1
|
Prajapati MK, Mittal A, Panda P. Phytoflavonoids as alternative therapeutic effect for melanoma: Integrative Network pharmacology, molecular dynamics and drug-likeness profiling for lead discovery. Comput Biol Chem 2025; 117:108390. [PMID: 40056707 DOI: 10.1016/j.compbiolchem.2025.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/10/2025]
Abstract
Melanoma, an aggressive skin cancer, poses significant therapeutic challenges due to its resistance to conventional therapies and high metastatic potential. From this perspective, phytoflavonoids from different medicinal and aromatic plants gained attention due to their diverse multimodal anticancer effects with higher antioxidant and anti-inflammatory properties. This study explores phytoflavonoid potency against melanoma via a computer-aided drug design (CADD) platform. Using the core moiety of flavonoids (flavan), four most putative targets, such as cyclin-dependent kinases 1 and 5 (CDK1, CDK5), cell division cycles 25B and 225 C (CDC25B, and CDC225C), have been identified through a network pharmacology approach using TNMplot datasets (GenChip and RNA sequence). Further, 44 phytoflavonoids were selected from extensive literature, and molecular docking studies were carried out against four targets along with standard drugs using AutoDock 4.2 software. Subsequently, physicochemical, toxicity, pharmacokinetics, and drug-ability profiles of phytoflavonoids were predicted. Based on potency and drug-ability, we have selected 'CDK1-naringenin' with the standard drug complex, 'CDK1-dinaciclib,' for molecular dynamic simulation at 100 nanoseconds using GROMACS 2020 software. Based on potency (average docking score: 8.35 kcal/mol.), physicochemical properties (obeyed Lipinski rule of five), toxicity (class-IV), fifty percent lethal dose (2000 mg/kg), bioavailability (0.55), drug-likeness score (0.82), along with ideal pharmacokinetics profiles and higher protein-ligand stability, naringenin is considered as a potential and non-toxic anticancer candidate to be used for melanoma as alternative or complementary agent. The integrative and systematic analyses not only highlight the potential of phytoflavonoids but also select the potential lead from the library within limited resources to accelerate the current anticancer drug discovery process.
Collapse
Affiliation(s)
- Manoj Kumar Prajapati
- NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan 303121, India; Kashi Institute of Pharmacy, Mirzamurad, Varanasi, Uttar Pradesh 221307, India.
| | - Abhilasha Mittal
- NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan 303121, India
| | - Pritipadma Panda
- School of Pharmacy, Kalinga Institute of Industrial Technology Deemed to be University, Patia, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
2
|
Mafi A, Mokhtari Z, Hosseini E, Alimohammadi M, Aarabi MH, Askari G. Effect of Saffron (Crocus sativus) Supplementation on Oxidative Stress, Inflammatory Indices, and Renal and Liver Function Parameters in Patients With Type 2 Diabetes Mellitus: A GRADE-Assessed Systematic Review and Meta-analysis of Randomized Clinical Trials. Nutr Rev 2025; 83:971-987. [PMID: 39657222 DOI: 10.1093/nutrit/nuae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
CONTEXT Clinical investigation has shown that the addition of saffron or crocin to standard antidiabetic medications improves a patient's metabolic profile, oxidative stress (OS), and inflammatory response. Despite a large number of studies examining the impact of saffron supplementation on OS, inflammation, and renal and liver function parameters, no systematic review or meta-analysis has been conducted to compile the outcomes in patients with type 2 diabetes mellitus (T2DM). OBJECTIVE The current systematic review and meta-analysis was performed to investigate the effect of saffron or crocin intake on OS, inflammation, and renal and liver function parameters in patients with T2DM. DATA SOURCES Online databases including PubMed, Scopus, ISI Web of Science, and Cochrane Library were searched up to December 2023. DATA EXTRACTION The mean differences and their respective SDs were extracted. Using a random-effects model, the pooled data were calculated as standardized mean difference (SMD) with 95% CI. DATA ANALYSIS 17 eligible randomized controlled trials were included in this meta-analysis. The pooled findings showed that saffron supplementation remarkably decreased the levels of tumor necrosis factor-α (SMD: -0.37; 95% CI: -0.69 to -0.05; I2 = 40.77%, P = .15), interleukin-6 (IL-6) (SMD: -0.38; 95% CI: -0.65 to -0.10; I2 = 0%, P = .68), and malondialdehyde (MDA) (SMD: -0.36; 95% CI: -0.65 to -0.07; I2= 20.51%, P = .02) compared with the control. In addition, based on subgroup analyses, taking ≥100 mg of saffron daily in individuals with T2DM reduced the serum levels of IL-6 (SMD: -0.50; 95% CI: -0.90 to -0.10; I2 = 0%, P = .50) and MDA (SMD: -0.36; 95% CI: -0.68 to -0.03; I2 = 0, P = .97). Furthermore, the level of alanine transaminase was decreased (SMD: -0.43; 95% CI: -0.73 to -0.12; I2 = 0, P = .66) with a treatment period of <60 days of saffron or crocin supplementation. CONCLUSION Larger studies with more follow-up and higher doses of both saffron and crocin are needed in order to understand the efficacy and safety of these herbs for long-term use as routine therapies. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023458119.
