1
|
Qin W, Chandra J, Abourehab MAS, Gupta N, Chen ZS, Kesharwani P, Cao HL. New opportunities for RGD-engineered metal nanoparticles in cancer. Mol Cancer 2023; 22:87. [PMID: 37226188 DOI: 10.1186/s12943-023-01784-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023] Open
Abstract
The advent of nanotechnology has opened new possibilities for bioimaging. Metal nanoparticles (such as gold, silver, iron, copper, etc.) hold tremendous potential and offer enormous opportunities for imaging and diagnostics due to their broad optical characteristics, ease of manufacturing technique, and simple surface modification. The arginine-glycine-aspartate (RGD) peptide is a three-amino acid sequence that seems to have a considerably greater ability to adhere to integrin adhesion molecules that exclusively express on tumour cells. RGD peptides act as the efficient tailoring ligand with a variety of benefits including non-toxicity, greater precision, rapid clearance, etc. This review focuses on the possibility of non-invasive cancer imaging using metal nanoparticles with RGD assistance.
Collapse
Affiliation(s)
- Wei Qin
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, 710021, China
| | - Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Neelima Gupta
- Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Zhe-Sheng Chen
- Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical science, Chennai, India.
| | - Hui-Ling Cao
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|
2
|
Qiu L, Lin Q, Si Z, Tan H, Liu G, Zhou J, Wang T, Chen Y, Huang Y, Yu T, Jin M, Cheng D, Shi H. A Pretargeted Imaging Strategy for EGFR-Positive Colorectal Carcinoma via Modulation of Tz-Radioligand Pharmacokinetics. Mol Imaging Biol 2021; 23:38-51. [PMID: 32914391 DOI: 10.1007/s11307-020-01539-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE Previously, we successfully developed a pretargeted imaging strategy (atezolizumab-TCO/[99mTc]HYNIC-PEG11-Tz) for evaluating programmed cell death ligand-1 (PD-L1) expression in xenograft mice. However, the surplus unclicked [99mTc]HYNIC-PEG11-Tz is cleared somewhat sluggishly through the intestines, which is not ideal for colorectal cancer (CRC) imaging. To shift the excretion of the Tz-radioligand to the renal system, we developed a novel Tz-radioligand by adding a polypeptide linker between HYNIC and PEG11. PROCEDURES Pretargeted molecular probes [99mTc]HYNIC-polypeptide-PEG11-Tz and cetuximab-TCO were synthesized. [99mTc]HYNIC-polypeptide-PEG11-Tz was evaluated for in vitro stability and in vivo blood pharmacokinetics. In vitro ligation reactivity of [99mTc]HYNIC-polypeptide-PEG11-Tz towards cetuximab-TCO was also tested. Biodistribution assay and imaging of [99mTc]HYNIC-polypeptide-PEG11-Tz were performed to observe its excretion pathway. Pretargeted biodistribution was measured at three different accumulation intervals to determine the optimal pretargeted interval time. Pretargeted (cetuximab-TCO 48 h/[99mTc]HYNIC-PEG11-Tz 6 h) and (cetuximab-TCO 48 h/[99mTc]HYNIC-Polypeptide-PEG11-Tz 6 h) imagings were compared to examine the effect of the excretion pathway on tumor imaging. RESULTS [99mTc]HYNIC-polypeptide-PEG11-Tz showed favorable in vitro stability and rapid blood clearance in mice. SEC-HPLC revealed almost complete reaction between cetuximab-TCO and [99mTc]HYNIC-polypeptide-PEG11-Tz in vitro, with the 8:1 Tz-to-mAb reaction providing a conversion yield of 87.83 ± 3.27 %. Biodistribution and imaging analyses showed that the Tz-radioligand was cleared through the kidneys. After 24, 48, and 72 h of accumulation in HCT116 tumor, the tumor-to-blood ratio of cetuximab-TCO was 0.83 ± 0.13, 1.40 ± 0.31, and 1.15 ± 0.21, respectively. Both pretargeted (cetuximab-TCO 48 h/[99mTc]HYNIC-PEG11-Tz 6 h) and (cetuximab-TCO 48 h/[99mTc]HYNIC-polypeptide-PEG11-Tz 6 h) clearly delineated HCT116 tumor. Pretargeted imaging strategy using cetuximab-TCO/[99mTc]HYNIC-polypeptide-PEG11-Tz could be used for diagnosing CRC, as the surplus unclicked [99mTc]HYNIC-polypeptide-PEG11-Tz was cleared through the urinary system, leading to low abdominal uptake background. CONCLUSION Our novel pretargeted imaging strategy (cetuximab-TCO/[99mTc]HYNIC-polypeptide-PEG11-Tz) was useful for imaging CRC, broadening the application scope of pretargeted imaging strategy. The pretargeted imaging strategy clearly delineated HCT116 tumor, showing that its use could be extended to selection of internalizing antibodies.
Collapse
Affiliation(s)
- Lin Qiu
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Qingyu Lin
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhan Si
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Jun Zhou
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Tingting Wang
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | | | - Tao Yu
- WuXi AppTec, Shanghai, China
| | - Mingzhi Jin
- WuXi Biologics (Shanghai) Co., Ltd, Shanghai, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
3
|
Rouchota M, Adamiano A, Iafisco M, Fragogeorgi E, Pilatis I, Doumont G, Boutry S, Catalucci D, Zacharioudaki A, Kagadis GC. Optimization of In Vivo Studies by Combining Planar Dynamic and Tomographic Imaging: Workflow Evaluation on a Superparamagnetic Nanoparticles System. Mol Imaging 2021; 2021:6677847. [PMID: 33746630 PMCID: PMC7953590 DOI: 10.1155/2021/6677847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
Molecular imaging holds great promise in the noninvasive monitoring of several diseases with nanoparticles (NPs) being considered an efficient imaging tool for cancer, central nervous system, and heart- or bone-related diseases and for disorders of the mononuclear phagocytic system (MPS). In the present study, we used an iron-based nanoformulation, already established as an MRI/SPECT probe, as well as to load different biomolecules, to investigate its potential for nuclear planar and tomographic imaging of several target tissues following its distribution via different administration routes. Iron-doped hydroxyapatite NPs (FeHA) were radiolabeled with the single photon γ-emitting imaging agent [99mTc]TcMDP. Administration of the radioactive NPs was performed via the following four delivery methods: (1) standard intravenous (iv) tail vein, (2) iv retro-orbital injection, (3) intratracheal (it) instillation, and (4) intrarectal installation (pr). Real-time, live, fast dynamic screening studies were performed on a dedicated bench top, mouse-sized, planar SPECT system from t = 0 to 1 hour postinjection (p.i.), and consequently, tomographic SPECT/CT imaging was performed, for up to 24 hours p.i. The administration routes that have been studied provide a wide range of possible target tissues, for various diseases. Studies can be optimized following this workflow, as it is possible to quickly assess more parameters in a small number of animals (injection route, dosage, and fasting conditions). Thus, such an imaging protocol combines the strengths of both dynamic planar and tomographic imaging, and by using iron-based NPs of high biocompatibility along with the appropriate administration route, a potential diagnostic or therapeutic effect could be attained.
