1
|
Takawy MW, Abdelmalek MF. Impact of Weight Loss on Metabolic Dysfunction Associated Steatohepatitis and Hepatic Fibrosis. Curr Diab Rep 2025; 25:23. [PMID: 39964660 DOI: 10.1007/s11892-025-01579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 05/10/2025]
Abstract
PURPOSE OF REVIEW This review highlights the impact of weight loss on metabolic dysfunction associated steatotic liver disease (MASLD), formally known as nonalcoholic fatty liver disease (NAFLD), and its progressive form of metabolic dysfunction associated steatohepatitis (MASH), formally known as nonalcoholic steatohepatitis (NASH). The effects of weight loss, as achieved through lifestyle modification, pharmacotherapy, bariatric surgery or endobariatric procedures on MASLD/MASH and hepatic fibrosis are discussed. RECENT FINDINGS Although foundational in the treatment of MASLD/MASH, weight loss through life-style modification is challenging for most patients to achieve and sustain long-term. In patients with MASLD/MASH, a multidisciplinary approach may facilitate success with lifestyle modification, individualized consideration of pharmacotherapies and/or surgical approaches that have potential to lend an improvement in MASLD/MASH. Effective and sustained weight loss improves hepatic steatosis, steatohepatitis and potentially hepatic fibrosis. Improvement in hepatic fibrosis can improve patient-related outcomes associated with complications of advanced hepatic fibrosis or cirrhosis in patients with MASLD/MASH. Identifying risk factors that influence MASLD/MASH and early implementation of therapeutic weight loss strategies may improve chronic liver injury and decrease risk for adverse clinical outcomes related to progressive hepatic fibrosis attributable to MASLD/MASH.
Collapse
Affiliation(s)
- Marina W Takawy
- Division of Gastroenterology & Hepatology, Department of Medicine, Mayo Clinic, Rochester Rochester, MN, 55905, USA
| | - Manal F Abdelmalek
- Division of Gastroenterology & Hepatology, Department of Medicine, Mayo Clinic, Rochester Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
Yang Y, Fan G, Lan J, Li X, Li X, Liu R. Polysaccharide-mediated modulation of gut microbiota in the treatment of liver diseases: Promising approach with significant challenges. Int J Biol Macromol 2024:135566. [PMID: 39270901 DOI: 10.1016/j.ijbiomac.2024.135566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Liver disease represents a significant global health burden, with an increasing prevalence and a lack of efficient treatment options. The microbiota-gut-liver axis involves bidirectional communication between liver function and intestinal microorganisms. A balanced gut flora protects intestinal homeostasis, while imbalances contribute to the development of liver diseases. Distinct alterations in the structure of gut flora during illness are crucial in the management of various liver diseases. Polysaccharides derived from herbal products, fungi, and other sources have been identified to possess diverse biological activities and are well-tolerated in the treatment of liver diseases. This review provides updates on the therapeutic effects of polysaccharides on liver diseases, including fatty liver diseases, acute liver injuries and liver cancers. It also summarizes advancements in understanding the mechanisms involved, particularly from the perspective of gut microbiota and metabolites, by highlighting the changes in the composition of potentially beneficial and harmful bacteria and their correlation with the therapeutic effects of polysaccharides. Additionally, by exploring the structure-activity relationship, our review provides valuable insights for the structural modification of polysaccharides and expanding their applications. In conclusion, this review offers theoretical support and novel perspectives on developing polysaccharides-based therapeutic approaches for the treatment of liver diseases.
Collapse
Affiliation(s)
- Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Jianhang Lan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China.