Collapse
Affiliation(s)
- Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Zeinab Mokhtari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Elham Hosseini
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Mohammad Hosein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81745-151, Iran
| |
Collapse
|
3
|
Sanlier NT, Saçinti KG, Türkoğlu İ, Sanlier N. Some Polyphenolic Compounds as Potential Therapeutic Agents in Cervical Cancer: The Most Recent Advances and Future Prospects. Nutr Rev 2025; 83:880-896. [PMID: 39283708 DOI: 10.1093/nutrit/nuae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025] Open
Abstract
The leading causes of cancer include gradual changes in regulatory proteins, dysregulated cell-signaling pathways, dysfunction of apoptosis, and oxidative stress. Consuming polyphenols from food sources has been proven to have strong connections with ameliorating specific physiological biomarkers along with other elements concerning cancer. Recent studies have focused on polyphenols' molecular mechanisms of action and anticancer and chemopreventive properties and effects in the treatment of different types of cancer. Polyphenols participate in the regulation of numerous cellular mechanisms alongside signaling pathways through their effects on inflammation, cellular proliferation, apoptosis, and partially via epigenetic alterations in cervical cancer. A number of animal models and cell and human studies have indicated the use of polyphenols to be safe and tolerable. Thus, it would be fair to state that, with their advantages vis-à-vis lack of toxicity, cost, and access, and with the positive clinical results, polyphenols have a potential to make a difference in cancer treatment. The present review examined the chemical and physical properties, analogs, metabolites, and mechanisms of physiological activities of various polyphenols and how they may affect the incidence rate and management of cervical cancer. Therefore, this review constitutes a starting point to examine the potential applications for cervical cancer.
Collapse
Affiliation(s)
- Nazlı Tunca Sanlier
- Department of Obstetrics and Gynecology, Turkish Ministry of Health, Ankara City Hospital, Ankara 06800, Turkey
| | - Koray Görkem Saçinti
- Department of Obstetrics and Gynecology, Aksaray University Training and Research Hospital, Aksaray 68200, Turkey
- Division of Epidemiology, Department of Public Health, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| | - İnci Türkoğlu
- Department of Nutrition and Dietetics, Hacettepe University School of Health Sciences, Ankara 06100, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, Ankara Medipol University School of Health Sciences, Ankara 06050, Turkey
| |
Collapse
|
4
|
Eanes LA, Eldeeb M, Storholt D, Patel YM. Naringenin impairs mitochondrial function via ROS to induce apoptosis in tamoxifen resistant MCF-7 breast cancer cells. PLoS One 2025; 20:e0320020. [PMID: 40179084 PMCID: PMC11967926 DOI: 10.1371/journal.pone.0320020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/11/2025] [Indexed: 04/05/2025] Open
Abstract
Breast cancer is the second leading cause of cancer deaths among women. While tamoxifen, a commonly used drug therapy in breast cancer patients, is effective, many patients acquire tamoxifen resistance. Therefore, it is essential to identify alternative or combination therapeutics for the treatment of breast cancer. Naringenin, a naturally occurring flavonoid, has been reported to elicit antioxidant, anti-proliferative, and pro-apoptotic effects in cancer cells. The current study aimed to identify the mechanism by which naringenin induces apoptosis in tamoxifen-resistant breast cancer cells. The present study demonstrated that naringenin induced an increase in ROS, resulting in oxidative stress, impaired mitochondrial function, and apoptosis in tamoxifen-resistant breast cancer cells. Our study reports that naringenin specifically increases mitochondrial superoxide anions and hydrogen peroxide production while also causing mitochondrial dysfunction. These studies provide novel evidence for the mechanism by which naringenin induces apoptosis in tamoxifen-resistant breast cancer cells and supports the use of naringenin as a therapeutic on breast cancer cells and drug-resistant cancer cells.
Collapse
Affiliation(s)
- Lauren A. Eanes
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - Mayar Eldeeb
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - Darrell Storholt
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - Yashomati M. Patel
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| |
Collapse
|
5
|
Márquez-Quiroga LV, Barboza-López A, Suárez-Castillo JY, Cardoso-Lezama I, Fuentes-Figueroa MÁ, Vargas-Pozada EE, Rodriguez-Callejas JD, Ramos-Tovar E, Piña-Vázquez C, Arellanes-Robledo J, Villa-Treviño S, Muriel P. Naringenin attenuates early hepatocarcinogenesis induced by a MASH model. Ann Hepatol 2025; 30:101897. [PMID: 40118344 DOI: 10.1016/j.aohep.2025.101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 03/23/2025]
Abstract
INTRODUCTION AND OBJECTIVES Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome plays a critical role in the progression of metabolic dysfunction-associated steatohepatitis (MASH). Here, we investigated the effects of naringenin (NAR) on early hepatocellular carcinoma (HCC) experimentally induced in a rat MASH model and whether the NLRP3 inflammasome/pyroptosis pathway was involved. MATERIALS AND METHODS The animals were fed a hepatopathogenic diet for 16 weeks and carbon tetrachloride (400 mg/kg, i.p.) and diethylnitrosamine (40 mg/kg, i.p.) were injected once a week. NAR was administered at 100 mg/kg p.o. The effects of NAR on the MASHHCC protocol were evaluated using biochemical, histological, in silico, and molecular biological approaches. RESULTS NAR significantly mitigated liver damage, as evidenced by the reduction in liver damage markers. It also reduced steatosis and inflammation, as determined by decreased lipid accumulation and sterol regulatory element-binding protein 1C, interleukins 1-beta and 18, and nuclear factor kappa B levels, and also increased peroxisome proliferator-activated receptor gamma levels. NAR inhibits the formation of NLRP3, including the recruitment of caspase-1 and gasdermin D proteins, and reduces the levels of transforming growth factor-beta, alpha-smooth muscle actin, and hepatic collagen 1, thereby diminishing extracellular matrix synthesis. Furthermore, gamma-glutamyl transpeptidase activity, glutathione S-transferase pi 1, and the proliferation marker KI67 were considerably reduced. CONCLUSIONS Our findings show that NAR has the potential to inhibit early HCC induced in the context of MASH, thereby suggesting that NAR could be used for MASH treatment in humans.
