chromatography (HPLC) . The specific activity of [18F]FATPs was >6.1 TBq/μmol. The [18F]FATPs exhibited higher first-pass extraction fraction values in isolated heart, higher uptake in the myocardium, and a more rapid clearance from the liver and lung than [13N]NH3 in normal rats. The images from rats with an occluded left coronary artery demonstrated sharply defined myocardial defects in the corresponding area of the myocardium. This imaging technology may enable high-throughput, multiple studies daily and wide distribution of PET myocardial studies in clinic.
Collapse
|
4
|
Cho SG, Kong EJ, Kang WJ, Paeng JC, Bom HSH, Cho I. KSNM60 in Cardiology: Regrowth After a Long Pause. Nucl Med Mol Imaging 2021; 55:151-161. [PMID: 34422125 PMCID: PMC8322215 DOI: 10.1007/s13139-021-00702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/09/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022] Open
Abstract
The Korean Society of Nuclear Medicine (KSNM) is celebrating its 60th anniversary in honor of the nuclear medicine professionals who have dedicated their efforts towards research, academics, and the more comprehensive clinical applications and uses of nuclear imaging modalities. Nuclear cardiology in Korea was at its prime time in the 1990s, but its growth was interrupted by a long pause. Despite the academic and practical challenges, nuclear cardiology in Korea now meets the second leap, attributed to the growth in molecular imaging tailored for many non-coronary diseases and the genuine values of nuclear myocardial perfusion imaging. In this review, we describe the trends, achievements, challenges, and perspectives of nuclear cardiology throughout the 60-year history of the KSNM.
Collapse
Affiliation(s)
- Sang-Geon Cho
- Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Eun Jung Kong
- Department of Nuclear Medicine, Yeungnam University Medical Center, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415 Republic of Korea
| | - Won Jun Kang
- Department of Nuclear Medicine, Yonsei University Severance Hospital, Seoul, Republic of Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hee-Seung Henry Bom
- 5Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Jeonnam, Republic of Korea
| | - Ihnho Cho
- Department of Nuclear Medicine, Yeungnam University Medical Center, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415 Republic of Korea
| |
Collapse
|
5
|
Jiang Y, Zhou W, Hu K, Han Y, Sun P, Wang Q, Li G, Wu H, Tang G, Huang S. Radiosynthesis and preclinical evaluation of [ 18F]FEM as a potential novel PET probe for tumor imaging. Bioorg Med Chem Lett 2020; 30:127200. [PMID: 32354567 DOI: 10.1016/j.bmcl.2020.127200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022]
Abstract
In the 21st century, the incidence and mortality of cancer, one of the most challenging diseases in the world, have rapidly increased. The purpose of this study was to develop 2-(2-[18F]fluoroethoxy)ethyl 4-methylbenzenesulfonate ([18F]FEM) as a positron emission tomography (PET) agent for tumor imaging. In this study, [18F]FEM was synthesized with a good radiochemical yield (45.4 ± 5.8%), high specific radioactivity (over 25 GBq/μmol), and commendable radiochemical purity (over 99%). The octanol/water partition coefficient of [18F]FEM was 1.44 ± 0.04. The probe demonstrated good stability in vitro (phosphate-buffered saline (PBS) and mouse serum (MS)), and binding specificity to five different tumor cell lines (A549, PC-3, HCC827, U87, and MDA-MB-231). PET imaging of tumor-bearing mice showed that [18F]FEM specifically accumulated at the tumor site of the five different tumor cell lines. The average tumor-to-muscle (T/M) ratio was over 2, and the maximum T/M values reached about 3.5. The biodistribution and dynamic PET imaging showed that most probes were metabolized by the liver, whereas a small part was metabolized by the kidney. Moreover, dynamic brain images and quantitative data showed [18F]FEM can quickly cross the blood brain barrier (BBB) and quickly fade out, thereby suggesting it may be a promising candidate probe for the imaging of brain tumors. The presented results demonstrated that [18F]FEM is a promising probe for tumor PET imaging.
Collapse
Affiliation(s)
- Yanping Jiang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China
| | - Wenlan Zhou
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China
| | - Kongzhen Hu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China
| | - Yanjiang Han
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China
| | - Penghui Sun
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China
| | - Quanshi Wang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China
| | - Guiping Li
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China
| | - Hubing Wu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China
| | - Ganghua Tang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China
| | - Shun Huang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong Province 510515, China.
