1
|
Herzog RW, Kaczmarek R, High KA. Gene therapy for hemophilia - From basic science to first approvals of "one-and-done" therapies. Mol Ther 2025; 33:2015-2034. [PMID: 40156189 DOI: 10.1016/j.ymthe.2025.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Realistic paths to gene therapy for the X-linked bleeding disorder hemophilia started to materialize in the mid 1990s, resulting in disease correction in small and large animal models. Out of a diversity of approaches, in vivo adeno-associated viral (AAV) gene transfer to hepatocytes emerged as the most promising strategy, eventually forming the basis for multiple advanced clinical trials and regulatory approval of two products for the treatment of hemophilia B (coagulation factor IX deficiency) and one for hemophilia A (factor VIII deficiency). Ideally, gene therapy is effective with a single administration, thus providing therapeutic factor levels over a period of years, without the need for frequent injections. Overcoming multiple obstacles, some not predicted by preclinical studies, sustained partial to complete correction of coagulation for several years to an entire decade has now been documented in patients, with observation ongoing. A hyperactive form of FIX improved efficacy in hemophilia B, and superior engineered variants of FVIII are emerging. Nonetheless, challenges remain, including pre-existing immunity to AAV capsids, toxicities, inter-patient variability in response to treatment, and difficulty in obtaining durable therapeutic expression of FVIII. In alternative approaches, in vivo gene editing and ex vivo gene therapies targeting hemopoietic cells are in development.
Collapse
Affiliation(s)
- Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Radoslaw Kaczmarek
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Katherine A High
- Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY, USA.
| |
Collapse
|
2
|
Zhao JJ, Tian SN, Li X, Peng ZY, Li GH, Zhang F, Zhao M, Zhang JP, Zhang XB. Enhancing hemophilia A gene therapy by strategic F8 deletions in AAV vectors. BLOOD SCIENCE 2025; 7:e00217. [PMID: 39949501 PMCID: PMC11822342 DOI: 10.1097/bs9.0000000000000217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/06/2024] [Indexed: 02/16/2025] Open
Abstract
Hemophilia A, caused by a deficiency in factor VIII (F8), is a promising target for gene therapy. This study aims to enhance the efficacy of adeno-associated virus serotype 8 (AAV8) vectors, specifically those encoding B-domain-deleted F8 (BDDF8), to treat the condition. We focused on improving therapeutic outcomes by strategically deleting amino acids at the furin cleavage site (RHQR), a modification that is crucial for increasing F8 expression and reducing capsid stress during vector packaging. Using computational modeling with AlphaFold2, combined with western blotting and in vivo clotting assays, we developed and tested several AAV8-BDDF8 variants in a hemophilia A mouse model. The AAV8-BDDF8-ΔRHQR10 variant, which includes a 10-amino acid deletion at the RHQR site, demonstrated a 2- to 3-fold increase in F8 activity, with sustained expression and no hepatotoxicity. This variant also showed reduced capsid stress and enhanced protein expression. However, the observed decline in long-term efficacy highlights the ongoing challenges in AAV-F8 gene therapy, emphasizing the need for continuous improvements. Our findings offer valuable insights for refining AAV-mediated gene therapy in hemophilia A, showing that targeted molecular modifications can significantly enhance therapeutic performance while ensuring safety.
Collapse
Affiliation(s)
- Juan-Juan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Sai-Ning Tian
- Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, China
| | - Xiang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Zu-Yi Peng
- Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, China
| | - Guo-Hua Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Feng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Mei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Jian-Ping Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Samelson-Jones BJ, Doshi BS, George LA. Coagulation factor VIII: biological basis of emerging hemophilia A therapies. Blood 2024; 144:2185-2197. [PMID: 39088776 PMCID: PMC11600081 DOI: 10.1182/blood.2023023275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024] Open
Abstract
ABSTRACT Coagulation factor VIII (FVIII) is essential for hemostasis. After activation, it combines with activated FIX (FIXa) on anionic membranes to form the intrinsic Xase enzyme complex, responsible for activating FX in the rate-limiting step of sustained coagulation. Hemophilia A (HA) and hemophilia B are due to inherited deficiencies in the activity of FVIII and FIX, respectively. Treatment of HA over the last decade has benefited from an improved understanding of FVIII biology, including its secretion pathway, its interaction with von Willebrand factor in circulation, the biochemical nature of its FIXa cofactor activity, the regulation of activated FVIII by inactivation pathways, and its surprising immunogenicity. This has facilitated biotechnology innovations with first-in-class examples of several new therapeutic modalities recently receiving regulatory approval for HA, including FVIII-mimetic bispecific antibodies and recombinant adeno-associated viral (rAAV) vector-based gene therapy. Biological insights into FVIII also guide the development and use of gain-of-function FVIII variants aimed at addressing the limitations of first-generation rAAV vectors for HA. Several gain-of-function FVIII variants designed to have improved secretion are currently incorporated in second-generation rAAV vectors and have recently entered clinical trials. Continued mutually reinforcing advancements in the understanding of FVIII biology and treatments for HA are necessary to achieve the ultimate goal of hemophilia therapy: normalizing hemostasis and optimizing well-being with minimal treatment burden for all patients worldwide.