Collapse
Affiliation(s)
- Linda Vanessa Márquez-Quiroga
- Laboratorio de Hepatología Experimental, Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. Instituto Politécnico Nacional, No 2508 Col. San Pedro Zacatenco, CDMX, C.P. 07360, Mexico
| | - Aline Barboza-López
- Laboratorio de Hepatología Experimental, Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. Instituto Politécnico Nacional, No 2508 Col. San Pedro Zacatenco, CDMX, C.P. 07360, Mexico
| | - Jose Y Suárez-Castillo
- Laboratorio de Hepatología Experimental, Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. Instituto Politécnico Nacional, No 2508 Col. San Pedro Zacatenco, CDMX, C.P. 07360, Mexico
| | - Irina Cardoso-Lezama
- Laboratorio de Hepatología Experimental, Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. Instituto Politécnico Nacional, No 2508 Col. San Pedro Zacatenco, CDMX, C.P. 07360, Mexico
| | - Miguel Á Fuentes-Figueroa
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía-IPN, Guillermo Massieu Helguera, La Escalera, CDMX, C.P. 07320, Mexico
| | - Eduardo E Vargas-Pozada
- Laboratorio de Hepatología Experimental, Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. Instituto Politécnico Nacional, No 2508 Col. San Pedro Zacatenco, CDMX, C.P. 07360, Mexico
| | - Juan D Rodriguez-Callejas
- Servicio de Geriatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Dominguez Secc 16, Tlalpan, CDMX, C.P. 14080, Mexico
| | - Erika Ramos-Tovar
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomas, CDMX, C.P. 11340, Mexico
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, CINVESTAV-IPN, Av. Instituto Politécnico Nacional, No 2508 Col. San Pedro Zacatenco, CDMX, C.P. 07360, Mexico
| | - Jaime Arellanes-Robledo
- Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica - INMEGEN, CDMX, C.P. 14610, Mexico; Subdirección de Investigaciones Humanísticas y Científicas, Consejo Nacional de Humanidades, Ciencias y Tecnologías, CONAHCYT, CDMX, C.P. 03940 Mexico
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, CINVESTAV-IPN, Av. Instituto Politécnico Nacional, No 2508 Col. San Pedro Zacatenco, CDMX, C.P. 07360, Mexico
| | - Pablo Muriel
- Laboratorio de Hepatología Experimental, Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. Instituto Politécnico Nacional, No 2508 Col. San Pedro Zacatenco, CDMX, C.P. 07360, Mexico.
| |
Collapse
|
6
|
Sherapura A, Kiran BK, Pavan Kumar GS, Siddesh BM, Thirusangu P, Suchetha Kumari N, Prabhakar BT. Withaferin-A induced vimentin S56 phosphorylation dissociates NEDD9 signaling loop to regress progressive metastatic melanoma into lung adenocarcinoma. Chem Biol Interact 2025; 406:111319. [PMID: 39613173 DOI: 10.1016/j.cbi.2024.111319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Metastasis is complex and insidious type of disease involves multiple signaling nexus, which have implications in understanding disease pathogenesis. Treatment failure for metastatic cancer is frequently high due to aggressive adaptation of cancerous cells to invade to neighboring organs. Cytoskeleton intermediate filamentous protein Vimentin and scaffolding protein Neural precursor cell expressed Developmentally Down-regulated protein 9 (NEDD9) play a key role in metastatic events by regulating multiple metastatic events. Interaction between these proteins is necessary to promote metastatic progression. Withaferin A (WFA), a natural pharamacophore, known to target Vimentin to induce antitumor potential. However exact molecular mechanism still yet to be elucidated. We hypothesize, Vimentin-NEDD9 signaling nexus is necessary for metastatic progression and targeting this interwoven signaling loop with effective pharamacophore WFA halts metastatic progression of melanoma into lung. To elucidate the same, we carried out gene expression measurement through quantitative Reverses Transcription Polymerase Chain Reaction (qRT-PCR), Immunoblot and Immunohistochemistry. Assessment of interactive signaling by Co-immunoprecipitation, Immunofluorescence, Co-localization and Proximity ligation assay. Phosphorylation studies through transfection of phospho specific mutant constructs generated through site directed mutagenesis. WFA induced cellular behavioral changes by migration, invasion assays and Immunoblot analysis. The B16F10 induced mouse metastatic melanoma model to asses NEDD9-Vimentin expression and anti-metastasis induced by WFA. The results postulates, elevated levels and interaction between NEDD9-Vimentin proteins, have positive correlation in metastatic progression of melanoma into lung in both in-vitro and in-vivo condition, establishing it as therapeutic target. Pharmacologically, WFA targets this complex by extending its activity by not only inducing specific Serine 56 phosphorylation of Vimentin, also dissociates NEDD9 signaling loop to halt Epithelial-mesenchymal transition (EMT) and subsequent metastatic events. Eventually, modulation of the relevant metastatic genes E-Cadherin, N-Cadherin, SNAIL, MMP-2 & MMP-9 resulted in regression of metastatic melanoma progression to lung. The study validates WFA induced S56 phosphorylation is necessary to abrupt the NEDD9-Vimentin metastatic signaling complex to regress aggressive metastatic melanoma. The investigation emphasized more mechanistic approach of WFA. Understanding and targeting such integrative mechanical input in the tumor microenvironment will be a better therapeutic strategy to combat metastasis.
