1
|
Di Stefano J, Di Marco F, Cicalini I, FitzGerald U, Pieragostino D, Verhoye M, Ponsaerts P, Van Breedam E. Generation, interrogation, and future applications of microglia-containing brain organoids. Neural Regen Res 2025; 20:3448-3460. [PMID: 39665813 PMCID: PMC11974650 DOI: 10.4103/nrr.nrr-d-24-00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024] Open
Abstract
Brain organoids encompass a large collection of in vitro stem cell-derived 3D culture systems that aim to recapitulate multiple aspects of in vivo brain development and function. First, this review provides a brief introduction to the current state-of-the-art for neuro-ectoderm brain organoid development, emphasizing their biggest advantages in comparison with classical two-dimensional cell cultures and animal models. However, despite their usefulness for developmental studies, a major limitation for most brain organoid models is the absence of contributing cell types from endodermal and mesodermal origin. As such, current research is highly investing towards the incorporation of a functional vasculature and the microglial immune component. In this review, we will specifically focus on the development of immune-competent brain organoids. By summarizing the different approaches applied to incorporate microglia, it is highlighted that immune-competent brain organoids are not only important for studying neuronal network formation, but also offer a clear future as a new tool to study inflammatory responses in vitro in 3D in a brain-like environment. Therefore, our main focus here is to provide a comprehensive overview of assays to measure microglial phenotype and function within brain organoids, with an outlook on how these findings could better understand neuronal network development or restoration, as well as the influence of physical stress on microglia-containing brain organoids. Finally, we would like to stress that even though the development of immune-competent brain organoids has largely evolved over the past decade, their full potential as a pre-clinical tool to study novel therapeutic approaches to halt or reduce inflammation-mediated neurodegeneration still needs to be explored and validated.
Collapse
Affiliation(s)
- Julia Di Stefano
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
| | - Federica Di Marco
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Ilaria Cicalini
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Una FitzGerald
- CÚRAM, Center for Research in Medical Devices, Biomedical Engineering, University of Galway, Ireland
- Galway Neuroscience Center, University of Galway, Ireland
| | - Damiana Pieragostino
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- μNEURO Research Center of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
| | - Elise Van Breedam
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
2
|
Chavarria D, Georges KA, O’Grady BJ, Hassan KK, Lippmann ES. Modular cone-and-plate device for mechanofluidic assays in Transwell inserts. Front Bioeng Biotechnol 2025; 13:1494553. [PMID: 39931136 PMCID: PMC11807968 DOI: 10.3389/fbioe.2025.1494553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
In this work, we present a cost effective and open-source modular cone-and-plate (MoCAP) device that incorporates shear stress in the popular Transwell® insert system. This system acts as a lid that incorporates flow into 24-well Transwell® inserts while preserving the ability to conduct molecular profiling assays. Moreover, the MoCAP device can be rapidly reconfigured to test multiple shear stress profiles within a single device. To demonstrate the utility of the MoCAP, we conducted select assays on several different brain microvascular endothelial cell (BMEC) lines that comprise models of the blood-brain barrier (BBB), since shear stress can play an important role in BBB function. Our results characterize how shear stress modulates passive barrier function and GLUT1 expression across the different BMEC lines. Overall, we anticipate this low cost mechanofluidic device will be useful to the mechanobiology community.
Collapse
Affiliation(s)
- Daniel Chavarria
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Kissamy A. Georges
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| | - Brian J. O’Grady
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Khalid K. Hassan
- School for Science and Math at Vanderbilt, Vanderbilt University, Nashville, TN, United States
| | - Ethan S. Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
3
|
Rauer SB, Stüwe L, Steinbeck L, de Toledo MAS, Fischer G, Wennemaring S, Marschick J, Koschmieder S, Wessling M, Linkhorst J. Cell Adhesion and Local Cytokine Control on Protein-Functionalized PNIPAM-co-AAc Hydrogel Microcarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404183. [PMID: 39535368 PMCID: PMC11735893 DOI: 10.1002/smll.202404183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Achieving adequate cell densities remains a major challenge in establishing economic biotechnological and biomedical processes. A possible remedy is microcarrier-based cultivation in stirred-tank bioreactors (STBR), which offers a high surface-to-volume ratio, appropriate process control, and scalability. However, despite their potential, commercial microcarriers are currently limited to material systems featuring unnatural mechanical properties and low adaptability. Because matrix stiffness and ligand presentation impact phenotypical attributes, differentiation potential, and genetic stability, biotechnological processes can significantly benefit from microcarrier systems tailorable toward cell-type specific requirements. This study introduces hydrogel particles co-polymerized from poly(N-isopropylacrylamide) (PNIPAM) and acrylic acid (AAc) as a platform technology for cell expansion. The resulting microcarriers exhibit an adjustable extracellular matrix-like softness, an adaptable gel charge, and functional carboxyl groups, allowing electrostatic and covalent coupling of cell adhesive and cell fate-modulating proteins. These features enable the attachment and growth of L929 mouse fibroblast cells in static microtiter plates and dynamic STBR cultivations while also providing vital growth factors, such as interleukin-3, to myeloblast-like 32D cells over 20 days of cultivation. The study explores the effects of different educt compositions on cell-particle interactions and reveals that PNIPAM-co-AAc microcarriers can provide both covalently coupled and diffusively released cytokine to adjacent cells.