Collapse
Affiliation(s)
- Maritina Rouchota
- 3dmi Research Group, Department of Medical Physics, School of Medicine, University of Patras, Greece
| | - Alessio Adamiano
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Italy
| | - Eirini Fragogeorgi
- Institute of Nuclear & Radiological Sciences, Technology, Energy & Safety, NCSR “Demokritos”, Greece
| | - Irineos Pilatis
- Department of Biomedical Engineering, University of West Attica, Greece
| | - Gilles Doumont
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Rue Adrienne Bolland 8, B-6041 Charleroi (Gosselies), Belgium
| | - Sébastien Boutry
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Rue Adrienne Bolland 8, B-6041 Charleroi (Gosselies), Belgium
| | - Daniele Catalucci
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), UOS Milan, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano (Milan), Italy
| | | | - George C. Kagadis
- 3dmi Research Group, Department of Medical Physics, School of Medicine, University of Patras, Greece
| |
Collapse
|
4
|
Abstract
OBJECTIVE Arginine-glycine-aspartic acid (RGD) peptide with its specific binding affinity to integrin αvβ3, is widely investigated for the development of molecular imaging probes for diagnosis of αvβ3-positive tumors. The aim of this work was to evaluate the ability of Tc- HYNIC-D(RGD), a novel retro-inverso peptidomimetic derivative for U87MG tumor (αvβ3-positive) imaging. METHODS HYNIC-D(RGD) labeled with Tc using tricine/EDDA as an exchange coligands. Single-photon emission computed tomography imaging and biodistribution study were performed in nude mice bearing U87MG xenograft tumor. RESULTS The labeling yield was >95%. The radiopeptide showed high uptake value in the U87MG tumor relative to muscle after 2 hours (1.43 ± 0.05 vs. 0.22 ± 0.11 %ID/g). The tumor/muscle ratio was 6.5. Blocking experiment showed specific binding towards tumor. Single-photon emission computed tomography imaging study revealed that radiopeptide had prominent uptake in U87MG tumor. CONCLUSION The novel Tc HYNIC- D(RGD) was demonstrated to be a useful radiotracer for the assessment of αvβ3-positive tumor in animal model. Therefore, further clinical and preclinical studies are required.
Collapse
|
5
|
Synthesis and biological evaluation of RGD conjugated with Ketoprofen/Naproxen and radiolabeled with [ 99mTc] via N4(GGAG) for α Vβ 3 integrin-targeted drug delivery. ACTA ACUST UNITED AC 2019; 28:87-96. [PMID: 31845157 DOI: 10.1007/s40199-019-00318-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/14/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Integrins are interesting targets in oncology. RGD sequence has high affinity for αVβ3 integrin receptors. Diagnostic/therapeutic agents can be selectively delivered into cancer cells overexpressing αVβ3 integrin by using RGD as a carrier. Nonsteroidal anti-inflammatory drugs (NSAIDs) have shown anticancer properties in in vitro and in vivo studies. The anti-cancer properties of NSAIDs occur though COX-2 inhibition. Regarding the anti-cancer properties of NSAIDs and overexpression of COX-2 enzyme in cancer cells, targeted delivery of NSAIDs into cancer cells to maximize their efficiency and minimize their side effects may gain increased clinical interest. OBJECTIVES In this study, RGD was conjugated to ketoprofen/Naproxen to selectively transfer these non-selective COX inhibitors into cancer cells. METHODS Keto/Nap-RGD-N4 peptides were synthesized based on solid phase fmoc peptide synthesis. Radiolabeling with [99mTc] via N4 (GGAG) ligand was done for biological evaluation. Affinity and specificity of Keto/Nap-RGD-N4 to integrin was determined using A2780, OVCAR-3, SKOV-3 and HT-1080 cell lines. Percentage of Intenalization was measured in A2780 cells. Biodistriburion was studied in normal and tumor model mice. RESULTS Radiolabeled compounds showed high affinity to cells expressing αVβ3 integrin in comparison to cells not expressing αVβ3. The affinity to A2780 was significantly higher than OVCAR-3 cells. The %internalization into A2780 cells was quite low. Compounds showed more than 50% inhibition on A2780 and OVCAR-3 cells, less than 10% on MCF-7 and HT-1080 cells and no cytotoxicity on fibroblast cells after 48 h incubation. Although uptake of radiolabeled compounds in tumor was high at 1 h post-injection, the tumor/blood ratio was less than 1.5 which made SPECT imaging impossible. CONCLUSION Provided that NSAID drugs are conjugated to RGD, there will be a selective delivery to target tissues as well as synergetic anti-tumor effects which reduce systemic doses and toxicity. Graphical abstract.
