1
|
De La Barrera S, De La Barrera B, Legault MA, Gamache I, Manousaki D. Association Between Circulating Vitamin K Levels, Gut Microbiome, and Type 1 Diabetes: A Mendelian Randomization Study. Nutrients 2024; 16:3795. [PMID: 39599583 PMCID: PMC11597649 DOI: 10.3390/nu16223795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Nutritional deficiencies have been proposed as possible etiological causes for autoimmune diseases, among which type 1 diabetes (T1D). Vitamin K (VK) has potentially positive effects on type 2 diabetes, but its role on T1D in humans remains largely unknown. We aimed to examine the presence of a causal association between VK and T1D using a Mendelian randomization (MR) approach. METHODS Genetic variants from a genome-wide association study (GWAS) for VK (N = 2138 Europeans) were used as instruments in our two-sample MR study to investigate whether circulating VK levels are causally associated with the risk of T1D in a large European T1D GWAS cohort (18,942 cases/520,580 controls). Through a multivariable MR (MVMR), the effects of both VK and specific gut microbiota on T1D were investigated given that the gut microbiome synthesizes VK. RESULTS We found that changes in levels of circulating VK did not affect T1D risk in our univariate two-sample MR, but this study had limited power to detect small effects of VK (OR for T1D of less than 0.8). However, our MVMR indicated a suggestive association of VK with the risk of T1D adjusting for two different gut microbiome populations. CONCLUSIONS In conclusion, VK levels are unlikely to significantly affect the risk of T1D, but small effects cannot be excluded, and the role of gut microbiome in this association should be further investigated.
Collapse
Affiliation(s)
- Samuel De La Barrera
- Research Center of the Sainte-Justine University Hospital, Université de Montréal, Montreal, QC H3T 1C5, Canada; (S.D.L.B.); (B.D.L.B.); (M.-A.L.); (I.G.)
| | - Benjamin De La Barrera
- Research Center of the Sainte-Justine University Hospital, Université de Montréal, Montreal, QC H3T 1C5, Canada; (S.D.L.B.); (B.D.L.B.); (M.-A.L.); (I.G.)
| | - Marc-André Legault
- Research Center of the Sainte-Justine University Hospital, Université de Montréal, Montreal, QC H3T 1C5, Canada; (S.D.L.B.); (B.D.L.B.); (M.-A.L.); (I.G.)
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Isabel Gamache
- Research Center of the Sainte-Justine University Hospital, Université de Montréal, Montreal, QC H3T 1C5, Canada; (S.D.L.B.); (B.D.L.B.); (M.-A.L.); (I.G.)
| | - Despoina Manousaki
- Research Center of the Sainte-Justine University Hospital, Université de Montréal, Montreal, QC H3T 1C5, Canada; (S.D.L.B.); (B.D.L.B.); (M.-A.L.); (I.G.)
- Departments of Pediatrics, Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
2
|
Zhang T, O’Connor C, Sheridan H, Barlow JW. Vitamin K2 in Health and Disease: A Clinical Perspective. Foods 2024; 13:1646. [PMID: 38890875 PMCID: PMC11172246 DOI: 10.3390/foods13111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Vitamins are essential organic compounds that vary widely in chemical structure and are vital in small quantities for numerous biochemical and biological functions. They are critical for metabolism, growth, development and maintaining overall health. Vitamins are categorised into two groups: hydrophilic and lipophilic. Vitamin K (VK), a lipophilic vitamin, occurs naturally in two primary forms: phylloquinone (VK1), found in green leafy vegetables and algae, and Menaquinones (VK2), present in certain fermented and animal foods and widely formulated in VK supplements. This review explores the possible factors contributing to VK deficiency, including dietary influences, and discusses the pharmacological and therapeutic potential of supplementary VK2, examining recent global clinical studies on its role in treating diseases such as osteoporosis, osteoarthritis, rheumatoid arthritis, cardiovascular disease, chronic kidney disease, diabetes, neurodegenerative disorders and cancers. The analysis includes a review of published articles from multiple databases, including Scopus, PubMed, Google Scholar, ISI Web of Science and CNKI, focusing on human studies. The findings indicate that VK2 is a versatile vitamin essential for human health and that a broadly positive correlation exists between VK2 supplementation and improved health outcomes. However, clinical data are somewhat inconsistent, highlighting the need for further detailed research into VK2's metabolic processes, biomarker validation, dose-response relationships, bioavailability and safety. Establishing a Recommended Daily Intake for VK2 could significantly enhance global health.
Collapse
Affiliation(s)
- Tao Zhang
- School of Food Science & Environmental Health, Technological University Dublin, Grangegorman, 7, D07 ADY7 Dublin, Ireland;
- The Trinity Centre for Natural Products Research (NatPro), School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 2, D02 PN40 Dublin, Ireland;
| | - Christine O’Connor
- School of Food Science & Environmental Health, Technological University Dublin, Grangegorman, 7, D07 ADY7 Dublin, Ireland;
| | - Helen Sheridan
- The Trinity Centre for Natural Products Research (NatPro), School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 2, D02 PN40 Dublin, Ireland;
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 2, D02 PN40 Dublin, Ireland
| | - James W. Barlow
- Department of Chemistry, RCSI University of Medicine and Health Sciences, 2, D02 YN77 Dublin, Ireland
| |
Collapse
|
3
|
Xie Y, Li S, Wu D, Wang Y, Chen J, Duan L, Li S, Li Y. Vitamin K: Infection, Inflammation, and Auto-Immunity. J Inflamm Res 2024; 17:1147-1160. [PMID: 38406326 PMCID: PMC10893789 DOI: 10.2147/jir.s445806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
Vitamin K (VK) comprises a group of substances with chlorophyll quinone bioactivity and exists in nature in the form of VK1 and VK2. As its initial recognition originated from the ability to promote blood coagulation, it is known as the coagulation vitamin. However, based on extensive research, VK has shown potential for the prevention and treatment of various diseases. Studies demonstrating the beneficial effects of VK on immunity, antioxidant capacity, intestinal microbiota regulation, epithelial development, and bone protection have drawn growing interest in recent years. This review article focuses on the mechanism of action of VK and its potential preventive and therapeutic effects on infections (eg, asthma, COVID-19), inflammation (eg, in type 2 diabetes mellitus, Alzheimer's disease, Parkinson's disease, cancer, aging, atherosclerosis) and autoimmune disorders (eg, inflammatory bowel disease, type 1 diabetes mellitus, multiple sclerosis, rheumatoid arthritis). In addition, VK-dependent proteins (VKDPs) are another crucial mechanism by which VK exerts anti-inflammatory and immunomodulatory effects. This review explores the potential role of VK in preventing aging, combating neurological abnormalities, and treating diseases such as cancer and diabetes. Although current research appoints VK as a therapeutic tool for practical clinical applications in infections, inflammation, and autoimmune diseases, future research is necessary to elucidate the mechanism of action in more detail and overcome current limitations.