Collapse
Affiliation(s)
- Sebastian Bernhard Rauer
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
- DWI ‐ Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052074AachenGermany
| | - Lucas Stüwe
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
| | - Lea Steinbeck
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
| | - Marcelo Augusto Szymanski de Toledo
- Department of HematologyOncology, Hemostaseology, and Stem Cell TransplantationFaculty of MedicineRWTH Aachen University52074AachenGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)52074AachenGermany
| | - Gereon Fischer
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
| | - Simon Wennemaring
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
| | - Jonas Marschick
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
| | - Steffen Koschmieder
- Department of HematologyOncology, Hemostaseology, and Stem Cell TransplantationFaculty of MedicineRWTH Aachen University52074AachenGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)52074AachenGermany
| | - Matthias Wessling
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
- DWI ‐ Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052074AachenGermany
| | - John Linkhorst
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
- Process Engineering of Electrochemical SystemsDepartment of Mechanical EngineeringTechnical University of DarmstadtOtto‐Berndt‐Str. 264287DarmstadtGermany
| |
Collapse
|
4
|
Teixeira MI, Lopes CM, Amaral MH, Costa PC. Navigating Neurotoxicity and Safety Assessment of Nanocarriers for Brain Delivery: Strategies and Insights. Acta Biomater 2024; 189:25-56. [PMID: 39307261 DOI: 10.1016/j.actbio.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Nanomedicine, an area that uses nanomaterials for theragnostic purposes, is advancing rapidly, particularly in the detection and treatment of neurodegenerative diseases. The design of nanocarriers can be optimized to enhance drug bioavailability and targeting to specific organs, improving therapeutic outcomes. However, clinical translation hinges on biocompatibility and safety. Nanocarriers can cross the blood-brain barrier (BBB), potentially causing neurotoxic effects through mechanisms such as oxidative stress, DNA damage, and neuroinflammation. Concerns about their accumulation and persistence in the brain make it imperative to carry out a nanotoxicological risk assessment. Generally, this involves identifying exposure sources and routes, characterizing physicochemical properties, and conducting cytotoxicity assays both in vitro and in vivo. The lack of a specialized regulatory framework creates substantial gaps, making it challenging to translate findings across development stages. Additionally, there is a pressing need for innovative testing methods due to constraints on animal use and the demand for high-throughput screening. This review examines the mechanisms of nanocarrier-induced neurotoxicity and the challenges in risk assessment, highlighting the impact of physicochemical properties and the advantages and limitations of current neurotoxicity evaluation models. Future perspectives are also discussed. Additional guidance is crucial to improve the safety of nanomaterials and reduce associated uncertainty. STATEMENT OF SIGNIFICANCE: Nanocarriers show tremendous potential for theragnostic purposes in neurological diseases, enhancing drug targeting to the brain, and improving biodistribution and pharmacokinetics. However, their neurotoxicity is still a major field to be explored, with only 5% of nanotechnology-related publications addressing this matter. This review focuses on the issue of neurotoxicity and safety assessment of nanocarriers for brain delivery. Neurotoxicity-relevant exposure sources, routes, and molecular mechanisms, along with the impact of the physicochemical properties of nanomaterials, are comprehensively described. Moreover, the different experimental models used for neurotoxicity evaluation are explored at length, including their main advantages and limitations. To conclude, we discuss current challenges and future perspectives for a better understanding of risk assessment of nanocarriers for neurobiomedical applications.
Collapse
Affiliation(s)
- Maria Inês Teixeira
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carla M Lopes
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; FP-I3ID, FP-ENAS/CEBIMED, Fernando Pessoa Energy, Environment, and Health Research Unit/Biomedical Research Center, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal.
| | - Maria Helena Amaral
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo C Costa
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
5
|
Yao Q, Cheng S, Pan Q, Yu J, Cao G, Li L, Cao H. Organoids: development and applications in disease models, drug discovery, precision medicine, and regenerative medicine. MedComm (Beijing) 2024; 5:e735. [PMID: 39309690 PMCID: PMC11416091 DOI: 10.1002/mco2.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Organoids are miniature, highly accurate representations of organs that capture the structure and unique functions of specific organs. Although the field of organoids has experienced exponential growth, driven by advances in artificial intelligence, gene editing, and bioinstrumentation, a comprehensive and accurate overview of organoid applications remains necessary. This review offers a detailed exploration of the historical origins and characteristics of various organoid types, their applications-including disease modeling, drug toxicity and efficacy assessments, precision medicine, and regenerative medicine-as well as the current challenges and future directions of organoid research. Organoids have proven instrumental in elucidating genetic cell fate in hereditary diseases, infectious diseases, metabolic disorders, and malignancies, as well as in the study of processes such as embryonic development, molecular mechanisms, and host-microbe interactions. Furthermore, the integration of organoid technology with artificial intelligence and microfluidics has significantly advanced large-scale, rapid, and cost-effective drug toxicity and efficacy assessments, thereby propelling progress in precision medicine. Finally, with the advent of high-performance materials, three-dimensional printing technology, and gene editing, organoids are also gaining prominence in the field of regenerative medicine. Our insights and predictions aim to provide valuable guidance to current researchers and to support the continued advancement of this rapidly developing field.