Collapse
|
6
|
Pretargeted Nuclear Imaging and Radioimmunotherapy Based on the Inverse Electron-Demand Diels-Alder Reaction and Key Factors in the Pretargeted Synthetic Design. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:9182476. [PMID: 31531006 PMCID: PMC6732628 DOI: 10.1155/2019/9182476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/20/2019] [Accepted: 08/01/2019] [Indexed: 11/18/2022]
Abstract
The exceptional speed and biorthogonality of the inverse electron-demand Diels-Alder (IEDDA) click chemistry between 1,2,4,5-tetrazines and strained alkene dienophiles have made it promising in the realm of pretargeted imaging and therapy. During the past 10 years, the IEDDA-pretargeted strategies have been tested and have already proven capable of producing images with high tumor-to-background ratios and improving therapeutic effect. This review will focus on recent applications of click chemistry ligations in the pretargeted imaging studies of single photon emission computed tomography (SPECT), positron emission tomography (PET), and pretargeted radioimmunotherapy investigations. Additionally, the influence factors of stability, reactivity, and pharmacokinetic properties of TCO tag modified immunoconjugates and radiolabeled Tz derivatives were also summarized in this article, which should be carefully considered in the system design in order to develop a successful pretargeted methodology. We hope that this review will not only equip readers with a knowledge of pretargeted methodology based on IEDDA click chemistry but also inspire synthetic chemists and radiochemists to develop pretargeted radiopharmaceutical components in a more innovative way with various influence factors considered.
Collapse
|
7
|
Şenışık AM, İçhedef Ç, Kılçar AY, Uçar E, Arı K, Parlak Y, Bilgin ES, Teksöz S. Evaluation of New 99mTc(CO) 3 + Radiolabeled Glycylglycine In Vivo. Anticancer Agents Med Chem 2019; 19:1382-1387. [PMID: 30947676 DOI: 10.2174/1871520619666190404154723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Accepted: 03/06/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Peptide-based agents are used in molecular imaging due to their unique properties, such as rapid clearance from the circulation, high affinity and target selectivity. Many of the radiolabeled peptides have been clinically experienced with diagnostic accuracy. The aim of this study was to investigate in vivo biological behavior of [99mTc(CO)3(H2O)3]+ radiolabeled glycylglycine (GlyGly). METHODS Glycylglycine was radiolabeled with a high radiolabeling yield of 94.69±2%, and quality control of the radiolabeling process was performed by thin layer radiochromatography (TLRC) and High-Performance Liquid Radiochromatography (HPLRC). Lipophilicity study for radiolabeled complex (99mTc(CO)3-Gly-Gly) was carried out using solvent extraction. The in vivo evaluation was performed by both biodistribution and SPECT imaging. RESULTS The high radiolabelling yield of 99mTc(CO)3-GlyGly was obtained and verified by TLRC and HPLRC as well. According to the in vivo results, SPECT images and biodistribution data are in good accordance. The excretion route from the body was both hepatobiliary and renal. CONCLUSION This study shows that 99mTc(CO)3-GlyGly has the potential to be used as a peptide-based imaging agent. Further studies, 99mTc(CO)3-GlyGly can be performed on tumor-bearing animals.
Collapse
Affiliation(s)
- Ahmet M Şenışık
- Vocational School of Health Services/Radiotherapy, Altinbas University, 34144 Bakırköy, İstanbul, Turkey
| | - Çiğdem İçhedef
- Department of Nuclear Applications, Institue of Nuclear Sciences Ege University 35100 Bornova, İzmir, Turkey
| | - Ayfer Y Kılçar
- Department of Nuclear Applications, Institue of Nuclear Sciences Ege University 35100 Bornova, İzmir, Turkey
| | - Eser Uçar
- Department of Nuclear Applications, Institue of Nuclear Sciences Ege University 35100 Bornova, İzmir, Turkey
| | - Kadir Arı
- Department of Nuclear Applications, Institue of Nuclear Sciences Ege University 35100 Bornova, İzmir, Turkey
| | - Yasemin Parlak
- Department of Nuclear Medicine, Celal Bayar University, 45030 Manisa, Turkey
| | - Elvan S Bilgin
- Department of Nuclear Medicine, Celal Bayar University, 45030 Manisa, Turkey
| | - Serap Teksöz
- Department of Nuclear Applications, Institue of Nuclear Sciences Ege University 35100 Bornova, İzmir, Turkey
| |
Collapse
|
8
|
|
9
|
Rodríguez-Álvarez Y, Cabrales-Rico A, Perera-Pintado A, Prats-Capote A, Garay-Pérez HE, Reyes-Acosta O, Pérez-García E, Chico-Capote A, Santos-Savio A. In vitro and in vivo characterization of an interleukin-15 antagonist peptide by metabolic stability, 99m Tc-labeling, and biological activity assays. J Pept Sci 2018; 24:e3078. [PMID: 29656472 DOI: 10.1002/psc.3078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 11/09/2022]
Abstract
Interleukin (IL)-15 is an inflammatory cytokine that constitutes a validated therapeutic target in some immunopathologies, including rheumatoid arthritis (RA). Previously, we identified an IL-15 antagonist peptide named [K6T]P8, with potential therapeutic application in RA. In the current work, the metabolic stability of this peptide in synovial fluids from RA patients was studied. Moreover, [K6T]P8 peptide was labeled with 99m Tc to investigate its stability in human plasma and its biodistribution pattern in healthy rats. The biological activity of [K6T]P8 peptide and its dimer was evaluated in CTLL-2 cells, using 3 different additives to improve the solubility of these peptides. The half-life of [K6T]P8 in human synovial fluid was 5.88 ± 1.73 minutes, and the major chemical modifications included peptide dimerization, cysteinylation, and methionine oxidation. Radiolabeling of [K6T]P8 with 99m Tc showed a yield of approximately 99.8%. The 99m Tc-labeled peptide was stable in a 30-fold molar excess of cysteine and in human plasma, displaying a low affinity to plasma proteins. Preliminary biodistribution studies in healthy Wistar rats suggested a slow elimination of the peptide through the renal and hepatic pathways. Although citric acid, sucrose, and Tween 80 enhanced the solubility of [K6T]P8 peptide and its dimer, only the sucrose did not interfere with the in vitro proliferation assay used to assess their biological activity. The results here presented, reinforce nonclinical characterization of the [K6T]P8 peptide, a potential agent for the treatment of RA and other diseases associated with IL-15 overexpression.