Collapse
Affiliation(s)
- Yuanyuan Xie
- The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Shifang Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Dinan Wu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, People’s Republic of China
| | - Yining Wang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, People’s Republic of China
| | - Jiepeng Chen
- Sungen Bioscience Co., Ltd, Guangdong, People’s Republic of China
| | - Lili Duan
- Sungen Bioscience Co., Ltd, Guangdong, People’s Republic of China
| | - Shuzhuang Li
- College of Basic Medical Science, Dalian Medical University, Dalian, People’s Republic of China
| | - Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, People’s Republic of China
| |
Collapse
|
4
|
Qu B, Yan S, Ao Y, Chen X, Zheng X, Cui W. The relationship between vitamin K and T2DM: a systematic review and meta-analysis. Food Funct 2023; 14:8951-8963. [PMID: 37724446 DOI: 10.1039/d3fo02943c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Background: Previous studies have shown the potential role of vitamin K supplementation in the prevention and treatment of many diseases. However, the effect of vitamin K supplementation on blood glucose remains controversial. The purpose of this study was to assess the effects of vitamin K supplementation on glycemia-related indicators, including Fasting Blood Sugar (FBS), Fasting Insulin (FINS) and Homeostasis Model Assessment of Insulin Resistance (HOMA-IR). The potential association between vitamin K and type 2 diabetes mellitus (T2DM) risk was also evaluated. Methods: Up to April 2023, Cochrane, PubMed, Web of Science, Medline and EMBASE databases were searched to assess the effects of vitamin K on blood glucose and the risk of developing T2DM. Results: A meta-analysis of seven studies (813 participants) found vitamin K supplementation significantly reduced FBS (SMD = -0.150 mg dl-1, 95% CI = -0.290, -0.010 mg dl-1) and HOMA-IR (SMD = -0.200, 95% CI = -0.330, -0.060), but not FINS. Five studies with a total of 105 798 participants were included in the meta-analysis of the association between vitamin K and T2DM. The results showed that vitamin K was associated with the reduced risk of developing T2DM (HR = 0.79, 95% CI [0.71-0.88], P < 0.001). Conclusion: The meta-analysis demonstrated that vitamin K supplementation had a significant effect on the regulation of FBS and HOMA-IR in the population. Moreover, vitamin K was associated with the reduced risk of developing T2DM. Considering some limitations found in this study, additional data from large clinical trials are needed.
Collapse
Affiliation(s)
- Boyang Qu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China.
| | - Shoumeng Yan
- School of Nursing, Jilin University, Changchun, China
| | - Yanrong Ao
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China.
| | - Xingyang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China.
| | - Xiangyu Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Ukwenya VO, Alese MO, Ogunlade B, Folorunso IM, Omotuyi OI. Anacardium occidentale leaves extract and riboceine mitigate hyperglycemia through anti-oxidative effects and modulation of some selected genes associated with diabetes. J Diabetes Metab Disord 2023; 22:455-468. [PMID: 37255827 PMCID: PMC10225389 DOI: 10.1007/s40200-022-01165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/24/2022] [Indexed: 06/01/2023]
Abstract
Background Diabetes mellitus (DM) is one of the leading causes of death globally and complications of DM have become a major health concern. Anacardium occidentale is a plant widely recognized for its hypoglycemic properties and traditionally used in developing nations as remedy for DM treatment. Riboceine is a supplement that enhances production of glutathione and known for its vital role in supporting cellular function. This study was designed to evaluate the antidiabetic and antioxidant potential of riboceine and ethanolic extract of A. occidentale leaves in streptozotocin (STZ)-induced diabetic rats. Method Twenty-nine adult male Wistar rats were induced with DM intraperitoneally using a single dose of STZ (70 mg/kg). The STZ-induced rats were divided into groups and administered the same dose (100 mg/kg) of A. occidentale leaves extract and riboceine via gastric gavage at the dose (100 mg/kg) for seventeen days while metformin (40 mg/kg) was used as positive control. Fasting blood glucose and weight of the model rats were examined periodically. Activities of total protein, creatinine, urea, antioxidants (SOD, GSH and GPX), and level of serum insulin were determined. Expression of diabetes related genes including pancreas (Insulin, pdx-1, P16NK4A, and Mki-67), Liver (FAS, ACC, and GFAT) and KIM-1 genes were also determined. Results Data showed that treatment of STZ-induced diabetic rats with A. occidentale and riboceine at the same dose significantly (p < 0.05) ameliorated hyperglycemic effects by improving hepatic and renal functions and antioxidants, preventing hepatic fat accumulation by downregulation of ACC, FAS and GFAT expression, improving β-cell functions through up-regulation of pancreatic insulin, P16NK4A, Mki-67 and pdx-1 expression. Induction of diabetes upregulated mRNA expression of KIM-1, which was ameliorated after treatment of the rats with A. occidentale and riboceine. Conclusion The results obtained in this study demonstrate significant antidiabetic properties of ethanolic extract of A. occidentale and riboceine.
Collapse
Affiliation(s)
- Victor Okoliko Ukwenya
- Department of Human Anatomy, School of Basic Medical Sciences, College of Health Sciences, Federal University of Technology, Akure, P.M.B 704 Nigeria
| | - Margaret Olutayo Alese
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | - Babatunde Ogunlade
- Department of Human Anatomy, School of Basic Medical Sciences, College of Health Sciences, Federal University of Technology, Akure, P.M.B 704 Nigeria
| | - Ibukun Mary Folorunso
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, Nigeria
| | - Olaposi Idowu Omotuyi
- Institute for Drug Research and Development, Afe Babalola University, Ado-Ekiti, Nigeria
| |
Collapse
|
6
|
Mong MA. Vitamin K and the Visual System-A Narrative Review. Nutrients 2023; 15:nu15081948. [PMID: 37111170 PMCID: PMC10143727 DOI: 10.3390/nu15081948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Vitamin K occupies a unique and often obscured place among its fellow fat-soluble vitamins. Evidence is mounting, however, that vitamin K (VK) may play an important role in the visual system apart from the hepatic carboxylation of hemostatic-related proteins. However, to our knowledge, no review covering the topic has appeared in the medical literature. Recent studies have confirmed that matrix Gla protein (MGP), a vitamin K-dependent protein (VKDP), is essential for the regulation of intraocular pressure in mice. The PREDIMED (Prevención con Dieta Mediterránea) study, a randomized trial involving 5860 adults at risk for cardiovascular disease, demonstrated a 29% reduction in the risk of cataract surgery in participants with the highest tertile of dietary vitamin K1 (PK) intake compared with those with the lowest tertile. However, the specific requirements of the eye and visual system (EVS) for VK, and what might constitute an optimized VK status, is currently unknown and largely unexplored. It is, therefore, the intention of this narrative review to provide an introduction concerning VK and the visual system, review ocular VK biology, and provide some historical context for recent discoveries. Potential opportunities and gaps in current research efforts will be touched upon in the hope of raising awareness and encouraging continued VK-related investigations in this important and highly specialized sensory system.