| |
Collapse
|
3
|
Fakhoury-Sayegh N, Hamdan A, Lebbos S, Itani T, Trak-Smayra V, Khazzaka A, Dagher-Hamalian C, Sayegh LN, Mallah M, Obeid O, Sayegh R. Spirulina ( Arthrospira platensis) Improved Nonalcoholic Fatty Liver Disease Characteristics and Microbiota and Did Not Affect Organ Fibrosis Induced by a Fructose-Enriched Diet in Wistar Male Rats. Nutrients 2024; 16:1701. [PMID: 38892633 PMCID: PMC11174493 DOI: 10.3390/nu16111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Spirulina (Arthrospira platensis) is reported to play a role in improving nonalcoholic fatty liver disease (NAFLD) and intestinal microbiota (IM). To study spirulina's effects in the improvement of NAFLD characteristics, IM, and pancreatic-renal lesions induced by a fructose-enriched diet, 40 Wistar healthy male rats, weighing 200-250 g, were randomly divided into four groups of 10, and each rat per group was assigned a diet of equal quantities (20 g/day) for 18 weeks. The first control group (CT) was fed a standardized diet, the second group received a 40% fructose-enriched diet (HFr), and the third (HFr-S5) and fourth groups (HFr-S10) were assigned the same diet composition as the second group but enriched with 5% and 10% spirulina, respectively. At week 18, the HFr-S10 group maintained its level of serum triglycerides and had the lowest liver fat between the groups. At the phylae and family level, and for the same period, the HFr-S10 group had the lowest increase in the Firmicutes/Bacteroidetes ratio and the Ruminococcaceae and the highest fecal alpha diversity compared to all other groups (p < 0.05). These findings suggest that at a 10% concentration, spirulina could be used in nutritional intervention to improve IM, fatty liver, metabolic, and inflammatory parameters associated with NAFLD.
Collapse
Affiliation(s)
- Nicole Fakhoury-Sayegh
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University, Damascus Street, Beirut P.O. Box 11-5076, Lebanon;
| | - Aya Hamdan
- Department of Human Nutrition, College of Health Sciences, QU-Health, Qatar University, Doha 2713, Qatar;
| | - Sarah Lebbos
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University, Damascus Street, Beirut P.O. Box 11-5076, Lebanon;
| | - Tarek Itani
- Laboratory of Enteric Virus Infections, Federal Budgetary Institution of Science Federal Scientific Research Institute of Viral Infections «Virome», Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 620030 Yekaterinburg, Russia;
| | - Viviane Trak-Smayra
- Department of Pathology, Faculty of Medicine, Saint Joseph University, Damascus Street, Beirut P.O. Box 11-5076, Lebanon;
| | - Aline Khazzaka
- Department of Surgical Research, Faculty of Medicine, Saint Joseph University, Damascus Street, Beirut P.O. Box 11-5076, Lebanon;
| | - Carole Dagher-Hamalian
- Department of Pathology, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon;
| | - Lea Nicole Sayegh
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55902, USA;
| | - May Mallah
- Department of Microbiology Research, Faculty of Pharmacy, Saint Joseph University, Damascus Street, Beirut P.O. Box 11-5076, Lebanon;
| | - Omar Obeid
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
| | - Raymond Sayegh
- Department of Gastroenterology, Faculty of Medicine, Saint Joseph University, Damascus Street, Beirut P.O. Box 11-5076, Lebanon;
| |
Collapse
|
4
|
Ren L, Liu X, Huang X, Zhang H, Fei W, Yu X, Hu Z, Zhen Y, Chen S. Oxymatrine relieves high-fructose/fat-induced obesity via reprogramming the activity of lipid metabolism-related enhancer. Front Endocrinol (Lausanne) 2023; 14:1145575. [PMID: 37600712 PMCID: PMC10437059 DOI: 10.3389/fendo.2023.1145575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/11/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Emerging evidence demonstrates that the high-fructose and high-fat diet (HFHF) induced obesity and fatty liver disease has become one of the most common metabolic disorders worldwide. Therefore, innovative investigations on compounds targeting obesity and fatty liver diseases are urgently needed. Methods The high-throughput natural compounds screen was performed to screen the important compounds. A rat HFHF model was constructed, the regulatory function of Oxymatrine in HFHF-induced obesity was further explored. Results We identified Oxymatrine, a natural compound extracted from Sophora flavescens, showed a potential compacity in high-fat diet-induced fatty liver disease. We found that oxymatrine significantly inhibited HFHF-induced obesity using a rat HFHF model. Additionally, we found that oxymatrine altered the enhancer landscape of subcutaneous adipose tissues by ChIP-seq analysis using antibodies against the H3K27ac histone modification. Motif enrichment analysis showed the Smad motif was significantly enriched in enhancers altered post-oxymatrine treatment. Further chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) analysis and luciferase reporter assays showed oxymatrine alters the binding of Smad3 on the enhancer regions of B-cell lymphoma 2 (Bcl2) and the enhancer activity of Bcl2. Discussion Together, our study highlighted oxymatrine could suppress high-fructose and high-fat diet-induced obesity by inhibiting the suppressor of mothers against decapentaplegic 3 (Smad3) binding on obesity-related enhancers.