Collapse
Affiliation(s)
- Ankith Sherapura
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577203, Karnataka, India
| | - B K Kiran
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577203, Karnataka, India
| | - G S Pavan Kumar
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577203, Karnataka, India
| | - B M Siddesh
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577203, Karnataka, India
| | - Prabhu Thirusangu
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - N Suchetha Kumari
- Department of Biochemistry, K. S. Hegde Medical Academy, NITTE University, Mangalore, Karnataka, India
| | - B T Prabhakar
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577203, Karnataka, India.
| |
Collapse
|
7
|
Sharma S, Mishra A, Ramniwas S, Pandey P. An Updated Review Summarizing the Anticancer Potential of Naringenin. Endocr Metab Immune Disord Drug Targets 2025; 25:364-376. [PMID: 39005120 DOI: 10.2174/0118715303308238240705061522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
One important phytochemical is naringenin, which belongs to the flavanone class of polyphenols. It is found in citrus fruits, such as grapefruits, but it can also be found in tomatoes, cherries, and other food-grade medicinal plants. Naringenin has a significant chemotherapeutic promise, as several investigations have conclusively shown. Therefore, the goal of this review is to synthesize the literature that has been done on naringenin as a possible anti-cancer agent and clarify the mechanisms of action that have been described in treatment plans for different kinds of cancer. In a variety of cancer cells, naringenin works by affecting several pathways associated with cell cycle arrest, anti-metastasis, apoptosis, anti-angiogenesis, and DNA repair. It has been shown to alter several molecular targets linked to the development of cancer, such as drug transporters, transcription factors, reactive nitrogen species, reactive oxygen species, cellular kinases, and inflammatory cytokines and regulators of the cell cycle. In summary, this research provides significant insights into the potential of naringenin as a strong and prospective candidate for use in medicines, nutraceuticals, functional foods, and dietary supplements to improve the management of carcinoma.
Collapse
Affiliation(s)
- Srishti Sharma
- Department of Biotechnology, GLA University, Mathura, India
| | - Anuja Mishra
- Department of Biotechnology, GLA University, Mathura, India
| | - Seema Ramniwas
- University Centre of Research and Development, University Institute of Biotechnology, Chandigarh University Gharuan, Mohali, Punjab, India
| | - Pratibha Pandey
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140417, Punjab, India
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103 India
- Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
8
|
Ashraf MS, Tuli K, Moiz S, Sharma SK, Sharma D, Adnan M. AMP kinase: A promising therapeutic drug target for post-COVID-19 complications. Life Sci 2024; 359:123202. [PMID: 39489398 DOI: 10.1016/j.lfs.2024.123202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has resulted in severe respiratory issues and persistent complications, particularly affecting glucose metabolism. Patients with or without pre-existing diabetes often experience worsened symptoms, highlighting the need for innovative therapeutic approaches. AMPK, a crucial regulator of cellular energy balance, plays a pivotal role in glucose metabolism, insulin sensitivity, and inflammatory responses. AMPK activation, through allosteric or kinase-dependent mechanisms, impacts cellular processes like glucose uptake, fatty acid oxidation, and autophagy. The tissue-specific distribution of AMPK emphasizes its role in maintaining metabolic homeostasis throughout the body. Intriguingly, SARS-CoV-2 infection inhibits AMPK, contributing to metabolic dysregulation and post-COVID-19 complications. AMPK activators like capsaicinoids, curcumin, phytoestrogens, cilostazol, and momordicosides have demonstrated the potential to regulate AMPK activity. Compounds from various sources improve fatty acid oxidation and insulin sensitivity, with metformin showing opposing effects on AMPK activation compared to the virus, suggesting potential therapeutic options. The diverse effects of AMPK activation extend to its role in countering viral infections, further highlighting its significance in COVID-19. This review explores AMPK activation mechanisms, its role in metabolic disorders, and the potential use of natural compounds to target AMPK for post-COVID-19 complications. Also, it aims to review the possible methods of activating AMPK to prevent post-COVID-19 diabetes and cardiovascular complications. It also explores the use of natural compounds for their therapeutic effects in targeting the AMPK pathways. Targeting AMPK activation emerges as a promising avenue to mitigate the long-term effects of COVID-19, offering hope for improved patient outcomes and a better quality of life.
Collapse
Affiliation(s)
- Mohammad Saquib Ashraf
- Department of Medical Laboratory Science College of Pharmacy, Nursing and Medical Science Riyadh ELM University, Riyadh, P.O. Box 12734, Saudi Arabia.
| | - Kanika Tuli
- Guru Nanak Institute of Pharmacy, Dalewal, Hoshiarpur 144208, Punjab, India
| | - Shadman Moiz
- Department of Biotechnology, Lalit Narayan Mithila University, Darbhanga 846004, Bihar, India
| | - Satish Kumar Sharma
- Department of Pharmacology, Glocal School of Pharmacy, The Glocal University, Saharanpur, India
| | - Deepa Sharma
- UMM Matrix Innovations Private Limited, Delhi 110044, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia; Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| |
Collapse
|
9
|
Bhat AA, Gupta G, Afzal M, Thapa R, Ali H, Alqahtani SM, almalki WH, Kazmi I, Alzarea SI, Saleem S, Subramaniyan V. Polyphenol-Loaded Nano-carriers for Breast Cancer Therapy: A Comprehensive Review. BIONANOSCIENCE 2024; 14:4219-4237. [DOI: 10.1007/s12668-023-01288-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 11/22/2024]
|
10
|
Huang X, Zhang M, Gu L, Zhou Z, Shi S, Fan X, Tong W, Liu D, Fang J, Huang X, Fang Z, Lu M. Naringenin inhibits the microsomal triglyceridetransfer protein/apolipoprotein B axis to inhibit intestinal metaplasia progression. Phytother Res 2024; 38:4541-4554. [PMID: 39049610 DOI: 10.1002/ptr.8279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Intestinal metaplasia (IM) is a premalignant condition that increases the risk for subsequent gastric cancer (GC). Traditional Chinese medicine generally plays a role in the treatment of IM, and the phytochemical naringenin used in Chinese herbal medicine has shown therapeutic potential for the treatment of gastric diseases. However, naringenin's specific effect on IM is not yet clearly understood. Therefore, this study identified potential gene targets for the treatment of IM through bioinformatics analysis and experiment validation. Two genes (MTTP and APOB) were selected as potential targets after a comparison of RNA-seq results of clinical samples, the GEO dataset (GSE78523), and naringenin-related genes from the GeneCards database. The results of both cell and animal experiments suggested that naringenin can improve the changes in the intestinal epithelial metaplasia model via MTTP/APOB expression. In summary, naringenin likely inhibits the MTTP/APOB axis and therefore inhibits IM progression. These results support the development of naringenin as an anti-IM agent and may contribute to the discovery of novel IM therapeutic targets.