Collapse
Affiliation(s)
- Michael A Mong
- Department of Ophthalmology, Veteran Affairs North Texas Health Care Medical Center, Dallas, TX 75216, USA
| |
Collapse
|
7
|
Kemp JA, Alvarenga L, Cardozo LFMF, Dai L, Stenvinkel P, Shiels PG, Hackeng TM, Schurgers LJ, Mafra D. Dysbiosis in Patients with Chronic Kidney Disease: Let Us Talk About Vitamin K. Curr Nutr Rep 2022; 11:765-779. [PMID: 36138326 DOI: 10.1007/s13668-022-00438-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW This narrative review aimed to summarize the current evidence on the connection between dysbiosis and vitamin K deficiency in patients with chronic kidney disease (CKD). The presence of dysbiosis (perturbations in the composition of the microbiota) has been described in several non-communicable diseases, including chronic kidney disease, and it has been hypothesized that dysbiosis may cause vitamin K deficiency. Patients with CKD present both vitamin K deficiency and gut dysbiosis; however, the relationship between gut dysbiosis and vitamin K deficiency remains to be addressed. RECENT FINDINGS Recently, few studies in animals have demonstrated that a dysbiotic environment is associated with low production of vitamin K by the gut microbiota. Vitamin K plays a vital role in blood coagulation as well as in the cardiovascular and bone systems. It serves as a cofactor for γ-glutamyl carboxylases and thus is essential for the post-translational modification and activation of vitamin K-dependent calcification regulators, such as osteocalcin, matrix Gla protein, Gla-rich protein, and proteins C and S. Additionally, vitamin K executes essential antioxidant and anti-inflammatory functions. Dietary intake is the main source of vitamin K; however, it also can be produced by gut microbiota. This review discusses the effects of uremia on the imbalance in gut microbiota, vitamin K-producing bacteria, and vitamin K deficiency in CKD patients, leading to a better understanding and raising hypothesis for future clinical studies.
Collapse
Affiliation(s)
- Julie Ann Kemp
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Brazil
| | - Livia Alvarenga
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Brazil
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Brazil
| | - Lu Dai
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Glasgow, UK
| | - Tilman M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Brazil.
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
- Unidade de Pesquisa Clínica, Rua Marquês Do Paraná, Niterói, RJ, 30324033-900, Brazil.
| |
Collapse
|
8
|
Ozdemir-Kumral ZN, Sen E, Yapici HB, Atakul N, Domruk OF, Aldag Y, Sen LS, Kanpalta Mustafaoğlu F, Yuksel M, Akakin D, Erzik C, Haklar G, Imeryuz N. Phoenixin 14 ameloriates pancreatic injury in streptozotocin-induced diabetic rats by alleviating oxidative burden. J Pharm Pharmacol 2022; 74:1651-1659. [PMID: 36130115 DOI: 10.1093/jpp/rgac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023]
Abstract
Phoenixin-14 (PNX) is a neuropeptide that has been shown to prevent oxidative damage and stimulates insulin secretion. We investigated the effects of PNX on pancreatic injury induced by streptozotocin (STZ), and nicotinamide (NAD). Male Sprague-Dawley rats, in control (C) and diabetic (STZ) groups, were treated with either saline, or PNX (0.45 nmol/kg, or 45 nmol/kg) daily for 3 days 1 week after STZ injection. Fasting blood glucose (FBG) and gastric emptying rate (GER) were measured. Tissue and blood samples were collected. PNX treatments prevented pancreatic damage and β cell loss. Increased luminol and lucigenin levels in the pancreas, ileum and liver tissues of STZ groups were alleviated by PNX treatment in pancreatic and ileal tissues. PNX0.45 decreased FBG without any change in insulin blood level and pancreatic mRNA. GER increased in all diabetic rats while PNX0.45 delayed GER only in the C group. PNX diminishes pancreatic damage and lowers FBG by reducing oxidative load.
Collapse
Affiliation(s)
| | - Eminenur Sen
- Marmara University School of Medicine, Istanbul, Turkey
| | | | | | | | - Yusra Aldag
- Marmara University School of Medicine, Istanbul, Turkey
| | - Leyla Semiha Sen
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey.,Department of General Surgery, Marmara University School of Medicine, Istanbul, Turkey
| | | | - Meral Yuksel
- Department of Medical Laboratory Technics, Marmara University Vocational School of Health Services, Istanbul, Turkey
| | - Dilek Akakin
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Can Erzik
- Department of Medical Biology, Marmara University School of Medicine, Istanbul, Turkey
| | - Goncagul Haklar
- Department of Biochemistry, Marmara University School of Medicine, Istanbul, Turkey
| | - Neşe Imeryuz
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
9
|
Bashir R, Wani IA, Ganie MA. Insights into new therapeutic approaches for the treatment and management of polycystic ovary syndrome: An updated review. Curr Pharm Des 2022; 28:1493-1500. [PMID: 35593345 DOI: 10.2174/1381612828666220518150754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a long-term, highly prevalent, complex heterogeneous, polygenic endocrine disorder characterized by both metabolic and reproductive disorders. It affects 6-23% of reproductive age women globally. OBJECTIVE This review aims to facilitate an understanding of novel PCOS management approaches and highlights the results from relevant interventional studies from animal and human studies. METHODS Manual search on PubMed, Cochrane, Scopus databases was performed for relevant articles, preclinical and clinical trials based on related keywords. RESULTS According to a multitude of studies, PCOS has evolved over time, but a substantial lag remains in management approaches. New insights into the cross-talk between muscle, brain, fat, and ovaries pointed out new therapeutic targets. This review has highlighted the efficacy of a wide spectrum of novel therapeutic agents [Phosphodiesterase-4 Inhibitors, Glucagon-like peptide-1 receptor agonists, nutritional supplements (Vitamins D and K, omega-3, prebiotics, probiotics and synbiotics), fecal microbiota transplantation (FMT) and intestinal cytokine IL-22] as PCOS therapeutic options. These novel therapies combine anti-inflammatory, insulin sensitizing, anti-obesity, and restoration of the gut microbiota and thus hold the potential to address the basic pathogenic mechanisms of PCOS. CONCLUSION Exhaustive, multicentric and multiethnic studies are vital to generate a network of normative data to better figure out the PCOS trajectory and change prognostic outcomes. Preclinical and clinical data is warranted to corroborate the new therapeutics and direct health care resources accordingly.
