1
|
Tiscornia C, Tapia V, Águila D, Lorca-Ponce E, Aicardi V, Vásquez F. Maqui and Chronic Kidney Disease: A Narrative Review on the Potential Nephroprotective Role of Anthocyanins. Nutrients 2025; 17:1058. [PMID: 40292440 PMCID: PMC11944665 DOI: 10.3390/nu17061058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Chronic kidney disease (CKD) is a progressive pathology, with high global prevalence, associated with inflammation and oxidative stress. Given the limited capacity of conventional treatments to reverse renal damage, complementary alternatives have emerged such as supplementation with anthocyanins from maqui (Aristotelia chilensis), known for their antioxidant and anti-inflammatory properties. This review analyzes the evidence for their impact on CKD progression. Methods: A narrative review of the experimental literature regarding maqui anthocyanins, their bioavailability, and their effects on oxidative stress, inflammation, and CKD to January 2025 was conducted. Articles without peer review or without a focus on Aristotelia chilensis were excluded, guaranteeing an updated compilation on its nephroprotective potential. Results: Anthocyanins have shown benefits in reducing oxidative stress, inflammation, and glycemia regulation. Preclinical studies suggest improvements in renal function as well as less fibrosis. Human trials indicate positive effects on metabolism, although evidence in CKD patients is limited. Bioavailability remains a challenge to optimizing efficacy. Conclusions: Maqui is a promising source of anthocyanins, with nephroprotective potential. However, robust clinical studies are required to determine its safety, optimal dose, and long-term impact in CKD. Its incorporation into evidence-based therapeutic strategies could offer an innovative approach in the management of this disease. More clinical studies are needed to validate the preclinical findings and optimize the therapeutic use of maqui in CKD.
Collapse
Affiliation(s)
- Caterina Tiscornia
- Escuela de Nutrición y Dietética, Universidad Finis Terrae, Santiago 7501014, Chile; (C.T.); (V.T.); (D.Á.)
| | - Violeta Tapia
- Escuela de Nutrición y Dietética, Universidad Finis Terrae, Santiago 7501014, Chile; (C.T.); (V.T.); (D.Á.)
| | - Daniela Águila
- Escuela de Nutrición y Dietética, Universidad Finis Terrae, Santiago 7501014, Chile; (C.T.); (V.T.); (D.Á.)
| | - Enrique Lorca-Ponce
- Escuela de Enfermería, Universidad Finis Terrae, Santiago 7501014, Chile;
- Escuela de Kinesiología, Facultad de Arte y Educación Física, Universidad Metropolitana en Ciencias de la Santiago, Santiago 7760197, Chile
| | - Valeria Aicardi
- Unidad de Diálisis, Clínica Indisa, Santiago 7501014, Chile;
| | - Fabián Vásquez
- Escuela de Nutrición y Dietética, Universidad Finis Terrae, Santiago 7501014, Chile; (C.T.); (V.T.); (D.Á.)
| |
Collapse
|
2
|
Mistry PS, Chorawala MR, Sivamaruthi BS, Prajapati BG, Kumar A, Chaiyasut C. The Role of Dietary Anthocyanins for Managing Diabetes Mellitus-Associated Complications. Curr Diabetes Rev 2025; 21:e15733998322754. [PMID: 39136514 DOI: 10.2174/0115733998322754240802063730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 01/06/2025]
Abstract
Diabetes mellitus (DM) is an intricate metabolic disorder marked by persistent hyperglycemia, arising from disruptions in glucose metabolism, with two main forms, type 1 and type 2, involving distinct etiologies affecting β-cell destruction or insulin levels and sensitivity. The islets of Langerhans, particularly β-cells and α-cells, play a pivotal role in glucose regulation, and both DM types lead to severe complications, including retinopathy, nephropathy, and neuropathy. Plant-derived anthocyanins, rich in anti-inflammatory and antioxidant properties, show promise in mitigating DM-related complications, providing a potential avenue for prevention and treatment. Medicinal herbs, fruits, and vegetables, abundant in bioactive compounds like phenolics, offer diverse benefits, including glucose regulation and anti-inflammatory, antioxidant, anticancer, anti-mutagenic, and neuroprotective properties. Anthocyanins, a subgroup of polyphenols, exhibit diverse isoforms and biosynthesis involving glycosylation, making them potential natural replacements for synthetic food colorants. Clinical trials demonstrate the efficacy and safety of anthocyanins in controlling glucose, reducing oxidative stress, and enhancing insulin sensitivity in diabetic patients, emphasizing their therapeutic potential. Preclinical studies revealed their multifaceted mechanisms, positioning anthocyanins as promising bioactive compounds for managing diabetes and its associated complications, including retinopathy, nephropathy, and neuropathy.
