1
|
Arif I, Rasheed A, Nazeer S, Shahid F. Physiological and morphological impact of physical activity and nutritional interventions to offset disuse-induced skeletal muscle atrophy. Eur J Transl Myol 2025. [PMID: 40231413 DOI: 10.4081/ejtm.2025.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/31/2025] [Indexed: 04/16/2025] Open
Abstract
Skeletal muscle tissue acts as a functional unit for physical movements, energy metabolism, thermogenesis, and metabolic homeostasis. In this literature review, the underlying mechanisms of skeletal muscle atrophy and the prevention strategies, including vigorous training and nutritional modifications are focused. Furthermore, the comparative analysis of multiple interventions is briefly explained. Ageing is an inevitable process often associated with cognitive impairment and physical decline due to muscular atrophy. Skeletal muscle atrophy is characterized by low muscle mass due to multiple underlying factors, i.e., genetic predisposition, ageing, inflammation, and trauma. The structural alterations include myofiber shrinkage, changes in myosin isoforms, decrease in myofiber diameter, and total protein loss. Furthermore, there is an imbalance in protein anabolic and catabolic reactions. This may be due to changes in multiple signal transduction pathways of protein degradation (i.e., caspase, calpain, ubiquitin protein degradation system, autophagy) and protein anabolism via the mTOR pathway. Consequently, certain pathophysiological factors associated with health disparities may reduce mobility and functional capacity to perform ADLs. To tackle this issue, novel strategies linked to physical movement, and dietary intake must be incorporated in life. Exercise poses multiple health benefits, including improved muscle mass and mobility. Diet diversification [particularly protein-rich meals] and the "whole food" approach (based on non-protein nutrients) may enhance intramuscular anabolic signaling and tissue remodeling. However, there is a pressing need to fund large-scale evidence-based trials based on modern machine learning techniques (AI-driven nutrition). Additionally, entrepreneurial platforms for commercialization of consumer-friendly food products must be initiated in future.
Collapse
Affiliation(s)
- Irfan Arif
- Department of Health and Medical Sciences, University of Southern Queensland, Toowoomba.
| | - Ayesha Rasheed
- Department of Medical and Dental Sciences, University of Birmingham, Birmingham.
| | - Sadia Nazeer
- Department of Food Science and Technology, Government College University Faisalabad, Faisalabad.
| | - Fareeha Shahid
- Department of National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad.
| |
Collapse
|
2
|
Wilhelmsen A, Karagounis LG, Bennett AJ, D'Amico D, Fouassier AM, Jones SW, Tsintzas K. The polyphenol metabolite urolithin A suppresses myostatin expression and augments glucose uptake in human skeletal muscle cells. Nutr Metab (Lond) 2025; 22:12. [PMID: 39962542 PMCID: PMC11834323 DOI: 10.1186/s12986-025-00909-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
PURPOSE Polyphenolic plant extracts have demonstrated anti-inflammatory and anti-catabolic effects in vitro, however their meaningful translation into humans remains elusive. Urolithin A (UA), a gut-derived metabolite of ellagitannins, has shown promise for improving muscle function and metabolic health in rodent models. This study aimed to explore the impact of UA on insulin and anabolic sensitivity in human skeletal muscle cells. METHODS Primary human myogenic cultures were derived from skeletal muscle biopsies of eight healthy adults. After differentiation, myotubes were treated with 0.002, 1 and 50 µM UA or vehicle for 24 h. Cell viability was assessed using a resazurin assay. Basal and insulin-stimulated glucose uptake was measured using tritiated deoxy-D-glucose, whilst amino acid-stimulated protein synthesis was estimated using the surface sensing of translation (SuNSET) technique. Expression of myostatin and glucose transporters was quantified via real-time PCR. RESULTS UA treatment at ≤ 50 µM did not compromise cell viability. Treatment with 50 µM UA enhanced both basal- and insulin-stimulated glucose uptake by 21% (P < 0.05) and 24% (P < 0.01), respectively, compared to vehicle and was accompanied by a 1.8-fold upregulation of GLUT4 expression (P < 0.01). 50 µM UA reduced myostatin (MSTN) expression by 14% (P < 0.01) but did not alter amino acid-stimulated global cell protein synthesis. CONCLUSION This study provides evidence of UA's metabolic benefits in primary human myotubes, notably improving basal- and insulin-stimulated glucose uptake and supressing MSTN expression. These findings suggest UA could be an effective nutraceutical for mitigating insulin resistance and warrants further investigation.
Collapse
Affiliation(s)
- Andrew Wilhelmsen
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Leonidas G Karagounis
- Mary MacKillop Institute for Health Research (MMIHR), Australian Catholic University, Melbourne, Australia
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Andrew J Bennett
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Davide D'Amico
- Amazentis SA, EPFL Innovation Park, Bâtiment C, Lausanne, 1015, Switzerland
| | | | - Simon W Jones
- Department of Inflammation and Ageing, MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre (BRC), Birmingham, UK
| | - Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
3
|
Ulla A, Rahman MM, Uchida T, Kayaki H, Nishitani Y, Yoshino S, Kuwahara H, Nikawa T. 3-(4-Hydroxy-3-methoxyphenyl) propionic acid mitigates dexamethasone-induced muscle atrophy by attenuating Atrogin-1 and MuRF-1 expression in mouse C2C12 skeletal myotubes. J Clin Biochem Nutr 2025; 76:16-24. [PMID: 39896162 PMCID: PMC11782781 DOI: 10.3164/jcbn.23-70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/24/2024] [Indexed: 02/04/2025] Open
Abstract
3-(4-Hydroxy-3-methoxyphenyl) propionic acid is an in vivo metabolite of 4-hydroxy-3-methoxycinnamic acid which is abundantly found in coffee bean, rice bran, fruits, and vegetables. Previous studies reported that polyphenols and their metabolites exhibit positive effects on muscle health. Thus, the effect of 3-(4-hydroxy-3-methoxyphenyl) propionic acid on muscle atrophy induced by dexamethasone was investigated using mouse C2C12 skeletal myotubes. Dexamethasone treatment (10 μM) reduced the diameter and myosin heavy chain protein expression in C2C12 myotubes; it also increased muscle atrophy-associated ubiquitin ligases, such as muscle atrophy F-box protein 1/Atrogin-1 and muscle ring finger protein-1, along with their upstream regulator Krüppel-like factor 15. Dexamethasone dephosphorylated FoxO3a transcription factor and increased total FoxO3a expression. Interestingly, 10 μM 3-(4-hydroxy-3-methoxyphenyl) propionic acid treatment significantly attenuated dexamethasone-induced reduction in myotube thickness and muscle protein degradation and suppressed muscle atrophy-associated ubiquitin ligases. 3-(4-Hydroxy-3-methoxyphenyl) propionic acid also prevented dexamethasone-induced Krüppel-like factor 15 and FoxO3a expression. In conclusion, these results suggest that in vivo metabolite of polyphenols per se could be the real origin of the anti-muscular atrophy activity, as 3-(4-hydroxy-3-methoxyphenyl) propionic acid ameliorated glucocorticoid-induced muscle atrophy by suppressing Atrogin-1 and MuRF-1.
Collapse
Affiliation(s)
- Anayt Ulla
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Md Mizanur Rahman
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Takayuki Uchida
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hiroyuki Kayaki
- Research Center, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinichi-cho, Fukuyama, Hiroshima 729-3102, Japan
| | - Yosuke Nishitani
- Research Center, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinichi-cho, Fukuyama, Hiroshima 729-3102, Japan
| | - Susumu Yoshino
- Research Center, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinichi-cho, Fukuyama, Hiroshima 729-3102, Japan
| | - Hiroshige Kuwahara
- Research Center, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinichi-cho, Fukuyama, Hiroshima 729-3102, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
4
|
Mayakrishnan V, Kannappan P, Balakarthikeyan J, Kim CY. Rodent model intervention for prevention and optimal management of sarcopenia: A systematic review on the beneficial effects of nutrients & non-nutrients and exercise to improve skeletal muscle health. Ageing Res Rev 2024; 102:102543. [PMID: 39427886 DOI: 10.1016/j.arr.2024.102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Sarcopenia is a common musculoskeletal disorder characterized by degenerative processes and is strongly linked to an increased susceptibility to falls, fractures, physical limitations, and mortality. Several models have been used to explore therapeutic and preventative measures as well as to gain insight into the molecular mechanisms behind sarcopenia. With novel experimental methodologies emerging to design foods or novel versions of conventional foods, understanding the impact of nutrition on the prevention and management of sarcopenia has become important. This review provides a thorough assessment of the use of rodent models of sarcopenia for understanding the aging process, focusing the effects of nutrients, plant extracts, exercise, and combined interventions on skeletal muscle health. According to empirical research, nutraceuticals and functional foods have demonstrated potential benefits in enhancing physical performance. In preclinical investigations, the administration of herbal extracts and naturally occurring bioactive compounds yielded advantageous outcomes such as augmented muscle mass and strength generation. Furthermore, herbal treatments exhibited inhibitory effects on muscle atrophy and sarcopenia. A substantial body of information establishes a connection between diet and the muscle mass, strength, and functionality of older individuals. This suggests that nutrition has a major impact in both the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Vijayakumar Mayakrishnan
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Priya Kannappan
- PSG College of Arts & Science, Civil Aerodrome, Coimbatore, Tamil Nadu 641014, India
| | | | - Choon Young Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Department of Food and Nutrition, Yeungnam University Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
5
|
Pereira SDC, Manhães-de-Castro R, Souza VDS, Calado CMSDS, Souza de Silveira B, Barbosa LNF, Torner L, Guzmán-Quevedo O, Toscano AE. Neonatal resveratrol treatment in cerebral palsy model recovers neurodevelopment impairments by restoring the skeletal muscle morphology and decreases microglial activation in the cerebellum. Exp Neurol 2024; 378:114835. [PMID: 38789024 DOI: 10.1016/j.expneurol.2024.114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Cerebral Palsy (CP) is the main motor disorder in childhood resulting from damage to the developing brain. Treatment perspectives are required to reverse the primary damage caused by the early insult and consequently to recover motor skills. Resveratrol has been shown to act as neuroprotection with benefits to skeletal muscle. This study aimed to investigate the effects of neonatal resveratrol treatment on neurodevelopment, skeletal muscle morphology, and cerebellar damage in CP model. Wistar rat pups were allocated to four experimental groups (n = 15/group) according CP model and treatment: Control+Saline (CS), Control+Resveratrol (CR), CP + Saline (CPS), and CP + Resveratrol (CPR). CP model associated anoxia and sensorimotor restriction. CP group showed delay in the disappearance of the palmar grasp reflex (p < 0.0001) and delay in the appearance of reflexes of negative geotaxis (p = 0.01), and free-fall righting (p < 0.0001), reduced locomotor activity and motor coordination (p < 0.05) than CS group. These motor skills impairments were associated with a reduction in muscle weight (p < 0.001) and area and perimeter of soleus end extensor digitorum longus muscle fibers (p < 0.0001), changes in muscle fibers typing pattern (p < 0.05), and the cerebellum showed signs of neuroinflammation due to elevated density and percentage of activated microglia in the CPS group compared to CS group (p < 0.05). CP animals treated with resveratrol showed anticipation of the appearance of negative geotaxis and free-fall righting reflexes (p < 0.01), increased locomotor activity (p < 0.05), recovery muscle fiber types pattern (p < 0.05), and reversal of the increase in density and the percentage of activated microglia in the cerebellum (p < 0.01). Thus, we conclude that neonatal treatment with resveratrol can contribute to the recovery of the delay neurodevelopment resulting from experimental CP due to its action in restoring the skeletal muscle morphology and reducing neuroinflammation from cerebellum.