Collapse
Affiliation(s)
- Xiangming Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengqiu Zhang
- Nanjing University of Chinese Medicine, Nanjing, China
- Department of Gastroenterology, Suqian Hospital of Traditional Chinese Medicine, Suqian, China
| | - Lina Gu
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziyan Zhou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Shengtong Shi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Fan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Integration of Chinese and Western Medicine, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
- Clinical College, Jiangsu Health Vocational College, Nanjing, China
| | - Wei Tong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Dazhi Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jihu Fang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinen Huang
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhijun Fang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Lu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Integration of Chinese and Western Medicine, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
- Clinical College, Jiangsu Health Vocational College, Nanjing, China
| |
Collapse
|
11
|
Pan C, Xu Y, Jiang Z, Fan C, Chi Z, Zhang Y, Miao M, Ren Y, Wu Z, Xu L, Mei C, Chen Q, Xi Y, Chen X. Naringenin relieves paclitaxel-induced pain by suppressing calcitonin gene-related peptide signalling and enhances the anti-tumour action of paclitaxel. Br J Pharmacol 2024; 181:3136-3159. [PMID: 38715438 DOI: 10.1111/bph.16397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/01/2024] [Accepted: 03/21/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Chemotherapy-induced peripheral neuropathy (CIPN) commonly causes neuropathic pain, but its pathogenesis remains unclear, and effective therapies are lacking. Naringenin, a natural dihydroflavonoid compound, has anti-inflammatory, anti-nociceptive and anti-tumour activities. However, the effects of naringenin on chemotherapy-induced pain and chemotherapy effectiveness remain unexplored. EXPERIMENTAL APPROACH Female and male mouse models of chemotherapy-induced pain were established using paclitaxel. Effects of naringenin were assessed on pain induced by paclitaxel or calcitonin gene-related peptide (CGRP) and on CGRP expression in dorsal root ganglia (DRG) and spinal cord tissue. Additionally, we examined peripheral macrophage infiltration, glial activation, c-fos expression, DRG neuron excitability, microglial M1/M2 polarization, and phosphorylation of spinal NF-κB. Furthermore, we investigated the synergic effect and related mechanisms of naringenin and paclitaxel on cell survival of cancer cells in vitro. KEY RESULTS Systemic administration of naringenin attenuated paclitaxel-induced pain in both sexes. Naringenin reduced paclitaxel-enhanced CGRP expression in DRGs and the spinal cord, and alleviated CGRP-induced pain in naïve mice of both sexes. Naringenin mitigated macrophage infiltration and reversed paclitaxel-elevated c-fos expression and DRG neuron excitability. Naringenin decreased spinal glial activation and NF-κB phosphorylation in both sexes but influenced microglial M1/M2 polarization only in females. Co-administration of naringenin with paclitaxel enhanced paclitaxel's anti-tumour effect, impeded by an apoptosis inhibitor. CONCLUSION AND IMPLICATIONS Naringenin's anti-nociceptive mechanism involves CGRP signalling and neuroimmunoregulation. Furthermore, naringenin facilitates paclitaxel's anti-tumour action, possibly involving apoptosis. This study demonstrates naringenin's potential as a supplementary treatment in cancer therapy by mitigating side effects and potentiating efficacy of chemotherapy.
Collapse
Affiliation(s)
- Chen Pan
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Yuhao Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Zongsheng Jiang
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Chengjiang Fan
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Zhexi Chi
- Department of Anesthesiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Yu Zhang
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Mengmeng Miao
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Yuxuan Ren
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Ziyi Wu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Linbin Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Changqing Mei
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Qingge Chen
- Department of Anesthesiology, Ningbo No. 2 Hospital, Ningbo, China
- Department of Anesthesiology, The People's Hospital of Bozhou, Bozhou, China
| | - Yang Xi
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Xiaowei Chen
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Alimohammadi M, Rahimzadeh P, Khorrami R, Bonyadi M, Daneshi S, Nabavi N, Raesi R, Farani MR, Dehkhoda F, Taheriazam A, Hashemi M. A comprehensive review of the PTEN/PI3K/Akt axis in multiple myeloma: From molecular interactions to potential therapeutic targets. Pathol Res Pract 2024; 260:155401. [PMID: 38936094 DOI: 10.1016/j.prp.2024.155401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Phosphatase and tensin homolog (PTEN), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt) signaling pathways contribute to the development of several cancers, including multiple myeloma (MM). PTEN is a tumor suppressor that influences the PI3K/Akt/mTOR pathway, which in turn impacts vital cellular processes like growth, survival, and treatment resistance. The current study aims to present the role of PTEN and PI3K/Akt/mTOR signaling in the development of MM and its response to treatment. In addition, the molecular interactions in MM that underpin the PI3K/Akt/mTOR pathway and address potential implications for the development of successful treatment plans are also discussed in detail. We investigate their relationship to both upstream and downstream regulators, highlighting new developments in combined therapies that target the PTEN/PI3K/Akt axis to overcome drug resistance, including the use of PI3K and mitogen-activated protein kinase (MAPK) inhibitors. We also emphasize that PTEN/PI3K/Akt pathway elements may be used in MM diagnosis, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Mojtaba Bonyadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Islamic Republic of Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Farshid Dehkhoda
- Department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| |
Collapse
|
13
|
Yıldırım M, Sessevmez M, Poyraz S, Düzgüneş N. Recent Strategies for Cancer Therapy: Polymer Nanoparticles Carrying Medicinally Important Phytochemicals and Their Cellular Targets. Pharmaceutics 2023; 15:2566. [PMID: 38004545 PMCID: PMC10675520 DOI: 10.3390/pharmaceutics15112566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a leading cause of death in the world today. In addition to the side effects of the chemotherapeutic drugs used to treat cancer, the development of resistance to the drugs renders the existing drugs ineffective. Therefore, there is an urgent need to develop novel anticancer agents. Medicinally important phytochemicals such as curcumin, naringenin, quercetin, epigallocatechin gallate, thymoquinone, kaempferol, resveratrol, genistein, and apigenin have some drawbacks, including low solubility in water, stability and bioavailability issues, despite having significant anticancer effects. Encapsulation of these natural compounds into polymer nanoparticles (NPs) is a novel technology that could overcome these constraints. In comparison to the free compounds, phytochemicals loaded into nanoparticles have greater activity and bioavailability against many cancer types. In this review, we describe the preparation and characterization of natural phytochemical-loaded polymer NP formulations with significant antioxidant and anti-inflammatory effects, their in vitro and in vivo anticancer activities, as well as their possible cellular targets.