| |
Collapse
|
6
|
Ermert J, Benešová M, Hugenberg V, Gupta V, Spahn I, Pietzsch HJ, Liolios C, Kopka K. Radiopharmaceutical Sciences. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Kim DY, Cho SG, Bom HS. Emerging Tracers for Nuclear Cardiac PET Imaging. Nucl Med Mol Imaging 2018; 52:266-278. [PMID: 30100939 PMCID: PMC6066491 DOI: 10.1007/s13139-018-0521-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/05/2018] [Accepted: 04/12/2018] [Indexed: 12/16/2022] Open
Abstract
Myocardial perfusion imaging using positron emission tomography (PET) has several advantages over single photon emission computed tomography (SPECT). The recent advances in SPECT technology have shown promise, but there is still a large need for PET in the clinical management of coronary artery disease (CAD). Especially, absolute quantification of myocardial blood flow (MBF) using PET is extremely important. In spite of considerable advances in the diagnosis of CAD, novel PET radiopharmaceuticals remain necessary for the diagnosis of CAD because clinical use of current cardiac radiotracers is limited by their physical characteristics, such as decay mode, emission energy, and half-life. Thus, the use of a radioisotope that has proper characteristics and a proper half-life to develop myocardial perfusion agents could overcome these limitations. In this review, the current state of cardiac PET and a general overview of novel 18F or 68Ga-labeled radiotracers, including their radiosynthesis, in vivo characterization, and evaluation, are provided. The future perspectives are discussed in terms of their potential usefulness based on new image analysis methods and hybrid imaging.
Collapse
Affiliation(s)
- Dong-Yeon Kim
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-ro Hwasun-eup, Hwasun-gun, Jeollanam-do 58128 Republic of Korea
| | - Sang-Geon Cho
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-ro Hwasun-eup, Hwasun-gun, Jeollanam-do 58128 Republic of Korea
| | - Hee-Seung Bom
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-ro Hwasun-eup, Hwasun-gun, Jeollanam-do 58128 Republic of Korea
| |
Collapse
|
8
|
Kazakauskaitė E, Žaliaduonytė-Pekšienė D, Rumbinaitė E, Keršulis J, Kulakienė I, Jurkevičius R. Positron Emission Tomography in the Diagnosis and Management of Coronary Artery Disease. MEDICINA (KAUNAS, LITHUANIA) 2018; 54:medicina54030047. [PMID: 30344278 PMCID: PMC6122121 DOI: 10.3390/medicina54030047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/03/2018] [Indexed: 11/16/2022]
Abstract
Cardiac positron emission tomography (PET) and positron emission tomography/computed tomography (PET/CT) are encouraging precise non-invasive imaging modalities that allow imaging of the cellular function of the heart, while other non-invasive cardiovascular imaging modalities are considered to be techniques for imaging the anatomy, morphology, structure, function and tissue characteristics. The role of cardiac PET has been growing rapidly and providing high diagnostic accuracy of coronary artery disease (CAD). Clinical cardiology has established PET as a criterion for the assessment of myocardial viability and is recommended for the proper management of reduced left ventricle (LV) function and ischemic cardiomyopathy. Hybrid PET/CT imaging has enabled simultaneous integration of the coronary anatomy with myocardial perfusion and metabolism and has improved characterization of dysfunctional areas in chronic CAD. Also, the availability of quantitative myocardial blood flow (MBF) evaluation with various PET perfusion tracers provides additional prognostic information and enhances the diagnostic performance of nuclear imaging.
Collapse
Affiliation(s)
- Eglė Kazakauskaitė
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas LT-50161, Lithuania.
| | - Diana Žaliaduonytė-Pekšienė
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas LT-50161, Lithuania.
| | - Eglė Rumbinaitė
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas LT-50161, Lithuania.
| | - Justas Keršulis
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas LT-50161, Lithuania.
| | - Ilona Kulakienė
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas LT-50161, Lithuania.
| | - Renaldas Jurkevičius
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas LT-50161, Lithuania.
| |
Collapse
|
9
|
Paluch P, Trébosc J, Amoureux JP, Potrzebowski MJ. 1H- 31P CPVC NMR method under Very Fast Magic Angle Spinning for analysis of dipolar interactions and dynamics processes in the crystalline phosphonium tetrafluoroborate salts. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 87:96-103. [PMID: 28602610 DOI: 10.1016/j.ssnmr.2017.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/17/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
We present an NMR methodology which can be used to study the dynamical processes occurring in organophosphorus compounds that belong to the group of the organic ionic plastic crystals (OIPCs). As model samples we employed two phosphonium tetrafluoroborate salts; (t-Bu)3PH+BF4- (1) and (Me)3PH+BF4- (2). Both samples possess in their structures direct H-P bonds, and both undergo complex thermal processes in the solid state, forming below the melting point three or four phases, respectively. 1H-31P CPVC (Cross-Polarization Variable Contact) measurements were performed under Very Fast Magic Angle Spinning with speed equal to 50 or 60 kHz, in order (i) to establish the hydrogen-phosphorus dipolar couplings, and (ii) to correlate the dipolar splitting values with molecular motions of the cation. Our project is divided into three sections. In the first part we present DSC studies of (1) and (2), to verify whether these samples fulfill the requirements that define them as OIPC. The second part is dedicated to a discussion of the theoretical aspects of 1H-31P CPVC and especially an analysis of the influence of different parameters, e.g. CSA31P, H-H mismatch, rf-inhomogeneity, dipolar truncation, and the type of dynamics through the motionally averaged <ηD> asymmetry value on the NMR response. The third part shows experimental 1H-31P CPVC data and applicability of these measurements to study H-P distances and dynamics. The complex molecular motion for sample (2), including rotation and diffusion, versus temperature is then postulated on the bases of the changes of H-P dipolar splitting.