Collapse
Affiliation(s)
- Sabrina da Conceição Pereira
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Raul Manhães-de-Castro
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil; Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Vanessa da Silva Souza
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Caio Matheus Santos da Silva Calado
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Beatriz Souza de Silveira
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Letícia Nicoly Ferreira Barbosa
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58330, Morelia, Michoacán, Mexico
| | - Omar Guzmán-Quevedo
- Centro Laboratory of Experimental Neuronutrition and Food Engineering, Tecnológico Nacional de México (TECNM), Instituto Tecnológico Superior de Tacámbaro, 61651, Tacámbaro, Michoacán, Mexico
| | - Ana Elisa Toscano
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil; Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Nursing Unit, Vitória Academic Center, Federal University of Pernambuco, Vitória de Santo Antão, Pernambuco, 55608-680, Brazil.
| |
Collapse
|
6
|
Sawicki T, Jabłońska M, Danielewicz A, Przybyłowicz KE. Phenolic Compounds Profile and Antioxidant Capacity of Plant-Based Protein Supplements. Molecules 2024; 29:2101. [PMID: 38731592 PMCID: PMC11085232 DOI: 10.3390/molecules29092101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The study aimed to determine the phenolic content and antioxidant capacity of five protein supplements of plant origin. The content and profile of phenolics were determined using the UHPLC-DAD-MS method, while antioxidant capacity (ABTS and DPPH assays) and total phenolic content (TPC) were evaluated using spectrophotometric tests. In the analyzed proteins, twenty-five polyphenols were detected, including eleven phenolic acids, thirteen flavonoids, and one ellagitannin. Hemp protein revealed the highest individual phenolics content and TPC value (1620 μg/g and 1.79 mg GAE/g, respectively). Also, hemp protein showed the highest antioxidant activity determined via ABTS (9.37 μmol TE/g) and DPPH (9.01 μmol TE/g) assays. The contents of p-coumaric acid, m-coumaric acid, kaempferol, rutin, isorhamnetin-3-O-rutinoside, kaempferol-3-O-rutinoside, and TPC value were significantly correlated with antioxidant activity assays. Our findings indicate that plant-based protein supplements are a valuable source of phenols and can also be used in research related to precision medicine, nutrigenetics, and nutrigenomics. This will benefit future health promotion and personalized nutrition in the prevention of chronic diseases.
Collapse
Affiliation(s)
- Tomasz Sawicki
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718 Olsztyn, Poland; (M.J.); (A.D.); (K.E.P.)
| | - Monika Jabłońska
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718 Olsztyn, Poland; (M.J.); (A.D.); (K.E.P.)
- College of Medical Sciences in Olsztyn, Nicolaus Copernicus Superior School, Nowogrodzka 47A, 00-695 Warsaw, Poland
| | - Anna Danielewicz
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718 Olsztyn, Poland; (M.J.); (A.D.); (K.E.P.)
| | - Katarzyna E. Przybyłowicz
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718 Olsztyn, Poland; (M.J.); (A.D.); (K.E.P.)
| |
Collapse
|
7
|
Hahm JH, Nirmala FS, Ha TY, Ahn J. Nutritional approaches targeting mitochondria for the prevention of sarcopenia. Nutr Rev 2024; 82:676-694. [PMID: 37475189 DOI: 10.1093/nutrit/nuad084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
A decline in function and loss of mass, a condition known as sarcopenia, is observed in the skeletal muscles with aging. Sarcopenia has a negative effect on the quality of life of elderly. Individuals with sarcopenia are at particular risk for adverse outcomes, such as reduced mobility, fall-related injuries, and type 2 diabetes mellitus. Although the pathogenesis of sarcopenia is multifaceted, mitochondrial dysfunction is regarded as a major contributor for muscle aging. Hence, the development of preventive and therapeutic strategies to improve mitochondrial function during aging is imperative for sarcopenia treatment. However, effective and specific drugs that can be used for the treatment are not yet approved. Instead studies on the relationship between food intake and muscle aging have suggested that nutritional intake or dietary control could be an alternative approach for the amelioration of muscle aging. This narrative review approaches various nutritional components and diets as a treatment for sarcopenia by modulating mitochondrial homeostasis and improving mitochondria. Age-related changes in mitochondrial function and the molecular mechanisms that help improve mitochondrial homeostasis are discussed, and the nutritional components and diet that modulate these molecular mechanisms are addressed.
Collapse
Affiliation(s)
- Jeong-Hoon Hahm
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Farida S Nirmala
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| | - Tae Youl Ha
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| | - Jiyun Ahn
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| |
Collapse
|
8
|
Affourtit C, Carré JE. Mitochondrial involvement in sarcopenia. Acta Physiol (Oxf) 2024; 240:e14107. [PMID: 38304924 DOI: 10.1111/apha.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Sarcopenia lowers the quality-of-life for millions of people across the world, as accelerated loss of skeletal muscle mass and function contributes to both age- and disease-related frailty. Physical activity remains the only proven therapy for sarcopenia to date, but alternatives are much sought after to manage this progressive muscle disorder in individuals who are unable to exercise. Mitochondria have been widely implicated in the etiology of sarcopenia and are increasingly suggested as attractive therapeutic targets to help restore the perturbed balance between protein synthesis and breakdown that underpins skeletal muscle atrophy. Reviewing current literature, we note that mitochondrial bioenergetic changes in sarcopenia are generally interpreted as intrinsic dysfunction that renders muscle cells incapable of making sufficient ATP to fuel protein synthesis. Based on the reported mitochondrial effects of therapeutic interventions, however, we argue that the observed bioenergetic changes may instead reflect an adaptation to pathologically decreased energy expenditure in sarcopenic muscle. Discrimination between these mechanistic possibilities will be crucial for improving the management of sarcopenia.
Collapse
Affiliation(s)
| | - Jane E Carré
- School of Biomedical Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
9
|
Bajaber MA, Hameed A, Hussain G, Noreen R, Ibrahim M, Batool S, Qayyum MA, Farooq T, Parveen B, Khalid T, Kanwal P. Chitosan nanoparticles loaded with Foeniculum vulgare extract regulate retrieval of sensory and motor functions in mice. Heliyon 2024; 10:e25414. [PMID: 38352784 PMCID: PMC10862683 DOI: 10.1016/j.heliyon.2024.e25414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
In this study, chitosan nanoparticles (CSNPs) encapsulating Foeniculum vulgare (FV) seed extract (SE) were prepared for the controlled delivery of bioactive phytoconstituents. The prepared CSNPs encapsulating FVSE as sustain-releasing nanoconjugate (CSNPs-FVSE) was used as a potent source of functional metabolites including kaempferol and quercetin for accelerated reclamation of sensory and motor functions following peripheral nerve injury (PNI). The nanoconjugate exhibited in vitro a biphasic diffusion-controlled sustained release of quercetin and kaempferol ensuring prolonged therapeutic effects. The CSNPs-FVSE was administered through gavaging to albino mice daily at a dose rate of 25 mg/kg body weight from the day of induced PNI till the end of the experiment. The conjugate-treatment induced a significant acceleration in the regain of motor functioning, evaluated from the sciatic function index (SFI) and muscle grip strength studies. Further, the hotplate test confirmed a significantly faster recuperation of sensory functions in conjugate-treated group compared to control. An array of underlying biochemical pathways regulates the regeneration under well-optimized glucose and oxidant levels. Therefore, oxidant status (TOS), blood glycemic level and total antioxidant capacity (TAC) were evaluated in the conjugate-treated group and compared with the controls. The treated subjects exhibited controlled oxidative stress and regulated blood sugars compared to the non-treated control. Thus, the nanoconjugate enriched with polyphenolics significantly accelerated the regeneration and recovery of functions after nerve lesions. The biocompatible nanocarriers encapsulating the nontoxic natural bioactive constitutents have great medicinal and economic value.
Collapse
Affiliation(s)
- Majed A. Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Arruje Hameed
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Government College University Faisalabad, Pakistan
| | - Razia Noreen
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University Faisalabad, Pakistan
| | - Shaheera Batool
- Department of Biochemistry, CMH Institute of Medical Sciences Multan, Multan, Pakistan
| | - Muhammad Abdul Qayyum
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Tahir Farooq
- Department of Applied Chemistry, Government College University Faisalabad, Pakistan
| | - Bushra Parveen
- Department of Chemistry, Government College University Faisalabad, Pakistan
| | - Tanzeela Khalid
- Department of Applied Chemistry, Government College University Faisalabad, Pakistan
| | - Perveen Kanwal
- Department of Chemistry, The Women University of Multan, Multan, 66000, Pakistan
| |
Collapse
|
10
|
Chang SS, Chen LH, Huang KC, Huang SW, Chang CC, Liao KW, Hu EC, Chen YP, Chen YW, Hsu PC, Huang HY. Plant-based polyphenol rich protein supplementation attenuated skeletal muscle loss and lowered the LDL level via gut microbiota remodeling in Taiwan's community-dwelling elderly. Food Funct 2023; 14:9407-9418. [PMID: 37795525 DOI: 10.1039/d3fo02766j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Sarcopenia, characterized by muscle loss, negatively affects the elderly's physical activity and survival. Enhancing protein and polyphenol intake, possibly through the supplementation of fermented black soybean koji product (BSKP), may alleviate sarcopenia by addressing anabolic deficiencies and gut microbiota dysbiosis because of high contents of polyphenols and protein in BSKP. This study aimed to examine the effects of long-term supplementation with BSKP on mitigating sarcopenia in the elderly and the underlying mechanisms. BSKP was given to 46 participants over 65 years old with early sarcopenia daily for 10 weeks. The participants' physical condition, serum biochemistry, inflammatory cytokines, antioxidant activities, microbiota composition, and metabolites in feces were evaluated both before and after the intervention period. BSKP supplementation significantly increased the appendicular skeletal muscle mass index and decreased the low-density lipoprotein level. BSKP did not significantly alter the levels of inflammatory factors, but significantly increased the activity of antioxidant enzymes. BSKP changed the beta diversity of gut microbiota and enhanced the relative abundance of Ruminococcaceae_UCG_013, Lactobacillus_murinus, Algibacter, Bacillus, Gordonibacter, Porphyromonas, and Prevotella_6. Moreover, BSKP decreased the abundance of Akkermansia and increased the fecal levels of butyric acid. Positive correlations were observed between the relative abundance of BSKP-enriched bacteria and the levels of serum antioxidant enzymes and fecal short chain fatty acids (SCFAs), and Gordonibacter correlated negatively with serum low-density lipoprotein. In summary, BSKP attenuated age-related sarcopenia by inducing antioxidant enzymes and SCFAs via gut microbiota regulation. Therefore, BSKP holds potential as a high-quality nutrient source for Taiwan's elderly, especially in conditions such as sarcopenia.
Collapse
Affiliation(s)
- Shy-Shin Chang
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Li-Han Chen
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, Taiwan
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Kuo-Chin Huang
- Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Wei Huang
- Department of Orthopedics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Kai-Wei Liao
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - En-Chi Hu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
| | - Yu-Pin Chen
- Department of Orthopedics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
| | - Po-Chi Hsu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
| | - Hui-Yu Huang
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
11
|
Kim YC, Ki SW, Kim H, Kang S, Kim H, Go GW. Recent Advances in Nutraceuticals for the Treatment of Sarcopenic Obesity. Nutrients 2023; 15:3854. [PMID: 37686886 PMCID: PMC10490319 DOI: 10.3390/nu15173854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Sarcopenic obesity, low muscle mass, and high body fat are growing health concerns in the aging population. This review highlights the need for standardized criteria and explores nutraceuticals as potential therapeutic agents. Sarcopenic obesity is associated with insulin resistance, inflammation, hormonal changes, and reduced physical activity. These factors lead to impaired muscle activity, intramuscular fat accumulation, and reduced protein synthesis, resulting in muscle catabolism and increased fat mass. Myostatin and irisin are myokines that regulate muscle synthesis and energy expenditure, respectively. Nutritional supplementation with vitamin D and calcium is recommended for increasing muscle mass and reducing body fat content. Testosterone therapy decreases fat mass and improves muscle strength. Vitamin K, specifically menaquinone-4 (MK-4), improves mitochondrial function and reduces muscle damage. Irisin is a hormone secreted during exercise that enhances oxidative metabolism, prevents insulin resistance and obesity, and improves bone quality. Low-glycemic-index diets and green cardamom are potential methods for managing sarcopenic obesity. In conclusion, along with exercise and dietary support, nutraceuticals, such as vitamin D, calcium, vitamin K, and natural agonists of irisin or testosterone, can serve as promising future therapeutic alternatives.