Collapse
Affiliation(s)
- Metin Yıldırım
- Department of Biochemistry, Faculty of Pharmacy, Harran University, Sanliurfa 63050, Turkey;
| | - Melike Sessevmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey;
| | - Samet Poyraz
- Department of Analytical Chemistry, Faculty of Pharmacy, Harran University, Sanliurfa 63050, Turkey;
| | - Nejat Düzgüneş
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| |
Collapse
|
14
|
Zhang T, Deng W, Deng Y, Liu Y, Xiao S, Luo Y, Xiang W, He Q. Mechanisms of ferroptosis regulating oxidative stress and energy metabolism in myocardial ischemia-reperfusion injury and a novel perspective of natural plant active ingredients for its treatment. Biomed Pharmacother 2023; 165:114706. [PMID: 37400352 DOI: 10.1016/j.biopha.2023.114706] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 07/05/2023] Open
Abstract
Acute myocardial infarction remains the leading cause of death in humans. Timely restoration of blood perfusion to ischemic myocardium remains the most effective strategy in the treatment of acute myocardial infarction, which can significantly reduce morbidity and mortality. However, after restoration of blood flow and reperfusion, myocardial injury will aggravate and induce apoptosis of cardiomyocytes, a process called myocardial ischemia-reperfusion injury. Studies have shown that the loss and death of cardiomyocytes caused by oxidative stress, iron load, increased lipid peroxidation, inflammation and mitochondrial dysfunction, etc., are involved in myocardial ischemia-reperfusion injury. In recent years, with the in-depth research on the pathology of myocardial ischemia-reperfusion injury, people have gradually realized that there is a new form of cell death in the pathological process of myocardial ischemia-reperfusion injury, namely ferroptosis. A number of studies have found that in the myocardial tissue of patients with acute myocardial infarction, there are pathological changes closely related to ferroptosis, such as iron metabolism disorder, lipid peroxidation, and increased reactive oxygen species free radicals. Natural plant products such as resveratrol, baicalin, cyanidin-3-O-glucoside, naringenin, and astragaloside IV can also exert therapeutic effects by correcting the imbalance of these ferroptosis-related factors and expression levels. Combining with our previous studies, this review summarizes the regulatory mechanism of natural plant products intervening ferroptosis in myocardial ischemia-reperfusion injury in recent years, in order to provide reference information for the development of targeted ferroptosis inhibitor drugs for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Tianqing Zhang
- Department of Cardiology, The First People's Hospital of Changde City, Changde 415003, Hunan, China
| | - Wenxu Deng
- The Central Hospital of Hengyang, Hengyang, Hunan 421001, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, Hunan, China
| | - Yao Liu
- The Second Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medcial School, University of South China, Hunan 421001, China.
| | - Sijie Xiao
- Department of Ultrasound, The First People's Hospital of Changde City, Changde 415003, China
| | - Yanfang Luo
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wang Xiang
- Department of Immunology and Rheumatology, The First People's Hospital of Changde City, Changde 415003, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, Hunan, China
| |
Collapse
|
15
|
Zhao B, Wu W, Liang L, Cai X, Chen Y, Tang W. Prediction model of clinical prognosis and immunotherapy efficacy of gastric cancer based on level of expression of cuproptosis-related genes. Heliyon 2023; 9:e19035. [PMID: 37636385 PMCID: PMC10448029 DOI: 10.1016/j.heliyon.2023.e19035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023] Open
Abstract
Background Gastric cancer is one of the most common malignancies in the world and ranks fourth among cancer-related causes of death. Gastric adenocarcinoma is the most common pathological type of gastric cancer; usually, this tumor is associated with distant metastasis upon first diagnosis and has a poor prognosis. Cuproptosis is a novel mechanism of cell death induced by copper, and is closely related to tumor progression, prognosis and immune response. However, the role of cuproptosis-related genes (CRGs) in the tumor microenvironment (TME) of gastric cancer has yet to be elucidated. Methods Gastric adenocarcinoma data were downloaded from the Cancer Genome Atlas (TCGA) database. Through bioinformatics analysis, a risk scoring model was constructed from cuproptosis gene-related lncRNA. Then, we investigated the relationship between prognosis and the TIME of gastric cancer according to clinical characteristics and risk score. Results Validation of the model showed that the overall survival (OS) of the high-risk group was significantly lower than that of the low-risk group (P < 0.001) and that the risk score was an independent predictor of prognosis (P < 0.001). The new model was significantly correlated with the prognosis and TIME of patients with gastric cancer, including immune cell infiltration, tumor mutation burden (TMB) score, targeted drug sensitivity, and immune checkpoint gene expression. In addition, a prognostic nomogram was established based on the risk score (AC008915.2, AC011005.4, AC023511.1, AC139792.1, AL355312.2, LINC01094 and LINC02476). Conclusion Our analysis revealed that the prognostic model of cuproptosis-related genes could effectively predict the prognosis of patients with gastric cancer and comprehensively establish the relationship between cuproptosis genes and tumor immunity. This may provide a new strategy for the precise treatment of gastric cancer.