Collapse
Affiliation(s)
- Priya S Mistry
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, Gujarat, India
| | - Akash Kumar
- MM Institute of Hotel Management, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
- Department of Food Technology, SRM University, Delhi-NCR, Sonepat 131029, India
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Hariri M, Amirkalali B, Gholami A. Effects of purified anthocyanins supplementation on serum concentration of inflammatory mediators: A systematic review and dose-response meta-analysis on randomized clinical trials. Phytother Res 2024; 38:1494-1508. [PMID: 38272574 DOI: 10.1002/ptr.8124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
Anthocyanins, due to their antioxidant effects, are candidates to reduce inflammation and the risk of inflammatory diseases. Therefore, through conducting a systematic review and meta-analysis, we tried to find the effect of purified anthocyanins on serum levels of C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Databases including, ISI Web of Science, Scopus, ClinicalTrials.gov, PubMed, and Cochrane Library were searched up to June 2023. The meta-analysis was done by calculating mean differences and their standard deviations. Calculating the statistical heterogeneity of intervention effects was performed through I-squared statistics and Cochran's Q test. The pooled estimate showed a significant decrease in serum levels of CRP, TNF-α, and IL-6 (weighted mean difference (WMD) = -0.12 mg/L, 95% confidence interval (CI) = -0.21 to -0.02, p = 0.013; WMD = -1.37 pg/mL, 95% CI = -1.79 to -0.96; p < 0.001; WMD = -1.43 pg/mL, 95% CI = -1.87 to -1.00; p < 0.001, respectively). Subgroup analysis results revealed purified anthocyanins significantly decreased serum levels of CRP among participants with serum levels of CRP≥1.52 mg/L, at-risk/unhealthy status, and in trials with intervention duration ≥84 days, anthocyanins dose ≥320 mg/day, and sample size ≥85 subjects. Regarding TNF-α and IL-6, out results showed that there was a significant effect of purified anthocyanins on serum levels of TNF-α and IL-6 in most subgroups. The results of our study indicated that purified anthocyanins significantly decreased serum levels of CRP, TNF-α, and IL-6. However, further high-quality studies are needed to firmly establish the efficacy of purified anthocyanins.
Collapse
Affiliation(s)
- Mitra Hariri
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Bahareh Amirkalali
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Gholami
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Epidemiology and Biostatistics, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
4
|
Jiang Y, Li X, Zhang Y, Wu B, Li Y, Tian L, Sun J, Bai W. Mechanism of action of anthocyanin on the detoxification of foodborne contaminants-A review of recent literature. Compr Rev Food Sci Food Saf 2024; 23:e13259. [PMID: 38284614 DOI: 10.1111/1541-4337.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 01/30/2024]
Abstract
Foodborne contaminants refer to substances that are present in food and threaten food safety. Due to the progress in detection technology and the rising concerns regarding public health, there has been a surge in research focusing on the dangers posed by foodborne contaminants. These studies aim to explore and implement strategies that are both safe and efficient in mitigating the associated risks. Anthocyanins, a class of flavonoids, are abundantly present in various plant species, such as blueberries, grapes, purple sweet potatoes, cherries, mulberries, and others. Numerous epidemiological and nutritional intervention studies have provided evidence indicating that the consumption of anthocyanins through dietary intake offers a range of protective effects against the detrimental impact of foodborne contaminants. The present study aims to differentiate between two distinct subclasses of foodborne contaminants: those that are generated during the processing of food and those that originate from the surrounding environment. Furthermore, the impact of anthocyanins on foodborne contaminants was also summarized based on a review of articles published within the last 10 years. However, further investigation is warranted regarding the mechanism by which anthocyanins target foodborne contaminants, as well as the potential impact of individual variations in response. Additionally, it is important to note that there is currently a dearth of clinical research examining the efficacy of anthocyanins as an intervention for mitigating the effects of foodborne pollutants. Thus, by exploring the detoxification effect and mechanism of anthocyanins on foodborne pollutants, this review thereby provides evidence, supporting the utilization of anthocyanin-rich diets as a means to mitigate the detrimental effects of foodborne contaminants.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
- The Sixth Affiliated Hospital, Jinan University, Dongguan, PR China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Biyu Wu
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yuxi Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| |
Collapse
|
5
|
Cui B, Liu L, Shi T, Yin M, Feng X, Shan Y. The Ethanolic Extract of Lycium ruthenicum Ameliorates Age-Related Physiological Damage in Mice. Molecules 2023; 28:7615. [PMID: 38005337 PMCID: PMC10673502 DOI: 10.3390/molecules28227615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Aging and age-related diseases are important study topics due to their associations with progressive physiological damage to genes, cells, tissues, and the entire organism, which ultimately affects the functional efficiency of organs. Lycium ruthenicum Murr. is a functional food that is known for its high contents of anthocyanins and spermidines, both of which have been demonstrated to have positive effects on anti-aging activity and anti-oxidation. In this study, we used HPLC-MS to analyze the constituents of L. ruthenicum Murr. Extract (LRM) and investigated their potential mechanism for exerting antioxidative effects in D-galactose (D-Gal) aging model mice. LRM (25 mg/kg, 50 mg/kg, and 100 mg/kg) improved cognitive function in D-Gal-treated mice, as shown by reduced escape latencies and increased platform crossings in behavioral tests. We measured the contents of lipid peroxidation (LPO) and malondialdehyde (MDA) and the enzyme activities of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in mice serum and brain after 6 weeks of D-Gal treatment. LRM decreased the contents of LPO and MDA and increased the enzyme activities of SOD and GSH-Px, indicating the protection effect of LRM against D-Gal-induced oxidative stress. Additionally, LRM can inhibit oxidative stress in cells by reducing intracellular ROS levels and restoring mitochondrial membrane potential, thereby inhibiting paraquat (PQ)-induced cellular senescence and delaying cell aging. Therefore, LRM has the potential to be a healthcare product for the treatment of age-related diseases.