Collapse
Affiliation(s)
- Rohina Bashir
- Departments of Endocrinology and Clinical Research, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir India
| | - Imtiyaz A Wani
- Departments of Endocrinology and Clinical Research, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir India
| | - Mohd Ashraf Ganie
- Departments of Endocrinology and Clinical Research, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir India
| |
Collapse
|
10
|
Karamzad N, Faraji E, Adeli S, Sullman MJM, Pourghassem Gargari B. The effect of menaquinone-7 supplementation on dp-ucMGP, PIVKAII, inflammatory markers, and body composition in type 2 diabetes patients: a randomized clinical trial. Nutr Diabetes 2022; 12:15. [PMID: 35365594 PMCID: PMC8976086 DOI: 10.1038/s41387-022-00192-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/03/2022] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a common disorder that is characterized by chronic hyperglycemia and chronic inflammation, which also have a reinforcing effect on each other. The present research studied the effects of menaquinone (MK-7) supplementation on serum dp-ucMGP (dephospho uncarboxylated Matrix Gla Protein), PIVKAII (Prothrombin Induced by Vitamin K Absence), inflammatory markers and body composition indices in type 2 diabetes mellitus (T2DM) patients. METHODS This 12-week double-blind placebo-controlled randomized clinical trial allocated 60 T2DM patients equally into a MK-7 (200 mcg/day) group or a placebo group. All patients also received dietary advice at the beginning of study and their dietary intakes were checked using a 3-day food record. The body composition of each patient was also measured and their vitamin K status was assessed using the ELISA method to measure serum dp-ucMGP and PIVKAII. In addition, inflammatory status indices were also measured, including hsCRP (high-sensitivity C-reactive protein), IL-6 (interleukin-6) and TNF-α (tumor necrosis factor alpha). All measurements were made both before and after the intervention period. RESULTS In total 45 patients completed the trial (MK-7 group = 23 and placebo group = 22). The calorie and macronutrient intake of the two groups were similar pre and post intervention. There were statistically significant increases in dietary vitamin K intake for both groups over the course of the study (p < 0.05), but the intergroup differences were not significant. The body composition indices (i.e., body fat percentage, fat mass, fat free mass, muscle mass, bone mass and total body water) were not significantly different between groups or across the trial. The serum levels of the vitamin K markers, PIVKAII and dp-ucMGP, decreased significantly in the MK-7 group over the course of the study (p < 0.05), but there was no decrease in the placebo group. However, after adjusting for the baseline levels and changes in vitamin K intake, the between group differences were only significant for PIVKAII (p < 0.05). Following the intervention, the serum levels of the inflammatory markers (hsCRP, IL-6, and TNF-α) were significantly lower in the MK-7 group (p < 0.05), but not in the placebo group. However, the between group differences in the inflammatory markers were not statistically significant. CONCLUSIONS Although further studies are needed, it appears that MK-7 supplementation can be effective in improving PIVKAII levels, but not for improving dp-ucMGP, inflammatory status or the body composition indices of T2DM patients. TRIAL REGISTRATION NUMBER This study was prospectively registered at the Iranian Registry of Clinical Trials on the 20th of May 2019 (ID: IRCT20100123003140N22).
Collapse
Affiliation(s)
- Nahid Karamzad
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Faraji
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shaghayegh Adeli
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus.,Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Bahram Pourghassem Gargari
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Kieronska-Rudek A, Kij A, Kaczara P, Tworzydlo A, Napiorkowski M, Sidoryk K, Chlopicki S. Exogenous Vitamins K Exert Anti-Inflammatory Effects Dissociated from Their Role as Substrates for Synthesis of Endogenous MK-4 in Murine Macrophages Cell Line. Cells 2021; 10:1571. [PMID: 34206530 PMCID: PMC8303864 DOI: 10.3390/cells10071571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/07/2023] Open
Abstract
Vitamins K exert a range of activities that extend far beyond coagulation and include anti-inflammatory effects, but the mechanisms involved in anti-inflammatory action remain unclear. In the present study, we showed that various forms of exogenous vitamins-K1, K3, K2 (MK-4, MK-5, MK-6 and MK-7)-regulated a wide scope of inflammatory pathways in murine macrophages in vitro, including NOS-2, COX-2, cytokines and MMPs. Moreover, we demonstrated for the first time that macrophages are able to synthesise endogenous MK-4 on their own. Vitamins with shorter isoprenoid chains-K1, K3 and MK-5-exhibited stronger anti-inflammatory potential than vitamins with longer isoprenoid chains (MK-6 and MK-7) and simultaneously were preferably used as a substrate for MK-4 endogenous production. Most interesting, atorvastatin pretreatment inhibited endogenous MK-4 production but had no impact on the anti-inflammatory activity of vitamins K. In summary, our results demonstrate that macrophages are able to synthesise endogenous MK-4 using exogenous vitamins K, and statin inhibits this process. However, the anti-inflammatory effect of exogenous vitamins K was independent of endogenous MK-4 synthesis.
Collapse
Affiliation(s)
- Anna Kieronska-Rudek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.-R.); (A.K.); (P.K.); (A.T.)
- Department of Pharmacology, Medical College, Jagiellonian University, Grzegorzecka 16, 31-531 Krakow, Poland
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.-R.); (A.K.); (P.K.); (A.T.)
| | - Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.-R.); (A.K.); (P.K.); (A.T.)
| | - Anna Tworzydlo
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.-R.); (A.K.); (P.K.); (A.T.)
| | - Marek Napiorkowski
- Chemistry Department, Pharmaceutical Research Institute, Rydygiera 8, 01-793 Warszawa, Poland; (M.N.); (K.S.)
| | - Katarzyna Sidoryk
- Chemistry Department, Pharmaceutical Research Institute, Rydygiera 8, 01-793 Warszawa, Poland; (M.N.); (K.S.)
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.-R.); (A.K.); (P.K.); (A.T.)