Collapse
Affiliation(s)
- Piotr Paluch
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90 363 Lodz, Poland
| | - Julien Trébosc
- Univ. Lille, UMR 8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| | - Jean-Paul Amoureux
- Univ. Lille, UMR 8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France; Bruker France, 34 rue de l'Industrie, F-67166 Wissembourg, France
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90 363 Lodz, Poland.
| |
Collapse
|
10
|
Bhusari AM, Lakshminarayanan N, Pawar YP, Moghe SH, Rajan MGR, Degani MS. Radiosynthesis and preclinical evaluation of [ 18F] 4-(2-fluoroethoxy)-2 H-chromen-2-one as a novel myocardial perfusion imaging agent. RADIOCHIM ACTA 2017. [DOI: 10.1515/ract-2016-2695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Recently we developed [18F] 4-(2-fluoroethoxy)-2H-chromen-2-one as a novel 18F myocardial perfusion imaging radiotracer. It was synthesized in good radiochemical yield (>90%). The total time from radiosynthesis to its purification was less than 40 min, with excellent radiochemical purity (≥99%). It showed good stability over a period of 5 h at room temperature. The partition coefficient (log P) of radiotracer was found to be 2.70, suggesting the lipophilic nature of radiotracer. Ex vivo biodistribution study of radiotracer in normal Wistar rats for 30 min post-injection, demonstrated a good heart uptake (>1.3% ID/g) and favorable pharmacokinetics. Additionally, the radiotracer showed significant excretion (>11% ID) by liver, which is indicative of its rapid clearance. Further, in vivo biodistribution study of radiotracer in New Zealand White rabbit provided the clear PET/CT images of cardiomyocytes and myocardial perfusion. All these experimental findings suggest that [18F] 4-(2-fluoroethoxy)-2H-chromen-2-one could be used as a potential hit for myocardial perfusion imaging.
Collapse
Affiliation(s)
- Arun M. Bhusari
- Department of Pharmaceutical Sciences and Technology , Institute of Chemical Technology, Matunga (E) , Mumbai 400019 , India
| | - N. Lakshminarayanan
- Radiation Medicine Center, Bhabha Atomic Research Centre, Tata Memorial Centre, Annex Building, Parel , Mumbai 400012, Maharashtra , India
| | - Yogita P. Pawar
- Radiation Medicine Center, Bhabha Atomic Research Centre, Tata Memorial Centre, Annex Building, Parel , Mumbai 400012, Maharashtra , India
| | - Surendra H. Moghe
- Radiation Medicine Center, Bhabha Atomic Research Centre, Tata Memorial Centre, Annex Building, Parel , Mumbai 400012, Maharashtra , India
| | - M. G. R. Rajan
- Radiation Medicine Center, Bhabha Atomic Research Centre, Tata Memorial Centre, Annex Building, Parel , Mumbai 400012, Maharashtra , India
| | - Mariam S. Degani
- Department of Pharmaceutical Sciences and Technology , Institute of Chemical Technology, Matunga (E) , Mumbai 400 019 , India , Tel.: +91-22-233612201; Fax: +91-22-33611020, E-mail:
| |
Collapse
|
11
|
Zielonka J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev 2017; 117:10043-10120. [PMID: 28654243 PMCID: PMC5611849 DOI: 10.1021/acs.chemrev.7b00042] [Citation(s) in RCA: 1062] [Impact Index Per Article: 132.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Carrera 5a No. 6-33, Floridablanca, Santander, Colombia, 681003
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Calle 4B No. 36-00, Cali, Colombia, 760032
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
12
|
Chen S, Zhao Z, Zhang Y, Fang W, Lu J, Zhang X. Effect of methoxy group position on biological properties of 18 F–labeled benzyl triphenylphosphonium cations. Nucl Med Biol 2017; 49:16-23. [DOI: 10.1016/j.nucmedbio.2017.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/23/2017] [Accepted: 02/22/2017] [Indexed: 11/29/2022]
|
13
|
Abstract
The present study aimed to discuss the role of mitochondrion in cardiac function and disease. The mitochondrion plays a fundamental role in cellular processes ranging from metabolism to apoptosis. The mitochondrial-targeted molecular imaging could potentially illustrate changes in global and regional cardiac dysfunction. The collective changes that occur in mitochondrial-targeted molecular imaging probes have been widely explored and developed. As probes currently used in the preclinical setting still have a lot of shortcomings, the development of myocardial metabolic activity, viability, perfusion, and blood flow molecular imaging probes holds great potential for accurately evaluating the myocardial viability and functional reserve. The advantages of molecular imaging provide a perspective on investigating the mitochondrial function of the myocardium in vivo noninvasively and quantitatively. The molecular imaging tracers of single-photon emission computed tomography and positron emission tomography could give more detailed information on myocardial metabolism and restoration. In this study, series mitochondrial-targeted 99mTc-, 123I-, and 18F-labeled tracers displayed broad applications because they could provide a direct link between mitochondrial dysfunction and cardiac disease.