Collapse
Affiliation(s)
- Boya Cui
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (B.C.); (T.S.); (M.Y.); (X.F.)
| | - Lanying Liu
- National Wolfberry Engineering Research Center, Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China;
| | - Tao Shi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (B.C.); (T.S.); (M.Y.); (X.F.)
| | - Min Yin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (B.C.); (T.S.); (M.Y.); (X.F.)
| | - Xu Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (B.C.); (T.S.); (M.Y.); (X.F.)
| | - Yu Shan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; (B.C.); (T.S.); (M.Y.); (X.F.)
| |
Collapse
|
6
|
Fragoso-Medina JA, López Vaquera SR, Domínguez-Uscanga A, Luna-Vital D, García N. Single anthocyanins effectiveness modulating inflammation markers in obesity: dosage and matrix composition analysis. Front Nutr 2023; 10:1255518. [PMID: 38024376 PMCID: PMC10651755 DOI: 10.3389/fnut.2023.1255518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Anthocyanins (ACNs) are phytochemicals with numerous bioactivities, e.g., antioxidant and anti-inflammatory. Health benefits from consuming ACN-rich foods, extracts, and supplements have been studied in clinical trials (CT). However, the individual effect of single ACNs and their correlation with doses and specific bioactivities or molecular targets have not been thoroughly analyzed. This review shows a recompilation of single anthocyanins composition and concentrations used in CT, conducted to investigate the effect of these anti-inflammatory derivatives in obese condition. Single anthocyanin doses with changes in the levels of frequently monitored markers were correlated. In addition, the analysis was complemented with reports of studies made in vitro with single ACNs. Anthocyanins' efficacy in diseases with high baseline obesity-related inflammation markers was evidenced. A poor correlation was found between most single anthocyanin doses and level changes of commonly monitored markers. Correlations between cyanidin, delphinidin, and pelargonidin derivatives and specific molecular targets were proposed. Our analysis showed that knowledge of specific compositions and anthocyanin concentrations determined in future studies would provide more information about mechanisms of action.
Collapse
Affiliation(s)
- Jorge Alberto Fragoso-Medina
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Selma Romina López Vaquera
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Astrid Domínguez-Uscanga
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Diego Luna-Vital
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Noemí García
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
- Preclinical Research Unit, Tecnologico de Monterrey, Monterrey, Mexico
| |
Collapse
|
7
|
Jang HH, Hwang IG, Lee YM. Effects of anthocyanin supplementation on blood lipid levels: a systematic review and meta-analysis. Front Nutr 2023; 10:1207751. [PMID: 37649528 PMCID: PMC10463756 DOI: 10.3389/fnut.2023.1207751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Dyslipidemia is a major cardiovascular disease risk factor associated with increased mortality. The intake of plant food-derived bioactive compounds is associated with beneficial cardiovascular effects, including decreased blood lipid levels and cardiovascular risk. We aimed to evaluate the effects of anthocyanin intake on blood lipid levels by analyzing relevant randomized controlled trials. Methods We searched the PubMed and Embase databases using the "Patient/Population, Intervention, Comparison, and Outcomes" format to determine whether anthocyanin supplementation intervention affected blood lipid levels compared with placebo supplementation in human participants. Results A total of 41 studies with 2,788 participants were included in the meta-analysis. Anthocyanin supplementation significantly reduced triglyceride [standardized mean difference (SMD) = -0.10; 95% confidence interval [CI], -0.18, -0.01) and low-density lipoprotein-cholesterol (SMD = -0.16; 95% CI -0.26, -0.07) levels and increased high-density lipoprotein-cholesterol levels (SMD = 0.42; 95% CI 0.20, 0.65). Discussion Anthocyanin supplementation significantly improved blood lipid component levels in the included studies. Larger, well-designed clinical trials are needed to further investigate the effects of anthocyanin intake on blood lipid levels and the safety of anthocyanin supplementation for treating dyslipidemia. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021257087, identifier: CRD42021257087.
Collapse
Affiliation(s)
- Hwan-Hee Jang
- Functional Food Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - In-Guk Hwang
- Functional Food Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Young-Min Lee
- Department of Practical Science Education, Gyeongin National University of Education, Incheon, Republic of Korea
| |
Collapse
|
8
|
Song W, Yuan Q, Wang Y, Mai M, Luo M, Guo H. Anthocyanin supplementation improves obesity-related inflammatory characteristics: A systematic review and meta-analysis of randomized controlled trials. Nutr Res 2023; 116:1-11. [PMID: 37320946 DOI: 10.1016/j.nutres.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
Abstract
The relationship between anthocyanin intake and obesity-related inflammatory markers remains unclear in existing research. To investigate this, we hypothesized that anthocyanin supplementation could reduce plasma concentrations of inflammatory markers, including C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), vascular cell adhesion molecule-1, and other cytokines in obesity. We conducted a systematic search of PubMed, Web of Science, Scopus, SinoMed, and other related literature and identified 16 randomized controlled trials that met our inclusion criteria. Our findings showed that anthocyanin intake was significantly associated with a reduction in vascular cell adhesion molecule-1 mean plasma concentrations (-53.56 ng/mL; 95% confidence interval [CI], -82.10 to -25.03). We also observed a modest decrease in CRP (-0.27 ng/mL; 95% CI, -0.58 to 0.05), TNF-α (-0.20 ng/mL; 95% CI, -0.54 to 0.15), and IL-6 (-0.53 ng/mL; 95% CI, -1.16 to 0.10) mean plasma concentrations. Subgroup analysis revealed that anthocyanin intake tended to decrease CRP and IL-6 concentrations in overweight or dyslipidemic individuals. Additionally, the intervention duration subgroup analysis showed that anthocyanin supplementation had a stronger effect on plasma IL-6 and TNF-α in participants after 8 to 12 weeks of intervention. In conclusion, our meta-analysis indicated that anthocyanin supplementation can effectively reduce obesity-related inflammatory markers associated with chronic low-grade inflammation.