- Department of Pharmacology, Medical College, Jagiellonian University, Grzegorzecka 16, 31-531 Krakow, Poland
| |
Collapse
|
12
|
Johnson RK, Vanderlinden LA, DeFelice BC, Uusitalo U, Seifert J, Fan S, Crume T, Fiehn O, Rewers M, Kechris K, Norris JM. Metabolomics-related nutrient patterns at seroconversion and risk of progression to type 1 diabetes. Pediatr Diabetes 2020; 21:1202-1209. [PMID: 32686271 PMCID: PMC7855902 DOI: 10.1111/pedi.13085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/11/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Our aim was to elucidate the role of diet in type 1 diabetes (T1D) by examining combinations of nutrient intake in the progression from islet autoimmunity (IA) to T1D. METHODS We measured 2457 metabolites and dietary intake at the time of seroconversion in 132 IA-positive children in the prospective Diabetes Autoimmunity Study in the Young. IA was defined as the first of two consecutive visits positive for at least one autoantibody (insulin, GAD, IA-2, or ZnT8). By December 2018, 40 children progressed to T1D. Intakes of 38 nutrients were estimated from semiquantitative food frequency questionnaires. We tested the association of each metabolite with progression to T1D using multivariable Cox regression. Nutrient patterns that best explained variation in candidate metabolites were identified using reduced rank regression (RRR), and their association with progression to T1D was tested using Cox regression adjusting for age at seroconversion and high-risk HLA genotype. RESULTS In stepwise selection, 22 nutrients significantly predicted at least two of the 13 most significant metabolites associated with progression to T1D, and were included in RRR. A nutrient pattern corresponding to intake lower in linoleic acid, niacin, and riboflavin, and higher in total sugars, explained 18% of metabolite variability. Children scoring higher on this metabolite-related nutrient pattern at seroconversion had increased risk for progressing to T1D (HR = 3.17, 95%CI = 1.42-7.05). CONCLUSIONS Combinations of nutrient intake reflecting candidate metabolites are associated with increased risk of T1D, and may help focus dietary prevention efforts.
Collapse
Affiliation(s)
- Randi K. Johnson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado,Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lauren A. Vanderlinden
- Department of Biostatistics & Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Brian C. DeFelice
- UC Davis Genome Center—Metabolomics, University of California Davis, Davis, California
| | - Ulla Uusitalo
- Health Informatics Institute, University of South Florida College of Medicine, Tampa, Florida
| | - Jennifer Seifert
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sili Fan
- UC Davis Genome Center—Metabolomics, University of California Davis, Davis, California
| | - Tessa Crume
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Oliver Fiehn
- UC Davis Genome Center—Metabolomics, University of California Davis, Davis, California
| | - Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Katerina Kechris
- Department of Biostatistics & Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jill M. Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
13
|
Ho HJ, Komai M, Shirakawa H. Beneficial Effects of Vitamin K Status on Glycemic Regulation and Diabetes Mellitus: A Mini-Review. Nutrients 2020; 12:nu12082485. [PMID: 32824773 PMCID: PMC7469006 DOI: 10.3390/nu12082485] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes mellitus is a chronic disease that is characterized by hyperglycemia, insulin resistance, and dysfunctional insulin secretion. Glycemic control remains a crucial contributor to the progression of type 2 diabetes mellitus as well as the prevention or delay in the onset of diabetes-related complications. Vitamin K is a fat-soluble vitamin that plays an important role in the regulation of the glycemic status. Supplementation of vitamin K may reduce the risk of diabetes mellitus and improve insulin sensitivity. This mini-review summarizes the recent insights into the beneficial effects of vitamin K and its possible mechanism of action on insulin sensitivity and glycemic status, thereby suppressing the progression of diabetes mellitus.
Collapse
Affiliation(s)
- Hsin-Jung Ho
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.K.); (H.S.)
- Correspondence: ; Tel.: +81-11-706-3395
| | - Michio Komai
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.K.); (H.S.)
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.K.); (H.S.)
- International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
14
|
Shioi A, Morioka T, Shoji T, Emoto M. The Inhibitory Roles of Vitamin K in Progression of Vascular Calcification. Nutrients 2020; 12:nu12020583. [PMID: 32102248 PMCID: PMC7071387 DOI: 10.3390/nu12020583] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Vitamin K is a fat-soluble vitamin that is indispensable for the activation of vitamin K-dependent proteins (VKDPs) and may be implicated in cardiovascular disease (CVD). Vascular calcification is intimately associated with CV events and mortality and is a chronic inflammatory process in which activated macrophages promote osteoblastic differentiation of vascular smooth muscle cells (VSMCs) through the production of proinflammatory cytokines such as IL-1β, IL-6, TNF-α, and oncostatin M (OSM) in both intimal and medial layers of arterial walls. This process may be mainly mediated through NF-κB signaling pathway. Vitamin K has been demonstrated to exert anti-inflammatory effects through antagonizing NF-κB signaling in both in vitro and in vivo studies, suggesting that vitamin K may prevent vascular calcification via anti-inflammatory mechanisms. Matrix Gla protein (MGP) is a major inhibitor of soft tissue calcification and contributes to preventing both intimal and medial vascular calcification. Vitamin K may also inhibit progression of vascular calcification by enhancing the activity of MGP through facilitating its γ-carboxylation. In support of this hypothesis, the procalcific effects of warfarin, an antagonist of vitamin K, on arterial calcification have been demonstrated in several clinical studies. Among the inactive MGP forms, dephospho-uncarboxylated MGP (dp-ucMGP) may be regarded as the most useful biomarker of not only vitamin K deficiency, but also vascular calcification and CVD. There have been several studies showing the association of circulating levels of dp-ucMGP with vitamin K intake, vascular calcification, mortality, and CVD. However, additional larger prospective studies including randomized controlled trials are necessary to confirm the beneficial effects of vitamin K supplementation on CV health.
Collapse
Affiliation(s)
- Atsushi Shioi
- Department of Vascular Medicine and Vascular Science Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan;
- Correspondence: ; Tel.: +81666453931
| | - Tomoaki Morioka
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka 545-85858, Japan; (T.M.); (M.E.)
| | - Tetsuo Shoji
- Department of Vascular Medicine and Vascular Science Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan;
| | - Masanori Emoto
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka 545-85858, Japan; (T.M.); (M.E.)
| |
Collapse
|
15
|
Karamzad N, Maleki V, Carson-Chahhoud K, Azizi S, Sahebkar A, Gargari BP. A systematic review on the mechanisms of vitamin K effects on the complications of diabetes and pre-diabetes. Biofactors 2020; 46:21-37. [PMID: 31573736 DOI: 10.1002/biof.1569] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus and pre-diabetes are prevalent endocrine disorders associated with substantial morbidity and premature mortality. Vitamin K is known to have several beneficial effects on complications of diabetes and pre-diabetes. However, systematic consolidation of evidence is required to quantify these effects in order to inform clinical practice and research. A systematic search in PubMed, Scopus, Embase, ProQuest, and Google Scholar databases was undertaken from database inception up to October 2018 to evaluate functional roles of different forms of vitamin K on diabetes and pre-diabetes. From 3,734 identified records, nine articles met the inclusion criteria and were evaluated. Vitamin K supplementation was found to be associated with significant reductions in blood glucose (six studies), increased fasting serum insulin (four studies), reduced hemoglobin A1c (three studies), reduced homeostatic model assessment-insulin resistance index (HOMA-IR) (two studies), and increased ß-cell function (two studies) in diabetic animal studies. Following 2-hour oral glucose tolerance test, vitamin K supplementation was observed to be effective in reducing blood glucose and insulin levels in the pre-diabetic population. However, no evidence of effect was observed for fasting blood sugar, insulin, HOMA-IR, and homeostatic model assessment-β-cell function index (two studies). A statistically significant effect was also noted with vitamin K in improving dyslipidemia (three studies) as well as oxidative stress and inflammatory markers (five studies) in diabetic animals. In conclusion, clinical trials and animal studies confirm that vitamin K supplementation may improve both clinical features and complications of diabetes and pre-diabetes. However, quantification of clinical efficacy in the pre-diabetic population and among individuals with comorbidities requires further investigation.