Collapse
|
14
|
Research Progress on 18F-Labeled Agents for Imaging of Myocardial Perfusion with Positron Emission Tomography. Molecules 2017; 22:molecules22040562. [PMID: 28358340 PMCID: PMC6154634 DOI: 10.3390/molecules22040562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death in the world. Myocardial perfusion imaging (MPI) plays a significant role in non-invasive diagnosis and prognosis of CAD. However, neither single-photon emission computed tomography nor positron emission tomography clinical MPI agents can absolutely satisfy the demands of clinical practice. In the past decades, tremendous developments happened in the field of 18F-labeled MPI tracers. This review summarizes the current state of 18F-labeled MPI tracers, basic research data of those tracers, and the future direction of MPI tracer research.
Collapse
|
15
|
van der Born D, Pees A, Poot AJ, Orru RVA, Windhorst AD, Vugts DJ. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem Soc Rev 2017; 46:4709-4773. [DOI: 10.1039/c6cs00492j] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a comprehensive overview of the synthesis and application of fluorine-18 labelled building blocks since 2010.
Collapse
Affiliation(s)
- Dion van der Born
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Anna Pees
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Alex J. Poot
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules
- Medicines & Systems (AIMMS)
- VU University Amsterdam
- Amsterdam
- The Netherlands
| | - Albert D. Windhorst
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Danielle J. Vugts
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| |
Collapse
|
16
|
Chansaenpak K, Wang H, Wang M, Giglio B, Ma X, Yuan H, Hu S, Wu Z, Li Z. Synthesis and Evaluation of [(18) F]-Ammonium BODIPY Dyes as Potential Positron Emission Tomography Agents for Myocardial Perfusion Imaging. Chemistry 2016; 22:12122-9. [PMID: 27405398 DOI: 10.1002/chem.201601972] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/06/2016] [Indexed: 01/06/2023]
Abstract
Recently, we demonstrated the potential of a [(18) F]-trimethylammonium BODIPY dye for cardiac imaging. This is the first example of the use of the [(18) F]-ammonium BODIPY dye for positron emission tomography (PET) myocardial perfusion imaging (MPI). In this report, we extend our study to other ammonium BODIPY dyes with different nitrogen substituents. These novel ammonium BODIPY dyes were successfully prepared and radiolabeled by the SnCl4 -assisted (18) F-(19) F isotopic exchange method. The microPET results and the biodistribution data reveal that nitrogen substituent changes have a significant effect on the in vivo and pharmacological properties of the tracers. Of the novel [(18) F]-ammonium BODIPY dyes prepared in this work, the [(18) F]-dimethylethylammonium BODIPY is superior in terms of myocardium uptake and PET imaging contrast. These results support our hypothesis that the ammonium BODIPY dyes have a great potential for use as PET/optical dual-modality MPI probes.
Collapse
Affiliation(s)
- Kantapat Chansaenpak
- Biomedical Research Imaging Center, Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, 27514, USA
| | - Hui Wang
- Biomedical Research Imaging Center, Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, 27514, USA
| | - Mengzhe Wang
- Biomedical Research Imaging Center, Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, 27514, USA
| | - Benjamin Giglio
- Biomedical Research Imaging Center, Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, 27514, USA
| | - Xiaofeng Ma
- Biomedical Research Imaging Center, Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, 27514, USA
| | - Hong Yuan
- Biomedical Research Imaging Center, Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, 27514, USA
| | - Shuo Hu
- PET Center of Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Zhanhong Wu
- Biomedical Research Imaging Center, Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, 27514, USA.