Collapse
Affiliation(s)
- Wanhan Song
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qianhua Yuan
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Ya Wang
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Meiqing Mai
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Mengliu Luo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Honghui Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
9
|
Xuan X, Zhang J, Fan J, Zhang S. Research progress of Traditional Chinese Medicine (TCM) in targeting inflammation and lipid metabolism disorder for arteriosclerosis intervention: A review. Medicine (Baltimore) 2023; 102:e33748. [PMID: 37144986 PMCID: PMC10158879 DOI: 10.1097/md.0000000000033748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Atherosclerosis (AS) is a chronic disease caused by inflammation and lipid deposition. Immune cells are extensively activated in the lesions, producing excessive pro-inflammatory cytokines, which accompany the entire pathological process of AS. In addition, the accumulation of lipid-mediated lipoproteins under the arterial intima is a crucial event in the development of AS, leading to vascular inflammation. Improving lipid metabolism disorders and inhibiting inflammatory reactions are the primary treatment methods currently used in medical practice to delay AS progression. With the development of traditional Chinese medicine (TCM), more mechanisms of action of the monomer of TCM, Chinese patent medicine, and compound prescription have been studied and explored. Research has shown that some Chinese medicines can participate in treating AS by targeting and improving lipid metabolism disorders and inhibiting inflammatory reactions. This review explores the research on Chinese herbal monomers, compound Chinese medicines, and formulae that improve lipid metabolism disorders and inhibit inflammatory reactions to provide new supplements for treating AS.
Collapse
Affiliation(s)
- Xiaoyu Xuan
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingyi Zhang
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jilin Fan
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shiliang Zhang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Ramos-Lopez O, Martinez-Urbistondo D, Vargas-Nuñez JA, Martinez JA. The Role of Nutrition on Meta-inflammation: Insights and Potential Targets in Communicable and Chronic Disease Management. Curr Obes Rep 2022; 11:305-335. [PMID: 36258149 PMCID: PMC9579631 DOI: 10.1007/s13679-022-00490-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Chronic low-grade inflammation may contribute to the onset and progression of communicable and chronic diseases. This review examined the effects and eventual mediation roles of different nutritional factors on inflammation. RECENT FINDINGS Potential nutritional compounds influencing inflammation processes include macro and micronutrients, bioactive molecules (polyphenols), specific food components, and culinary ingredients as well as standardized dietary patterns, eating habits, and chrononutrition features. Therefore, research in this field is still required, taking into account critical aspects of heterogeneity including type of population, minimum and maximum intakes and adverse effects, cooking methods, physiopathological status, and times of intervention. Moreover, the integrative analysis of traditional variables (age, sex, metabolic profile, clinical history, body phenotype, habitual dietary intake, physical activity levels, and lifestyle) together with individualized issues (genetic background, epigenetic signatures, microbiota composition, gene expression profiles, and metabolomic fingerprints) may contribute to the knowledge and prescription of more personalized treatments aimed to improving the precision medical management of inflammation as well as the design of anti-inflammatory diets in chronic and communicable diseases.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Universidad 14418, UABC, Parque Internacional Industrial Tijuana, 22390, Tijuana, Baja California, Mexico.
| | | | - Juan A Vargas-Nuñez
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, 28222, Madrid, Spain
- Department of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - J Alfredo Martinez
- Precision Nutrition and Cardiometabolic Health, IMDEA Food Institute, CEI UAM+CSIC, 28049, Madrid, Spain
- Department of Nutrition, Food Science, Physiology and Toxicology, Centre for Nutrition Research, University of Navarra, 31009, Pamplona, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), 28029, Madrid, Spain
| |
Collapse
|
11
|
Wang D, Wang T, Zhang Z, Li Z, Guo Y, Zhao G, Wu L. Recent advances in the effects of dietary polyphenols on inflammation in vivo: potential molecular mechanisms, receptor targets, safety issues, and uses of nanodelivery system and polyphenol polymers. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Wang M, Zhang Z, Sun H, He S, Liu S, Zhang T, Wang L, Ma G. Research progress of anthocyanin prebiotic activity: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154145. [PMID: 35567994 DOI: 10.1016/j.phymed.2022.154145] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 04/22/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Anthocyanins are a kind of flavonoids and natural water-soluble pigments, which endow fruits, vegetables, and plants with multiple colors. They are important source of new products with prebiotic activity. However, there is no systematic review documenting prebiotic activity of anthocyanins and their structural analogues. This study aims to fill this gap in literature. PURPOSE The objective of this review is to summarize and evaluate the prebiotic activity of anthocyanin's, and discuss the physical and molecular modification methods to improve their biological activities. STUDY DESIGN AND METHODS In this review, the databases (PubMed, Google Scholar, Web of Science, Researchgate and Elsevier) were searched profoundly with keywords (anthocyanin's, prebiotics, probiotics, physical embedding and molecular modification). RESULTS A total of 34 articles were considered for reviewing. These studies approved that anthocyanins play an important role in promoting the proliferation of probiotics, inhibiting the growth of harmful bacteria and improving the intestinal environment. In addition, physical embedding and molecular modification have also been proved to be effective methods to improve the prebiotic activity of anthocyanins. Anthocyanins could promote the production of short chain fatty acids, accelerate self degradation and improve microbial related enzyme activities to promote the proliferation of probiotics. They inhibited the growth of harmful bacteria by inhibiting the expression of harmful bacteria genes, interfering with the role of metabolism related enzymes and affecting respiratory metabolism. They promoted the formation of a complete intestinal barrier and regulated the intestinal environment to keep the body healthy. Physical embedding, including microencapsulation and colloidal embedding, greatly improved the stability of anthocyanins. On the other hand, molecular modification, especially enzymatic modification, significantly improved the biological activities (antioxidant, prebiotic activity and so on) of anthocyanins. CONCLUSION All these research results displayed by this review indicate that anthocyanins are a useful tool for developing prebiotic products. The better activities of the new anthocyanins formed by embedding and modification may make them become more effective raw materials. Our review provides a scientific basis for the future research and application of anthocyanins.