Collapse
Affiliation(s)
- Bo Zhao
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Wei Wu
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Liang Liang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Xiaoyong Cai
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Yongjun Chen
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Weizhong Tang
- Guangxi Clinical Research Center for Colorectal Cancer, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region 530021, Nanning, PR China
| |
Collapse
|
16
|
Zhang M, Lai J, Wu Q, Lai J, Su J, Zhu B, Li Y. Naringenin Induces HepG2 Cell Apoptosis via ROS-Mediated JAK-2/STAT-3 Signaling Pathways. Molecules 2023; 28:molecules28114506. [PMID: 37298981 DOI: 10.3390/molecules28114506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Hepatocarcinoma is one of the most prevalent digestive system tumors worldwide and lacks effective therapy. Recently, naringenin has been isolated from some citrus fruits, and its anticancer effects have been tested. However, the molecular mechanisms of naringenin and the potential implications of oxidative stress in naringenin-induced cytotoxicity in HepG2 cells remain elusive. Based on the above, the present study examined the effect of naringenin on the cytotoxic and anticancer mechanisms of HepG2 cells. Naringenin-induced HepG2 cell apoptosis was confirmed via the accumulation of the sub-G1 cell population, phosphatidylserine exposure, mitochondrial transmembrane potential loss, DNA fragmentation, caspase-3 activation, and caspase-9 activation. Furthermore, naringenin enhanced cytotoxic effects on HepG2 cells and triggered intracellular reactive oxygen species; the signaling pathways of JAK-2/STAT-3 were inhibited, and caspase-3 was activated to advance cell apoptosis. These results suggest that naringenin plays an important role in inducing apoptosis in HepG2 cells and that naringenin may be a promising candidate for cancer therapy.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Jianmei Lai
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Qianlong Wu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Jia Lai
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Jingyao Su
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
17
|
Kaci H, Bodnárová S, Fliszár-Nyúl E, Lemli B, Pelantová H, Valentová K, Bakos É, Özvegy-Laczka C, Poór M. Interaction of luteolin, naringenin, and their sulfate and glucuronide conjugates with human serum albumin, cytochrome P450 (CYP2C9, CYP2C19, and CYP3A4) enzymes and organic anion transporting polypeptide (OATP1B1 and OATP2B1) transporters. Biomed Pharmacother 2023; 157:114078. [PMID: 36481402 DOI: 10.1016/j.biopha.2022.114078] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Luteolin and naringenin are flavonoids found in various foods/beverages and present in certain dietary supplements. After a high intake of these flavonoids, their sulfate and glucuronide conjugates reach micromolar concentrations in the bloodstream. Some pharmacokinetic interactions of luteolin and naringenin have been investigated in previous studies; however, only limited data are available in regard to their metabolites. In this study, we aimed to investigate the interactions of the sulfate and glucuronic acid conjugates of luteolin and naringenin with human serum albumin, cytochrome P450 (CYP2C9, 2C19, and 3A4) enzymes, and organic anion transporting polypeptide (OATP1B1 and OATP2B1) transporters. Our main findings are as follows: (1) Sulfate conjugates formed more stable complexes with albumin than the parent flavonoids. (2) Luteolin and naringenin conjugates showed no or only weak inhibitory action on the CYP enzymes examined. (3) Certain conjugates of luteolin and naringenin are potent inhibitors of OATP1B1 and/or OATP2B1 enzymes. (4) Conjugated metabolites of luteolin and naringenin may play an important role in the pharmacokinetic interactions of these flavonoids.
Collapse
Affiliation(s)
- Hana Kaci
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2., H-1117 Budapest, Hungary; Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary
| | - Slávka Bodnárová
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary; Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Beáta Lemli
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary; Green Chemistry Research Group, János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Éva Bakos
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary; Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary.
| |
Collapse
|
18
|
Wu SZ, Lan YY, Chu CY, Lee YP, Chang HY, Huang BM. Sodium arsenite and dimethylarsenic acid induces apoptosis in OC3 oral cavity cancer cells. Mol Med Rep 2022; 27:26. [PMID: 36524366 PMCID: PMC9813566 DOI: 10.3892/mmr.2022.12913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Although arsenic is an environmental toxicant, arsenic trioxide (ATO) is used to treat acute promyelocytic leukemia (APL) with anticancer effects. Studies have demonstrated oral cancer is in the top 10 cancers in Taiwan. High rate of oral cancers is linked to various behaviors, such as excessive alcohol consumption and tobacco use. Similarly, betel chewing is a strong risk factor in oral cancer. In the present study, oral squamous carcinoma OC3 cells were investigated with the treatments of sodium arsenite (NaAsO2) and dimethylarsenic acid (DMA), respectively, to examine if arsenic compounds have anti‑cancer efforts. It was found that 1 µM NaAsO2 and 1 mM DMA for 24 h induced rounded contours with membrane blebbing phenomena in OC3 cells, revealing cell apoptotic characteristics. In addition, NaAsO2 (10‑100 µM) and DMA (1‑100 mM) significantly decreased OC3 cell survival. In cell cycle regulation detected by flow cytometry, NaAsO2 and DMA significantly augmented percentage of subG1 and G2/M phases in OC3 cells, respectively. Annexin V/PI double staining assay was further used to confirm NaAsO2 and DMA did induce OC3 cell apoptosis. In mechanism investigation, western blotting assay was applied and the results showed that NaAsO2 and DMA significantly induced phosphorylation of JNK, ERK1/2 and p38 and then the cleavages of caspase‑8, ‑9, ‑3 and poly ADP‑ribose polymerase (PARP) in OC3 cells, dynamically. In conclusion, NaAsO2 and DMA activated MAPK pathways and then apoptotic pathways to induce OC3 oral cancer cell apoptosis.