Collapse
Affiliation(s)
- Nahid Karamzad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kristin Carson-Chahhoud
- Australian Centre for Precision Health, School of Health Sciences, University of South Australia, Australia
- School of Medicine, The University of Adelaide, South Australia, Australia
| | - Samaneh Azizi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahram Pourghassem Gargari
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Karamzad N, Faraji E, Adeli S, Carson‐Chahhoud K, Azizi S, Pourghassem Gargari B. Effects of MK-7 Supplementation on Glycemic Status, Anthropometric Indices and Lipid Profile in Patients with Type 2 Diabetes: A Randomized Controlled Trial. Diabetes Metab Syndr Obes 2020; 13:2239-2249. [PMID: 32617013 PMCID: PMC7326202 DOI: 10.2147/dmso.s253014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/11/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a prevalent disorder which accounts for 90-95% of diabetic patients. The aim of this study was to assess the effects of menaquinone (MK-7) supplementation on glycemic indices, anthropometric indices and lipid profile, among patients with T2DM. METHODS In this double-blind placebo-controlled randomized clinical trial, 60 men and women with T2DM were allocated equally into either the MK-7 (200 µg/day) or the placebo group. Physical activity level and dietary intake were assessed using the international physical activity questionnaire-short form (IPAQ-SF) and a 3-day food record, pre- and post-intervention. Anthropometric measures, blood pressure, glycemic indices and lipid profile including fasting blood sugar (FBS), hemoglobin A1c (HBA1C), fasting insulin (FI), homeostatic model assessment insulin resistance index (HOMA-IR), triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL-C) and low-density lipoprotein (LDL-C) were measured at baseline and after twelve weeks. RESULTS Forty-five patients completed the trial. There were no significant between-group differences for calorie intake, macronutrient intake, physical activity level or anthropometric measures at baseline and at the end of the study. Dietary vitamin K intake increased significantly at the end of the study in the MK-7 (p: 0.02) and placebo (p: 0.001) groups, but intergroup differences were not significant (p: 0.86). FBS (p: 0.01), HbA1c (p: 0.002), fasting insulin (p: 0.01) and HOMA-IR (p: 0.007) decreased significantly in the MK-7 group. Furthermore, after adjustment for the baseline values and changes of vitamin K intake at the end of study, FBS and HbA1C showed significant intergroup changes, and they were significantly lower in the MK-7 group compared to the placebo group. Lipid profile (TG, TC, LDL-C, HDL-C and LDL-C/HDL-C) did not change significantly within or between groups. CONCLUSION MK-7 supplementation seems to be effective in the improvement of glycemic indices, but not the lipid profile of patients with T2DM. CLINICAL TRIAL REGISTRATION The present study was prospectively registered at the Iranian Registry of Clinical Trials on May 2019 (ID: IRCT20100123003140N22).
Collapse
Affiliation(s)
- Nahid Karamzad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Faraji
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shaghayegh Adeli
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kristin Carson‐Chahhoud
- Australian Centre for Precision Health, School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Samaneh Azizi
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahram Pourghassem Gargari
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Correspondence: Bahram Pourghassem Gargari Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran Email
| |
Collapse
|
17
|
Shawky LM, Morsi AA, El Bana E, Hanafy SM. The Biological Impacts of Sitagliptin on the Pancreas of a Rat Model of Type 2 Diabetes Mellitus: Drug Interactions with Metformin. BIOLOGY 2019; 9:E6. [PMID: 31881657 PMCID: PMC7167819 DOI: 10.3390/biology9010006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022]
Abstract
Sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, is a beneficial class of antidiabetic drugs. However, a major debate about the risk of developing pancreatitis is still existing. The aim of the work was to study the histological and immunohistochemical effects of sitagliptin on both endocrine and exocrine pancreases in a rat model of type 2 diabetes mellitus and to correlate these effects with the biochemical findings. Moreover, a possible synergistic effect of sitagliptin, in combination with metformin, was also evaluated. Fifty adult male rats were used and assigned into five equal groups. Group 1 served as control. Group 2 comprised of untreated diabetic rats. Group 3 diabetic rats received sitagliptin. Group 4 diabetic rats received metformin. Group 5 diabetic rats received both combined. Treatments were given for 4 weeks after the induction of diabetes. Blood samples were collected for biochemical assay before the sacrification of rats. Pancreases were removed, weighed, and were processed for histological and immunohistochemical examination. In the untreated diabetic group, the islets appeared shrunken with disturbed architecture and abnormal immunohistochemical reactions for insulin, caspase-3, and inducible nitric oxide synthase (iNOS). The biochemical findings were also disturbed. Morphometrically, there was a significant decrease in the islet size and islet number. Treatment with sitagliptin, metformin, and their combination showed an improvement, with the best response in the combined approach. No evidence of pancreatic injury was identified in the sitagliptin-treated groups. In conclusion, sitagliptin had a cytoprotective effect on beta-cell damage. Furthermore, the data didn't indicate any detrimental effects of sitagliptin on the exocrine pancreas.