Collapse
Affiliation(s)
| | | | | | | | | | - Gwang-woong Go
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea; (Y.-C.K.); (S.-W.K.); (H.K.); (S.K.); (H.K.)
| |
Collapse
|
12
|
Chen X, Ji Y, Liu R, Zhu X, Wang K, Yang X, Liu B, Gao Z, Huang Y, Shen Y, Liu H, Sun H. Mitochondrial dysfunction: roles in skeletal muscle atrophy. J Transl Med 2023; 21:503. [PMID: 37495991 PMCID: PMC10373380 DOI: 10.1186/s12967-023-04369-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
Mitochondria play important roles in maintaining cellular homeostasis and skeletal muscle health, and damage to mitochondria can lead to a series of pathophysiological changes. Mitochondrial dysfunction can lead to skeletal muscle atrophy, and its molecular mechanism leading to skeletal muscle atrophy is complex. Understanding the pathogenesis of mitochondrial dysfunction is useful for the prevention and treatment of skeletal muscle atrophy, and finding drugs and methods to target and modulate mitochondrial function are urgent tasks in the prevention and treatment of skeletal muscle atrophy. In this review, we first discussed the roles of normal mitochondria in skeletal muscle. Importantly, we described the effect of mitochondrial dysfunction on skeletal muscle atrophy and the molecular mechanisms involved. Furthermore, the regulatory roles of different signaling pathways (AMPK-SIRT1-PGC-1α, IGF-1-PI3K-Akt-mTOR, FoxOs, JAK-STAT3, TGF-β-Smad2/3 and NF-κB pathways, etc.) and the roles of mitochondrial factors were investigated in mitochondrial dysfunction. Next, we analyzed the manifestations of mitochondrial dysfunction in muscle atrophy caused by different diseases. Finally, we summarized the preventive and therapeutic effects of targeted regulation of mitochondrial function on skeletal muscle atrophy, including drug therapy, exercise and diet, gene therapy, stem cell therapy and physical therapy. This review is of great significance for the holistic understanding of the important role of mitochondria in skeletal muscle, which is helpful for researchers to further understanding the molecular regulatory mechanism of skeletal muscle atrophy, and has an important inspiring role for the development of therapeutic strategies for muscle atrophy targeting mitochondria in the future.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Ruiqi Liu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xucheng Zhu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yan Huang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, 55 Ninghai Middle Road, Nantong, Jiangsu, 226600, People's Republic of China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Vignaud J, Loiseau C, Hérault J, Mayer C, Côme M, Martin I, Ulmann L. Microalgae Produce Antioxidant Molecules with Potential Preventive Effects on Mitochondrial Functions and Skeletal Muscular Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12051050. [PMID: 37237915 DOI: 10.3390/antiox12051050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, microalgae have become a source of molecules for a healthy life. Their composition of carbohydrates, peptides, lipids, vitamins and carotenoids makes them a promising new source of antioxidant molecules. Skeletal muscle is a tissue that requires constant remodeling via protein turnover, and its regular functioning consumes energy in the form of adenosine triphosphate (ATP), which is produced by mitochondria. Under conditions of traumatic exercise or muscular diseases, a high production of reactive oxygen species (ROS) at the origin of oxidative stress (OS) will lead to inflammation and muscle atrophy, with life-long consequences. In this review, we describe the potential antioxidant effects of microalgae and their biomolecules on mitochondrial functions and skeletal muscular oxidative stress during exercises or in musculoskeletal diseases, as in sarcopenia, chronic obstructive pulmonary disease (COPD) and Duchenne muscular dystrophy (DMD), through the increase in and regulation of antioxidant pathways and protein synthesis.
Collapse
Affiliation(s)
- Jordi Vignaud
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Céline Loiseau
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Josiane Hérault
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Claire Mayer
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Martine Côme
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Isabelle Martin
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Lionel Ulmann
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| |
Collapse
|
14
|
Bajaber MA, Hussain G, Farooq T, Noreen R, Ibrahim M, Umbreen H, Batool S, Rehman K, Hameed A, Farid MF, Khalid T. Nanosuspension of Foeniculum Vulgare Promotes Accelerated Sensory and Motor Function Recovery after Sciatic Nerve Injury. Metabolites 2023; 13:metabo13030391. [PMID: 36984831 PMCID: PMC10058352 DOI: 10.3390/metabo13030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
The seed extract of Foeniculum vulgare (FV) was used for the preparation of a nanosuspension (NS) with an enhanced bioavailability of phytoconstituents. Subsequently, it was employed as a potent source of polyphenols, such as quercetin and kaempferol, to accelerate the regeneration and recovery of motor and sensory function in injured nerves. The NS was administered through daily gauging as NS1 (0.5 mg/mL) and NS2 (15 mg/mL), at a dose rate of 2 g/kg body weight until the end of the study. The NS-mediated retrieval of motor functions was studied by evaluating muscle grip strength and the sciatic functional index. The recovery of sensory functions was assessed by the hotplate test. Several well-integrated biochemical pathways mediate the recovery of function and the regeneration of nerves under controlled blood glucose and oxidative stress. Consequently, the NS-treated groups were screened for blood glucose, total antioxidant capacity (TAC), and total oxidant status (TOS) compared to the control. The NS administration showed a significant potential to enhance the recuperation of motor and sensory functions. Moreover, the oxidative stress was kept under check as a result of NS treatments to facilitate neuronal generation. Thus, the nanoformulation of FV with polyphenolic contents accelerated the reclamation of motor and sensory function after nerve lesion.
Collapse
Affiliation(s)
- Majed A. Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Tahir Farooq
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Razia Noreen
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Huma Umbreen
- Department of Nutritional Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shaheera Batool
- Department of Biochemistry, CMH Institute of Medical Sciences Multan, Multan 60000, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University Multan, Multan 60000, Pakistan
| | - Arruje Hameed
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Correspondence: or (A.H.); (T.K.)
| | - Muhammad Fayyaz Farid
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Tanzeela Khalid
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
- Correspondence: or (A.H.); (T.K.)
| |
Collapse
|
15
|
Wu H, Quan J, Wang X, Gu Y, Zhang S, Meng G, Zhang Q, Liu L, Wang X, Sun S, Jia Q, Song K, Huang J, Huo J, Zhang B, Ding G, Niu K. Soy Food Consumption Is Inversely Associated with Handgrip Strength: Results from the TCLSIH Cohort Study. Nutrients 2023; 15:nu15020391. [PMID: 36678260 PMCID: PMC9866643 DOI: 10.3390/nu15020391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/24/2022] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Background: Soy foods contain high levels of soy protein or isoflavones, which can stimulate muscle protein synthesis and increase antioxidant capacity, and thus ameliorate muscle strength decline. However, data from epidemiological studies investigating the association of habitual soy food consumption with muscle strength decline among general Chinese adults are limited. Methods: This study included 29,525 participants (mean age: 41.6 years; 16,933 (53.8%) males). Soy food consumption was evaluated using a validated 100-item food frequency questionnaire. Handgrip strength (HGS) was assessed with a hand dynamometer. Analysis of covariance were performed to assess the multivariable-adjusted least square means (LSM) and 95% confidence interval (CI) for HGS. Results: The multiple adjusted LSM (95% CI) of HGS across soy food consumption were 35.5 (34.2, 37.1) kg for <1 time per week, 36.1 (34.6, 37.6) kg for 1 time per week, 36.3 (34.8, 37.8) kg for 2−3 times per week, and 36.6 (35.1, 38.0) kg for ≥4 times per week (p for trend < 0.001). Compared to participants with soy food consumption less than one time per week, the multiple adjusted odds ratio (95% CI) of low HGS was 0.638 (0.485, 0.836) when the weekly consumption was ≥ 4 times (p for trend < 0.01). Conclusions: Higher habitual soy food consumption was positively associated with HGS in general Chinese adults. Consumption of soy foods may have beneficial effects on muscle health.
Collapse
Affiliation(s)
- Hongmei Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin 300070, China
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Jing Quan
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin 300070, China
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xuena Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin 300070, China
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yeqing Gu
- Radiation Epidemiology Research Center, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Shunming Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin 300070, China
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ge Meng
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin 300070, China
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Qing Zhang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Li Liu
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xing Wang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shaomei Sun
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qiyu Jia
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Kun Song
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jian Huang
- Chinese Center for Disease Control and Prevention National Institute for Nutrition and Health, Beijing 100050, China
| | - Junsheng Huo
- Chinese Center for Disease Control and Prevention National Institute for Nutrition and Health, Beijing 100050, China
| | - Bing Zhang
- Chinese Center for Disease Control and Prevention National Institute for Nutrition and Health, Beijing 100050, China
| | - Gangqiang Ding
- Chinese Center for Disease Control and Prevention National Institute for Nutrition and Health, Beijing 100050, China
| | - Kaijun Niu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin 300070, China
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
- Radiation Epidemiology Research Center, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin 300052, China
- Correspondence:
| |
Collapse
|
16
|
Jhuo CF, Hsieh SK, Chen WY, Tzen JTC. Attenuation of Skeletal Muscle Atrophy Induced by Dexamethasone in Rats by Teaghrelin Supplementation. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020688. [PMID: 36677745 PMCID: PMC9864913 DOI: 10.3390/molecules28020688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Abstract
Muscle atrophy caused by an imbalance between the synthesis and the degradation of proteins is a syndrome commonly found in the elders. Teaghrelin, a natural compound from oolong tea, has been shown to promote cell differentiation and to inhibit dexamethasone-induced muscle atrophy in C2C12 cells. In this study, the therapeutic effects of teaghrelin on muscle atrophy were evaluated in Sprague Dawley rats treated with dexamethasone. The masses of the soleus, gastrocnemius and extensor digitorum longus muscles were reduced in dexamethasone-treated rats, and the reduction of these muscle masses was significantly attenuated when the rats were supplemented with teaghrelin. Accordingly, the level of serum creatine kinase, a marker enzyme of muscle proteolysis, was elevated in dexamethasone-treated rats, and the elevation was substantially reduced by teaghrelin supplementation. A decrease in Akt phosphorylation causing the activation of the ubiquitin-proteasome system and autophagy for protein degradation was detected in the gastrocnemius muscles of the dexamethasone-treated rats, and this signaling pathway for protein degradation was significantly inhibited by teaghrelin supplementation. Protein synthesis via the mTOR/p70S6K pathway was slowed down in the gastrocnemius muscles of the dexamethasone-treated rats and was significantly rescued after teaghrelin supplementation. Teaghrelin seemed to prevent muscle atrophy by reducing protein degradation and enhancing protein synthesis via Akt phosphorylation.