Collapse
Affiliation(s)
- Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xuehua Liu
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Xitong Huang
- Department of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - He Zhang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Wenjie Fei
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xian Yu
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Zhijuan Hu
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yunfeng Zhen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Neto J, Romão J, Pazos-Moura C, Oliveira K. Fructose consumption induces molecular adaptations involving thyroid function and thyroid-related genes in brown adipose tissue in rats. Braz J Med Biol Res 2023; 55:e12240. [PMID: 36651452 PMCID: PMC9843734 DOI: 10.1590/1414-431x2022e12240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/06/2022] [Indexed: 01/19/2023] Open
Abstract
The increasing incidence of metabolic diseases is in part due to the high fructose consumption, a carbohydrate vastly used in industry, with a potent lipogenic capacity. Thyroid hormones (TH) are essential for metabolism regulation and are associated with changes in body weight, energy expenditure, insulin sensitivity, and dyslipidemia. This study aimed to investigate the influence of fructose intake on thyroid function and thyroid-related genes. Male Wistar rats were divided into Control (CT, n=8) and Fructose (FT - 10% in drinking water, n=8) groups for three weeks. The FT group showed higher glycemia and serum triacylglycerol, indicating metabolic disturbances, and increased thyroid mass, accompanied by higher expression of Srebf1c and Lpl, suggesting increased lipid synthesis. The FT group also presented higher expression of Tpo and Dio1 in the thyroid, suggesting activation of the thyroid gland, but with no alterations in serum TH concentrations. Brown adipose tissue (BAT) of the FT group exhibited higher expression of Dio2, Thra, and Thrb, indicating increased T3 intra-tissue bioavailability and signaling. These responses were accompanied by increased BAT mass and higher expression of Adrb3, Pparg, Srebf1c, Fasn, Ppara, and Ucp1, suggesting increased BAT adrenergic sensitivity, lipid synthesis, oxidation, and thermogenesis. Therefore, short-term fructose consumption induced thyroid molecular alterations and increased BAT expression of thyroid hormone-related signaling genes that potentially contributed to higher BAT activity.
Collapse
Affiliation(s)
- J.G.O. Neto
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - J.S. Romão
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - C.C. Pazos-Moura
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - K.J. Oliveira
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| |
Collapse
|
6
|
Sánchez-Quevedo J, Ocampo-Rodríguez E, Alvarez-Ayala E, Rodríguez-López A, Duarte-Vázquez MA, Rosado JL, Rodríguez-Fragoso L. β-Hydroxyphosphocarnitine modifies fibrosis, steatosis and improves liver function in non-alcoholic steatohepatitis induced in rats. BMC Pharmacol Toxicol 2022; 23:75. [PMID: 36175992 PMCID: PMC9520892 DOI: 10.1186/s40360-022-00613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a chronic disease characterized by inflammation, steatosis, and liver fibrosis. The liver is particularly affected by alterations in lipid metabolism. Our aim was to evaluate the effect of β-hydroxyphosphocarnitine (β-HPC) on NASH induced in rats. METHODS NASH was produced via the ad libitum daily chronic administration of a fructose solution (400 kcal) for 9 weeks, an oral dose of fat solution (16 kcal) for 7 weeks and a subcutaneous injection of CCl4 (30%) two times a week for 2 weeks to Wistar rats. To evaluate the effect of β-HPC, a dose of 100 mg/kg was administered perorally for 4 weeks and its biochemical and hepatic effects on rats with NASH were analyzed. Serum levels of glucose, triglycerides, cholesterol, and liver enzymes were quantified. Histological changes were evaluated on slices stained with H&E, trichromic and PAS. Glycogen content was measured in liver samples. α-SMA and SREBP-1 immunopositive cells were identified in liver tissue. RESULTS NASH was characterized by elevated triglycerides, elevated liver damage enzymes, and the presence of necrosis, inflammation, steatosis, and fibrosis. Significant amounts of glycogen were found, along with α-SMA positive cells in fibrosis areas. The over-expression of SREBP-1 in cytoplasm and nuclei was evident. Animals with NASH treated with β-HPC showed a significant reduction in inflammation, necrosis, and glycogen content in the liver. A reduction in α-SMA and SREBP-1 immunopositive cells correlated with a significant reduction in the degree of fibrosis and steatosis found in liver tissue. β-HPC reduced the levels of ALP and GGT, and significantly reduced triglyceride levels. Animals treated with β-HPC did not show any alterations in liver enzyme function. CONCLUSIONS Our research shows that β-HPC can improve liver function and morphology in the case of NASH induced in rats, suggesting β-HPC could be potentially used in the treatment of NASH.