Collapse
Affiliation(s)
- Lamiaa M. Shawky
- Department of Histology and Cell Biology, Benha Faculty of Medicine, Benha University, Benha 13511, Egypt;
| | - Ahmed A. Morsi
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum 63511, Egypt
| | - Eman El Bana
- Department of Anatomy, Benha Faculty of Medicine, Benha University, Benha 13511, Egypt;
| | - Safaa Masoud Hanafy
- Department of Anatomy, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11865, Egypt;
| |
Collapse
|
18
|
Thiagarajan R, Varsha MKNS, Srinivasan V, Ravichandran R, Saraboji K. Vitamin K1 prevents diabetic cataract by inhibiting lens aldose reductase 2 (ALR2) activity. Sci Rep 2019; 9:14684. [PMID: 31604989 PMCID: PMC6789135 DOI: 10.1038/s41598-019-51059-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022] Open
Abstract
This study investigated the potential of vitamin K1 as a novel lens aldose reductase inhibitor in a streptozotocin-induced diabetic cataract model. A single, intraperitoneal injection of streptozotocin (STZ) (35 mg/kg) resulted in hyperglycemia, activation of lens aldose reductase 2 (ALR2) and accumulation of sorbitol in eye lens which could have contributed to diabetic cataract formation. However, when diabetic rats were treated with vitamin K1 (5 mg/kg, sc, twice a week) it resulted in lowering of blood glucose and inhibition of lens aldose reductase activity because of which there was a corresponding decrease in lens sorbitol accumulation. These results suggest that vitamin K1 is a potent inhibitor of lens aldose reductase enzyme and we made an attempt to understand the nature of this inhibition using crude lens homogenate as well as recombinant human aldose reductase enzyme. Our results from protein docking and spectrofluorimetric analyses clearly show that vitamin K1 is a potent inhibitor of ALR2 and this inhibition is primarily mediated by the blockage of DL-glyceraldehyde binding to ALR2. At the same time docking also suggests that vitamin K1 overlaps at the NADPH binding site of ALR2, which probably shows that vitamin K1 could possibly bind both these sites in the enzyme. Another deduction that we can derive from the experiments performed with pure protein is that ALR2 has three levels of affinity, first for NADPH, second for vitamin K1 and third for the substrate DL-glyceraldehyde. This was evident based on the dose-dependency experiments performed with both NADPH and DL-glyceraldehyde. Overall, our study shows the potential of vitamin K1 as an ALR2 inhibitor which primarily blocks enzyme activity by inhibiting substrate interaction of the enzyme. Further structural studies are needed to fully comprehend the exact nature of binding and inhibition of ALR2 by vitamin K1 that could open up possibilities of its therapeutic application.
Collapse
Affiliation(s)
- R Thiagarajan
- School of Chemical & Biotechnology, SASTRA University, Tamil Nadu, India.
- Department of Advanced Zoology & Biotechnology, Ramakrishna Mission Vivekananda College, Mylapore, Chennai, 600004, India.
| | - M K N Sai Varsha
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - V Srinivasan
- Disease Program Lead - Diabetes, MedGenome Inc., Bangalore, India
| | - R Ravichandran
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, New York, NY, 10016, USA
| | - K Saraboji
- School of Chemical & Biotechnology, SASTRA University, Tamil Nadu, India
| |
Collapse
|
19
|
Dihingia A, Ozah D, Ghosh S, Sarkar A, Baruah PK, Kalita J, Sil PC, Manna P. Vitamin K1 inversely correlates with glycemia and insulin resistance in patients with type 2 diabetes (T2D) and positively regulates SIRT1/AMPK pathway of glucose metabolism in liver of T2D mice and hepatocytes cultured in high glucose. J Nutr Biochem 2018; 52:103-114. [PMID: 29175667 DOI: 10.1016/j.jnutbio.2017.09.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/18/2017] [Accepted: 09/28/2017] [Indexed: 01/09/2023]
Abstract
There is no previous study in the literature that has examined the relationship between circulating vitamin K1 (VK1) with glycemic status in type 2 diabetes (T2D). Moreover, scientific explanation for the beneficial role of VK1 supplementation in lowering glycemia in diabetes is yet to be determined. This study for the first time demonstrated that circulating VK1 was significantly lower in T2D patients compared to age-matched control subjects, and VK1 levels in T2D were significantly and inversely associated with fasting glucose and insulin resistance [homeostatic model assessment of insulin resistance (HOMA-IR)], which suggest that boosting plasma VK1 may reduce the fasting glucose and insulin resistance in T2D patients. Using high-fat-diet-fed T2D animal model, this study further investigated the positive effect of VK1 supplementation on glucose metabolism and examined the underlying molecular mechanism. Results showed that VK1 supplementation [1, 3, 5 μg/kg body weight (BW), 8 weeks] dose dependently improved the glucose tolerance; decreased BW gain, fasting glucose and insulin, glycated hemoglobin, HOMA-IR and cytokine secretion (monocyte chemoattractant protein-1 and interleukin-6); and regulated the signaling pathway of hepatic glucose metabolism [sirtuin 1 (SIRT1)/AMP-activated protein kinase (AMPK)/phosphoinositide 3-kinase/phosphatase and tensin homolog/glucose transporter 2/glucokinase/glucose 6 phosphatase], lipid oxidation (peroxisome proliferator-activated receptor alpha/carnitine palmitoyltransferase 1A) and inflammation (nuclear factor kappa B) in T2D mice. Comparative signal silencing studies also depicted the role of SIRT1/AMPK in mediating the effect of VK1 on glucose metabolism, lipid oxidation and inflammation in high-glucose-treated cultured hepatocytes. In conclusion, this study demonstrates that circulating VK1 has a positive effect on lowering fasting glucose and insulin resistance in T2D via regulating SIRT1/AMPK signaling pathway.
Collapse
Affiliation(s)
- Anjum Dihingia
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, Chennai, India
| | - Dibyajyoti Ozah
- Clinical Centre, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Shatadal Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Abhijit Sarkar
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Pranab Kumar Baruah
- Clinical Centre, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Jatin Kalita
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, Chennai, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Prasenjit Manna
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, Chennai, India.
| |
Collapse
|
20
|
Dihingia A, Ozah D, Baruah PK, Kalita J, Manna P. Prophylactic role of vitamin K supplementation on vascular inflammation in type 2 diabetes by regulating the NF-κB/Nrf2 pathway via activating Gla proteins. Food Funct 2018; 9:450-462. [PMID: 29227493 DOI: 10.1039/c7fo01491k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is no previous study that has examined the relationship between circulating vitamin K1 (VK1) and vascular inflammation in type 2 diabetes (T2D). This study aims to examine the hypothesis that circulating VK1 deficiency may be associated with higher inflammation and insulin resistance in T2D patients and that VK1 supplementation regulates the NF-κB/Nrf2 pathway via activating VK-dependent Gla proteins and reduces vascular inflammation. The results showed that plasma VK1 levels were significantly lower and MCP-1, fasting glucose, HbA1c, and insulin resistance (HOMA-IR) were significantly higher in T2D patients compared to those in the controls. The lower levels of VK1 in T2D patients were significantly and inversely correlated with MCP-1 and HOMA-IR, which suggests that VK1 supplementation may reduce the vascular inflammation and insulin resistance in T2D. Using a high fat diet-fed T2D mice model this study further demonstrated that VK1 supplementation (1, 3, 5 μg per kg BW, 8 weeks) dose-dependently decreased the body weight gain, glucose intolerance, fasting glucose, glycated hemoglobin, HOMA-IR, and cytokine secretion (MCP-1 and IL-6) in T2D mice. Further cell culture studies showed that VK1 supplementation (1, 5, or 10 nM) decreased NF-κB phosphorylation and MCP-1 secretion and increased Nrf2 protein expression in high glucose (HG, 25 mM)-treated monocytes. Signal silencing studies with GGCX siRNA again depicted the role of VK-dependent Gla proteins in mediating the effect of VK1 on vascular inflammation in HG-treated cells. In conclusion, this study suggests that circulating VK1 has a positive effect in lowering vascular inflammation in T2D by regulating NF-κB/Nrf2 transcription factors via activating VK-dependent Gla proteins.