Collapse
Affiliation(s)
- Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sheng Cheng
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Guoqiang Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic‐Chemical and Aging‐Related InjuriesHangzhouChina
| |
Collapse
|
6
|
O’Grady BJ, McCall AS, Cullison S, Chavarria D, Kjar A, Schrag MS, Lippmann ES. Anatomically and Physiologically Accurate Engineered Neurovascular Unit and Blood-Brain Barrier Model Using Microvessels Isolated from Postmortem Human Brain Tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615283. [PMID: 39386654 PMCID: PMC11463414 DOI: 10.1101/2024.09.26.615283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Brain vasculature is a complex and heterogeneous physiological structure that serves specialized roles in maintaining brain health and homeostasis. There is substantial interest in developing representative human models of the brain vasculature for drug screening and disease modeling applications. Many contemporary strategies have focused on culturing neurovascular cell types in hydrogels and microdevices, but it remains challenging to achieve anatomically relevant vascular structures that have physiologically similar function to their in vivo counterparts. Here, we present a strategy for isolating microvessels from cryopreserved human cortical tissue and culturing these vessels in a biomimetic gelatin-based hydrogel contained in a microfluidic device. We provide histological evidence of arteriole and capillary architectures within hydrogels, as well as anastomosis to the hydrogel edges allowing lumen perfusion. In capillaries, we demonstrate restricted diffusion of a 10 kDa dextran, indicating intact passive blood-brain barrier function. We anticipate this bona fide human brain vasculature-on-a-chip will be useful for various biotechnology applications.
Collapse
Affiliation(s)
- Brian J. O’Grady
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - A. Scott McCall
- Department of Pulmonary and Critical Care, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel Cullison
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Daniel Chavarria
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Andrew Kjar
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Matthew S. Schrag
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ethan S. Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Pulmonary and Critical Care, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
7
|
Kurt E, Devlin G, Asokan A, Segura T. Gene Delivery From Granular Scaffolds for Tunable Biologics Manufacturing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309911. [PMID: 38462954 PMCID: PMC11294003 DOI: 10.1002/smll.202309911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/27/2024] [Indexed: 03/12/2024]
Abstract
The understanding of the molecular basis for disease has generated a myriad of therapeutic biologics, including therapeutic proteins, antibodies, and viruses. However, the promise that biologics can resolve currently incurable diseases hinges in their manufacturability. These therapeutics require that their genetic material be introduced to mammalian cells such that the cell machinery can manufacture the biological components. These are then purified, validated, and packaged. Most manufacturing uses batch processes that collect the biologic a few days following genetic modification, due to toxicity or difficulty in separating product from cells in a continuous operation, limiting the amount of biologic that can be produced and resulting in yearlong backlogs. Here, a scaffold-based approach for continuous biologic manufacturing is presented, with sustained production of active antibodies and viruses for 30 days. The use of scaffold-based biologic production enabled perfusion-based bioreactors to be used, which can be incorporated into a fully continuous process.
Collapse
Affiliation(s)
- Evan Kurt
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - Garth Devlin
- Department of Biomedical Engineering, Duke University, Durham, NC
- Departments of Surgery and Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC
| | - Aravind Asokan
- Department of Biomedical Engineering, Duke University, Durham, NC
- Departments of Surgery and Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC
- Departments Neurology and Dermatology, Duke University, Durham, NC
| |
Collapse
|
8
|
Cabrera RAG, Nunez MAR, Salas RMS, Macedo EA, Martinez-Flores JE, Torres-Ayala LK, Vela P, Castillo D. Design and development of a modular perfusion bioreactor prototype using 3D printing. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-5. [PMID: 40039686 DOI: 10.1109/embc53108.2024.10782877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
This study outlines the conceptual and design framework for a modular bioreactor intended to advance accessibility in tissue engineering by providing an optimal environment for three-dimensional cell growth and differentiation. By integrating 3D printing technology, we propose an innovative and cost-effective approach to bioreactor fabrication streamline the development and customization of tissue engineering applications. While the actual cell cultivation within the bioreactor has yet to be undertaken, preliminary analyses-including rigorous rheological evaluation and computational simulations-validate the bioreactor's potential to maintain a uniform, contamination-free culture environment. This research sets the stage for future experimental work, aiming to validate the bioreactor's effectiveness in supporting cell development and specialization. The anticipated outcomes promise to mark a significant step toward the clinical translation of bone tissue engineering solutions, embodying a new horizon in regenerative medicine.