Collapse
Affiliation(s)
- Yunier Rodríguez-Álvarez
- Pharmaceutical Department, Center for Genetic Engineering and Biotechnology, Avenue 31, PO Box 6162, Havana, 10600, Cuba
| | - Ania Cabrales-Rico
- Chemistry and Physics Department, Center for Genetic Engineering and Biotechnology, Avenue 31, PO Box 6162, Havana, 10600, Cuba
| | | | - Anais Prats-Capote
- Center for Clinical Research, Avenue 34, PO Box 6162, Havana, 11300, Cuba
| | - Hilda E Garay-Pérez
- Chemistry and Physics Department, Center for Genetic Engineering and Biotechnology, Avenue 31, PO Box 6162, Havana, 10600, Cuba
| | - Osvaldo Reyes-Acosta
- Chemistry and Physics Department, Center for Genetic Engineering and Biotechnology, Avenue 31, PO Box 6162, Havana, 10600, Cuba
| | - Erik Pérez-García
- Pharmaceutical Department, Center for Genetic Engineering and Biotechnology, Avenue 31, PO Box 6162, Havana, 10600, Cuba
| | - Araceli Chico-Capote
- Rheumatology Department, Hermanos Ameijeiras Hospital, San Lazaro 701, PO Box 6122, Havana, 10600, Cuba
| | - Alicia Santos-Savio
- Pharmaceutical Department, Center for Genetic Engineering and Biotechnology, Avenue 31, PO Box 6162, Havana, 10600, Cuba
| |
Collapse
|
10
|
Zhang Z, Zhao X, Ding C, Wang J, Zhang J, Wang F. (99m)Tc-3PRGD2 SPECT/CT Imaging for Monitoring Early Response of EGFR-TKIs Therapy in Patients with Advanced-Stage Lung Adenocarcinoma. Cancer Biother Radiopharm 2016; 31:238-45. [PMID: 27563805 DOI: 10.1089/cbr.2016.2052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE This study was aimed to assess the efficacy of (99m)Tc-3PRGD2 imaging for evaluating both early treatment response to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) and prognosis in advanced-stage lung adenocarcinoma. MATERIAL AND METHODS Eighteen patients with lung adenocarcinoma were enrolled for EGFR-TKIs therapy. (99m)Tc-3PRGD2 SPECT/CT and planar imaging were performed pre- and post-therapy. The tumor to nontumor (T/NT) ratio and percentage change in T/NT ratio were assessed for the treatment response. Receiver operator characteristic (ROC) analysis was utilized to analyze the power of identifying responders based on the changes in T/NT ratios. RESULTS After treatment, 10 patients had partial response (PR), and 6 patients stable disease (SD), while 2 patients progressive disease (PD). The mean changes in T/NT ratios on SPECT/CT and planar images in PR group were 35.8% and 15.0% and in SD group were 8.9% and 0.7%, while in PD group were 76.1% and 18.7%, respectively. For ROC analysis, using a cutoff value of 23.8% decrease in T/NT ratio on SPECT/CT images, the sensitivity and specificity in identifying responders were 80.0% and 87.5%, respectively. The median progression-free survival (PFS) for patients with responders and nonresponders (on (99m)Tc-3PRGD2 SPECT/CT) was 18 months (95% CI 5.8-30.2 months) and 7 months (95% CI 5.2-8.8 months), respectively (p = 0.006). CONCLUSION (99m)Tc-3PRGD2 imaging can evaluate the early response to EGFR-targeted therapy and predict the PFS of lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Zhaoqi Zhang
- 1 Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University , Shijiazhuang, China
| | - Xinming Zhao
- 1 Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University , Shijiazhuang, China
| | - Cuimin Ding
- 2 Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University , Shijiazhuang, China
| | - Jianfang Wang
- 1 Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University , Shijiazhuang, China
| | - Jingmian Zhang
- 1 Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University , Shijiazhuang, China
| | - Fan Wang
- 3 Medical Isotopes Research Center, Peking University , Beijing, China
| |
Collapse
|
11
|
Shi J, Wang F, Liu S. Radiolabeled cyclic RGD peptides as radiotracers for tumor imaging. BIOPHYSICS REPORTS 2016; 2:1-20. [PMID: 27819026 PMCID: PMC5071373 DOI: 10.1007/s41048-016-0021-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/01/2016] [Indexed: 12/19/2022] Open
Abstract
The integrin family comprises 24 transmembrane receptors, each a heterodimeric combination of one of 18α and one of 8β subunits. Their main function is to integrate the cell adhesion and interaction with the extracellular microenvironment with the intracellular signaling and cytoskeletal rearrangement through transmitting signals across the cell membrane upon ligand binding. Integrin αvβ3 is a receptor for the extracellular matrix proteins containing arginine–glycine–aspartic (RGD) tripeptide sequence. The αvβ3 is generally expressed in low levels on the epithelial cells and mature endothelial cells, but it is highly expressed in many solid tumors. The αvβ3 levels correlate well with the potential for tumor metastasis and aggressiveness, which make it an important biological target for development of antiangiogenic drugs, and molecular imaging probes for early tumor diagnosis. Over the last decade, many radiolabeled cyclic RGD peptides have been evaluated as radiotracers for imaging tumors by SPECT or PET. Even though they are called “αvβ3-targeted” radiotracers, the radiolabeled cyclic RGD peptides are also able to bind αvβ5, α5β1, α6β4, α4β1, and αvβ6 integrins, which may help enhance their tumor uptake due to the “increased receptor population.” This article will use the multimeric cyclic RGD peptides as examples to illustrate basic principles for development of integrin-targeted radiotracers and focus on different approaches to maximize their tumor uptake and T/B ratios. It will also discuss important assays for pre-clinical evaluations of the integrin-targeted radiotracers, and their potential applications as molecular imaging tools for noninvasive monitoring of tumor metastasis and early detection of the tumor response to antiangiogenic therapy.