Collapse
Affiliation(s)
- Muwen Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Zuoyong Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Hanju Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China.
| | - Shudong He
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China.
| | - Shuyun Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Tao Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Gang Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| |
Collapse
|
13
|
Cremonini E, Daveri E, Iglesias DE, Kang J, Wang Z, Gray R, Mastaloudis A, Kay CD, Hester SN, Wood SM, Fraga CG, Oteiza PI. A randomized placebo-controlled cross-over study on the effects of anthocyanins on inflammatory and metabolic responses to a high-fat meal in healthy subjects. Redox Biol 2022; 51:102273. [PMID: 35255426 PMCID: PMC8902616 DOI: 10.1016/j.redox.2022.102273] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
This study investigated the effects of supplementation with a cyanidin- and delphinidin-rich extract (CDRE) on the postprandial dysmetabolism, inflammation, and redox and insulin signaling, triggered by the consumption of a high fat meal (HFM) in healthy individuals. Participants (n = 25) consumed a 1026-kcal HFM simultaneously with either the CDRE providing 320.4 mg of anthocyanins (90% cyanidin and delphinidin) or placebo. Diets were randomly assigned in a double blind, placebo-controlled crossover design. Blood was collected prior to (fasted, time 0), and for 5 h after meal consumption; plasma, serum, and peripheral blood mononuclear cells (PBMC) were isolated. AC metabolites were detected in serum as early as 30 min after CDRE consumption. The CDRE mitigated HFM-induced endotoxemia, reducing increases in plasma LPS and LPS-binding protein. The CDRE also reduced other events associated with HFM-triggered postprandial dysmetabolism including: i) plasma glucose and triglyceride increases; ii) TNFα and NOX4 upregulation in PBMC; and iii) JNK1/2 activation in PBMC. The CDRE did not significantly affect HFM-mediated increases in plasma insulin, GLP-1, GLP-2, GIP, and LDL- and HDL-cholesterol, and IKK phosphorylation in PBMC. In summary, dietary AC, i.e. cyanidin and delphinidin, exerted beneficial actions against unhealthy diets by modulating the associated postprandial dysmetabolism, endotoxemia, alterations of glycemia and lipidemia, and redox and insulin signaling.
Collapse
|
14
|
Upregulated NLRP3 inflammasome activation is attenuated by anthocyanins in patients with nonalcoholic fatty liver disease: A case-control and an intervention study. Clin Res Hepatol Gastroenterol 2022; 46:101843. [PMID: 34922061 DOI: 10.1016/j.clinre.2021.101843] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/18/2021] [Accepted: 12/03/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Despite the recent attention focused on the roles of the NLRP3 inflammasome in the pathogenesis of metabolic and inflammatory diseases, little is known about the activation status of NLRP3 inflammasome in patients with nonalcoholic fatty liver disease (NAFLD). The present study aimed to investigate whether inflammasomes activation is upregulated in patients with NAFLD and the upregulation can be attenuated by anthocyanins, which are polyphenols with known anti-inflammatory activities. METHODS This study included a case-control study and a randomized controlled intervention trial. In the first part, NAFLD patients and healthy controls were recruited from a cohort of railroad workers. In the second part, NAFLD patients were randomly assigned to receive either capsules of anthocyanins (320 mg daily) or placebo for 12 weeks. A series of genes and factors associated with activation of NLRP3 inflammasome in subjects' plasma and peripheral blood mononuclear cells (PBMCs) were analyzed. RESULTS Compared with healthy controls, the mRNA levels of NLRP3 inflammasome components (NLRP3, caspase-1, interleukin (IL)-1β, and IL-18) were significantly upregulated in the PBMCs of NAFLD patients. Consistently, plasma levels of mature IL-1β and IL-18 in NAFLD patients were significantly higher than in controls. After anthocyanin administration, both mRNA expression of NLRP3 inflammasome components (caspase-1, IL-1β, and IL-18) in PBMCs and plasma levels of IL-1β and IL-18 decreased dramatically in NAFLD patients compared with controls. CONCLUSIONS This study has demonstrated that the activation of NLRP3 inflammasome is highly increased in NAFLD patients, but it can be markedly suppressed by anthocyanins, which provides a rationale for the development of anti-inflammatory therapies in NAFLD.