Collapse
Affiliation(s)
- Janet Sánchez-Quevedo
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa Cuernavaca, Morelos, Mexico
| | - Emmanuel Ocampo-Rodríguez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa Cuernavaca, Morelos, Mexico
| | - Elizabeth Alvarez-Ayala
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa Cuernavaca, Morelos, Mexico
| | - Anahí Rodríguez-López
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa Cuernavaca, Morelos, Mexico
| | | | | | - Lourdes Rodríguez-Fragoso
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa Cuernavaca, Morelos, Mexico
| |
Collapse
|
7
|
Réggami Y, Benkhaled A, Boudjelal A, Berredjem H, Amamra A, Benyettou H, Larabi N, Senator A, Siracusa L, Ruberto G. Artemisia herba-alba aqueous extract improves insulin sensitivity and hepatic steatosis in rodent model of fructose-induced metabolic syndrome. Arch Physiol Biochem 2021; 127:541-550. [PMID: 31464524 DOI: 10.1080/13813455.2019.1659825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT Fructose consumption is associated with the development of obesity and metabolic syndrome (MetS) in human and animal models. OBJECTIVE This study investigates the ability of an aqueous extract of Artemisia herba-alba Asso (AH) to ameliorate fructose-induced MetS in Male Wistar rats. METHODS AH extract at doses of 100, 200 and 400 mg/kg b.w./day was administered for six weeks to MetS animals. RESULTS Liquid fructose (10% w/v) intake did not vary total animal body weight, whereas, it produced moderate hyperglycemia associated with metabolic and histological alterations. Treating MetS rats with AH extract improved insulin sensitivity, alleviated atherogenic dyslipidaemia and decreased lipid deposition in their hepatic tissues. Additionally, AH extract was found to raise GSH level and antioxidant enzymes (GPx, GST and CAT) activities in rat livers homogenates. CONCLUSION The results here reported demonstrated, for the first time, that A. herba-alba have therapeutic proprieties against fructose-induced MetS in rodent model.
Collapse
Affiliation(s)
- Yassine Réggami
- Department of Microbiology and Biochemistry, Faculty of Sciences, Mohamed Boudiaf-M'sila University, M'sila, Algeria
- Laboratory of Biochemistry and Applied Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Abderrahim Benkhaled
- Department of Microbiology and Biochemistry, Faculty of Sciences, Mohamed Boudiaf-M'sila University, M'sila, Algeria
| | - Amel Boudjelal
- Department of Microbiology and Biochemistry, Faculty of Sciences, Mohamed Boudiaf-M'sila University, M'sila, Algeria
| | - Hajira Berredjem
- Laboratory of Biochemistry and Applied Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Amani Amamra
- Laboratory of Biochemistry and Applied Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Halima Benyettou
- Department of Microbiology and Biochemistry, Faculty of Sciences, Mohamed Boudiaf-M'sila University, M'sila, Algeria
| | - Nadia Larabi
- Department of Microbiology and Biochemistry, Faculty of Sciences, Mohamed Boudiaf-M'sila University, M'sila, Algeria
| | - Abderrahmane Senator
- Laboratory of Applied Biochemistry, Faculty of Natural and Life Sciences, Ferhat Abbas-Setif University, Setif, Algeria
| | - Laura Siracusa
- Istituto di Chimica Biomolecolare del Consiglio Nazionale delle Ricerche (ICB-CNR), Catania, Italy
| | - Giuseppe Ruberto
- Istituto di Chimica Biomolecolare del Consiglio Nazionale delle Ricerche (ICB-CNR), Catania, Italy
| |
Collapse
|
8
|