| | - Zibo Li
- Biomedical Research Imaging Center, Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, 27514, USA
| |
Collapse
|
17
|
Zhang Z, Jenni S, Zhang C, Merkens H, Lau J, Liu Z, Perrin DM, Bénard F, Lin KS. Synthesis and evaluation of 18F-trifluoroborate derivatives of triphenylphosphonium for myocardial perfusion imaging. Bioorg Med Chem Lett 2016; 26:1675-9. [DOI: 10.1016/j.bmcl.2016.02.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/30/2022]
|
18
|
Radiolabeled Phosphonium Salts as Mitochondrial Voltage Sensors for Positron Emission Tomography Myocardial Imaging Agents. Nucl Med Mol Imaging 2016; 50:185-95. [PMID: 27540422 DOI: 10.1007/s13139-016-0397-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 02/02/2023] Open
Abstract
Despite substantial advances in the diagnosis of cardiovascular disease, (18)F-labeled positron emission tomography (PET) radiopharmaceuticals remain necessary to diagnose heart disease because clinical use of current PET tracers is limited by their short half-life. Lipophilic cations such as phosphonium salts penetrate the mitochondrial membranes and accumulate in mitochondria of cardiomyocytes in response to negative inner-transmembrane potentials. Radiolabeled tetraphenylphosphonium cation derivatives have been developed as myocardial imaging agents for PET. In this review, a general overview of these radiotracers, including their radiosynthesis, in vivo characterization, and evaluation is provided and clinical perspectives are discussed.
Collapse
|
19
|
Radiosynthesis and evaluation of 18F-labeled aliphatic phosphonium cations as a myocardial imaging agent for positron emission tomography. Nucl Med Commun 2015; 36:747-54. [DOI: 10.1097/mnm.0000000000000315] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Mou T, Zhao Z, You L, Wang Q, Fang W, Lu J, Peng C, Zhang X. Synthesis and bioevaluation of 4-chloro-2-tert-butyl-5-[2-[[1-[2-[(18) F]fluroethyl]-1H-1,2,3-triazol-4-yl]methyl]phenylmethoxy]-3(2H)-pyridazinone as potential myocardial perfusion imaging agent with PET. J Labelled Comp Radiopharm 2015; 58:349-54. [PMID: 26094722 DOI: 10.1002/jlcr.3310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/16/2015] [Accepted: 05/20/2015] [Indexed: 11/06/2022]
Abstract
This study reports the synthesis and characterization of 4-chloro-2-tert-butyl-5-[2-[[1-[2-[(18) F]fluroethyl]-1H-1,2,3-triazol-4-yl]methyl]phenylmethoxy]-3(2H)-pyridazinone ([(18) F]Fmp2) for myocardial perfusion imaging (MPI). The tosylate precursor and non-radioactive compound [(19) F]Fmp2 were synthesized and characterized by infrared, (1) H-NMR, (13) C-NMR, and mass spectra (MS). The radiotracer [(18) F]Fmp2 was obtained by one-step nucleophilic substitution of tosyl with (18) F, and evaluated as an MPI agent in vitro and in vivo. Starting from [(18) F]KF/K222 solution, the typical decay-corrected radiochemical yield (RCY) was 38 ± 8.8% with high radiochemical purity (>98%). The specific activity was calculated as 10 GBq/µmol at the end of synthesis determined by HPLC analysis. In the mice biodistribution, [(18) F]Fmp2 showed very high initial heart uptake (53.35 ± 5.47 %ID/g at 2 min after injection) and remarkable retention. The heart/liver, heart/lung, and heart/blood ratios were 7.98, 8.20, and 53.13, respectively at 2 min post-injection. In the Positron Emission Tomography (PET) imaging study of Chinese mini-swine, the standardized uptake value of the liver decreased modestly during the 2 h post-injection, while the heart uptake and heart/liver ratios continued to increase with time. [(18) F]Fmp2 exhibited good stability, high heart uptake and low lung uptake in mice and Chinese mini-swine. It may be worthy of further modification to improve liver clearance for MPI in the future.
Collapse
Affiliation(s)
- Tiantian Mou
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361005, China.,Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Zuoquan Zhao
- Department of Nuclear Medicine, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Linyi You
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Qian Wang
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Wei Fang
- Department of Nuclear Medicine, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Jie Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Cheng Peng
- PET Center, Xuanwu Hospital of Capital University of Medical Sciences, Beijing, 100053, China
| | - Xianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
21
|