Collapse
Affiliation(s)
- Cian-Fen Jhuo
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Sheng-Kuo Hsieh
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung 402, Taiwan
- Correspondence: (W.-Y.C.); (J.T.C.T.); Tel.: +886-4-22840328 (ext. 776) (J.T.C.T.); Fax: +886-4-22853527 (J.T.C.T.)
| | - Jason T. C. Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
- Correspondence: (W.-Y.C.); (J.T.C.T.); Tel.: +886-4-22840328 (ext. 776) (J.T.C.T.); Fax: +886-4-22853527 (J.T.C.T.)
| |
Collapse
|
17
|
Bagheri A, Asoudeh F, Rezaei S, Babaei M, Esmaillzadeh A. The Effect of Mediterranean Diet on Body Composition, Inflammatory Factors, and Nutritional Status in Patients with Cachexia Induced by Colorectal Cancer: A Randomized Clinical Trial. Integr Cancer Ther 2023; 22:15347354231195322. [PMID: 37621140 PMCID: PMC10467242 DOI: 10.1177/15347354231195322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Along with high calorie and high protein diet, a new comprehensive dietary approach is needed to control cachexia caused by cancer and its related outcomes. This study was done to evaluate the effect of a Mediterranean diet on body composition, nutritional status, and inflammatory markers among cancer cachexia patients. METHODS In this randomized clinical trial, 46 patients with colorectal cancer-induced cachexia were included. After randomization, 23 patients were allocated to the intervention group (Mediterranean diet) and 23 to the control group (nutritional counseling for weight gain and prevention of weight loss in cancer patients). The primary outcome including muscle health, nutritional status, and inflammatory markers along with secondary outcomes such as quality of life, and serum proteins were evaluated at the start and the eighth week of the study. Statistical analysis was performed according to the intention-to-treat concept. To compare changes in dependent variables between the 2 groups, analysis of covariance (ANCOVA) was performed. RESULTS After adjustment for the baseline values, age, sex, and supplements use, in the Mediterranean diet group mean of weight (P < .001), lean body mass (P = .001), fat mass (P = .002), and muscle strength (P < .001) were significantly increased compared to the control group. Regarding inflammatory markers, the mean serum level of tumor necrosis factor-alpha (TNF-α) (P < .001), high sensitive-C-reactive protein (hs-CRP) (P = .01) and Interleukin 6 (IL-6) (P < .001) were significantly improved in the Mediterranean diet group. Moreover, in the Mediterranean diet group, the score for global health status (P = .02) and physical performance score (P < .001) were significantly increased. CONCLUSION It appears that the implementation of the Mediterranean diet might be a strategy to improve nutritional status, quality of life, inflammatory markers, and body composition in patients with colorectal cancer cachexia. TRIAL REGISTRATION Iranian Registry of Clinical Trials (www.irct.ir); ID: IRCT20211027052884N1.
Collapse
Affiliation(s)
- Amir Bagheri
- Tehran University of Medical Sciences, Tehran, Iran
| | | | - Saied Rezaei
- Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Esmaillzadeh
- Tehran University of Medical Sciences, Tehran, Iran
- Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Potential Therapeutic Strategies for Skeletal Muscle Atrophy. Antioxidants (Basel) 2022; 12:antiox12010044. [PMID: 36670909 PMCID: PMC9854691 DOI: 10.3390/antiox12010044] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The maintenance of muscle homeostasis is vital for life and health. Skeletal muscle atrophy not only seriously reduces people's quality of life and increases morbidity and mortality, but also causes a huge socioeconomic burden. To date, no effective treatment has been developed for skeletal muscle atrophy owing to an incomplete understanding of its molecular mechanisms. Exercise therapy is the most effective treatment for skeletal muscle atrophy. Unfortunately, it is not suitable for all patients, such as fractured patients and bedridden patients with nerve damage. Therefore, understanding the molecular mechanism of skeletal muscle atrophy is crucial for developing new therapies for skeletal muscle atrophy. In this review, PubMed was systematically screened for articles that appeared in the past 5 years about potential therapeutic strategies for skeletal muscle atrophy. Herein, we summarize the roles of inflammation, oxidative stress, ubiquitin-proteasome system, autophagic-lysosomal pathway, caspases, and calpains in skeletal muscle atrophy and systematically expound the potential drug targets and therapeutic progress against skeletal muscle atrophy. This review focuses on current treatments and strategies for skeletal muscle atrophy, including drug treatment (active substances of traditional Chinese medicine, chemical drugs, antioxidants, enzyme and enzyme inhibitors, hormone drugs, etc.), gene therapy, stem cell and exosome therapy (muscle-derived stem cells, non-myogenic stem cells, and exosomes), cytokine therapy, physical therapy (electroacupuncture, electrical stimulation, optogenetic technology, heat therapy, and low-level laser therapy), nutrition support (protein, essential amino acids, creatine, β-hydroxy-β-methylbutyrate, and vitamin D), and other therapies (biomaterial adjuvant therapy, intestinal microbial regulation, and oxygen supplementation). Considering many treatments have been developed for skeletal muscle atrophy, we propose a combination of proper treatments for individual needs, which may yield better treatment outcomes.
Collapse
|
19
|
Zarifi SH, Bagherniya M, Banach M, Johnston TP, Sahebkar A. Phytochemicals: A potential therapeutic intervention for the prevention and treatment of cachexia. Clin Nutr 2022; 41:2843-2857. [PMID: 36403384 DOI: 10.1016/j.clnu.2022.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/26/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Cachexia, a multifactorial and often irreversible wasting syndrome, is often associated with the final phase of several chronic disorders. Although cachexia is characterized by skeletal muscle wasting and adipose tissue loss, it is a syndrome affecting different organs, which ultimately results in systemic complications and impaired quality of life. The pathogenesis and underlying molecular mechanisms of cachexia are not fully understood, and currently there are no effective standard treatments or approved drug therapies to completely reverse cachexia. Moreover, adequate nutritional interventions alone cannot significantly improve cachexia. Other approaches to ameliorate cachexia are urgently needed, and thus, the role of medicinal plants has received considerable importance in this respect due to their beneficial health properties. Increasing evidence indicates great potential of medicinal plants and their phytochemicals as an alternative and promising treatment strategy to reduce the symptoms of many diseases including cachexia. This article reviews the current status of cachexia, the molecular mechanisms of primary events driving cachexia, and state-of-the-art knowledge that reports the preventive and therapeutic activities of multiple families of phytochemical compounds and their pharmacological mode of action, which may hold promise as an alternative treatment modality for the management of cachexia. Based on our review of various in vitro and in vivo models of cachexia, we would conclude that phytochemicals may have therapeutic potential to attenuate cachexia, although clinical trials are required to unequivocally confirm this premise.
Collapse
Affiliation(s)
- Sudiyeh Hejri Zarifi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Bagherniya
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Functional Nutrients to Ameliorate Neurogenic Muscle Atrophy. Metabolites 2022; 12:metabo12111149. [DOI: 10.3390/metabo12111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Neurogenic muscle atrophy is a debilitating condition that occurs from nerve trauma in association with diseases or during aging, leading to reduced interaction between motoneurons and skeletal fibers. Current therapeutic approaches aiming at preserving muscle mass in a scenario of decreased nervous input include physical activity and employment of drugs that slow down the progression of the condition yet provide no concrete resolution. Nutritional support appears as a precious tool, adding to the success of personalized medicine, and could thus play a relevant part in mitigating neurogenic muscle atrophy. We herein summarize the molecular pathways triggered by denervation of the skeletal muscle that could be affected by functional nutrients. In this narrative review, we examine and discuss studies pertaining to the use of functional ingredients to counteract neurogenic muscle atrophy, focusing on their preventive or curative means of action within the skeletal muscle. We reviewed experimental models of denervation in rodents and in amyotrophic lateral sclerosis, as well as that caused by aging, considering the knowledge generated with use of animal experimental models and, also, from human studies.
Collapse
|
21
|
Peng LN, Lin MH, Lee HF, Hsu CC, Chang SJ, Chen LK. Clinical efficacy of oligonol® supplementation on metabolism and muscle health in middle-aged and older adults: A double-blinded randomized controlled trial. Arch Gerontol Geriatr 2022; 103:104784. [PMID: 35985196 DOI: 10.1016/j.archger.2022.104784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Oligonol® is a low-molecular-weight polyphenol that has biological effects on metabolism in animals. However, little is known about its roles in muscle function and muscle quality in middle-aged and older adults. METHODS 120 participants were enrolled for study based on 1:1 randomization. Participants in the intervention group were provided 200 mg oligonol® prepared as capsules, and 200 mg placebo (dextrin) was provided in control group. RESULTS Data from 103 participants (52 in the intervention group and 51 in the control group) were available for analysis. The mean age of all participants was 64.0 ± 8.2 years, and two-thirds of the participants were females. Baseline demographic characteristics, functional assessment, laboratory data and muscle parameters were similar between groups. Hip circumference decreased (p = 0.009) during the study period, and the 6-m walking speed increased (p = 0.001) in women in the intervention group. In contrast, 6-m walking speed, 6-min walking distance and handgrip strength were significantly improved in men in the intervention group, but increased total body fat percentage (p = 0.038) and decreased mid-thigh cross-muscle area (CMA) (p = 0.007) were observed in the control group. Compared to the control group, the 12-week interval change in the percentage of mid-thigh CMA was maintained in men in the intervention group but was significantly decreased in the control group (p = 0.03, 95% CI:0.002-0.05). CONCLUSIONS Oligonol supplementation (200 mg per day) significantly improved physical performance and muscle mass in men. Further studies are needed to confirm the potential favorable effects of oligonol® supplementation.
Collapse
Affiliation(s)
- Li-Ning Peng
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Rd., Taipei 11217, Taiwan; Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, No. 1001, Daxue Rd. East Dist., Hsinchu 300093, Taiwan.
| | - Ming-Hsien Lin
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Rd., Taipei 11217, Taiwan; Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, No. 1001, Daxue Rd. East Dist., Hsinchu 300093, Taiwan
| | - Huei-Fang Lee
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, No. 1001, Daxue Rd. East Dist., Hsinchu 300093, Taiwan
| | - Chia-Chia Hsu
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Rd., Taipei 11217, Taiwan
| | - Sue-Joan Chang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Kung Chen
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Rd., Taipei 11217, Taiwan; Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, No. 1001, Daxue Rd. East Dist., Hsinchu 300093, Taiwan; Taipei Municipal Gan-Dau Hospital (Managed by Taipei Veterans General Hospital), Taipei, Taiwan
| |
Collapse
|
22
|
Balbuena-Pecino S, Montblanch M, García-Meilán I, Fontanillas R, Gallardo Á, Gutiérrez J, Navarro I, Capilla E. Hydroxytyrosol-rich extract from olive juice as an additive in gilthead sea bream juveniles fed a high-fat diet: Regulation of somatic growth. Front Physiol 2022; 13:966175. [PMID: 36277183 PMCID: PMC9584614 DOI: 10.3389/fphys.2022.966175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
The dietary inclusion of plant-based products in fish feeds formulation is required for the sustainable development of aquaculture. Moreover, considering functional diets, hydroxytyrosol, one of the major phenolic compounds found in olives (Olea europaea), has been identified as a potential candidate to be used in the aquafeeds industry due to its health promoting abilities. The aim of this study was to evaluate the effects of the inclusion of an olive juice extract rich in hydroxytyrosol as an additive (0.52 g HT/kg feed) in a high-fat (24% lipids) diet in gilthead sea bream (Sparus aurata) juveniles. Moreover, the experimental diets, with or without the extract, were administered daily at a standard (3% of total biomass in the tank) or restricted ration (40% reduction) for 8–9 weeks. Growth and biometric parameters, insulin-like growth factor 1 (IGF-1) plasma levels and growth hormone/IGF axis-, myogenic- and osteogenic-related genes expression in liver, white muscle and/or bone were analyzed. Moreover, in vitro cultures of vertebra bone-derived cells from fish fed the diets at a standard ration were performed at weeks 3 and 9 to explore the effects of hydroxytyrosol on osteoblasts development. Although neither body weight or any other biometric parameter were affected by diet composition after 4 or 8 weeks, the addition of the hydroxytyrosol-rich extract to the diet increased IGF-1 plasma levels, regardless of the ration regime, suggesting an anabolic condition. In muscle, the higher mRNA levels of the binding protein igfbp-5b and the myoblast fusion marker dock5 in fish fed with the hydroxytyrosol-rich diet suggested that this compound may have a role in muscle, inducing development and a better muscular condition. Furthermore in bone, increased osteogenic potential while delayed matrix mineralization after addition to the diet of the olive juice extract was supported by the upregulated expression of igf-1 and bmp4 and reduced transcript levels of osteopontin. Overall, this study provides new insights into the beneficial use of hydroxytyrosol as a dietary additive in gilthead sea bream functional diets to improve muscle-skeletal condition and, the aquaculture industry.