Collapse
Affiliation(s)
- Jiyun Shi
- Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ; Medical Isotopes Research Center, Peking University, Beijing, 100191 China
| | - Fan Wang
- Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ; Medical Isotopes Research Center, Peking University, Beijing, 100191 China
| | - Shuang Liu
- School of Health Sciences, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
12
|
Zeglis BM, Brand C, Abdel-Atti D, Carnazza KE, Cook BE, Carlin S, Reiner T, Lewis JS. Optimization of a Pretargeted Strategy for the PET Imaging of Colorectal Carcinoma via the Modulation of Radioligand Pharmacokinetics. Mol Pharm 2015; 12:3575-87. [PMID: 26287993 PMCID: PMC4696756 DOI: 10.1021/acs.molpharmaceut.5b00294] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pretargeted PET imaging has emerged as an effective strategy for merging the exquisite selectivity of antibody-based targeting vectors with the rapid pharmacokinetics of radiolabeled small molecules. We previously reported the development of a strategy for the pretargeted PET imaging of colorectal cancer based on the bioorthogonal inverse electron demand Diels-Alder reaction between a tetrazine-bearing radioligand and a transcyclooctene-modified huA33 immunoconjugate. Although this method effectively delineated tumor tissue, its clinical potential was limited by the somewhat sluggish clearance of the radioligand through the gastrointestinal tract. Herein, we report the development and in vivo validation of a pretargeted strategy for the PET imaging of colorectal carcinoma with dramatically improved pharmacokinetics. Two novel tetrazine constructs, Tz-PEG7-NOTA and Tz-SarAr, were synthesized, characterized, and radiolabeled with (64)Cu in high yield (>90%) and radiochemical purity (>99%). PET imaging and biodistribution experiments in healthy mice revealed that although (64)Cu-Tz-PEG7-NOTA is cleared via both the gastrointestinal and urinary tracts, (64)Cu-Tz-SarAr is rapidly excreted by the renal system alone. On this basis, (64)Cu-Tz-SarAr was selected for further in vivo evaluation. To this end, mice bearing A33 antigen-expressing SW1222 human colorectal carcinoma xenografts were administered huA33-TCO, and the immunoconjugate was given 24 h to accumulate at the tumor and clear from the blood, after which (64)Cu-Tz-SarAr was administered via intravenous tail vein injection. PET imaging and biodistribution experiments revealed specific uptake of the radiotracer in the tumor at early time points (5.6 ± 0.7 %ID/g at 1 h p.i.), high tumor-to-background activity ratios, and rapid elimination of unclicked radioligand. Importantly, experiments with longer antibody accumulation intervals (48 and 120 h) yielded slight decreases in tumoral uptake but also concomitant increases in tumor-to-blood activity concentration ratios. This new strategy offers dosimetric benefits as well, yielding a total effective dose of 0.041 rem/mCi, far below the doses produced by directly labeled (64)Cu-NOTA-huA33 (0.133 rem/mCi) and (89)Zr-DFO-huA33 (1.54 rem/mCi). Ultimately, this pretargeted PET imaging strategy boasts a dramatically improved pharmacokinetic profile compared to our first generation system and is capable of clearly delineating tumor tissue with high image contrast at only a fraction of the radiation dose created by directly labeled radioimmunoconjugates.
Collapse
Affiliation(s)
- Brian M. Zeglis
- Department of Chemistry and Biochemistry, Hunter College and the Graduate Center of the City University of New York, New York, New York 10021, United States
| | - Christian Brand
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Dalya Abdel-Atti
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Kathryn E. Carnazza
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Brendon E. Cook
- Department of Chemistry and Biochemistry, Hunter College and the Graduate Center of the City University of New York, New York, New York 10021, United States
| | - Sean Carlin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Jason S. Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Program in Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| |
Collapse
|
13
|
Liu S. Radiolabeled Cyclic RGD Peptide Bioconjugates as Radiotracers Targeting Multiple Integrins. Bioconjug Chem 2015; 26:1413-38. [PMID: 26193072 DOI: 10.1021/acs.bioconjchem.5b00327] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Angiogenesis is a requirement for tumor growth and metastasis. The angiogenic process depends on vascular endothelial cell migration and invasion, and is regulated by various cell adhesion receptors. Integrins are such a family of receptors that facilitate the cellular adhesion to and migration on extracellular matrix proteins in the intercellular spaces and basement membranes. Among 24 members of the integrin family, αvβ3 is studied most extensively for its role in tumor angiogenesis and metastasis. The αvβ3 is expressed at relatively low levels on epithelial cells and mature endothelial cells, but it is highly expressed on the activated endothelial cells of tumor neovasculature and some tumor cells. This restricted expression makes αvβ3 an excellent target to develop antiangiogenic drugs and diagnostic molecular imaging probes. Since αvβ3 is a receptor for extracellular matrix proteins with one or more RGD tripeptide sequence, many radiolabeled cyclic RGD peptides have been evaluated as "αvβ3-targeted" radiotracers for tumor imaging over the past decade. This article will use the dimeric and tetrameric cyclic RGD peptides developed in our laboratories as examples to illustrate basic principles for development of αvβ3-targeted radiotracers. It will focus on different approaches to maximize the radiotracer tumor uptake and tumor/background ratios. This article will also discuss some important assays for preclinical evaluations of integrin-targeted radiotracers. In general, multimerization of cyclic RGD peptides increases their integrin binding affinity and the tumor uptake and retention times of their radiotracers. Regardless of their multiplicity, the capability of cyclic RGD peptides to bind other integrins (namely, αvβ5, α5β1, α6β4, α4β1, and αvβ6) is expected to enhance the radiotracer tumor uptake due to the increased integrin population. The results from preclinical and clinical studies clearly show that radiolabeled cyclic RGD peptides (such as (99m)Tc-3P-RGD2, (18)F-Alfatide-I, and (18)F-Alfatide-II) are useful as the molecular imaging probes for early cancer detection and noninvasive monitoring of the tumor response to antiangiogenic therapy.
Collapse
Affiliation(s)
- Shuang Liu
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
14
|
Debordeaux F, Schulz J, Savona-Baron C, Hazari PP, Lervat C, Mishra AK, Ries C, Barthe N, Vergier B, Fernandez P. 99mTc-DTPA-bis-c(RGDfK) a potential alpha(v)beta3 integrin based homobivalent radioligand for imaging neoangiogenesis in malignant glioma and melanoma. RSC Adv 2015. [DOI: 10.1039/c5ra09119e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new99mTc-labeled bivalent DTPA-bis-c(RGDfK) conjugate has been developed and successfully synthesized. Promising results have been obtained for its preclinical evaluation on human glioma and melanoma tumor expressing αvβ3targets.