Collapse
|
15
|
Chen S, Hu N, Wang H, Wu Y, Li G. Bioactivity-guided isolation of the major anthocyanin from Lycium ruthenicum Murr. fruit and its antioxidant activity and neuroprotective effects in vitro and in vivo. Food Funct 2022; 13:3247-3257. [PMID: 35233585 DOI: 10.1039/d1fo04095b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lycium ruthenicum Murr. fruit (LRF) is an edible berry known for its rich anthocyanin content. Our previous study has shown that LRF-derived anthocyanins have neuroprotective effects in rats, which may be due to their effective antioxidant activity. Therefore, this study performed online HPLC-DPPH screening as a bioactivity-guided method for the preparative separation of anthocyanins from LRF. Finally, the main fraction was isolated and identified as petunidin-3,5-O-diglucoside (Pn3G5G). Pn3G5G exhibited strong antioxidant capacity during DPPH and ABTS free radical scavenge assays. Furthermore, Pn3G5G exhibited protective effects on Nε-carboxymethyllysine (CML)-treated Neuro-2a cells by enhancing cell viability in a dose-dependent manner. CML-induced apoptosis was also reduced by Pn3G5G potentially by suppressing oxidative stress and inflammation. More importantly, Pn3G5G significantly improved cognitive impairment, neuroinflammation and neuronal apoptosis in D-galactose-induced aging mice. The result suggests the development of Pn3G5G as a healthcare product or a potent dietary supplement with antioxidant and neuroprotective effects.
Collapse
Affiliation(s)
- Shasha Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, P.R. China
| | - Na Hu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, P.R. China
| | - Honglun Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, P.R. China
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, P. R. China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| |
Collapse
|
16
|
Xu L, Tian Z, Chen H, Zhao Y, Yang Y. Anthocyanins, Anthocyanin-Rich Berries, and Cardiovascular Risks: Systematic Review and Meta-Analysis of 44 Randomized Controlled Trials and 15 Prospective Cohort Studies. Front Nutr 2022; 8:747884. [PMID: 34977111 PMCID: PMC8714924 DOI: 10.3389/fnut.2021.747884] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
Objective: The associations between intake of anthocyanins and anthocyanin-rich berries and cardiovascular risks remained to be established. We aimed to quantitatively summarize the effects of purified anthocyanins and anthocyanin-rich berries on major surrogate markers of cardiovascular diseases (CVDs) and the longitudinal associations between dietary anthocyanins and CVD events. Methods: Meta-analysis of randomized controlled trials (RCTs) and prospective cohort studies. Results: We included 44 eligible RCTs and 15 prospective cohort studies in this study. Pooled analysis of RCTs showed that purified anthocyanin supplementation could significantly reduce blood LDL cholesterol (weighted mean difference (WMD): −5.43 mg/dL, 95% CI: −8.96, −1.90 mg/dL; p = 0.003) and triglyceride (WMD: −6.18 mg/dL, 95% CI: −11.67, −0.69 mg/dL; p = 0.027) while increase HDL cholesterol (WMD: 11.49 mg/dL, 95% CI: 7.43, 15.55 mg/dL; p < 0.001) concentrations. Purified anthocyanins also markedly decreased circulating tumor necrosis factor alpha (WMD: −1.62 pg/mL, 95% CI: −2.76, −0.48 pg/mL; p = 0.005) and C-reactive protein (WMD: −0.028 mg/dL, 95% CI: −0.050, −0.005 mg/dL; p = 0.014). Besides, administration of anthocyanin-rich berries could significantly lower blood total cholesterol (WMD: −4.48 mg/dL, 95% CI: −8.94, −0.02 mg/dL; p = 0.049) and C-reactive protein (WMD: −0.046 mg/dL, 95% CI: −0.070, −0.022 mg/dL; p < 0.001). Neither purified anthocyanins nor anthocyanin-rich berries could cause any substantial improvements in BMI, blood pressure, or flow-mediated dilation. In addition, meta-analysis of prospective cohort studies suggested that high dietary anthocyanins were related to lower risk of coronary heart disease (CHD) (relative risk (RR): 0.83, 95% CI: 0.72, 0.95; p = 0.009), total CVD incidence (RR: 0.73, 95% CI: 0.55, 0.97; p = 0.030), and total CVD deaths (RR: 0.91, 95% CI: 0.87, 0.96; p < 0.001). Conclusion: Habitual intake of anthocyanins and anthocyanin-rich berries could protect against CVDs possibly via improving blood lipid profiles and decreasing circulating proinflammatory cytokines. Systematic Review Registration:https://www.crd.york.ac.uk/PROSPERO, identifier: CRD42020208782.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, China.,China-DRIs Expert Committee on Other Food Substances, Sun Yat-sen University, Guangzhou, China
| | - Zezhong Tian
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, China.,China-DRIs Expert Committee on Other Food Substances, Sun Yat-sen University, Guangzhou, China
| | - Hong Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, China.,China-DRIs Expert Committee on Other Food Substances, Sun Yat-sen University, Guangzhou, China
| | - Yimin Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, China.,China-DRIs Expert Committee on Other Food Substances, Sun Yat-sen University, Guangzhou, China
| | - Yan Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, China.,China-DRIs Expert Committee on Other Food Substances, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Liu F, Sirisena S, Ng K. Efficacy of flavonoids on biomarkers of type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2021:1-27. [PMID: 34842001 DOI: 10.1080/10408398.2021.2009761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A systematic review and meta-analysis of 28 randomized controlled trials (RCTs) to assess the efficacy of flavonoids intake on key biomarkers related to Type 2 diabetes mellitus was conducted. The mean difference (MD) with 95% confidence intervals (95% CI) was pooled using a random-effects model. Significant reduction in fasting glucose (MD: -0.22, 95% CI: -0.34 to -0.09, p = 0.0013), hemoglobin A1c (HbA1c) (MD: -0.26, 95% CI: -0.46 to -0.05, p = 0.021), homeostasis model assessment of insulin resistance (HOMA-IR) (MD: -0.40, 95% CI: -0.66 to -0.15, p = 0.0039), triglyceride (TG) (MD: -0.13, 95% CI: -0.21 to -0.05, p = 0.002), total cholesterol (TC) (MD: -0.14, 95% CI: -0.21 to -0.08, p = 0.0002), and low density lipoprotein-C (LDL-C) (MD: -0.15; 95% CI: -0.24 to -0.07, p = 0.0009) were observed in intervention group compare to placebo at the end of trial. Moreover, flavonoid intake had negative but non-significant effect on insulin (MD: -0.46), 2 h-postprandial glucose (2 h-PPG) (MD: -0.22), homeostasis model assessment of β-cell function (HOMA-β) (MD: -2.81), and insignificantly increased high-density lipoprotein-C (HDL-C) (MD: 0.03). In conclusion, flavonoid intake has modest but statistically significant benefits in glucose metabolism, insulin sensitivity, and lipid metabolism, especially for significantly lowing fasting blood glucose, HOMA-IR, HbA1c, TG, TC, and LDL-C.