Collapse
Affiliation(s)
- Sara Balbuena-Pecino
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Manel Montblanch
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Irene García-Meilán
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | - Ángeles Gallardo
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- *Correspondence: Encarnación Capilla,
| |
Collapse
|
23
|
Bizzozero-Peroni B, Brazo-Sayavera J, Martínez-Vizcaíno V, Fernández-Rodríguez R, López-Gil JF, Díaz-Goñi V, Cavero-Redondo I, Mesas AE. High Adherence to the Mediterranean Diet is Associated with Higher Physical Fitness in Adults: a Systematic Review and Meta-Analysis. Adv Nutr 2022; 13:2195-2206. [PMID: 36166848 PMCID: PMC9776663 DOI: 10.1093/advances/nmac104] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/29/2022] [Accepted: 09/22/2022] [Indexed: 01/29/2023] Open
Abstract
Although prior research has synthesized the relationships between the Mediterranean diet (MD) and components of physical fitness (PF) in adults, they are limited and inconclusive. This study aimed to synthesize the associations between high (compared with low) MD adherence and PF levels with each of its components (cardiorespiratory, motor, and musculoskeletal) in adulthood. We conducted a systematic search in 5 databases from inception to January 2022. Observational studies and randomized controlled trials were included. Pooled odds ratios (ORs) and effect sizes (Cohen d index) with their 95% CIs were calculated via a random effects model. A total of 30 studies were included (19 cross-sectional in young, middle-aged, and older adults; 10 prospective cohort in older adults; and 1 randomized controlled trial in young adults) involving 36,807 individuals (mean age range: 20.9-86.3 y). Pooled effect sizes showed a significant cross-sectional association between higher MD adherence scores (as a continuous variable) and overall PF (d = 0.45; 95% CI: 0.14, 0.75; I2 = 91.0%, n = 6). The pooled ORs from cross-sectional data showed that high adherence to MD was associated with higher cardiorespiratory fitness (OR: 2.26; 95% CI: 2.06, 2.47; I2 = 0%, n = 4), musculoskeletal fitness (OR: 1.26; 95% CI: 1.05, 1.47; I2 = 61.4%, n = 13), and overall PF (OR: 1.44; 95% CI: 1.20, 1.68; I2 = 83.2%, n = 17) than low adherence to MD (reference category: 1). Pooled ORs from prospective cohort studies (3- to 12-y follow-up) showed that high adherence to MD was associated with higher musculoskeletal fitness (OR: 1.20; 95% CI: 1.01, 1.38; I2 = 0%, n = 4) and overall PF (OR: 1.14; 95% CI: 1.02, 1.26; I2 = 9.7%, n = 7) than low adherence to MD (reference category: 1). Conversely, no significant association was observed between MD and motor fitness. High adherence to MD was associated with higher PF levels, a crucial marker of health status throughout adulthood. This trial was registered at PROSPERO as CRD42022308259.
Collapse
Affiliation(s)
- Bruno Bizzozero-Peroni
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain,Instituto Superior de Educación Física, Universidad de la República, Rivera, Uruguay,Grupo de Investigación en Análisis del Rendimiento Humano, Universidad de la República, Rivera, Uruguay
| | | | - Vicente Martínez-Vizcaíno
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | | | - José F López-Gil
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
| | - Valentina Díaz-Goñi
- Grupo de Investigación en Análisis del Rendimiento Humano, Universidad de la República, Rivera, Uruguay,Instituto Superior de Educación Física, Universidad de la República, Maldonado, Uruguay
| | - Iván Cavero-Redondo
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Arthur E Mesas
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain,Postgraduate Program in Public Health, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
24
|
Salucci S, Bartoletti-Stella A, Bavelloni A, Aramini B, Blalock WL, Fabbri F, Vannini I, Sambri V, Stella F, Faenza I. Extra Virgin Olive Oil (EVOO), a Mediterranean Diet Component, in the Management of Muscle Mass and Function Preservation. Nutrients 2022; 14:nu14173567. [PMID: 36079827 PMCID: PMC9459997 DOI: 10.3390/nu14173567] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 12/25/2022] Open
Abstract
Aging results in a progressive decline in skeletal muscle mass, strength and function, a condition known as sarcopenia. This pathological condition is due to multifactorial processes including physical inactivity, inflammation, oxidative stress, hormonal changes, and nutritional intake. Physical therapy remains the standard approach to treat sarcopenia, although some interventions based on dietary supplementation are in clinical development. In this context, thanks to its known anti-inflammatory and antioxidative properties, there is great interest in using extra virgin olive oil (EVOO) supplementation to promote muscle mass and health in sarcopenic patients. To date, the molecular mechanisms responsible for the pathological changes associated with sarcopenia remain undefined; however, a complete understanding of the signaling pathways that regulate skeletal muscle protein synthesis and their behavior during sarcopenia appears vital for defining how EVOO might attenuate muscle wasting during aging. This review highlights the main molecular players that control skeletal muscle mass, with particular regard to sarcopenia, and discusses, based on the more recent findings, the potential of EVOO in delaying/preventing loss of muscle mass and function, with the aim of stimulating further research to assess dietary supplementation with EVOO as an approach to prevent or delay sarcopenia in aging individuals.
Collapse
Affiliation(s)
- Sara Salucci
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
- Correspondence:
| | - Anna Bartoletti-Stella
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine-DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, 47121 Forlì, Italy
| | - William L. Blalock
- “Luigi Luca Cavalli-Sforza” Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Ivan Vannini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Vittorio Sambri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
- Unit of Microbiology, Greater Romagna Hub Laboratory, 47522 Pievesestina, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine-DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, 47121 Forlì, Italy
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
25
|
Chen M, Wang Y, Deng S, Lian Z, Yu K. Skeletal muscle oxidative stress and inflammation in aging: Focus on antioxidant and anti-inflammatory therapy. Front Cell Dev Biol 2022; 10:964130. [PMID: 36111339 PMCID: PMC9470179 DOI: 10.3389/fcell.2022.964130] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/10/2022] [Indexed: 12/06/2022] Open
Abstract
With aging, the progressive loss of skeletal muscle will have negative effect on multiple physiological parameters, such as exercise, respiration, thermoregulation, and metabolic homeostasis. Accumulating evidence reveals that oxidative stress and inflammation are the main pathological characteristics of skeletal muscle during aging. Here, we focus on aging-related sarcopenia, summarize the relationship between aging and sarcopenia, and elaborate on aging-mediated oxidative stress and oxidative damage in skeletal muscle and its critical role in the occurrence and development of sarcopenia. In addition, we discuss the production of excessive reactive oxygen species in aging skeletal muscle, which reduces the ability of skeletal muscle satellite cells to participate in muscle regeneration, and analyze the potential molecular mechanism of ROS-mediated mitochondrial dysfunction in aging skeletal muscle. Furthermore, we have also paid extensive attention to the possibility and potential regulatory pathways of skeletal muscle aging and oxidative stress mediate inflammation. Finally, in response to the abnormal activity of oxidative stress and inflammation during aging, we summarize several potential antioxidant and anti-inflammatory strategies for the treatment of sarcopenia, which may provide beneficial help for improving sarcopenia during aging.
Collapse
Affiliation(s)
- Mingming Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiyi Wang
- Zhejiang A&F University, Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Lin’an, China
| | - Shoulong Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Zhengxing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zhengxing Lian, ; Kun Yu,
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zhengxing Lian, ; Kun Yu,
| |
Collapse
|
26
|
Nunes EA, Stokes T, McKendry J, Currier BS, Phillips SM. Disuse-induced skeletal muscle atrophy in disease and non-disease states in humans: mechanisms, prevention, and recovery strategies. Am J Physiol Cell Physiol 2022; 322:C1068-C1084. [PMID: 35476500 DOI: 10.1152/ajpcell.00425.2021] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Decreased skeletal muscle contractile activity (disuse) or unloading leads to muscle mass loss, also known as muscle atrophy. The balance between muscle protein synthesis (MPS) and muscle protein breakdown (MPB) is the primary determinant of skeletal muscle mass. A reduced mechanical load on skeletal muscle is one of the main external factors leading to muscle atrophy. However, endocrine and inflammatory factors can act synergistically in catabolic states, amplifying the atrophy process and accelerating its progression. Additionally, older individuals display aging-induced anabolic resistance, which can predispose this population to more pronounced effects when exposed to periods of reduced physical activity or mechanical unloading. Different cellular mechanisms contribute to the regulation of muscle protein balance during skeletal muscle atrophy. This review summarizes the effects of muscle disuse on muscle protein balance and the molecular mechanisms involved in muscle atrophy in the absence or presence of disease. Finally, a discussion of the current literature describing efficient strategies to prevent or improve the recovery from muscle atrophy is also presented.
Collapse
Affiliation(s)
- Everson A Nunes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.,Laboratory of Investigation of Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Brad S Currier
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
27
|
Felice F, Cesare MM, Fredianelli L, De Leo M, Conti V, Braca A, Di Stefano R. Effect of Tomato Peel Extract Grown under Drought Stress Condition in a Sarcopenia Model. Molecules 2022; 27:molecules27082563. [PMID: 35458760 PMCID: PMC9031685 DOI: 10.3390/molecules27082563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Tomatoes and their derivates represent an important source of natural biologically active components. The present study aims to investigate the protective effect of tomato peel extracts, grown in normal (RED-Ctr) or in drought stress (RED-Ds) conditions, on an experimental model of sarcopenia. The phenolic profile and total polyphenols content (TPC) of RED-Ctr and RED-Ds were determined by Ultra High-Performance Liquid Chromatography (UHPLC) analyses coupled to electrospray ionization high-resolution mass spectrometry (ESI-HR-MS). Human skeletal muscle myoblasts (HSMM) were differentiated in myotubes, and sarcopenia was induced by dexamethasone (DEXA) treatment. Differentiation and sarcopenia were evaluated by both real-time PCR and immunofluorescent techniques. Data show that myosin heavy chain 2 (MYH2), troponin T (TNNT1), and miogenin (MYOG) were expressed in differentiated myotubes. 5 μg Gallic Acid Equivalent (GAE/mL) of TPC from RED-Ds extract significantly reduced muscle atrophy induced by DEXA. Moreover, Forkhead BoxO1 (FOXO1) expression, involved in cell atrophy, was significantly decreased by RED-Ds extract. The protective effect of tomato peel extracts depended on their qualitative polyphenolic composition, resulting effectively in the in vitro model of sarcopenia.