Kim DY, Kim HS, Reder S, Zheng JH, Herz M, Higuchi T, Pyo AY, Bom HS, Schwaiger M, Min JJ. Comparison of 18F-Labeled Fluoroalkylphosphonium Cations with 13N-NH3 for PET Myocardial Perfusion Imaging. J Nucl Med 2015; 56:1581-6. [PMID: 26069304 DOI: 10.2967/jnumed.115.156794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/29/2015] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED Despite substantial advances in the diagnosis of cardiovascular disease, there is a need for 18F-labeled myocardial perfusion agents for the diagnosis of ischemic heart disease because current PET tracers for myocardial perfusion imaging have a short half-life that limits their widespread clinical use in PET. Thus, 18F-labeled fluoroalkylphosphonium derivatives (18F-FATPs), including (5-18F-fluoropentyl)triphenylphosphonium cation (18F-FPTP), (6-18F-fluorohexyl)triphenylphosphonium cation (18F-FHTP), and (2-(2-18F-fluoroethoxy)ethyl)triphenylphosphonium cation (18F-FETP), were synthesized. The myocardial extraction and image quality of the 18F-FATPs were compared with those of 13N-NH3 in rat models. METHODS The first-pass extraction fraction (EF) values of the 18F-FATPs (18F-FPTP, 18F-FHTP, 18F-FETP) and 13N-NH3 were measured in isolated rat hearts perfused with the Langendorff method (flow velocities, 0.5, 4.0, 8.0, and 16.0 mL/min). Normal and myocardial infarction rats were imaged with small-animal PET after intravenous injection of 37 MBq of 18F-FATPs and 13N-NH3. To determine pharmacokinetics, a region of interest was drawn around the heart, and time-activity curves of the 18F-FATPs and 13N-NH3 were generated to obtain the counts per pixel per second. Defect size was analyzed on the basis of polar map images of 18F-FATPs and 13N-NH3. RESULTS The EF values of 18F-FATPs and 13N-NH3 were comparable at low flow velocity (0.5 mL/min), whereas at higher flows EF values of 18F-FATPs were significantly higher than those of 13N-NH3 (4.0, 8.0, and 16.0 mL/min, P<0.05). Myocardium-to-liver ratios of 18F-FPTP, 18F-FHTP, 18F-FETP, and 13N-NH3 were 2.10±0.30, 4.36±0.20, 3.88±1.03, and 0.70±0.09, respectively, 10 min after injection, whereas myocardium-to-lung ratios were 5.00±0.25, 4.33±0.20, 7.98±1.23, and 2.26±0.14, respectively. Although 18F-FATPs and 13N-NH3 sharply delineated myocardial perfusion defects, defect size on the 13N-NH3 images was significantly smaller than on the 18F-FATP images soon after tracer injection (0-10 min, P=0.027). CONCLUSION 18F-FATPs exhibit higher EF values and more rapid clearance from the liver and lung than 13N-NH3 in normal rats, which led to excellent image quality in a rat model of coronary occlusion. Therefore, 18F-FATPs are promising new PET radiopharmaceuticals for myocardial perfusion imaging.
Collapse
Affiliation(s)
- Dong-Yeon Kim
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea; and
| | - Hyeon Sik Kim
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea; and
| | - Sybille Reder
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Jin Hai Zheng
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea; and
| | - Michael Herz
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - A Young Pyo
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea; and
| | - Hee-Seung Bom
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea; and
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea; and
| |
Collapse
|
22
|
Abstract
PET myocardial perfusion imaging (MPI) is increasingly being used for noninvasive detection and evaluation of coronary artery disease. However, the widespread use of PET MPI has been limited by the shortcomings of the current PET perfusion tracers. The availability of these tracers is limited by the need for an onsite ((15)O water and (13)N ammonia) or nearby ((13)N ammonia) cyclotron or commitment to costly generators ((82)Rb). Owing to the short half-lives, such as 76 seconds for (82)Rb, 2.06 minutes for (15)O water, and 9.96 minutes for (13)N ammonia, their use in conjunction with treadmill exercise stress testing is either not possible ((82)Rb and (15)O water) or not practical ((13)N ammonia). Furthermore, the long positron range of (82)Rb makes image resolution suboptimal and its low myocardial extraction limits its defect resolution. In recent years, development of an (18)F-labeled PET perfusion tracer has gathered considerable interest. The longer half-life of (18)F (109 minutes) would make the tracer available as a unit dose from regional cyclotrons and allow use in conjunction with treadmill exercise testing. Furthermore, the short positron range of (18)F would result in better image resolution. Flurpiridaz F 18 is by far the most thoroughly studied in animal models and is the only (18)F-based PET MPI radiotracer currently undergoing clinical evaluation. Preclinical and clinical experience with Flurpiridaz F 18 demonstrated a high myocardial extraction fraction, high image and defect resolution, high myocardial uptake, slow myocardial clearance, and high myocardial-to-background contrast that was stable over time-important properties of an ideal PET MPI radiotracer. Preclinical data from other (18)F-labeled myocardial perfusion tracers are encouraging.
Collapse
Affiliation(s)
- Jamshid Maddahi
- Division of Cardiology, Department of Medicine, University of California at Los Angeles (UCLA) School of Medicine, Los Angeles, CA; Division of Nuclear Medicine, Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, CA.