Collapse
Affiliation(s)
| | | | | | - Puja Panwar Hazari
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- DRDO
- New Delhi
- India 110052
| | - Cyril Lervat
- Univ. Bordeaux
- INCIA
- UMR 5287
- F-33400 Talence
- France
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- DRDO
- New Delhi
- India 110052
| | - Colette Ries
- Univ. Bordeaux
- INCIA
- UMR 5287
- F-33400 Talence
- France
| | - Nicole Barthe
- Univ. Bordeaux
- Bioingénierie tissulaire
- U1026
- F-33000 Bordeaux
- France
| | - Béatrice Vergier
- CHU de Bordeaux
- Service d'anatomopathologie
- F-33000 Bordeaux
- France
| | | |
Collapse
|
15
|
Tsiapa I, Loudos G, Fragogeorgi EA, Bouziotis P, Psimadas D, Xanthopoulos S, Paravatou-Petsotas M, Palamaris L, Varvarigou AD, Karnabatidis D, Kagadis GC. Evaluation of ανβ3-mediated tumor expression with a 99mTc-labeled ornithine-modified RGD derivative during glioblastoma growth in vivo. Cancer Biother Radiopharm 2014; 29:444-50. [PMID: 25405951 DOI: 10.1089/cbr.2014.1672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this study, a novel way of distinguishing the intrinsic relationship between ανβ3 integrin targeting and detection of tumor growth by using a radiolabeled tracer based on a cyclic Arg-Gly-Asp (RGD) peptide was provided. The potential of the in vivo scintigraphic imaging of the developing vasculature from the early stage of tumor growth was evaluated. Alongside with the scintigraphic images, biodistribution studies were performed at distinct time points to validate this noninvasive imaging approach. The ability to noninvasively assess the tumor growth of ανβ3 integrin-positive glioblastoma tumors provides a method to better understand tumor angiogenesis in vivo and allows for a direct assessment of anti-integrin treatment efficacy.
Collapse
Affiliation(s)
- Irene Tsiapa
- 1 Department of Medical Physics, School of Medicine, University of Patras , Rion, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yang Y, Ji S, Liu S. Impact of multiple negative charges on blood clearance and biodistribution characteristics of 99mTc-labeled dimeric cyclic RGD peptides. Bioconjug Chem 2014; 25:1720-9. [PMID: 25144854 PMCID: PMC4166031 DOI: 10.1021/bc500309r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
This
study sought to evaluate the impact of multiple negative charges
on blood clearance kinetics and biodistribution properties of 99mTc-labeled RGD peptide dimers. Bioconjugates HYNIC-P6G-RGD2 and HYNIC-P6D-RGD2 were prepared by reacting P6G-RGD2 and P6D-RGD2, respectively, with excess HYNIC-OSu
in the presence of diisopropylethylamine. Their IC50 values
were determined to be 31 ± 5 and 41 ± 6 nM, respectively,
against 125I-echistatin bound to U87MG glioma cells in
a whole-cell displacement assay. Complexes [99mTc(HYNIC-P6G-RGD2)(tricine)(TPPTS)] (99mTc-P6G-RGD2)
and [99mTc(HYNIC-P6D-RGD2)(tricine)(TPPTS)]
(99mTc-P6D-RGD2) were prepared in high radiochemical
purity (RCP > 95%) and specific activity (37–110 GBq/μmol).
They were evaluated in athymic nude mice bearing U87MG glioma xenografts
for their biodistribution. The most significant difference between 99mTc-P6D-RGD2 and 99mTc-P6G-RGD2 was their blood radioactivity levels and tumor uptake. The
initial blood radioactivity level for 99mTc-P6D-RGD2 (4.71 ± 1.00%ID/g) was ∼5× higher than that
of 99mTc-P6G-RGD2 (0.88 ± 0.05%ID/g), but
this difference disappeared at 60 min p.i. 99mTc-P6D-RGD2 had much lower tumor uptake (2.20–3.11%ID/g) than 99mTc-P6G-RGD2 (7.82–9.27%ID/g) over a 2
h period. Since HYNIC-P6D-RGD2 and HYNIC-P6G-RGD2 shared a similar integrin αvβ3 binding affinity (41 ± 6 nM versus 31 ± 5 nM), the difference
in their blood activity and tumor uptake is most likely related to
the nine negative charges and high protein binding of 99mTc-P6D-RGD2. Despite its low uptake in U87MG tumors, the
tumor uptake of 99mTc-P6D-RGD2 was integrin
αvβ3-specific. SPECT/CT studies
were performed using 99mTc-P6G-RGD2 in athymic
nude mice bearing U87MG glioma and MDA-MB-231 breast cancer xenografts.
The SPECT/CT data demonstrated the tumor-targeting capability of 99mTc-P6G-RGD2, and its tumor uptake depends on
the integrin αvβ3 expression levels
on tumor cells and neovasculature. It was concluded that the multiple
negative charges have a significant impact on the blood clearance
kinetics and tumor uptake of 99mTc-labeled dimeric cyclic
RGD peptides.