Collapse
Affiliation(s)
- Francesca Felice
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56100 Pisa, Italy;
- Correspondence:
| | - Maria Michela Cesare
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; (M.M.C.); (V.C.)
| | - Luca Fredianelli
- Institute for Chemical-Physical Processes of the Italian Research Council (CNR-IPCF), Via Moruzzi 1, 56100 Pisa, Italy;
| | - Marinella De Leo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (M.D.L.); (A.B.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- CISUP, Centre for Instrumentation Sharing, University of Pisa, 56126 Pisa, Italy
| | - Veronica Conti
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; (M.M.C.); (V.C.)
| | - Alessandra Braca
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (M.D.L.); (A.B.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- CISUP, Centre for Instrumentation Sharing, University of Pisa, 56126 Pisa, Italy
| | - Rossella Di Stefano
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56100 Pisa, Italy;
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (M.D.L.); (A.B.)
| |
Collapse
|
28
|
Kim JH, Lee H, Kim JM, Lee BJ, Kim IJ, Pak K, Jeon YK, Kim K. Effect of oligonol, a lychee-derived polyphenol, on skeletal muscle in ovariectomized rats by regulating body composition, protein turnover, and mitochondrial quality signaling. Food Sci Nutr 2022; 10:1184-1194. [PMID: 35432979 PMCID: PMC9007287 DOI: 10.1002/fsn3.2750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
Oligonol is a low‐molecular‐weight polyphenol product derived from lychee (Litchi chinensis Sonn.) fruits. This study was focused on the effects of oligonol on the skeletal muscle of ovariectomized rats. We randomly divided female Sprague–Dawley rats into three groups: a sham surgery control group (Sham), an ovariectomy (OVX) group, and an OVX group treated with oligonol (OVX + Oligonol). Oligonol was intraperitoneally administrated at 30 mg/kg daily for 6 weeks. Oligonol treatment after OVX decreased body weight and fat mass, regulated lipid metabolism in skeletal muscle, without loss of lean mass and bone. Bone turnover was not affected by oligonol. In protein synthesis and degradation, oligonol increased the levels of the mammalian target of rapamycin and its downstream targets, eukaryotic initiation factor 4E‐binding protein 1 and 70‐kDa ribosomal protein S6 kinase, and it stimulated the expression of ubiquitin‐proteasome pathway proteins, the forkhead box transcription factors of the class O and the muscle ring‐finger protein‐1. Moreover, oligonol treatment enhanced mitochondrial biogenesis and dynamics. Thus, our results indicated that oligonol treatment had beneficial effects on the skeletal muscle in an estrogen‐deficiency rat model.
Collapse
Affiliation(s)
- Jeong Hun Kim
- Biomedical Research Institute Pusan National University Hospital Busan Korea
| | - Hyangkyu Lee
- Biobehavioral Research Centre Mo-Im Kim Nursing Research Institute College of Nursing Yonsei University Seoul Korea
| | - Ji Min Kim
- Pusan National University Medical Research Institute Pusan National University School of Medicine Pusan National University Yangsan Korea
| | - Byung-Joo Lee
- Department of Otorhinolaryngology-Head and Neck Surgery Pusan National University School of Medicine Pusan National University Busan Korea
| | - In-Joo Kim
- Department of Nuclear Medicine and Biomedical Research Institute Pusan National University Hospital Busan Korea
| | - Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute Pusan National University Hospital Busan Korea
| | - Yun Kyung Jeon
- Department of Internal Medicine and Biomedical Research Institute Pusan National University Hospital Busan Korea
| | - Keunyoung Kim
- Department of Nuclear Medicine and Biomedical Research Institute Pusan National University Hospital Busan Korea
| |
Collapse
|
29
|
Functional characterization of GNE mutations prevalent in Asian subjects with GNE myopathy, an ultra-rare neuromuscular disorder. Biochimie 2022; 199:36-45. [DOI: 10.1016/j.biochi.2022.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 12/19/2022]
|
30
|
Effects of Dietary Chlorogenic Acid Supplementation Derived from Lonicera macranthoides Hand-Mazz on Growth Performance, Free Amino Acid Profile, and Muscle Protein Synthesis in a Finishing Pig Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6316611. [PMID: 35313639 PMCID: PMC8934221 DOI: 10.1155/2022/6316611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 12/22/2022]
Abstract
Chlorogenic acid (CGA), as one of the richest polyphenol compounds in nature, has broad applications in many fields due to its various biological properties. However, initial data on the effects of dietary CGA on protein synthesis and related basal metabolic activity has rarely been reported. The current study is aimed at (1) determining whether dietary CGA supplementation improves the growth performance and carcass traits, (2) assessing whether dietary CGA alters the free amino acid profile, and (3) verifying whether dietary CGA promotes muscle protein synthesis in finishing pigs. Thirty-two (Large × White × Landrace) finishing barrows with an average initial body weight of
kg were randomly allotted to 4 groups and fed diets supplemented with 0, 0.02%, 0.04%, and 0.08% CGA, respectively. The results indicated that, compared with the control group, dietary supplementation with 0.04% CGA slightly stimulated the growth performance of pigs, whereas no significant correlation was noted between the dietary CGA levels and animal growth (
). Furthermore, the carcass traits of pigs were improved by 0.04% dietary CGA (
). In addition, dietary CGA significantly improved the serum free amino acid profiles of pigs (
), while 0.04% dietary CGA promoted more amino acids to translocate to skeletal muscles (
). The relative mRNA expression levels of SNAT2 in both longissimus dorsi (LD) and biceps femoris (BF) muscles were augmented in the 0.02% and 0.04% groups (
), and the LAT1 mRNA expression in the BF muscle was elevated in the 0.02% group (
). We also found that dietary CGA supplementation at the levels of 0.04% or 0.08% promoted the expression of p-Akt and activated the mTOR-S6K1-4EBP1 axis in the LD muscle (
). Besides, the MAFbx mRNA abundance in the 0.02% and 0.04% groups was significantly lower (
). Our results revealed that dietary supplementation with CGA of 0.04% improved the free amino acid profile and enhanced muscle protein biosynthesis in the LD muscle in finishing pigs.
Collapse
|
31
|
Resveratrol-based compounds and neurodegeneration: Recent insight in multitarget therapy. Eur J Med Chem 2022; 233:114242. [DOI: 10.1016/j.ejmech.2022.114242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 01/04/2023]
|
32
|
Li W, Swiderski K, Murphy KT, Lynch GS. Role for Plant-Derived Antioxidants in Attenuating Cancer Cachexia. Antioxidants (Basel) 2022; 11:183. [PMID: 35204066 PMCID: PMC8868096 DOI: 10.3390/antiox11020183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer cachexia is the progressive muscle wasting and weakness experienced by many cancer patients. It can compromise the response to gold standard cancer therapies, impair functional capacity and reduce overall quality of life. Cancer cachexia accounts for nearly one-third of all cancer-related deaths and has no effective treatment. The pathogenesis of cancer cachexia and its progression is multifactorial and includes increased oxidative stress derived from both the tumor and the host immune response. Antioxidants have therapeutic potential to attenuate cancer-related muscle loss, with polyphenols, a group of plant-derived antioxidants, being the most widely investigated. This review describes the potential of these plant-derived antioxidants for treating cancer cachexia.
Collapse
Affiliation(s)
| | | | | | - Gordon S. Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (W.L.); (K.S.); (K.T.M.)
| |
Collapse
|
33
|
Zbinden-Foncea H, Castro-Sepulveda M, Fuentes J, Speisky H. Effect of epicatechin on skeletal muscle. Curr Med Chem 2021; 29:1110-1123. [DOI: 10.2174/0929867329666211217100020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022]
Abstract
:
Loss of skeletal muscle (SkM) quality is associated with different clinical conditions such as aging, diabetes, obesity, cancer and heart failure. Nutritional research has focused on identifying naturally occurring molecules that mitigate the loss of SkM quality induced by a pathology or syndrome. In this context, although few human studies have been conducted, Epicatechin (Epi) is a prime candidate that may positively affect SkM quality by its potential ability to mitigate muscle mass loss. This seems to be a consequence of its antioxidant, anti-inflammatory properties, and its stimulation of mitochondrial biogenesis to increase myogenic differentiation, as well as its modulation of key proteins involved in SkM structure, function, metabolism, and growth. In conclusion, the Epi could prevent, mitigate, delay, and even treat muscle-related disorders caused by aging and diseases, however, studies in humans are needed.
Collapse
Affiliation(s)
| | | | - Jocelyn Fuentes
- School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Hernan Speisky
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago, Chile
| |
Collapse
|
34
|
Kwon IS, Park DS, Shin HC, Seok MG, Oh JK. Effects of marine oligomeric polyphenols on body composition and physical ability of elderly individuals with sarcopenia: a pilot study. Phys Act Nutr 2021; 25:1-7. [PMID: 34727682 PMCID: PMC8580584 DOI: 10.20463/pan.2021.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE We aimed to identify the effects of marine oligomeric polyphenol (MOP) intake in elderly individuals with sarcopenia. METHODS Older adults (aged 65 years or older) were recruited based on the diagnostic criterion for sarcopenia and were randomly assigned to the MOP intake group (n=10) or the placebo (PBO) intake group (n=10). To determine the effect of MOP intake received for four weeks, the pre- and post-intake body composition (weight, skeletal muscle mass, and bone density) and senior fitness tests were assessed. RESULTS Our results showed there were significant differences in the skeletal muscle mass (p=0.039), bone density (p=0.020), fat-free mass index (p=0.026), and 2.4 m up and go test (p=0.001) between pretest and post-test. There was a significant difference between the pre-test and post-test and an interaction effect for the one-leg stand test (p=0.010 and p=0.049, respectively). However, there were no significant differences in body fat percentage, calf circumference, grip strength, or the chair rise test. CONCLUSION Some variables exhibited significant differences in the pre- and post-assessments, and there was an interaction effect for the one-leg stand. However, this was insufficient to prove the effectiveness of MOP intake in improving sarcopenia. Therefore, additional studies are essential to examine the effects of MOP intake and exercise intervention on the body composition and fitness of patients over a longer period.
Collapse
Affiliation(s)
- Il-Su Kwon
- Department of Health and Exercise Science, Korea National Sport University, Seoul, Republic of Korea
| | - Deuk-Su Park
- Department of Health and Exercise Science, Korea National Sport University, Seoul, Republic of Korea
| | | | - Myung-Gyu Seok
- Department of Physical Education, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Keun Oh
- Department of Health and Exercise Science, Korea National Sport University, Seoul, Republic of Korea
| |
Collapse
|
35
|
Sahin E, Orhan C, Erten F, Er B, Acharya M, Morde AA, Padigaru M, Sahin K. Next-Generation Ultrasol Curcumin Boosts Muscle Endurance and Reduces Muscle Damage in Treadmill-Exhausted Rats. Antioxidants (Basel) 2021; 10:antiox10111692. [PMID: 34829562 PMCID: PMC8614663 DOI: 10.3390/antiox10111692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin positively affects performance during exercise and subsequent recovery. However, curcumin has limited bioavailability unless consumed in larger doses. In the current study, we examined the impact of a new formulation of curcumin, Next-Generation Ultrasol Curcumin (NGUC), which is relatively more bioavailable than natural curcumin on exhaustion time, grip strength, muscle damage parameters, and serum and muscle proteins. A total of 28 rats were randomly grouped as control (C, non-supplemented), exercise (E, non-supplemented), E+NGUC100 (supplemented with 100 mg/kg BW NGUC), and E+NGUC200 (supplemented with 200 mg/kg NGUC). Grip strength and exhaustion time were increased with NGUC supplementation (p < 0.0001). Creatine kinase (CK), lactate dehydrogenase (LDH), lactic acid (LA), myoglobin, malondialdehyde (MDA) concentrations were reduced in serum, and muscle tissue in NGUC supplemented groups (p < 0.05). In contrast, NGUC supplementation elevated the antioxidant enzyme levels compared to the non-supplemented exercise group (p < 0.01). Additionally, inflammatory cytokines were inhibited with NGUC administration (p < 0.05). NGUC decreased PGC-1α, p-4E-BP1, p-mTOR, MAFbx, and MuRF1 proteins in muscle tissue (p < 0.05). These results indicate that NGUC boosts exercise performance while reducing muscle damage by targeting antioxidant, anti-inflammatory, and muscle mass regulatory pathways.