Collapse
Affiliation(s)
- Fanling Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Sameera Sirisena
- Department of Chemical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC, Australia
| | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
18
|
Ockermann P, Headley L, Lizio R, Hansmann J. A Review of the Properties of Anthocyanins and Their Influence on Factors Affecting Cardiometabolic and Cognitive Health. Nutrients 2021; 13:2831. [PMID: 34444991 PMCID: PMC8399873 DOI: 10.3390/nu13082831] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
The incidence of cardiovascular and metabolic diseases has increased over the last decades and is an important cause of death worldwide. An upcoming ingredient on the nutraceutical market are anthocyanins, a flavonoid subgroup, abundant mostly in berries and fruits. Epidemiological studies have suggested an association between anthocyanin intake and improved cardiovascular risk, type 2 diabetes and myocardial infarct. Clinical studies using anthocyanins have shown a significant decrease in inflammation markers and oxidative stress, a beneficial effect on vascular function and hyperlipidemia by decreasing low-density lipoprotein and increasing high-density lipoprotein. They have also shown a potential effect on glucose homeostasis and cognitive decline. This review summarizes the effects of anthocyanins in in-vitro, animal and human studies to give an overview of their application in medical prevention or as a dietary supplement.
Collapse
Affiliation(s)
- Philipp Ockermann
- Institute for Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany;
| | | | | | - Jan Hansmann
- Institute for Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany;
| |
Collapse
|
19
|
Kozłowska A, Dzierżanowski T. Targeting Inflammation by Anthocyanins as the Novel Therapeutic Potential for Chronic Diseases: An Update. Molecules 2021; 26:4380. [PMID: 34299655 PMCID: PMC8304181 DOI: 10.3390/molecules26144380] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Low-grade chronic inflammation (LGCI) and oxidative stress act as cooperative and synergistic partners in the pathogenesis of a wide variety of diseases. Polyphenols, including anthocyanins, are involved in regulating the inflammatory state and activating the endogenous antioxidant defenses. Anthocyanins' effects on inflammatory markers are promising and may have the potential to exert an anti-inflammatory effect in vitro and in vivo. Therefore, translating these research findings into clinical practice would effectively contribute to the prevention and treatment of chronic disease. The present narrative review summarizes the results of clinical studies from the last 5 years in the context of the anti-inflammatory and anti-oxidative role of anthocyanins in both health and disease. There is evidence to indicate that anthocyanins supplementation in the regulation of pro-inflammatory markers among the healthy and chronic disease population. Although the inconsistencies between the result of randomized control trials (RCTs) and meta-analyses were also observed. Regarding anthocyanins' effects on inflammatory markers, there is a need for long-term clinical trials allowing for the quantifiable progression of inflammation. The present review can help clinicians and other health care professionals understand the importance of anthocyanins use in patients with chronic diseases.
Collapse
Affiliation(s)
| | - Tomasz Dzierżanowski
- Department of Social Medicine and Public Health, Medical University of Warsaw, 02-776 Warsaw, Poland;
| |
Collapse
|
20
|
Arruda HS, Silva EK, Peixoto Araujo NM, Pereira GA, Pastore GM, Marostica Junior MR. Anthocyanins Recovered from Agri-Food By-Products Using Innovative Processes: Trends, Challenges, and Perspectives for Their Application in Food Systems. Molecules 2021; 26:2632. [PMID: 33946376 PMCID: PMC8125576 DOI: 10.3390/molecules26092632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Anthocyanins are naturally occurring phytochemicals that have attracted growing interest from consumers and the food industry due to their multiple biological properties and technological applications. Nevertheless, conventional extraction techniques based on thermal technologies can compromise both the recovery and stability of anthocyanins, reducing their global yield and/or limiting their application in food systems. The current review provides an overview of the main innovative processes (e.g., pulsed electric field, microwave, and ultrasound) used to recover anthocyanins from agri-food waste/by-products and the mechanisms involved in anthocyanin extraction and their impacts on the stability of these compounds. Moreover, trends and perspectives of anthocyanins' applications in food systems, such as antioxidants, natural colorants, preservatives, and active and smart packaging components, are addressed. Challenges behind anthocyanin implementation in food systems are displayed and potential solutions to overcome these drawbacks are proposed.