Collapse
Affiliation(s)
- Yong Yang
- School of Health Sciences, Purdue University , 550 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | | | | |
Collapse
|
17
|
Tsiapa I, Efthimiadou EK, Fragogeorgi E, Loudos G, Varvarigou AD, Bouziotis P, Kordas GC, Mihailidis D, Nikiforidis GC, Xanthopoulos S, Psimadas D, Paravatou-Petsotas M, Palamaris L, Hazle JD, Kagadis GC. (99m)Tc-labeled aminosilane-coated iron oxide nanoparticles for molecular imaging of ανβ3-mediated tumor expression and feasibility for hyperthermia treatment. J Colloid Interface Sci 2014; 433:163-175. [PMID: 25128864 DOI: 10.1016/j.jcis.2014.07.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 12/18/2022]
Abstract
HYPOTHESIS Dual-modality imaging agents, such as radiolabeled iron oxide nanoparticles (IO-NPs), are promising candidates for cancer diagnosis and therapy. We developed and evaluated aminosilane coated Fe3O4 (10±2nm) as a tumor imaging agent in nuclear medicine through 3-aminopropyltriethoxysilane (APTES) functionalization. We evaluated this multimeric system of targeted (99m)Tc-labeled nanoparticles (NPs) conjugated with a new RGD derivate (cRGDfK-Orn3-CGG), characterized as NPs-RGD as a potential thermal therapy delivery vehicle. EXPERIMENTS Transmission Electron Microscopy (TEM) and spectroscopy techniques were used to characterize the IO-NPs indicating their functionalization with peptides. Radiolabeled IO-NPs (targeted, non-targeted) were evaluated with regard to their radiochemical, radiobiological and imaging characteristics. In vivo studies were performed in normal and ανβ3-positive tumor (U87MG glioblastoma) bearing mice. We also demonstrated that this system could reach ablative temperatures in vivo. FINDINGS Both radiolabeled IO-NPs were obtained in high radiochemical yield (>98%) and proved stable in vitro. The in vivo studies for both IO-NPs have shown significant liver and spleen uptake at all examined time points in normal and U87MG glioblastoma tumor-bearing mice, due to their colloidal nature. We have confirmed through in vivo biodistribution studies that the non-targeted (99m)Tc-NPs poorly internalized in the tumor, while the targeted (99m)Tc-NPs-RGD, present 9-fold higher tumor accumulation at 1h p.i. Accumulation of both IO-NPs in other organs was negligible. Blocking experiments indicated target specificity for integrin receptors in U87MG glioblastoma cells. The preliminary in vivo study of applied alternating magnetic field showed that the induced hyperthermia is feasible due to the aid of IO-NPs.
Collapse
Affiliation(s)
- Irene Tsiapa
- Department of Medical Physics, School of Medicine, University of Patras, Patra, Greece; Institute for Nuclear and Radiological Sciences, Energy, Technology and Safety, National Center of Scientific Research "Demokritos", Aghia Paraskevi-Athens, Greece
| | - Eleni K Efthimiadou
- Sol-Gel Laboratory, Institute for Advanced Materials, Physicochemical Processes, Nanotechnology & Microsystems, NCSR "Demokritos", Aghia Paraskevi-Athens, Greece
| | - Eirini Fragogeorgi
- Department of Biomedical Technology Engineering, TEI of Athens, Aigaleo-Athens, Greece; Institute for Nuclear and Radiological Sciences, Energy, Technology and Safety, National Center of Scientific Research "Demokritos", Aghia Paraskevi-Athens, Greece
| | - George Loudos
- Department of Biomedical Technology Engineering, TEI of Athens, Aigaleo-Athens, Greece
| | - Alexandra D Varvarigou
- Institute for Nuclear and Radiological Sciences, Energy, Technology and Safety, National Center of Scientific Research "Demokritos", Aghia Paraskevi-Athens, Greece
| | - Penelope Bouziotis
- Institute for Nuclear and Radiological Sciences, Energy, Technology and Safety, National Center of Scientific Research "Demokritos", Aghia Paraskevi-Athens, Greece
| | - George C Kordas
- Department of Medical Physics, School of Medicine, University of Patras, Patra, Greece
| | | | - George C Nikiforidis
- Department of Medical Physics, School of Medicine, University of Patras, Patra, Greece
| | - Stavros Xanthopoulos
- Institute for Nuclear and Radiological Sciences, Energy, Technology and Safety, National Center of Scientific Research "Demokritos", Aghia Paraskevi-Athens, Greece
| | - Dimitrios Psimadas
- Department of Biomedical Technology Engineering, TEI of Athens, Aigaleo-Athens, Greece; Institute for Nuclear and Radiological Sciences, Energy, Technology and Safety, National Center of Scientific Research "Demokritos", Aghia Paraskevi-Athens, Greece
| | - Maria Paravatou-Petsotas
- Institute for Nuclear and Radiological Sciences, Energy, Technology and Safety, National Center of Scientific Research "Demokritos", Aghia Paraskevi-Athens, Greece
| | - Lazaros Palamaris
- Department of Biomedical Technology Engineering, TEI of Athens, Aigaleo-Athens, Greece
| | - John D Hazle
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George C Kagadis
- Department of Medical Physics, School of Medicine, University of Patras, Patra, Greece; Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Hong Y, Zhu H, Hu J, Lin X, Wang F, Li C, Yang Z. Synthesis and radiolabeling of 111In-core-cross linked polymeric micelle-octreotide for near-infrared fluoroscopy and single photon emission computed tomography imaging. Bioorg Med Chem Lett 2014; 24:2781-5. [DOI: 10.1016/j.bmcl.2014.03.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/01/2014] [Accepted: 03/17/2014] [Indexed: 12/24/2022]
|
19
|
Bernsen MR, Vaissier PEB, Van Holen R, Booij J, Beekman FJ, de Jong M. The role of preclinical SPECT in oncological and neurological research in combination with either CT or MRI. Eur J Nucl Med Mol Imaging 2014; 41 Suppl 1:S36-49. [PMID: 24895751 PMCID: PMC4003405 DOI: 10.1007/s00259-013-2685-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 01/03/2023]
Abstract
Preclinical imaging with SPECT combined with CT or MRI is used more and more frequently and has proven to be very useful in translational research. In this article, an overview of current preclinical research applications and trends of SPECT combined with CT or MRI, mainly in tumour imaging and neuroscience imaging, is given and the advantages and disadvantages of the different approaches are described. Today SPECT and CT systems are often integrated into a single device (commonly called a SPECT/CT system), whereas at present combined SPECT and MRI is almost always carried out with separate systems and fiducial markers to combine the separately acquired images. While preclinical SPECT/CT is most widely applied in oncology research, SPECT combined with MRI (SPECT/MRI when integrated in one system) offers the potential for both neuroscience applications and oncological applications. Today CT and MRI are still mainly used to localize radiotracer binding and to improve SPECT quantification, although both CT and MRI have additional potential. Future technology developments may include fast sequential or simultaneous acquisition of (dynamic) multimodality data, spectroscopy, fMRI along with high-resolution anatomic MRI, advanced CT procedures, and combinations of more than two modalities such as combinations of SPECT, PET, MRI and CT all together. This will all strongly depend on new technologies. With further advances in biology and chemistry for imaging molecular targets and (patho)physiological processes in vivo, the introduction of new imaging procedures and promising new radiopharmaceuticals in clinical practice may be accelerated.