Collapse
Affiliation(s)
- Emre Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Bingol University, Bingol 12000, Turkey;
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey;
| | - Fusun Erten
- Department of Veterinary Science, Pertek Sakine Genc Vocational School, Munzur University, Tunceli 62500, Turkey;
| | - Besir Er
- Department of Biology, Faculty of Science, Firat University, Elazig 23119, Turkey;
| | - Manutosh Acharya
- Research and Development, OmniActive Health Technologies, Mumbai 400001, India; (M.A.); (A.A.M.); (M.P.)
| | - Abhijeet A. Morde
- Research and Development, OmniActive Health Technologies, Mumbai 400001, India; (M.A.); (A.A.M.); (M.P.)
| | - Muralidhara Padigaru
- Research and Development, OmniActive Health Technologies, Mumbai 400001, India; (M.A.); (A.A.M.); (M.P.)
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey;
- Correspondence: ; Tel.: +90-532-747-3506 or +90-424-237-0000 (ext. 3938)
| |
Collapse
|
36
|
Polyphenols and Their Effects on Muscle Atrophy and Muscle Health. Molecules 2021; 26:molecules26164887. [PMID: 34443483 PMCID: PMC8398525 DOI: 10.3390/molecules26164887] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle atrophy is the decrease in muscle mass and strength caused by reduced protein synthesis/accelerated protein degradation. Various conditions, such as denervation, disuse, aging, chronic diseases, heart disease, obstructive lung disease, diabetes, renal failure, AIDS, sepsis, cancer, and steroidal medications, can cause muscle atrophy. Mechanistically, inflammation, oxidative stress, and mitochondrial dysfunction are among the major contributors to muscle atrophy, by modulating signaling pathways that regulate muscle homeostasis. To prevent muscle catabolism and enhance muscle anabolism, several natural and synthetic compounds have been investigated. Recently, polyphenols (i.e., natural phytochemicals) have received extensive attention regarding their effect on muscle atrophy because of their potent antioxidant and anti-inflammatory properties. Numerous in vitro and in vivo studies have reported polyphenols as strongly effective bioactive molecules that attenuate muscle atrophy and enhance muscle health. This review describes polyphenols as promising bioactive molecules that impede muscle atrophy induced by various proatrophic factors. The effects of each class/subclass of polyphenolic compounds regarding protection against the muscle disorders induced by various pathological/physiological factors are summarized in tabular form and discussed. Although considerable variations in antiatrophic potencies and mechanisms were observed among structurally diverse polyphenolic compounds, they are vital factors to be considered in muscle atrophy prevention strategies.
Collapse
|
37
|
Salucci S, Bartoletti Stella A, Battistelli M, Burattini S, Bavelloni A, Cocco LI, Gobbi P, Faenza I. How Inflammation Pathways Contribute to Cell Death in Neuro-Muscular Disorders. Biomolecules 2021; 11:1109. [PMID: 34439778 PMCID: PMC8391499 DOI: 10.3390/biom11081109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Neuro-muscular disorders include a variety of diseases induced by genetic mutations resulting in muscle weakness and waste, swallowing and breathing difficulties. However, muscle alterations and nerve depletions involve specific molecular and cellular mechanisms which lead to the loss of motor-nerve or skeletal-muscle function, often due to an excessive cell death. Morphological and molecular studies demonstrated that a high number of these disorders seem characterized by an upregulated apoptosis which significantly contributes to the pathology. Cell death involvement is the consequence of some cellular processes that occur during diseases, including mitochondrial dysfunction, protein aggregation, free radical generation, excitotoxicity and inflammation. The latter represents an important mediator of disease progression, which, in the central nervous system, is known as neuroinflammation, characterized by reactive microglia and astroglia, as well the infiltration of peripheral monocytes and lymphocytes. Some of the mechanisms underlying inflammation have been linked to reactive oxygen species accumulation, which trigger mitochondrial genomic and respiratory chain instability, autophagy impairment and finally neuron or muscle cell death. This review discusses the main inflammatory pathways contributing to cell death in neuro-muscular disorders by highlighting the main mechanisms, the knowledge of which appears essential in developing therapeutic strategies to prevent the consequent neuron loss and muscle wasting.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (L.I.C.); (I.F.)
| | - Anna Bartoletti Stella
- Department of Diagnostic Experimental and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy;
| | - Michela Battistelli
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
| | - Sabrina Burattini
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Lucio Ildebrando Cocco
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (L.I.C.); (I.F.)
| | - Pietro Gobbi
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (L.I.C.); (I.F.)
| |
Collapse
|
38
|
Nutraceuticals in the Prevention and Treatment of the Muscle Atrophy. Nutrients 2021; 13:nu13061914. [PMID: 34199575 PMCID: PMC8227811 DOI: 10.3390/nu13061914] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Imbalance of protein homeostasis, with excessive protein degradation compared with protein synthesis, leads to the development of muscle atrophy resulting in a decrease in muscle mass and consequent muscle weakness and disability. Potential triggers of muscle atrophy include inflammation, malnutrition, aging, cancer, and an unhealthy lifestyle such as sedentariness and high fat diet. Nutraceuticals with preventive and therapeutic effects against muscle atrophy have recently received increasing attention since they are potentially more suitable for long-term use. The implementation of nutraceutical intervention might aid in the development and design of precision medicine strategies to reduce the burden of muscle atrophy. In this review, we will summarize the current knowledge on the importance of nutraceuticals in the prevention of skeletal muscle mass loss and recovery of muscle function. We also highlight the cellular and molecular mechanisms of these nutraceuticals and their possible pharmacological use, which is of great importance for the prevention and treatment of muscle atrophy.
Collapse
|
39
|
Sgrò P, Ceci R, Lista M, Patrizio F, Sabatini S, Felici F, Sacchetti M, Bazzucchi I, Duranti G, Di Luigi L. Quercetin Modulates IGF-I and IGF-II Levels After Eccentric Exercise-Induced Muscle-Damage: A Placebo-Controlled Study. Front Endocrinol (Lausanne) 2021; 12:745959. [PMID: 34803913 PMCID: PMC8595302 DOI: 10.3389/fendo.2021.745959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Prolonged or unaccustomed eccentric exercise may cause muscle damage and depending from its extent, this event negatively affects physical performance. OBJECTIVES The aim of the present investigation was to evaluate, in humans, the effect of the flavonoid quercetin on circulating levels of the anabolic insulin-like growth factor 1 (IGF-I) and insulin-like growth factor 2 (IGF-II), produced during the recovery period after an eccentric-induced muscle damage (EIMD). METHODS A randomized, double-blind, crossover study has been performed; twelve young men ingested quercetin (1 g/day) or placebo for 14 days and then underwent an eccentric-induced muscle damaging protocol. Blood samples were collected, and cell damage markers [creatine kinase (CK), lactate dehydrogenase (LDH) and myoglobin (Mb)], the inflammatory responsive interleukin 6 (IL-6), IGF-I and IGF-II levels were evaluated before the exercise and at different recovery times from 24 hours to 7 days after EIMD. RESULTS We found that, in placebo treatment the increase in IGF-I (72 h) preceded IGF-II increase (7 d). After Q supplementation there was a more marked increase in IGF-I levels and notably, the IGF-II peak was found earlier, compared to placebo, at the same time of IGF-I (72 h). Quercetin significantly reduced plasma markers of cell damage [CK (p<0.005), LDH (p<0.001) and Mb (p<0.05)] and the interleukin 6 level [IL-6 (p<0.05)] during recovery period following EIMD compared to placebo. CONCLUSIONS Our data are encouraging about the use of quercetin as dietary supplementation strategy to adopt in order to mitigate and promote a faster recovery after eccentric exercise as suggested by the increase in plasma levels of the anabolic factors IGF-I and IGF-II.
Collapse
Affiliation(s)
- Paolo Sgrò
- Endocrinology Unit - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
- *Correspondence: Paolo Sgrò, ; Guglielmo Duranti,
| | - Roberta Ceci
- Laboratory of Biochemistry of Movement - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| | - Marco Lista
- Endocrinology Unit - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| | - Federica Patrizio
- Laboratory of Exercise Physiology - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| | - Stefania Sabatini
- Laboratory of Biochemistry of Movement - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| | - Francesco Felici
- Laboratory of Exercise Physiology - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| | - Massimo Sacchetti
- Laboratory of Exercise Physiology - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| | - Ilenia Bazzucchi
- Laboratory of Exercise Physiology - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| | - Guglielmo Duranti
- Laboratory of Biochemistry of Movement - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
- *Correspondence: Paolo Sgrò, ; Guglielmo Duranti,
| | - Luigi Di Luigi
- Endocrinology Unit - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| |
Collapse
|
40
|
Ilich JZ. Nutritional and Behavioral Approaches to Body Composition and Low-Grade Chronic Inflammation Management for Older Adults in the Ordinary and COVID-19 Times. Nutrients 2020; 12:E3898. [PMID: 33419325 PMCID: PMC7767148 DOI: 10.3390/nu12123898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
As more insight is gained into personalized health care, the importance of personalized nutritional and behavioral approaches is even more relevant in the COVID-19 era, in addition to the need for further elucidation regarding several diseases/conditions. One of these concerning body composition (in this context; bone, lean and adipose tissue) is osteosarcopenic adiposity (OSA) syndrome. OSA occurs most often with aging, but also in cases of some chronic diseases and is exacerbated with the presence of low-grade chronic inflammation (LGCI). OSA has been associated with poor nutrition, metabolic disorders and diminished functional abilities. This paper addresses various influences on OSA and LGCI, as well as their mutual action on each other, and provides nutritional and behavioral approaches which could be personalized to help with either preventing or managing OSA and LGCI in general, and specifically in the time of the COVID-19 pandemic. Addressed in more detail are nutritional recommendations for and roles of macro- and micronutrients and bioactive food components; the microbiome; and optimal physical activity regimens. Other issues, such as food insecurity and nutritional inadequacy, circadian misalignment and shift workers are addressed as well. Since there is still a lack of longer-term primary studies in COVID-19 patients (either acute or recovered) and interventions for OSA improvement, this discussion is based on the existing knowledge, scientific hypotheses and observations derived from similar conditions or studies just being published at the time of this writing.
Collapse
Affiliation(s)
- Jasminka Z Ilich
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
41
|
Di Filippo ES, Giampietro L, De Filippis B, Balaha M, Ferrone V, Locatelli M, Pietrangelo T, Tartaglia A, Amoroso R, Fulle S. Synthesis and Biological Evaluation of Halogenated E-Stilbenols as Promising Antiaging Agents. Molecules 2020; 25:E5770. [PMID: 33297520 PMCID: PMC7731283 DOI: 10.3390/molecules25235770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
The increased risk of illness and disability is related to the age inevitable biological changes. Oxidative stress is a proposed mechanism for many age-related diseases. The crucial importance of polyphenol pharmacophore for aging process is largely described thanks to its effects on concentrations of reactive oxygen species. Resveratrol (3,5,4'-trihydroxy-trans-stilbene, RSV) plays a critical role in slowing the aging process but has a poor bioavailabity after oral intake. In this present work, a series of RSV derivatives was designed, synthesized, and evaluated as potential antioxidant agents. These derivatives contain substituents with different electronic and steric properties in different positions of aromatic rings. This kind of substituents affects the activity and the bioavailability of these compounds compared with RSV used as reference compound. Studies of Log P values demonstrated that the introduction of halogens gives the optimum lipophilicity to be considered promising active agents. Among them, compound 6 showed the higher antioxidant activity than RSV. The presence of trifluoromethyl group together with a chlorine atom increased the antioxidant activity compared to RSV.