Collapse
Affiliation(s)
- Benjamin J. Samelson-Jones
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA
- Division of Hematology, Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia PA
| | - Bhavya S. Doshi
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA
- Division of Hematology, Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia PA
| | - Lindsey A. George
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA
- Division of Hematology, Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia PA
| |
Collapse
|
4
|
Samelson-Jones BJ, Small JC, George LA. Roctavian gene therapy for hemophilia A. Blood Adv 2024; 8:5179-5189. [PMID: 38991118 PMCID: PMC11530397 DOI: 10.1182/bloodadvances.2023011847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
ABSTRACT After successful efforts in adeno-associated virus (AAV) gene addition for hemophilia B gene therapy, the development of valoctocogene roxaparvovec (Roctavian; Biomarin) over the past decade represents a potential new hemophilia A (HA) treatment paradigm. Roctavian is the first licensed HA gene therapy that was conditionally approved in Europe in August 2022 and approved in the United States in June 2023. Beyond Roctavian, there are ongoing pivotal trials of additional AAV vectors for HA, others that are progressing through preclinical development or early-phase clinical trial, as well as non-AAV approaches in clinical development. This review focuses on the clinical development of Roctavian for which the collective clinical trials represent the largest body of work thus far available for any licensed AAV product. From this pioneering clinical development, several outstanding questions have emerged for which the answers will undoubtedly be important to the clinical adaptation of Roctavian and future efforts in HA gene therapy. Most notably, unexplained year-over-year declines in factor VIII (FVIII) expression after Roctavian treatment contrast with stable FVIII expression observed in other AAV HA gene therapy clinical trials with more modest initial FVIII expression. This observation has been qualitatively replicated in animal models that may permit mechanistic study. The development and approval of Roctavian is a landmark in HA therapeutics, although next-generation approaches are needed before HA gene therapy fulfills its promise of stable FVIII expression that normalizes hemostasis.
Collapse
Affiliation(s)
- Benjamin J. Samelson-Jones
- Clinical In Vivo Gene Therapy and Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Juliana C. Small
- Clinical In Vivo Gene Therapy and Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Lindsey A. George
- Clinical In Vivo Gene Therapy and Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
5
|
Sternberg AR, Martos-Rus C, Davidson RJ, Liu X, George LA. Pre-clinical evaluation of an enhanced-function factor VIII variant for durable hemophilia A gene therapy in male mice. Nat Commun 2024; 15:7193. [PMID: 39168991 PMCID: PMC11339367 DOI: 10.1038/s41467-024-51296-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Durable factor VIII expression that normalizes hemostasis is an unrealized goal of hemophilia A adeno-associated virus-mediated gene therapy. Trials with initially normal factor VIII activity observed unexplained year-over-year declines in expression while others reported low-level, stable expression inadequate to restore normal hemostasis. Here we demonstrate that male mice recapitulate expression-level-dependent loss of factor VIII levels due to declines in vector copy number. We show that an enhanced function factor VIII variant (factor VIII-R336Q/R562Q), resistant to activated protein C-mediated inactivation, normalizes hemostasis at below-normal expression without evidence of prothrombotic risk in male hemophilia A mice. These data support that factor VIII-R336Q/R562Q may restore normal factor VIII function at low levels of expression to permit durability using low vector doses to minimize dose-dependent adeno-associated virus toxicities. This work informs the mechanism of factor VIII durability after gene transfer and supports that factor VIII-R336Q/R562Q may safely overcome current hemophilia A gene therapy limitations.