Collapse
|
9
|
Pechlivani EM, Pemas S, Kanlis A, Pechlivani P, Petrakis S, Papadimitriou A, Tzovaras D, Hatzistergos KE. Enhanced Growth of Bacterial Cells in a Smart 3D Printed Bioreactor. MICROMACHINES 2023; 14:1829. [PMID: 37893266 PMCID: PMC10609434 DOI: 10.3390/mi14101829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023]
Abstract
In the last decade, there has been a notable advancement in diverse bioreactor types catering to various applications. However, conventional bioreactors often exhibit bulkiness and high costs, making them less accessible to many researchers and laboratory facilities. In light of these challenges, this article aims to introduce and evaluate the development of a do-it-yourself (DIY) 3D printed smart bioreactor, offering a cost-effective and user-friendly solution for the proliferation of various bioentities, including bacteria and human organoids, among others. The customized bioreactor was fabricated under an ergonomic design and assembled with 3D printed mechanical parts combined with electronic components, under 3D printed housing. The 3D printed parts were designed using SOLIDWORKS® CAD Software (2022 SP2.0 Professional version) and fabricated via the fused filament fabrication (FFF) technique. All parts were 3D printed with acrylonitrile butadiene styrene (ABS) in order for the bioreactor to be used under sterile conditions. The printed low-cost bioreactor integrates Internet-of-things (IoT) functionalities, since it provides the operator with the ability to change its operational parameters (sampling frequency, rotor speed, and duty cycle) remotely, via a user-friendly developed mobile application and to save the user history locally on the device. Using this bioreactor, which is adjusted to a standard commercial 12-well plate, proof of concept of a successful operation of the bioreactor during a 2-day culture of Escherichia coli bacteria (Mach1 strain) is presented. This study paves the way for more in-depth investigation of bacterial and various biological-entity growth cultures, utilizing 3D printing technology to create customized low-cost bioreactors.
Collapse
Affiliation(s)
- Eleftheria Maria Pechlivani
- Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece
| | - Sotirios Pemas
- Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece
| | - Alexandros Kanlis
- Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece
| | - Paraskevi Pechlivani
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece
| | - Spyros Petrakis
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece
| | - Athanasios Papadimitriou
- Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece
| | - Dimitrios Tzovaras
- Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece
| | - Konstantinos E Hatzistergos
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
10
|
Licata JP, Schwab KH, Har-El YE, Gerstenhaber JA, Lelkes PI. Bioreactor Technologies for Enhanced Organoid Culture. Int J Mol Sci 2023; 24:11427. [PMID: 37511186 PMCID: PMC10380004 DOI: 10.3390/ijms241411427] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
An organoid is a 3D organization of cells that can recapitulate some of the structure and function of native tissue. Recent work has seen organoids gain prominence as a valuable model for studying tissue development, drug discovery, and potential clinical applications. The requirements for the successful culture of organoids in vitro differ significantly from those of traditional monolayer cell cultures. The generation and maturation of high-fidelity organoids entails developing and optimizing environmental conditions to provide the optimal cues for growth and 3D maturation, such as oxygenation, mechanical and fluidic activation, nutrition gradients, etc. To this end, we discuss the four main categories of bioreactors used for organoid culture: stirred bioreactors (SBR), microfluidic bioreactors (MFB), rotating wall vessels (RWV), and electrically stimulating (ES) bioreactors. We aim to lay out the state-of-the-art of both commercial and in-house developed bioreactor systems, their benefits to the culture of organoids derived from various cells and tissues, and the limitations of bioreactor technology, including sterilization, accessibility, and suitability and ease of use for long-term culture. Finally, we discuss future directions for improvements to existing bioreactor technology and how they may be used to enhance organoid culture for specific applications.
Collapse
Affiliation(s)
- Joseph P Licata
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Kyle H Schwab
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yah-El Har-El
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Jonathan A Gerstenhaber
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
11
|
Yang S, Hu H, Kung H, Zou R, Dai Y, Hu Y, Wang T, Lv T, Yu J, Li F. Organoids: The current status and biomedical applications. MedComm (Beijing) 2023; 4:e274. [PMID: 37215622 PMCID: PMC10192887 DOI: 10.1002/mco2.274] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Organoids are three-dimensional (3D) miniaturized versions of organs or tissues that are derived from cells with stem potential and can self-organize and differentiate into 3D cell masses, recapitulating the morphology and functions of their in vivo counterparts. Organoid culture is an emerging 3D culture technology, and organoids derived from various organs and tissues, such as the brain, lung, heart, liver, and kidney, have been generated. Compared with traditional bidimensional culture, organoid culture systems have the unique advantage of conserving parental gene expression and mutation characteristics, as well as long-term maintenance of the function and biological characteristics of the parental cells in vitro. All these features of organoids open up new opportunities for drug discovery, large-scale drug screening, and precision medicine. Another major application of organoids is disease modeling, and especially various hereditary diseases that are difficult to model in vitro have been modeled with organoids by combining genome editing technologies. Herein, we introduce the development and current advances in the organoid technology field. We focus on the applications of organoids in basic biology and clinical research, and also highlight their limitations and future perspectives. We hope that this review can provide a valuable reference for the developments and applications of organoids.