Collapse
Affiliation(s)
- Ester Sara Di Filippo
- Department of Neuroscience Imaging and Clinical Sciences, Interuniversity Institute of Myology, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (E.S.D.F.); (T.P.); (S.F.)
| | - Letizia Giampietro
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (L.G.); (M.B.); (V.F.); (M.L.); (A.T.); (R.A.)
| | - Barbara De Filippis
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (L.G.); (M.B.); (V.F.); (M.L.); (A.T.); (R.A.)
| | - Marwa Balaha
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (L.G.); (M.B.); (V.F.); (M.L.); (A.T.); (R.A.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Vincenzo Ferrone
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (L.G.); (M.B.); (V.F.); (M.L.); (A.T.); (R.A.)
| | - Marcello Locatelli
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (L.G.); (M.B.); (V.F.); (M.L.); (A.T.); (R.A.)
| | - Tiziana Pietrangelo
- Department of Neuroscience Imaging and Clinical Sciences, Interuniversity Institute of Myology, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (E.S.D.F.); (T.P.); (S.F.)
| | - Angela Tartaglia
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (L.G.); (M.B.); (V.F.); (M.L.); (A.T.); (R.A.)
| | - Rosa Amoroso
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (L.G.); (M.B.); (V.F.); (M.L.); (A.T.); (R.A.)
| | - Stefania Fulle
- Department of Neuroscience Imaging and Clinical Sciences, Interuniversity Institute of Myology, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (E.S.D.F.); (T.P.); (S.F.)
| |
Collapse
|
42
|
Kim C, Hwang JK. Flavonoids: nutraceutical potential for counteracting muscle atrophy. Food Sci Biotechnol 2020; 29:1619-1640. [PMID: 33282430 PMCID: PMC7708614 DOI: 10.1007/s10068-020-00816-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle plays a vital role in the conversion of chemical energy into physical force. Muscle atrophy, characterized by a reduction in muscle mass, is a symptom of chronic disease (cachexia), aging (sarcopenia), and muscle disuse (inactivity). To date, several trials have been conducted to prevent and inhibit muscle atrophy development; however, few interventions are currently available for muscle atrophy. Recently, food ingredients, plant extracts, and phytochemicals have received attention as treatment sources to prevent muscle wasting. Flavonoids are bioactive polyphenol compounds found in foods and plants. They possess diverse biological activities, including anti-obesity, anti-diabetes, anti-cancer, anti-oxidation, and anti-inflammation. The effects of flavonoids on muscle atrophy have been investigated by monitoring molecular mechanisms involved in protein turnover, mitochondrial activity, and myogenesis. This review summarizes the reported effects of flavonoids on sarcopenia, cachexia, and disuse muscle atrophy, thus, providing an insight into the understanding of the associated molecular mechanisms.
Collapse
Affiliation(s)
- Changhee Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Jae-Kwan Hwang
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
43
|
Starowicz M, Piskuła M, Achrem–Achremowicz B, Zieliński H. Phenolic Compounds from Apples: Reviewing their Occurrence, Absorption, Bioavailability, Processing, and Antioxidant Activity – a Review. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/127635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
44
|
Argentieri MP, Madeo M, Avato P, Iriti M, Vitalini S. Polyphenol content and bioactivity of Achillea moschata from the Italian and Swiss Alps. ACTA ACUST UNITED AC 2020; 75:57-64. [PMID: 32074078 DOI: 10.1515/znc-2019-0214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/21/2020] [Indexed: 11/15/2022]
Abstract
Achillea moschata Wulfen, which grows in the Alps, is extensively used by local people for its medicinal properties. Two studied samples were collected, at the flowering stage, in Val Mustair (Switzerland) and Valchiavenna (Italy), respectively. The aerial parts were defatted with petroleum ether (PET) and successively extracted with dichloromethane (DCM) and methanol (MeOH). High-performance liquid chromatography and electrospray ionization-tandem mass spectrometry analyses of the methanolic extracts evidenced that flavonoids were the predominant compounds compared to phenolic acids in both samples (89.5 vs. 33.0 μg/mg DW in A. moschata Valchiavenna and 82.5 vs. 40.0 μg/mg DW in A. moschata Val Mustair). Among flavonoid derivatives, luteolin and apigenin were the predominant aglycones, free and glycosilated. The A. moschata Valchiavenna extract was characterized by apigenin as the main compound (60.4 μg/mg DW), while A. moschata Val Mustair was characterized by its derivative apigenin 7-O-glucoside (44.7 μg/mg DW). The antioxidant activity of all the obtained extracts was tested by the DPPH (2,2-diphenyl-picryl hydrazyl) and ABTS (2,21-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) methods, which showed their increasing scavenger capacity in relation to extract polarity (PET extract < DCM extract < MeOH extract). The extracts were also investigated against three Gram-positive (Bacillus cereus, Enterococcus faecalis and Staphylococcus aureus) and three Gram-negative (Escherichia coli, Proteus mirabilis and Pseudomonas aeruginosa) bacterial species using the disc diffusion assay. DMC and PET were the most active extracts (inhibition diameter: ≥12 mm).
Collapse
Affiliation(s)
- Maria Pia Argentieri
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari "Aldo Moro," via Orabona 4, 70125 Bari, Italy
| | - Moira Madeo
- Department of Pharmaceutical Biology, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Pinarosa Avato
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari "Aldo Moro," via Orabona 4, 70125 Bari, Italy
| | - Marcello Iriti
- Università degli Studi di Milano, Department of Agricultural and Environmental Sciences, Via G. Celoria 2, 20133, Milan, Italy
| | - Sara Vitalini
- Università degli Studi di Milano, Department of Agricultural and Environmental Sciences, Via G. Celoria 2, 20133, Milan, Italy
| |
Collapse
|
45
|
Bazzucchi I, Patrizio F, Ceci R, Duranti G, Sabatini S, Sgrò P, Di Luigi L, Sacchetti M. Quercetin Supplementation Improves Neuromuscular Function Recovery from Muscle Damage. Nutrients 2020; 12:nu12092850. [PMID: 32957571 PMCID: PMC7551500 DOI: 10.3390/nu12092850] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
This study was aimed at investigating whether quercetin (Q) may improve the recovery of neuromuscular function and biochemical parameters in the 7 days following an eccentric exercise-induced muscle damage (EEIMD). Sixteen men (25.9 ± 3.3 y) ingested Q (1000 mg/day) or placebo (PLA) for 14 days following a double-blind crossover study design. A neuromuscular (NM) test was performed pre–post, 24 h, 48 h, 72 h, 96 h and 7 days after an intense eccentric exercise. The force–velocity relationship of the elbow flexor muscles and their maximal voluntary isometric contraction (MVIC) were recorded simultaneously to the electromyographic signals (EMG). Pain, joint angle, arm circumference, plasma creatine kinase (CK) and lactate-dehydrogenase (LDH) were also assessed. The results showed that Q supplementation significantly attenuated the strength loss compared to PLA. During the recovery, force–velocity relationship and mean fibers conduction velocity (MFCV) persisted significantly less when participants consumed PLA rather than Q, especially at the highest angular velocities (p < 0.02). A greater increase in biomarkers of damage was also evident in PLA with respect to Q. Q supplementation for 14 days seems able to ameliorate the recovery of eccentric exercise-induced weakness, neuromuscular function impairment and biochemical parameters increase probably due to its strong anti-inflammatory and antioxidant action.
Collapse
Affiliation(s)
- Ilenia Bazzucchi
- Laboratory of Exercise Physiology, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (F.P.); (M.S.)
- Correspondence: ; Tel.: +39-06-36-733-291
| | - Federica Patrizio
- Laboratory of Exercise Physiology, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (F.P.); (M.S.)
| | - Roberta Ceci
- Laboratory of Biochemistry of Movement, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (R.C.); (G.D.); (S.S.)
| | - Guglielmo Duranti
- Laboratory of Biochemistry of Movement, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (R.C.); (G.D.); (S.S.)
| | - Stefania Sabatini
- Laboratory of Biochemistry of Movement, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (R.C.); (G.D.); (S.S.)
| | - Paolo Sgrò
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (P.S.); (L.D.L.)
| | - Luigi Di Luigi
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (P.S.); (L.D.L.)
| | - Massimo Sacchetti
- Laboratory of Exercise Physiology, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (F.P.); (M.S.)
| |
Collapse
|
46
|
Shen Y, Zhang Q, Huang Z, Zhu J, Qiu J, Ma W, Yang X, Ding F, Sun H. Isoquercitrin Delays Denervated Soleus Muscle Atrophy by Inhibiting Oxidative Stress and Inflammation. Front Physiol 2020; 11:988. [PMID: 32903465 PMCID: PMC7435639 DOI: 10.3389/fphys.2020.00988] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
Although denervated muscle atrophy is common, the underlying molecular mechanism remains unelucidated. We have previously found that oxidative stress and inflammatory response may be early events that trigger denervated muscle atrophy. Isoquercitrin is a biologically active flavonoid with antioxidative and anti-inflammatory properties. The present study investigated the effect of isoquercitrin on denervated soleus muscle atrophy and its possible molecular mechanisms. We found that isoquercitrin was effective in alleviating soleus muscle mass loss following denervation in a dose-dependent manner. Isoquercitrin demonstrated the optimal protective effect at 20 mg/kg/d, which was the dose used in subsequent experiments. To further explore the protective effect of isoquercitrin on denervated soleus muscle atrophy, we analyzed muscle proteolysis via the ubiquitin-proteasome pathway, mitophagy, and muscle fiber type conversion. Isoquercitrin significantly inhibited the denervation-induced overexpression of two muscle-specific ubiquitin ligases—muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx), and reduced the degradation of myosin heavy chains (MyHCs) in the target muscle. Following isoquercitrin treatment, mitochondrial vacuolation and autophagy were inhibited, as evidenced by reduced level of autophagy-related proteins (ATG7, BNIP3, LC3B, and PINK1); slow-to-fast fiber type conversion in the target muscle was delayed via triggering expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α); and the production of reactive oxygen species (ROS) in the target muscle was reduced, which might be associated with the upregulation of antioxidant factors (SOD1, SOD2, NRF2, NQO1, and HO1) and the downregulation of ROS production-related factors (Nox2, Nox4, and DUOX1). Furthermore, isoquercitrin treatment reduced the levels of inflammatory factors—interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α)—in the target muscle and inactivated the JAK/STAT3 signaling pathway. Overall, isoquercitrin may alleviate soleus muscle atrophy and mitophagy and reverse the slow-to-fast fiber type conversion following denervation via inhibition of oxidative stress and inflammatory response. Our study findings enrich the knowledge regarding the molecular regulatory mechanisms of denervated muscle atrophy and provide a scientific basis for isoquercitrin as a protective drug for the prevention and treatment of denervated muscle atrophy.
Collapse
Affiliation(s)
- Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qiuyu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ziwei Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiayi Qiu
- School of Nursing, Nantong University, Nantong, China
| | - Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
47
|
Microencapsulation as a tool to counteract the typical low bioavailability of polyphenols in the management of diabetes. Food Chem Toxicol 2020; 139:111248. [PMID: 32156568 DOI: 10.1016/j.fct.2020.111248] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Polyphenols are secondary metabolites widely distributed in many plant foods, such a tea, coffee, chocolate and fruits. The consumption of these compounds is related to the improvement or amelioration of many diseases, including diabetes. Nevertheless, the great barrier to the therapeutic use of polyphenols is the low bioavailability of these compounds once ingested. For that reason, the encapsulation of polyphenols in different matrices may protect them from digestion and improve their release and subsequent absorption to obtain target-specific health effects. Some studies have reported the beneficial effect of encapsulation to increase both bioavailability and bioaccessibility. However, these works have mostly been carried out in vitro and few studies are specifically addressed at improving diabetes. In the current work, an overview of the knowledge related to nanoparticles and their use in the diabetic condition has been reviewed.
Collapse
|