Collapse
Affiliation(s)
- Monique R. Bernsen
- Department of Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Pieter E. B. Vaissier
- Section Radiation Detection and Medical Imaging, Delft University of Technology, Delft, The Netherlands
| | - Roel Van Holen
- ELIS Department, MEDISIP, Ghent University, iMinds, Ghent, Belgium
| | - Jan Booij
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Freek J. Beekman
- Section Radiation Detection and Medical Imaging, Delft University of Technology, Delft, The Netherlands
- MILabs B.V., Utrecht, The Netherlands
| | - Marion de Jong
- Department of Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
20
|
Munley MT, Kagadis GC, McGee KP, Kirov AS, Jang S, Mutic S, Jeraj R, Xing L, Bourland JD. An introduction to molecular imaging in radiation oncology: a report by the AAPM Working Group on Molecular Imaging in Radiation Oncology (WGMIR). Med Phys 2014; 40:101501. [PMID: 24089890 DOI: 10.1118/1.4819818] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Molecular imaging is the direct or indirect noninvasive monitoring and recording of the spatial and temporal distribution of in vivo molecular, genetic, and/or cellular processes for biochemical, biological, diagnostic, or therapeutic applications. Molecular images that indicate the presence of malignancy can be acquired using optical, ultrasonic, radiologic, radionuclide, and magnetic resonance techniques. For the radiation oncology physicist in particular, these methods and their roles in molecular imaging of oncologic processes are reviewed with respect to their physical bases and imaging characteristics, including signal intensity, spatial scale, and spatial resolution. Relevant molecular terminology is defined as an educational assist. Current and future clinical applications in oncologic diagnosis and treatment are discussed. National initiatives for the development of basic science and clinical molecular imaging techniques and expertise are reviewed, illustrating research opportunities in as well as the importance of this growing field.
Collapse
Affiliation(s)
- Michael T Munley
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pitkänen A, Ndode-Ekane XE, Łukasiuk K, Wilczynski GM, Dityatev A, Walker MC, Chabrol E, Dedeurwaerdere S, Vazquez N, Powell EM. Neural ECM and epilepsy. PROGRESS IN BRAIN RESEARCH 2014; 214:229-62. [DOI: 10.1016/b978-0-444-63486-3.00011-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Ji S, Czerwinski A, Zhou Y, Shao G, Valenzuela F, Sowiński P, Chauhan S, Pennington M, Liu S. (99m)Tc-Galacto-RGD2: a novel 99mTc-labeled cyclic RGD peptide dimer useful for tumor imaging. Mol Pharm 2013; 10:3304-14. [PMID: 23875883 PMCID: PMC3946497 DOI: 10.1021/mp400085d] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study sought to evaluate [(99m)Tc(HYNIC-Galacto-RGD2)(tricine)(TPPTS)] ((99m)Tc-Galacto-RGD2: HYNIC = 6-hydrazinonicotinyl; Galacto-RGD2 = Glu[cyclo[Arg-Gly-Asp-D-Phe-Lys(SAA-PEG2-(1,2,3-triazole)-1-yl-4-methylamide)]]2 (SAA = 7-amino-L-glycero-L-galacto-2,6-anhydro-7-deoxyheptanamide, and PEG2 = 3,6-dioxaoctanoic acid); and TPPTS = trisodium triphenylphosphine-3,3',3″-trisulfonate) as a new radiotracer for tumor imaging. Galacto-RGD2 was prepared via the copper(I)-catalyzed 1,3-dipolar azide-alkyne Huisgen cycloaddition. HYNIC-Galacto-RGD2 was prepared by reacting Galacto-RGD2 with sodium succinimidyl 6-(2-(2-sulfonatobenzaldehyde)hydrazono)nicotinate (HYNIC-OSu) in the presence of diisopropylethylamine, and was evaluated for its integrin αvβ3 binding affinity against (125)I-echistatin bound to U87MG glioma cells. The IC50 value for HYNIC-Galacto-RGD2 was determined to be 20 ± 2 nM. (99m)Tc-Galacto-RGD2 was prepared in high specific activity (∼ 185 GBq/μmol) and high radiochemical purity (>95%), and was evaluated in athymic nude mice bearing U87MG glioma xenografts for its tumor-targeting capability and biodistribution. The tumor uptake of (99m)Tc-Galacto-RGD2 was 10.30 ± 1.67, 8.37 ± 2.13, 6.86 ± 1.33, and 5.61 ± 1.52%ID/g at 5, 30, 60, and 120 min p.i., respectively, which was in agreement with high integrin αvβ3 expression on glioma cells and neovasculature. Its lower uptake in intestines, lungs, and spleen suggests that (99m)Tc-Galacto-RGD2 has advantages over (99m)Tc-3P-RGD2 ([(99m)Tc(HYNIC-3P-RGD2)(tricine)(TPPTS)]: 3P-RGD2 = PEG4-E[PEG4-c(RGDfK)]2; PEG4 = 15-amino-4,7,10,13-tetraoxapentadecanoic acid) for imaging tumors in the chest and abdominal regions. U87MG tumors were readily detected by SPECT and the tumor uptake of (99m)Tc-Galacto-RGD2 was integrin αvβ3-specific. (99m)Tc-Galacto-RGD2 also had very high metabolic stability. On the basis of results from this study, it was concluded that (99m)Tc-Galacto-RGD2 is an excellent radiotracer for imaging integrin αvβ3-positive tumors and related metastases.
Collapse
Affiliation(s)
- Shundong Ji
- School of Health Sciences, Purdue University, IN 47907, USA
| | | | - Yang Zhou
- School of Health Sciences, Purdue University, IN 47907, USA
| | - Guoqiang Shao
- School of Health Sciences, Purdue University, IN 47907, USA
| | | | | | | | | | - Shuang Liu
- School of Health Sciences, Purdue University, IN 47907, USA
| |
Collapse
|