Collapse
Affiliation(s)
- Siqi Yang
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Haijie Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Hengchung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ruiqi Zou
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yushi Dai
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yafei Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Tiantian Wang
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tianrun Lv
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Jun Yu
- Departments of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Departments of OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fuyu Li
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
12
|
Kim H, Jang EJ, Sankpal NV, Patel M, Patel R. Recent Development of Brain Organoids for Biomedical Application. Macromol Biosci 2023; 23:e2200346. [PMID: 36469016 DOI: 10.1002/mabi.202200346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/11/2022] [Indexed: 12/12/2022]
Abstract
Over the years, scientists have studied the behavior and anatomy of many animals to understand the own species. However, despite the continuous efforts, it is often difficult to know for certain how the brain works due to the differences between the brains of animals and the human brain. While the use of animal models for research continues, the origin of human cognition and neurological disorders needs further elucidation. To that end, in vitro organoids that exhibit in vivo characteristics of the human brain have been recently developed. These brain-like organoids enable researchers to dive deeper into understanding the human brain, its neurological structures, and the causes of neurological pathologies. This paper reviews the recent developments in the regeneration of brain-like organoids using Matrigel and other alternatives. Further, gel-free methods that may enhance the regeneration process of organoids are discussed. Finally, the vascularized brain organoid growth and development in both in vitro and in vivo conditions are detailed.
Collapse
Affiliation(s)
- HanSol Kim
- Bio-Convergence (BC), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, South Korea
| | - Eun Jo Jang
- Nano Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, South Korea
| | - Narendra V Sankpal
- Norton Thoracic Institute St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsugu, Incheon, 21938, South Korea
| |
Collapse
|
13
|
Khamis ZI, Sarker DB, Xue Y, Al-Akkary N, James VD, Zeng C, Li Y, Sang QXA. Modeling Human Brain Tumors and the Microenvironment Using Induced Pluripotent Stem Cells. Cancers (Basel) 2023; 15:cancers15041253. [PMID: 36831595 PMCID: PMC9954701 DOI: 10.3390/cancers15041253] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Brain cancer is a group of diverse and rapidly growing malignancies that originate in the central nervous system (CNS) and have a poor prognosis. The complexity of brain structure and function makes brain cancer modeling extremely difficult, limiting pathological studies and therapeutic developments. Advancements in human pluripotent stem cell technology have opened a window of opportunity for brain cancer modeling, providing a wealth of customizable methods to simulate the disease in vitro. This is achieved with the advent of genome editing and genetic engineering technologies that can simulate germline and somatic mutations found in human brain tumors. This review investigates induced pluripotent stem cell (iPSC)-based approaches to model human brain cancer. The applications of iPSCs as renewable sources of individual brain cell types, brain organoids, blood-brain barrier (BBB), and brain tumor models are discussed. The brain tumor models reviewed are glioblastoma and medulloblastoma. The iPSC-derived isogenic cells and three-dimensional (3D) brain cancer organoids combined with patient-derived xenografts will enhance future compound screening and drug development for these deadly human brain cancers.
Collapse
Affiliation(s)
- Zahraa I. Khamis
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
- Laboratory of Cancer Biology and Molecular Immunology, Department of Biochemistry, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Drishty B. Sarker
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Yu Xue
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Nancy Al-Akkary
- Laboratory of Cancer Biology and Molecular Immunology, Department of Biochemistry, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Viviana D. James
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Changchun Zeng
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- Correspondence: ; Tel.: +1-850-644-8683; Fax: +1-850-644-8281
| |
Collapse
|
14
|
Tran HN, Gautam V. Micro/nano devices for integration with human brain organoids. Biosens Bioelectron 2022; 218:114750. [DOI: 10.1016/j.bios.2022.114750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
|
15
|
Tran HN, Gautam V. Micro- and nanodevices for integration with human brain organoids. Biosens Bioelectron 2022:114734. [PMID: 36990931 DOI: 10.1016/j.bios.2022.114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/18/2022] [Accepted: 09/14/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Hao Nguyen Tran
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Victoria, 3010, Australia
| | - Vini Gautam
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
16
|
O'Grady BJ, Geuy MD, Kim H, Balotin KM, Allchin ER, Florian DC, Bute NN, Scott TE, Lowen GB, Fricker CM, Fitzgerald ML, Guelcher SA, Wikswo JP, Bellan LM, Lippmann ES. Rapid prototyping of cell culture microdevices using parylene-coated 3D prints. LAB ON A CHIP 2021; 21:4814-4822. [PMID: 34787148 PMCID: PMC8717820 DOI: 10.1039/d1lc00744k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Fabrication of microfluidic devices by photolithography generally requires specialized training and access to a cleanroom. As an alternative, 3D printing enables cost-effective fabrication of microdevices with complex features that would be suitable for many biomedical applications. However, commonly used resins are cytotoxic and unsuitable for devices involving cells. Furthermore, 3D prints are generally refractory to elastomer polymerization such that they cannot be used as master molds for fabricating devices from polymers (e.g. polydimethylsiloxane, or PDMS). Different post-print treatment strategies, such as heat curing, ultraviolet light exposure, and coating with silanes, have been explored to overcome these obstacles, but none have proven universally effective. Here, we show that deposition of a thin layer of parylene, a polymer commonly used for medical device applications, renders 3D prints biocompatible and allows them to be used as master molds for elastomeric device fabrication. When placed in culture dishes containing human neurons, regardless of resin type, uncoated 3D prints leached toxic material to yield complete cell death within 48 hours, whereas cells exhibited uniform viability and healthy morphology out to 21 days if the prints were coated with parylene. Diverse PDMS devices of different shapes and sizes were easily cast from parylene-coated 3D printed molds without any visible defects. As a proof-of-concept, we rapid prototyped and tested different types of PDMS devices, including triple chamber perfusion chips, droplet generators, and microwells. Overall, we suggest that the simplicity and reproducibility of this technique will make it attractive for fabricating traditional microdevices and rapid prototyping new designs. In particular, by minimizing user intervention on the fabrication and post-print treatment steps, our strategy could help make microfluidics more accessible to the biomedical research community.