Collapse
Affiliation(s)
- Henrique Silvano Arruda
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Eric Keven Silva
- Department of Food Engineering, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| | - Nayara Macêdo Peixoto Araujo
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Gustavo Araujo Pereira
- School of Food Engineering, Institute of Technology, Federal University of Pará, Augusto Corrêa Street S/N, Belém 66075-110, Brazil;
| | - Glaucia Maria Pastore
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Mario Roberto Marostica Junior
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| |
Collapse
|
21
|
Fallah AA, Sarmast E, Jafari T. Effect of dietary anthocyanins on biomarkers of glycemic control and glucose metabolism: A systematic review and meta-analysis of randomized clinical trials. Food Res Int 2020; 137:109379. [PMID: 33233081 DOI: 10.1016/j.foodres.2020.109379] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 01/20/2023]
Abstract
Anthocyanins, as natural food colorants, are bioactive substances with several health advantages. In this research, the effects of dietary anthocyanins on biomarkers of glycemic control and glucose metabolism was evaluated through a meta-analysis. The results revealed a significant reduction in levels of fasting blood sugar (FBS; -2.70 mg/dl, 95% CI: -4.70 to -1.31; P < 0.001), 2-h postprandial glucose (2-h PPG; -11.1 mg/dl, 95% CI: -18.7 to -3.48; P = 0.004), glycated hemoglobin (HbA1c; -11.1 mg/dl, 95% CI: -18.7 to -3.48; P = 0.004), homeostasis model assessment of insulin resistance (HOMA-IR; -0.54, 95% CI: -0.94 to -0.14; P = 0.008), resistin (-1.23 µg/l, 95% CI: -2.40 to -0.05; P = 0.041), and plasminogen activator inhibitor-1 (PAI-1; -5.09 µg/l, 95% CI: -9.45 to -0.73; P = 0.022) following administration of anthocyanins, whilst changes in the levels of fasting insulin (0.33 mU/l, 95% CI: -0.18 to 0.85; P = 0.207) and C-peptide (-0.02 µg/l, 95 %CI: -0.20 to 0.16; P = 0.816) was not statistically significant. Consumption of anthocyanins for >8 weeks and at doses >300 mg/day significantly reduced levels of FBS, 2-h PPG, HbA1c, and HOMA-IR. Moreover, anthocyanins administration reduced the levels of FBS, 2-h PPG, HbA1c, and HOMA-IR in type 2 diabetic subjects and HOMA-IR in overweight/obese individuals. Overall, dietary anthocyanins can be used as an adjuvant therapy to improve biomarkers of glycemic control and glucose metabolism specially in diabetic subjects.
Collapse
Affiliation(s)
- Aziz A Fallah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord 34141, Iran
| | - Elham Sarmast
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord 34141, Iran
| | - Tina Jafari
- Department of Biochemistry and Nutrition, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
22
|
Ma Y, Li Y, Zhang H, Wang Y, Wu C, Huang W. Malvidin induces hepatic stellate cell apoptosis via the endoplasmic reticulum stress pathway and mitochondrial pathway. Food Sci Nutr 2020; 8:5095-5106. [PMID: 32994970 PMCID: PMC7500790 DOI: 10.1002/fsn3.1810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/26/2020] [Accepted: 07/19/2020] [Indexed: 12/18/2022] Open
Abstract
Blueberries have great beneficial effects due to high level of anthocyanins, especially malvidin. Hepatic stellate cells (HSCs) can be activated and increase excessive extracellular matrix (ECM) components, which play a central role in liver fibrogenesis. Therefore, activated HSC's apoptosis can be induced to recover liver fibrosis. Malvidin's effects on apoptosis in rat activated hepatic stellate T6 cells (HSC-T6) in vitro were investigated here. High concentration of malvidin was found to significantly induce apoptosis, activate caspase-3, increase malondialdehyde, upregulate Bax, but downregulate Bcl-2. Moreover, malvidin upregulated the protein levels of some endoplasmic reticulum stress (ERS)-typical markers, including caspase-12, glucose-regulated protein 78 (GRP78), and CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP), suggesting that malvidin induced HSC apoptosis by the ERS apoptosis pathway as well as the mitochondrial-dependent pathway. These findings indicated that blueberry anthocyanins, especially malvidin, could induce activated hepatic stellate cell apoptosis and might act as one kind of functional food ingredient or a novel nutraceutical beneficial for liver health.
Collapse
Affiliation(s)
- Yanhong Ma
- Institute of Agro‐Product ProcessingJiangsu Academy of Agricultural SciencesNanjingChina
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Yahui Li
- Institute of Agro‐Product ProcessingJiangsu Academy of Agricultural SciencesNanjingChina
| | - Hongzhi Zhang
- Institute of Agro‐Product ProcessingJiangsu Academy of Agricultural SciencesNanjingChina
| | - Ying Wang
- Institute of Agro‐Product ProcessingJiangsu Academy of Agricultural SciencesNanjingChina
| | - Caie Wu
- College of Light Industry and Food EngineeringNanjing Forestry UniversityNanjingChina
| | - Wuyang Huang
- Institute of Agro‐Product ProcessingJiangsu Academy of Agricultural SciencesNanjingChina
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
- Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementJiangsu Academy of Agricultural SciencesNanjingChina
| |
Collapse
|
23
|
Effect of dietary anthocyanins on biomarkers of oxidative stress and antioxidative capacity: A systematic review and meta-analysis of randomized controlled trials. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103912] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|