| | - René R S Packard
- Division of Cardiology, Department of Medicine, University of California at Los Angeles (UCLA) School of Medicine, Los Angeles, CA
| |
Collapse
|
23
|
Kim DY, Min JJ. Synthesis and evaluation of ¹⁸F-labeled fluoroalkyl triphenylphosphonium salts as mitochondrial voltage sensors in PET myocardial imaging. Methods Mol Biol 2015; 1265:59-72. [PMID: 25634267 DOI: 10.1007/978-1-4939-2288-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We have previously reported that radiolabeled phosphonium cations accumulate in the mitochondria down a transmembrane potential gradient. We present an optimized procedure for synthesis of three 18F-labeled fluoroalkyl triphenylphosphonium salts ([18F]FATPs) via two-step simple nucleophilic substitution reactions to develop new myocardial imaging agents for positron emission tomography (PET). The total reaction time of [18F]FATPs was within 60 min, and the overall decay-corrected radiochemical yield was approximately 15-30 % (decay corrected). Radiochemical purity was >98 % according to analytical high-performance liquid chromatography (HPLC). The specific activity of [18F]FATPs was >6.1 TBq/μmol. The micro-PET imaging studies in rats showed an initial spike of radioactivity, followed by myocardial retention and rapid clearance from background. The images from rats with an occluded left coronary artery demonstrated sharply defined myocardial defects in the corresponding area of the myocardium. This imaging technology may enable high throughput, multiple studies daily and wide distribution of PET myocardial studies in clinic.
Collapse
Affiliation(s)
- Dong-Yeon Kim
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | | |
Collapse
|
24
|
Kim DY, Kim HS, Jang HY, Kim JH, Bom HS, Min JJ. Comparison of the Cardiac MicroPET Images Obtained Using [(18)F]FPTP and [(13)N]NH3 in Rat Myocardial Infarction Models. ACS Med Chem Lett 2014; 5:1124-8. [PMID: 25313324 DOI: 10.1021/ml500251z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/10/2014] [Indexed: 11/29/2022] Open
Abstract
The short half-life of current positron emission tomography (PET) cardiac tracers limits their widespread clinical use. We previously developed a (18)F-labeled phosphonium cation, [(18)F]FPTP, that demonstrated sharply defined myocardial defects in a corresponding infarcted myocardium. The aim of this study was to compare the image properties of PET scans obtained using [(18)F]FPTP with those obtained using [(13)N]NH3 in rat myocardial infarction models. Perfusion abnormality was analyzed in 17 segments of polar map images. The myocardium-to-liver and myocardium-to-lung ratios of [(18)F]FPTP were 10.48 and 2.65 times higher, respectively, than those of [(13)N]NH3 in images acquired 30 min after tracer injection. The myocardial defect size measured by [(18)F]FPTP correlated more closely with the hypoperfused area measured by quantitative 2,3,5-triphenyltetrazolium chloride staining (r = 0.89, P < 0.01) than did [(13)N]NH3 (r = 0.84, P < 0.01). [(18)F]FPTP might be useful as a replacement for the myocardial agent [(13)N]NH3 in cardiac PET/CT applications.
Collapse
Affiliation(s)
- Dong-Yeon Kim
- Department
of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hyeon Sik Kim
- Department
of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hwa Youn Jang
- Department
of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Ju Han Kim
- Department
of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Hee-Seung Bom
- Department
of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Jung-Joon Min
- Department
of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
| |
Collapse
|
25
|
Zhao Z, Yu Q, Mou T, Liu C, Yang W, Fang W, Peng C, Lu J, Liu Y, Zhang X. Highly Efficient One-Pot Labeling of New Phosphonium Cations with Fluorine-18 as Potential PET Agents for Myocardial Perfusion Imaging. Mol Pharm 2014; 11:3823-31. [DOI: 10.1021/mp500216g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zuoquan Zhao
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, 19 Xinjiekou Outer Street, Beijing 100875, China
| | - Qian Yu
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, 19 Xinjiekou Outer Street, Beijing 100875, China
| | - Tiantian Mou
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, 19 Xinjiekou Outer Street, Beijing 100875, China
| | - Chang Liu
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, 19 Xinjiekou Outer Street, Beijing 100875, China
- Center
for Molecular Imaging and Translational Medicine, State Key Laboratory
of Molecular Vaccinology and Molecular Diagnostics, School of Public
Health, Xiamen University, Xiang’an South Road, Xiamen 361102, China
| | - Wenjiang Yang
- Key
Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute
of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Fang
- Department
of Nuclear Medicine, Cardiovascular Institute and FuWai Hospital, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Cheng Peng
- PET Center
of Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jie Lu
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, 19 Xinjiekou Outer Street, Beijing 100875, China
| | - Yu Liu
- Key
Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute
of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xianzhong Zhang
- Center
for Molecular Imaging and Translational Medicine, State Key Laboratory
of Molecular Vaccinology and Molecular Diagnostics, School of Public
Health, Xiamen University, Xiang’an South Road, Xiamen 361102, China
| |
Collapse
|
26
|
Li L, Brichard L, Larsen L, Menon DK, Smith RAJ, Murphy MP, Aigbirhio FI. Radiosynthesis of 11-[(18) F]fluoroundecyltriphenylphosphonium (MitoF) as a potential mitochondria-specific positron emission tomography radiotracer. J Labelled Comp Radiopharm 2013; 56:717-21. [PMID: 24339010 DOI: 10.1002/jlcr.3109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/09/2013] [Accepted: 07/09/2013] [Indexed: 02/11/2024]
Abstract
Changes in the magnitude of the mitochondrial membrane potential occur in a range of important pathologies. To assess changes in membrane potential in patients, we set out to develop an improved mitochondria-targeted positron emission tomography probe comprising a lipophilic triphenylphosphonium cation attached to a fluorine-18 radionuclide via an 11-carbon alkyl chain, which is well-established to effectively transport to and localise within mitochondria. Here, we describe the radiosynthesis of this probe, 11-[(18) F]fluoroundecyl-triphenylphosphonium (MitoF), from no-carrier-added [(18) F]fluoride and a fully automated synthetic protocol to prepare it in good radiochemical yields (2-3 GBq at end-of-synthesis) and radiochemical purity (97-99%).