Collapse
Affiliation(s)
- Brian J O'Grady
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Michael D Geuy
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Kylie M Balotin
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Everett R Allchin
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
| | - David C Florian
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Neelansh N Bute
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Taylor E Scott
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Gregory B Lowen
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Colin M Fricker
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | | | - Scott A Guelcher
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
| | - John P Wikswo
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Leon M Bellan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
17
|
Cobb H, Aparicio-Domingo S, Canto-Soler MV. Transitioning into GMP-Compliance: Alternative Methods for Producing Retinal Organoids for Transplantation. Transl Vis Sci Technol 2021; 10:9. [PMID: 34383873 PMCID: PMC8362632 DOI: 10.1167/tvst.10.10.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Three-dimensional retinal organoids derived from human induced pluripotent stem cells (hiPSCs) are gaining much attention as a possible source for cell transplantation to treat retinal degenerative conditions. However, the protocol for producing retinal organoids is time and labor intensive, involving a sequence of precise steps, and thus has yet to be successfully translated into a Good Manufacturing Practice (GMP)-compliant procedure. This review seeks to define the progress that has already been made in the pursuit of designing a GMP-compliant, streamlined, and automated protocol for retinal organoid production for optimal clinical success. The reviewed literature compares various approaches for cell culture automation, appropriate xeno-free conditions, and cell sources for iPSC line generation; yet, there are still important gaps for these three key considerations that remain to be addressed. Thus, the authors also discuss further potential strategies to successfully achieve GMP-compliant production of retinal organoids for eventual safe and efficient use in clinical trials.
Collapse
Affiliation(s)
- Hannah Cobb
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Silvia Aparicio-Domingo
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, School of Medicine, Aurora, CO, USA
| | - M Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, School of Medicine, Aurora, CO, USA.,Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
18
|
Agboola OS, Hu X, Shan Z, Wu Y, Lei L. Brain organoid: a 3D technology for investigating cellular composition and interactions in human neurological development and disease models in vitro. Stem Cell Res Ther 2021; 12:430. [PMID: 34332630 PMCID: PMC8325286 DOI: 10.1186/s13287-021-02369-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/03/2021] [Indexed: 01/01/2023] Open
Abstract
Abstract The study of human brain physiology, including cellular interactions in normal and disease conditions, has been a challenge due to its complexity and unavailability. Induced pluripotent stem cell (iPSC) study is indispensable in the study of the pathophysiology of neurological disorders. Nevertheless, monolayer systems lack the cytoarchitecture necessary for cellular interactions and neurological disease modeling. Brain organoids generated from human pluripotent stem cells supply an ideal environment to model both cellular interactions and pathophysiology of the human brain. This review article discusses the composition and interactions among neural lineage and non-central nervous system cell types in brain organoids, current studies, and future perspectives in brain organoid research. Ultimately, the promise of brain organoids is to unveil previously inaccessible features of neurobiology that emerge from complex cellular interactions and to improve our mechanistic understanding of neural development and diseases. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02369-8.
Collapse
Affiliation(s)
- Oluwafemi Solomon Agboola
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Heilongjiang Province, Harbin, 150081, People's Republic of China
| | - Xinglin Hu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Heilongjiang Province, Harbin, 150081, People's Republic of China
| | - Zhiyan Shan
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Heilongjiang Province, Harbin, 150081, People's Republic of China
| | - Yanshuang Wu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Heilongjiang Province, Harbin, 150081, People's Republic of China.
| | - Lei Lei
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Heilongjiang Province, Harbin, 150081, People's Republic of China. .,Key Laboratory of Preservative of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China.