An Efficient Model of Non-alcoholic Fatty Liver Disease (NAFLD) Versus Current Experimental Models: Effects of Fructose, Fat, and Carbon Tetrachloride on NAFLD. HEPATITIS MONTHLY 2021. [DOI: 10.5812/hepatmon.117696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Background: Accumulation of fat in the liver is one of the causes of non-alcoholic fatty liver disease (NAFLD), which affects about 30% of the world's population. Animal models have been useful tools for investigating the mechanisms involved in the etiology of NAFLD and developing new drugs. Objectives: This study aimed to present a new model for the detection of NAFLD in rats. Methods: Forty-eight rats were randomly divided into six experimental groups: (1) control; (2) 45% fructose + 35% olive oil + carbon tetrachloride (FFC1); (3) carbon tetrachloride (1: 4 in olive oil) (C1); (4) carbon tetrachloride (1: 6 in olive oil) (C2); (5) 12.5% fructose + 12.5% olive oil (FF); and (6) 20% fructose + carbon tetrachloride (1: 4 in olive oil) (FC1). Blood samples were taken in three steps, and liver tissue was dissected at the end of the sixth week for histopathological assessments. Results: After six weeks, the alanine transaminase (131.63 ± 1.51), aspartate transaminase (275 ± 1.0), and gamma-glutamyl transferase (4.30 ± 0.1) levels increased significantly in the C1 group (P < 0.05). The serum lipid profile showed significant changes in all groups compared to the controls (P < 0.01). According to the histological results, all experimental groups, except the C2 group, showed symptoms of NAFLD; nevertheless, a higher NAFLD Activity Score (NAS) was found in the C1 group, followed by the FC1 group, compared to the other groups. Conclusions: The present results revealed that injection of 0.1 mL/kg of carbon tetrachloride (C1 group), alone or along with a diet containing 20% fructose (FC1 group), provided useful animal models of NAFLD, although carbon tetrachloride injection alone is the most effective model in inducing NAFLD model that can be used as a new strategy in nutritional and pharmacological studies.
Collapse
|
9
|
Chan AML, Ng AMH, Mohd Yunus MH, Idrus RBH, Law JX, Yazid MD, Chin KY, Shamsuddin SA, Lokanathan Y. Recent Developments in Rodent Models of High-Fructose Diet-Induced Metabolic Syndrome: A Systematic Review. Nutrients 2021; 13:nu13082497. [PMID: 34444658 PMCID: PMC8401262 DOI: 10.3390/nu13082497] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 01/01/2023] Open
Abstract
Metabolic syndrome (MetS) is the physiological clustering of hypertension, hyperglycemia, hyperinsulinemia, dyslipidemia, and insulin resistance. The MetS-related chronic illnesses encompass obesity, the cardiovascular system, renal operation, hepatic function, oncology, and mortality. To perform pre-clinical research, it is imperative that these symptoms be successfully induced and optimized in lower taxonomy. Therefore, novel and future applications for a disease model, if proven valid, can be extrapolated to humans. MetS model establishment is evaluated based on the significance of selected test parameters, paradigm shifts from new discoveries, and the accessibility of the latest technology or advanced methodologies. Ultimately, the outcome of animal studies should be advantageous for human clinical trials and solidify their position in advanced medicine for clinicians to treat and adapt to serious or specific medical situations. Rodents (Rattus norvegicus and Mus musculus) have been ideal models for mammalian studies since the 18th century and have been mapped extensively. This review compiles and compares studies published in the past five years between the multitude of rodent comparative models. The response factors, niche parameters, and replicability of diet protocols are also compiled and analyzed to offer insight into MetS-related disease-specific modelling.