Collapse
Affiliation(s)
- L Li
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Jacobson O, Abourbeh G, Tsvirkun D, Mishani E. Rat imaging and in vivo stability studies using [11C]-dimethyl-diphenyl ammonium, a candidate agent for PET-myocardial perfusion imaging. Nucl Med Biol 2013; 40:967-73. [PMID: 23999238 DOI: 10.1016/j.nucmedbio.2013.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/07/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND PET myocardial perfusion imaging (MPI) holds several advantages over SPECT for diagnosing coronary artery disease. The short half-lives of prevailing PET-MPI agents hamper wider clinical application of PET in nuclear cardiology; prompting the development of novel PET-MPI agents. We have previously reported on the potential of radiolabeled ammonium salts, and particularly on that of [(11)C]dimethyl-diphenyl-ammonium ([(11)C]DMDPA), for cardiac PET imaging. This study was designed to improve the radiosynthesis and increase the yield of [(11)C]DMDPA, characterize more meticulously the kinetics of radioactivity distribution after its injection via micro-PET/CT studies, and further explore its potential for PET-MPI. METHODS The radiosynthetic procedure of [(11)C]DMDPA was improved with respect to the previously reported one. The kinetics of radioactivity distribution following injection of [(11)C]DMDPA were investigated in juvenile and young adult male SD rats using microPET/CT, and compared to those of [(13)N]NH3. Furthermore, the metabolic fate of [(11)C]DMDPA in vivo was examined after its injection into rats. RESULTS Following a radiosynthesis time of 25-27 min, 11.9 ± 1.1 GBq of [(11)C]DMDPA was obtained, with a 43.7% ± 4.3% radiochemical yield (n = 7). Time activity curves calculated after administration of [(11)C]DMDPA indicated rapid, high and sustained radioactivity uptake in hearts of both juvenile and young adult rats, having a two-fold higher cardiac radioactivity uptake compared to [(13)N]NH3. Accordingly, at all time points after injection to both juvenile and young adult rats, image quality of the left ventricle was higher with [(11)C]DMDPA compared to [(13)N]NH3. In vivo stability studies of [(11)C]DMDPA indicate that no radioactive metabolites could be detected in plasma, liver and urine samples of rats up to 20 min after injection, suggesting that [(11)C]DMDPA is metabolically stable in vivo. CONCLUSIONS This study further illustrates that [(11)C]DMDPA holds, at least in part, essential qualities required from a PET-MPI probe. Owing to the improved radiosynthetic procedure reported herein, [(11)C]DMDPA can be produced in sufficient amounts for clinical use.
Collapse
Affiliation(s)
- Orit Jacobson
- Cyclotron-Radiochemistry-MicroPET Unit, Department of Medical Biophysics and Nuclear Medicine, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
28
|
Cui M, Wang X, Yu P, Zhang J, Li Z, Zhang X, Yang Y, Ono M, Jia H, Saji H, Liu B. Synthesis and Evaluation of Novel 18F Labeled 2-Pyridinylbenzoxazole and 2-Pyridinylbenzothiazole Derivatives as Ligands for Positron Emission Tomography (PET) Imaging of β-Amyloid Plaques. J Med Chem 2012; 55:9283-96. [DOI: 10.1021/jm300973k] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Mengchao Cui
- Key Laboratory
of Radiopharmaceuticals,
Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xuedan Wang
- Key Laboratory
of Radiopharmaceuticals,
Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Pingrong Yu
- Key Laboratory
of Radiopharmaceuticals,
Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jinming Zhang
- Key Laboratory
of Radiopharmaceuticals,
Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing 100853, P. R.
China
| | - Zijing Li
- Key Laboratory
of Radiopharmaceuticals,
Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiaojun Zhang
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing 100853, P. R.
China
| | - Yanping Yang
- Key Laboratory
of Radiopharmaceuticals,
Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Masahiro Ono
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku,
Kyoto 606-8501, Japan
| | - Hongmei Jia
- Key Laboratory
of Radiopharmaceuticals,
Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hideo Saji
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku,
Kyoto 606-8501, Japan
| | - Boli Liu
- Key Laboratory
of Radiopharmaceuticals,
Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|