| |
Collapse
|
19
|
Bodnar B, Zhang Y, Liu J, Lin Y, Wang P, Wei Z, Saribas S, Zhu Y, Li F, Wang X, Yang W, Li Q, Ho WZ, Hu W. Novel Scalable and Simplified System to Generate Microglia-Containing Cerebral Organoids From Human Induced Pluripotent Stem Cells. Front Cell Neurosci 2021; 15:682272. [PMID: 34290591 PMCID: PMC8288463 DOI: 10.3389/fncel.2021.682272] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
Human cerebral organoid (CO) is a three-dimensional (3D) cell culture system that recapitulates the developing human brain. While CO has proved an invaluable tool for studying neurological disorders in a more clinically relevant matter, there have still been several shortcomings including CO variability and reproducibility as well as lack of or underrepresentation of certain cell types typically found in the brain. As the technology to generate COs has continued to improve, more efficient and streamlined protocols have addressed some of these issues. Here we present a novel scalable and simplified system to generate microglia-containing CO (MCO). We characterize the cell types and dynamic development of MCOs and validate that these MCOs harbor microglia, astrocytes, neurons, and neural stem/progenitor cells, maturing in a manner that reflects human brain development. We introduce a novel technique for the generation of embryoid bodies (EBs) directly from induced pluripotent stem cells (iPSCs) that involves simplified steps of transitioning directly from 3D cultures as well as orbital shaking culture in a standard 6-well culture plate. This allows for the generation of MCOs with an easy-to-use system that is affordable and accessible by any general lab.
Collapse
Affiliation(s)
- Brittany Bodnar
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yongang Zhang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Chengdu, China
| | - Jinbiao Liu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yuan Lin
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Peng Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Zhengyu Wei
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Sami Saribas
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yuanjun Zhu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Fang Li
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Wenli Yang
- Institute for Regenerative Medicine and Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Wenhui Hu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
20
|
Mansouri M, Leipzig ND. Advances in removing mass transport limitations for more physiologically relevant in vitro 3D cell constructs. BIOPHYSICS REVIEWS 2021; 2:021305. [PMID: 38505119 PMCID: PMC10903443 DOI: 10.1063/5.0048837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/31/2021] [Indexed: 03/21/2024]
Abstract
Spheroids and organoids are promising models for biomedical applications ranging from human disease modeling to drug discovery. A main goal of these 3D cell-based platforms is to recapitulate important physiological parameters of their in vivo organ counterparts. One way to achieve improved biomimetic architectures and functions is to culture cells at higher density and larger total numbers. However, poor nutrient and waste transport lead to low stability, survival, and functionality over extended periods of time, presenting outstanding challenges in this field. Fortunately, important improvements in culture strategies have enhanced the survival and function of cells within engineered microtissues/organs. Here, we first discuss the challenges of growing large spheroids/organoids with a focus on mass transport limitations, then highlight recent tools and methodologies that are available for producing and sustaining functional 3D in vitro models. This information points toward the fact that there is a critical need for the continued development of novel cell culture strategies that address mass transport in a physiologically relevant human setting to generate long-lasting and large-sized spheroids/organoids.
Collapse
Affiliation(s)
- Mona Mansouri
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Nic D. Leipzig
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
21
|
Gritti N, Oriola D, Trivedi V. Rethinking embryology in vitro: A synergy between engineering, data science and theory. Dev Biol 2021; 474:48-61. [DOI: 10.1016/j.ydbio.2020.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
|
22
|
Costamagna G, Comi GP, Corti S. Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids. Int J Mol Sci 2021; 22:ijms22052659. [PMID: 33800815 PMCID: PMC7961877 DOI: 10.3390/ijms22052659] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
In the last decade, different research groups in the academic setting have developed induced pluripotent stem cell-based protocols to generate three-dimensional, multicellular, neural organoids. Their use to model brain biology, early neural development, and human diseases has provided new insights into the pathophysiology of neuropsychiatric and neurological disorders, including microcephaly, autism, Parkinson’s disease, and Alzheimer’s disease. However, the adoption of organoid technology for large-scale drug screening in the industry has been hampered by challenges with reproducibility, scalability, and translatability to human disease. Potential technical solutions to expand their use in drug discovery pipelines include Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) to create isogenic models, single-cell RNA sequencing to characterize the model at a cellular level, and machine learning to analyze complex data sets. In addition, high-content imaging, automated liquid handling, and standardized assays represent other valuable tools toward this goal. Though several open issues still hamper the full implementation of the organoid technology outside academia, rapid progress in this field will help to prompt its translation toward large-scale drug screening for neurological disorders.
Collapse
Affiliation(s)
- Gianluca Costamagna
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, University of Milan, 20122 Milan, Italy; (G.C.); (G.P.C.)
- IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, University of Milan, 20122 Milan, Italy; (G.C.); (G.P.C.)
- IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, University of Milan, 20122 Milan, Italy; (G.C.); (G.P.C.)
- IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
23
|
Joshi P, Bodnya C, Rasmussen ML, Romero-Morales AI, Bright A, Gama V. Modeling the function of BAX and BAK in early human brain development using iPSC-derived systems. Cell Death Dis 2020; 11:808. [PMID: 32978370 PMCID: PMC7519160 DOI: 10.1038/s41419-020-03002-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/27/2022]
Abstract
Intrinsic apoptosis relies on the ability of the BCL-2 family to induce the formation of pores on the outer mitochondrial membrane. Previous studies have shown that both BAX and BAK are essential during murine embryogenesis, and reports in human cancer cell lines identified non-canonical roles for BAX and BAK in mitochondrial fission during apoptosis. BAX and BAK function in human brain development remains elusive due to the lack of appropriate model systems. Here, we generated BAX/BAK double knockout human-induced pluripotent stem cells (hiPSCs), hiPSC-derived neural progenitor cells (hNPCs), neural rosettes, and cerebral organoids to uncover the effects of BAX and BAK deletion in an in vitro model of early human brain development. We found that BAX and BAK-deficient cells have abnormal mitochondrial morphology and give rise to aberrant cortical structures. We suggest crucial functions for BAX and BAK during human development, including maintenance of homeostatic mitochondrial morphology, which is crucial for proper development of progenitors and neurons of the cortex. Human pluripotent stem cell-derived systems can be useful platforms to reveal novel functions of the apoptotic machinery in neural development.
Collapse
Affiliation(s)
- Piyush Joshi
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Caroline Bodnya
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Megan L Rasmussen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | | | - Anna Bright
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Vivian Gama
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
24
|
Kreß S, Schaller-Ammann R, Feiel J, Priedl J, Kasper C, Egger D. 3D Printing of Cell Culture Devices: Assessment and Prevention of the Cytotoxicity of Photopolymers for Stereolithography. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3011. [PMID: 32640644 PMCID: PMC7372443 DOI: 10.3390/ma13133011] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
3D printing is increasingly important for the rapid prototyping of advanced and tailor-made cell culture devices. In this context, stereolithography represents a method for the rapid generation of prototypes from photocurable polymers. However, the biocompatibility of commercially available photopolymers is largely unknown. Therefore, we evaluated the cytotoxicity of six polymers, two of them certified as biocompatible according to ISO 10993-5:2009, and we evaluated, if coating with Parylene, an inert polymer widely used in medical applications, might shield cells from the cytotoxic effects of a toxic polymer. In addition, we evaluated the processability, reliability, and consistency of the details printed. Human mesenchymal stem cells (MSCs) were used for cytotoxicity testing as they are widely used and promising for numerous applications in regenerative medicine. MSCs were incubated together with printed photopolymers, and the cytotoxicity was assessed. All photopolymers significantly reduced the viability of MSCs while the officially biocompatible resins displayed minor toxic effects. Further, coating with Parylene completely protected MSCs from toxic effects. In conclusion, none of the tested polymers can be fully recommended for rapid prototyping of cell culture devices. However, coating with Parylene can shield cells from toxic effects and thus might represent a viable option until more compatible materials are available.
Collapse
Affiliation(s)
- Sebastian Kreß
- Institute of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria; (S.K.); (C.K.)
| | - Roland Schaller-Ammann
- Health—Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria; (R.S.-A.); (J.F.); (J.P.)
| | - Jürgen Feiel
- Health—Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria; (R.S.-A.); (J.F.); (J.P.)
| | - Joachim Priedl
- Health—Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria; (R.S.-A.); (J.F.); (J.P.)
| | - Cornelia Kasper
- Institute of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria; (S.K.); (C.K.)
| | - Dominik Egger
- Institute of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria; (S.K.); (C.K.)
| |
Collapse
|
25
|
Robertson GL, Romero-Morales AI, Lippmann ES, Gama V. Uncovering cell biology in the third dimension. Mol Biol Cell 2020; 31:319-323. [PMID: 32105584 PMCID: PMC7183789 DOI: 10.1091/mbc.e19-04-0211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/24/2019] [Accepted: 01/03/2020] [Indexed: 01/08/2023] Open
Abstract
Developmental biology has long benefited from studies of classic model organisms. These model systems have provided the fundamental understanding of general principles of development, as well as insight into genes and signaling pathways that control unique aspects of cell fate specification and tissue morphogenesis. Because human brain development cannot be studied in vivo, scientists have relied on these model systems to study basic principles underlying the development of this complex organ as many of these genes and signaling pathways play conserved roles in human development. However, recent studies have shown species-specific signatures in neurodevelopment such as the transcriptome of outer-radial glia, suggesting use of a human-derived model remains imperative. Over the past decade, human stem cell-derived brain organoids have emerged as a biologically relevant model system to study normal human brain development and neurological diseases. Here, we provide a historical perspective of this emerging model system, discuss current systems and limitations, and propose that new mechanistic insight into cell biology can be revealed using these three-dimensional brain structures.
Collapse
Affiliation(s)
| | | | - Ethan S. Lippmann
- Vanderbilt Center for Stem Cell Biology
- Vanderbilt Brain Institute, and
- Department of Chemical and Biomolecular Engineering and
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
| | - Vivian Gama
- Department of Cell and Developmental Biology
- Vanderbilt Center for Stem Cell Biology
- Vanderbilt Brain Institute, and
- Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|