Collapse
Affiliation(s)
- Su-Zhen Wu
- Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan 73657, Taiwan, R.O.C.,Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan 73658, R.O.C
| | - Yu-Yan Lan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan, R.O.C
| | - Chiao-Yun Chu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Yi-Ping Lee
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Hong-Yi Chang
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan, R.O.C.,Correspondence to: Professor Hong-Yi Chang, Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, 1, Nan-Tai Street, Yungkang, Tainan 71005, Taiwan, R.O.C., E-mail:
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40406, Taiwan, R.O.C.,Professor Bu-Miin Huang, Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan, R.O.C., E-mail:
| |
Collapse
|
19
|
Alimohammadi M, Mohammad RN, Rahimi A, Faramarzi F, Alizadeh-Navaei R, Rafiei A. The effect of immunomodulatory properties of naringenin on the inhibition of inflammation and oxidative stress in autoimmune disease models: a systematic review and meta-analysis of preclinical evidence. Inflamm Res 2022; 71:1127-1142. [PMID: 35804246 DOI: 10.1007/s00011-022-01599-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/08/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND/OBJECTIVE Naringenin is a member of the flavonoid family that can perform many biological processes to treat a wide range of inflammatory diseases and pathological conditions related to oxidative stress (OS). Naringenin immunomodulatory activities have been the subject of recent research as an effective alternative treatment for autoimmune disorders. The effects of naringenin on the levels of inflammatory biomarkers and OS factors in animal models of autoimmune disorders (ADs) were studied in this meta-analysis. METHODS Up until January 2022, electronic databases such as Cochrane Library and EMBASE, PubMed, Web of Science, and Scopus were used to conduct a comprehensive literature search in English language. To evaluate the effect of naringenin on inflammatory mediators, such as TNF-α, IL-6, IL-β, IFN-γ, NF-κB, and nitric oxide, and OS biomarkers, such as CAT, SOD, GPx, GSH and MDA, in AD models, we measured the quality assessment and heterogeneity test using the PRISMA checklist protocol and I2 statistic, respectively. A random-effects model was employed based on the heterogeneity test, and then pooled data were standardized as mean difference (SMD) with a 95% confident interval (CI). RESULTS We excluded all clinical trials, cell experiment studies, animal studies with different parameters, non-autoimmune disease models, and an inadequate series of studies for quantitative synthesis. Finally, from 627 potentially reports, 12 eligible studies were included in the meta-analysis. Data were collected from several groups. Of these, 153 were in the naringenin group and 149 were in the control group. Our meta-analysis of the pooled data for the parameters of inflammation and OS indicated that naringenin significantly reduced the levels of NF-κB (SMD - 3.77, 95% CI [- 6.03 to - 1.51]; I2 = 80.1%, p = 0.002), IFN-γ (SMD - 6.18, 95% CI [- 8.73 to - 3.62]; I2 = 53.7%, p = 0.115), and NO (SMD - 3.97, 95% CI [- 5.50 to - 2.45]; I2 = 73.4%, p = 0.005), IL-1β (SMD - 4.23, 95% CI [- 5.09 to - 3.37]; I2 = 0.0%, p = 0.462), IL-6 (SMD - 5.84, 95% CI [- 7.83 to - 3.85]; I2 = 86.5%, p < 0.001), and TNF-α (SMD - 5.10, 95% CI [- 6.34 to - 3.86]; I2 = 74.7%, p < 0.001). These findings also demonstrated the efficacy of naringenin on increasing the levels of CAT (SMD 4.19, 95% CI [1.33 to 7.06]; I2 = 79.9%, p = 0.007), GSH (SMD 4.58, 95% CI [1.64 to 7.51]; I2 = 90.5%, p < 0.001), and GPx (SMD 9.65, 95% CI [2.56 to 16.74]; I2 = 86.6%, p = 0.001) and decreasing the levels of MDA (SMD - 3.65, 95% CI [- 4.80 to - 2.51]; I2 = 69.4%, p = 0.001) than control groups. However, treatment with naringenin showed no statistically difference in SOD activity (SMD 1.89, 95% CI [- 1.11 to 4.89]; I2 = 93.6%, p < 0.001). CONCLUSION Overall, our findings revealed the immunomodulatory potential of naringenin as an alternative treatment on inhibition of inflammation and OS in several autoimmune-related diseases. Nevertheless, regarding the limitation of clinical trials, strong preclinical models and clinical settings in the future are needed that address the effects of naringenin on ADs. Before large-scale clinical studies, precise human pharmacokinetic investigations are required to determine the dosage ranges and evaluate the initial safety profile of naringenin.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rebar N Mohammad
- Medical Laboratory Analysis Department, College of Health Science, Cihan University of Sulaimaniya, Kurdistan region, Sulaymaniyah, Iraq
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Faramarzi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|