Collapse
Affiliation(s)
- Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
- Ming Medical Sdn. Bhd., D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1A/22, Petaling Jaya 47101, Malaysia
| | - Angela Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Sharen Aini Shamsuddin
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
- Correspondence: ; Tel.: +60-3-9145-7704
| |
Collapse
|
10
|
Muhammad N, Lembede BW, Erlwanger KH. Zingerone Administered Neonatally Prevents the Subsequent Development of High Dietary Fructose-Induced Fatty Liver in Sprague Dawley Rats. J Med Food 2021; 24:944-952. [PMID: 33512269 DOI: 10.1089/jmf.2020.0189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Consumption of high-fructose diets early in life increases the risk of developing metabolic disorders, including nonalcoholic fatty liver disease (NAFLD). Zingerone, an alkaloid isolated from Zingiber officinale, has been demonstrated to reverse obesity and fatty liver in adult male rats. We investigated the potential preventive effects of neonatally administered zingerone on the development of fructose-induced NAFLD in male and female rats. Four-day-old male (n = 35) and female (n = 44) rat pups were randomized and gavaged with: 10 mL/kg body weight (bwt) of distilled water (C), 10 mL/kg bwt of 20% fructose solution (Fr), 10 mL/kg bwt of 20% fructose solution +40 mg/kg bwt of zingerone (ZFr), and 40 mg/kg bwt of zingerone (Z) daily for 14 days. After weaning, all groups continued on unlimited standard rat feed; however, groups C and Z had plain drinking water, whereas groups Fr and ZFr had unlimited 20% fructose solution to drink for 10 weeks. Rats on the high-fructose diet (Fr) compared with the negative controls (C) had significantly increased hepatic lipid content (in %, males: P = .0002; females: P < .0001, analysis of variance [ANOVA]) and hepatic steatosis score (in %, males: P = .0018; females: P < .0022, Kruskal-Wallis ANOVA). Zingerone prevented (P < .05) the fructose-induced increase in hepatic steatosis in both sexes. The plasma alanine aminotransferase activity, levels of uric acid, TBARS (thiobarbituric acid reactive substances), IL-6 (interleukin-6), and TNF-α (tumor necrosis factor alpha) were not different (P > .05, ANOVA) across the different treatment groups in both sexes. No difference (P > .05, ANOVA) was observed between the two sexes for treatment, sex and interaction effects with regard to hepatic lipid content, and measured blood parameters. The use of zingerone neonatally should be further investigated as a strategic prophylactic intervention for the prevention of long-term high-fructose diet-induced NAFLD.
Collapse
Affiliation(s)
- Nasiru Muhammad
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Physiology, College of Health Sciences, Federal University Birnin Kebbi, Birnin Kebbi, Nigeria
| | - Busisani Wiseman Lembede
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kennedy Honey Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
11
|
Wang G, Zhang Y, Zhang R, Pan J, Qi D, Wang J, Yang X. The protective effects of walnut green husk polysaccharide on liver injury, vascular endothelial dysfunction and disorder of gut microbiota in high fructose-induced mice. Int J Biol Macromol 2020; 162:92-106. [PMID: 32531370 DOI: 10.1016/j.ijbiomac.2020.06.055] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
Abstract
This study aimed to investigate the protective effects of walnut green husk polysaccharide (WGHP) on liver injury, vascular endothelial dysfunction and disorder of gut microbiota in mice induced by high fructose (HF) diet. The chemical analysis results show that the walnut green husk polysaccharide is a low molecular weight acidic heteropolysaccharide, composed mainly of glucuronic acid, arabinose and galactose. Biochemical analysis showed that WGHP significantly improved glucose metabolism and lipid metabolism and decreased oxidative stress in HF-diet induced obesity mice. Histopathological observation of liver and cardiovascular aorta confirmed the protective effects of WGHP on hepatic steatosis and vascular endothelial dysfunction. Furthermore, 16S rRNA sequencing results demonstrated that WGHP reversed the disorders of gut microbiota caused by HF, decreased the relative abundance of Verrucomicrobia and increased the relative abundance of Deferribacteres at the phylum level, decreased the relative abundance of Akkermansia, Lachnoclostridium and norank_f__Muribaculaceae and increased the relative abundance of Prevotellaceae_UCG-001, Helicobacter, Alloprevotella and Allobaculum at the genus levels. Our results indicate that WGHP may act as a functional polysaccharide for protecting liver and cardiovascular in HF-fed mice.
Collapse
Affiliation(s)
- Guoliang Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Youlin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Runguang Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jianlong Pan
- Ankang Yingtian Ecological Agriculture and Forestry Development Co., Ltd., Ankang 725000, China
| | - Dengfei Qi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoyue Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|