Collapse
Affiliation(s)
- Anjum Dihingia
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India.
| | | | | | | | | |
Collapse
|
21
|
Rashid K, Chowdhury S, Ghosh S, Sil PC. Curcumin attenuates oxidative stress induced NFκB mediated inflammation and endoplasmic reticulum dependent apoptosis of splenocytes in diabetes. Biochem Pharmacol 2017; 143:140-155. [PMID: 28711624 DOI: 10.1016/j.bcp.2017.07.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022]
Abstract
The present study was aimed to determine the curative role of curcumin against diabetes induced oxidative stress and its associated splenic complications. Diabetes was induced in the experimental rats via the intraperitoneal administration of a single dose of STZ (65mgkg-1body weight). Increased blood glucose and intracellular ROS levels along with decreased body weight, the activity of cellular antioxidant enzymes and GSH/GSSG ratio were observed in the diabetic animals. Histological assessment showed white pulp depletion and damaged spleen anatomy in these animals. Oral administration of curcumin at a dose of 100mgkg-1 body weight daily for 8weeks, however, restored these alterations. Investigation of the mechanism of hyperglycemia induced oxidative stress mediated inflammation showed upregulation of inflammatory cytokines, chemokines, adhesion molecules and increased translocation of NFκB into the nucleus. Moreover, ER stress dependent cell death showed induction of eIF2α and CHOP mediated signalling pathways as well as increment in the expression of GRP78, Caspase-12, Calpain-1, phospho JNK, phospho p38 and phospho p53 in the diabetic group. Alteration of Bax/Bcl-2 ratio; disruption of mitochondrial membrane potential, release of cytochrome-C from mitochondria and upregulation of caspase 3 along with the formation of characteristic DNA ladder in the diabetic animals suggest the involvement of mitochondria dependent apoptotic pathway in the splenic cells. Treatment with curcumin could, however, protect cells from inflammatory damage and ER as well as mitochondrial apoptotic death by restoring the alterations of these parameters. Our results suggest that curcumin has the potential to act as an anti-diabetic, anti-oxidant, anti-inflammatory and anti-apoptotic therapeutic against diabetes mediated splenic damage.
Collapse
Affiliation(s)
- Kahkashan Rashid
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sayantani Chowdhury
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
22
|
Li X, Liu W, Huang X, Xiong J, Wei X. Interaction of AR and iNOS in lens epithelial cell: A new pathogenesis and potential therapeutic targets of diabetic cataract. Arch Biochem Biophys 2017; 615:44-52. [DOI: 10.1016/j.abb.2017.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/14/2016] [Accepted: 01/14/2017] [Indexed: 01/25/2023]
|
23
|
Beneficial role of vitamin K supplementation on insulin sensitivity, glucose metabolism, and the reduced risk of type 2 diabetes: A review. Nutrition 2016; 32:732-9. [PMID: 27133809 DOI: 10.1016/j.nut.2016.01.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/01/2015] [Accepted: 01/14/2016] [Indexed: 01/08/2023]
Abstract
Micronutrients are gaining acceptance as an important nutritional therapy for the prevention and/or management of diabetes and its associated health risks. Although a very small quantity of micronutrients are required for specific functions in our bodies, moderate deficiencies can lead to serious health issues. Impaired insulin sensitivity and glucose intolerance play a major role in the development of diabetic pathophysiology. Vitamin K is well known for its function in blood coagulation. Moreover, several human studies reported the beneficial role of vitamin K supplementation in improving insulin sensitivity and glucose tolerance, preventing insulin resistance, and reducing the risk of type 2 diabetes (T2 D). Both animal and human studies have suggested that vitamin K-dependent protein (osteocalcin [OC]), regulation of adipokine levels, antiinflammatory properties, and lipid-lowering effects may mediate the beneficial function of vitamin K in insulin sensitivity and glucose tolerance. This review for the first time provides an overview of the currently available preclinical and clinical evidences on the effect of vitamin K supplementation in the management of insulin sensitivity and glucose tolerance. The outcome of this review will increase understanding for the development of a novel adjuvant therapy to achieve better control of glycemia and improve the lives of diabetic patients.
Collapse
|
24
|
Sai Varsha M, Raman T, Manikandan R, Dhanasekaran G. Hypoglycemic action of vitamin K1 protects against early-onset diabetic nephropathy in streptozotocin-induced rats. Nutrition 2015; 31:1284-92. [DOI: 10.1016/j.nut.2015.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/30/2015] [Accepted: 05/09/2015] [Indexed: 01/18/2023]
|
25
|
Koksal B. Effect of Streptozotocin on Plasma Insulin Levels of Rats and Mice: A Meta-analysis Study. Open Access Maced J Med Sci 2015; 3:380-3. [PMID: 27275254 PMCID: PMC4877823 DOI: 10.3889/oamjms.2015.093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND: In the studies focusing on diabetic organisms, Streprozotocine (STZ) is a frequently used agent to induce diabetes in rats and mice. However the current studies do not represent practical importance of their statistical findings. For showing practical importance of the differences in plasma insulin levels of diabetic rats and mice induced by STZ, there should be a statistical synthesis regarding statistical findings of the studies. AIM: The purpose of this study is to make a meta-analysis of the studies on the effect of STZ on plasma insulin levels in diabetic rats and mice. MATERIALS AND METHODS: In this study 39 effect sizes (37 studies) about levels of plasma insulin were analyzed by calculating individual effect sizes (d) and mean effect size. RESULTS: The effect sizes were between -13.7 and +65.3 and the mean effect size value (+9.33) represented a large effect indicating that STZ was an effective agent to significantly decrease plasma insulin levels of diabetic rats and mice. CONCLUSION: It can be said that the differences in plasma insulin levels between STZ-applied and no application groups has a practical importance in making animal model of diabetes.
Collapse
Affiliation(s)
- Burcu Koksal
- Inonu University, Department of Physiology, Inonu University, Faculty of Medicine, Malatya 44280, Turkey
| |
Collapse
|