Collapse
Affiliation(s)
- Anna R Sternberg
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, the Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Hematology, the Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Cristina Martos-Rus
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, the Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Hematology, the Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert J Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, the Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Hematology, the Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xueyuan Liu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, the Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lindsey A George
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, the Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Hematology, the Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Sarangi P, Kumar N, Sambasivan R, Ramalingam S, Amit S, Chandra D, Jayandharan GR. AAV mediated genome engineering with a bypass coagulation factor alleviates the bleeding phenotype in a murine model of hemophilia B. Thromb Res 2024; 238:151-160. [PMID: 38718473 DOI: 10.1016/j.thromres.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
It is crucial to develop a long-term therapy that targets hemophilia A and B, including inhibitor-positive patients. We have developed an Adeno-associated virus (AAV) based strategy to integrate the bypass coagulation factor, activated FVII (murine, mFVIIa) gene into the Rosa26 locus using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 mediated gene-editing. AAV vectors designed for expression of guide RNA (AAV8-gRNA), Cas9 (AAV2 neddylation mutant-Cas9), and mFVIIa (AAV8-mFVIIa) flanked by homology arms of the target locus were validated in vitro. Hemophilia B mice were administered with AAV carrying gRNA, Cas9 (1 × 1011 vgs/mouse), and mFVIIa with homology arms (2 × 1011 vgs/mouse) with appropriate controls. Functional rescue was documented with suitable coagulation assays at various time points. The data from the T7 endonuclease assay revealed a cleavage efficiency of 20-42 %. Further, DNA sequencing confirmed the targeted integration of mFVIIa into the safe-harbor Rosa26 locus. The prothrombin time (PT) assay revealed a significant reduction in PT in mice that received the gene-editing vectors (22 %), and a 13 % decline in mice that received only the AAV-FVIIa when compared to mock treated mice, 8 weeks after vector administration. Furthermore, FVIIa activity in mice that received triple gene-editing vectors was higher (122.5mIU/mL vs 28.8mIU/mL) than the mock group up to 15 weeks post vector administration. A hemostatic challenge by tail clip assay revealed that hemophilia B mice injected with only FVIIa or the gene-editing vectors had significant reduction in blood loss. In conclusion, AAV based gene-editing facilitates sustained expression of coagulation FVIIa and phenotypic rescue in hemophilia B mice.
Collapse
Affiliation(s)
- Pratiksha Sarangi
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, UP, India
| | - Narendra Kumar
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, UP, India
| | - Ramkumar Sambasivan
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Andhra Pradesh, India
| | | | - Sonal Amit
- Autonomous State Medical College, Kumbhi, Akbarpur, Kanpur, UP, India
| | - Dinesh Chandra
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Giridhara R Jayandharan
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, UP, India.
| |
Collapse
|
7
|
Richter CE, Raghunath A, Griffin MS, Yaman M, Arruda VR, Samelson-Jones BJ, Shavit JA. Loss of factor VIII in zebrafish rebalances antithrombin deficiency but has a limited bleeding diathesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582609. [PMID: 39896458 PMCID: PMC11785011 DOI: 10.1101/2024.02.28.582609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Deficiencies in coagulation factor VIII (FVIII, F8) result in the bleeding disorder hemophilia A. An emerging novel therapeutic strategy for bleeding disorders is to enhance hemostasis by limiting natural anticoagulants, such as antithrombin (AT3). To study pro/anticoagulant hemostatic balance in an in vivo model, we used genome editing to create null alleles for f8 and von Willebrand factor (vwf) in zebrafish, a model organism with a high degree of homology to the mammalian hemostatic system and unique attributes, including external development and optical transparency. f8 homozygous mutant larvae surprisingly formed normal thrombi when subjected to laser-mediated endothelial injury, had no overt signs of hemorrhage, but had a modest increase in mortality. We have previously shown that at3 -/- larvae develop disseminated intravascular coagulation (DIC), with spontaneous thrombosis and fibrinogen consumption, resulting in bleeding phenotype marked by secondary lack of induced thrombus formation upon endothelial injury. We found that with loss of FVIII (f8 -/-;at3 -/-), larvae no longer developed spontaneous fibrin thrombi and did produce clots in response to endothelial injury. However, homozygous loss of zebrafish Vwf failed to rescue the at3 DIC phenotype. These studies demonstrate an altered balance of natural anticoagulants that mitigates FVIII deficiency in zebrafish, similar to human clinical pipeline products. The data also suggest that zebrafish FVIII might circulate independently of Vwf. Further study of this unique balance could provide new insights for management of hemophilia A and von Willebrand disease.
Collapse
Affiliation(s)
- Catherine E. Richter
- Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Azhwar Raghunath
- Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Megan S. Griffin
- Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Murat Yaman
- Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Valder R. Arruda
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Benjamin J. Samelson-Jones
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jordan A. Shavit
- Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Coyle CW, Knight KA, Brown HC, George SN, Denning G, Branella GM, Childers KC, Spiegel PC, Spencer HT, Doering CB. Humanization and functional characterization of enhanced coagulation factor IX variants identified through ancestral sequence reconstruction. J Thromb Haemost 2024; 22:633-644. [PMID: 38016519 PMCID: PMC10922771 DOI: 10.1016/j.jtha.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Laboratory resurrection of ancient coagulation factor (F) IX variants generated through ancestral sequence reconstruction led to the discovery of a FIX variant, designated An96, which possesses enhanced specific activity independent of and additive to that provided by human p.Arg384Lys, referred to as FIX-Padua. OBJECTIVES The goal of the current study was to identify the amino acid substitution(s) responsible for the enhanced activity of An96 and create a humanized An96 FIX transgene for gene therapy application. METHODS Reductionist screening approaches, including domain swapping and scanning residue substitution, were used and guided by one-stage FIX activity assays. In vitro characterization of top candidates included recombinant high-purity preparation, specific activity determination, and enzyme kinetic analysis. Final candidates were packaged into adeno-associated viral (AAV) vectors and delivered to hemophilia B mice. RESULTS Five of 42 total amino acid substitutions in An96 appear sufficient to retain the enhanced activity of An96 in an otherwise human FIX variant. Additional substitution of the Padua variant further increased the specific activity 5-fold. This candidate, designated ET9, demonstrated 51-fold greater specific activity than hFIX. AAV2/8-ET9 treated hemophilia B mice produced plasma FIX activities equivalent to those observed previously for AAV2/8-An96-Padua, which were 10-fold higher than AAV2/8-hFIX-Padua. CONCLUSION Starting from computationally inferred ancient FIX sequences, novel amino acid substitutions conferring activity enhancement were identified and translated into an AAV-FIX gene therapy cassette demonstrating high potency. This ancestral sequence reconstruction discovery and sequence mapping refinement approach represents a promising platform for broader protein drug and gene therapy candidate optimization.
Collapse
Affiliation(s)
- Christopher W Coyle
- Molecular and Systems Pharmacology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kristopher A Knight
- Molecular and Systems Pharmacology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | - Gianna M Branella
- Cancer Biology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kenneth C Childers
- Chemistry Department, Western Washington University, Bellingham, Washington, USA
| | - P Clint Spiegel
- Chemistry Department, Western Washington University, Bellingham, Washington, USA
| | - H Trent Spencer
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Christopher B Doering
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
9
|
Chen Z, Herzog RW, Kaufman RJ. Cellular stress and coagulation factor production: when more is not necessarily better. J Thromb Haemost 2023; 21:3329-3341. [PMID: 37839613 PMCID: PMC10760459 DOI: 10.1016/j.jtha.2023.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Remarkably, it has been 40 years since the isolation of the 2 genes involved in hemophilia A (HA) and hemophilia B (HB), encoding clotting factor (F) VIII (FVIII) and FIX, respectively. Over the years, these advances led to the development of purified recombinant protein factors that are free of contaminating viruses from human pooled plasma for hemophilia treatments, reducing the morbidity and mortality previously associated with human plasma-derived clotting factors. These discoveries also paved the way for modified factors that have increased plasma half-lives. Importantly, more recent advances have led to the development and Food and Drug Administration approval of a hepatocyte-targeted, adeno-associated viral vector-mediated gene transfer approach for HA and HB. However, major concerns regarding the durability and safety of HA gene therapy remain to be resolved. Compared with FIX, FVIII is a much larger protein that is prone to misfolding and aggregation in the endoplasmic reticulum and is poorly secreted by the mammalian cells. Due to the constraint of the packaging capacity of adeno-associated viral vector, B-domain deleted FVIII rather than the full-length protein is used for HA gene therapy. Like full-length FVIII, B-domain deleted FVIII misfolds and is inefficiently secreted. Its expression in hepatocytes activates the cellular unfolded protein response, which is deleterious for hepatocyte function and survival and has the potential to drive hepatocellular carcinoma. This review is focused on our current understanding of factors limiting FVIII secretion and the potential pathophysiological consequences upon expression in hepatocytes.
Collapse
Affiliation(s)
- Zhouji Chen
- Degenerative Diseases Program, Center for Genetic Diseases and Aging Research, SBP Medical Discovery Institute, California, USA
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Center for Genetic Diseases and Aging Research, SBP Medical Discovery Institute, California, USA.
| |
Collapse
|
10
|
Castaman G, Coppens M, Pipe SW. Etranacogene dezaparvovec for the treatment of adult patients with severe and moderately severe hemophilia B. Expert Rev Hematol 2023; 16:919-932. [PMID: 37882214 DOI: 10.1080/17474086.2023.2276206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Etranacogene dezaparvovec is the first gene therapy approved for treatment of adults with severe and moderately severe hemophilia B. AREAS COVERED This review describes the results of the clinical trial program of AMT-060 and etranacogene dezaparvovec, outlining the pharmacokinetic, clinical efficacy and safety data. With the entry of etranacogene dezaparvovec into the market, this review summarizes the treatment landscape in hemophilia B and discusses the current unknowns in the field. EXPERT OPINION Gene therapy appears to be a feasible option for adults with severe and moderately severe hemophilia B. Etranacogene dezaparvovec enables most patients to reach stable factor IX (FIX) levels after a single intravenous infusion, eliminating the need for regular prophylaxis; thus, drastically reducing treatment burden and avoiding variable bleeding risk owing to fluctuating FIX activity levels. Efficacy of etranacogene dezaparvovec has been demonstrated even in the presence of preexisting neutralizing antibodies (up to a titer of 1:678), with a relative low risk of transaminitis and its associated potential loss of transgene expression. However, long-term data are required to ascertain the durability of FIX levels achieved and safety. The cost-effectiveness and adoption of innovative payment models for reimbursement are key in choosing gene therapy over existing treatments.
Collapse
Affiliation(s)
- Giancarlo Castaman
- Department of Oncology, Center for Bleeding Disorders and Coagulation, Careggi University Hospital, Florence, Italy
| | - Michiel Coppens
- Vascular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension & Thrombosis, Amsterdam, The Netherlands
| | - Steven W Pipe
- Departments of Pediatrics and Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Cao Y, Cong H, Yu B, Shen Y. A review on the synthesis and development of alginate hydrogels for wound therapy. J Mater Chem B 2023; 11:2801-2829. [PMID: 36916313 DOI: 10.1039/d2tb02808e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Convenient and low-cost dressings can reduce the difficulty of wound treatment. Alginate gel dressings have the advantages of low cost and safe usage, and they have obvious potential for development in biomedical materials. Alginate gel dressings are currently a research area of great interest owing to their versatility, intelligent, and their application attempts in treating complex wounds. We present a detailed summary of the preparation of alginate hydrogels and a study of their performance improvement. Herein, we summarize the various applications of alginate hydrogels. The research focuses in this area mainly include designing multifunctional dressings for the treatment of various wounds and fabricating specialized dressings to assist physicians in the treatment of complex wounds (TOC). This review gives an outlook for future directions in the field of alginate hydrogel dressings. We hope to attract more research interest and studies in alginate hydrogel dressings, thus contributing to the creation of low-cost and highly effective wound treatment materials.
Collapse
Affiliation(s)
- Yang Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.,School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
12
|
Abstract
In vivo gene therapy is rapidly emerging as a new therapeutic paradigm for monogenic disorders. For almost three decades, hemophilia A (HA) and hemophilia B (HB) have served as model disorders for the development of gene therapy. This effort is soon to bear fruit with completed pivotal adeno-associated viral (AAV) vector gene addition trials reporting encouraging results and regulatory approval widely anticipated in the near future for the current generation of HA and HB AAV vectors. Here we review the clinical development of AAV gene therapy for HA and HB and examine outstanding questions that have recently emerged from AAV clinical trials for hemophilia and other monogenic disorders.
Collapse
Affiliation(s)
- Benjamin J. Samelson-Jones
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA,Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, the Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lindsey A. George
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA,Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, the Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Ramamurthy RM, Atala A, Porada CD, Almeida-Porada G. Organoids and microphysiological systems: Promising models for accelerating AAV gene therapy studies. Front Immunol 2022; 13:1011143. [PMID: 36225917 PMCID: PMC9549755 DOI: 10.3389/fimmu.2022.1011143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
The FDA has predicted that at least 10-20 gene therapy products will be approved by 2025. The surge in the development of such therapies can be attributed to the advent of safe and effective gene delivery vectors such as adeno-associated virus (AAV). The enormous potential of AAV has been demonstrated by its use in over 100 clinical trials and the FDA’s approval of two AAV-based gene therapy products. Despite its demonstrated success in some clinical settings, AAV-based gene therapy is still plagued by issues related to host immunity, and recent studies have suggested that AAV vectors may actually integrate into the host cell genome, raising concerns over the potential for genotoxicity. To better understand these issues and develop means to overcome them, preclinical model systems that accurately recapitulate human physiology are needed. The objective of this review is to provide a brief overview of AAV gene therapy and its current hurdles, to discuss how 3D organoids, microphysiological systems, and body-on-a-chip platforms could serve as powerful models that could be adopted in the preclinical stage, and to provide some examples of the successful application of these models to answer critical questions regarding AAV biology and toxicity that could not have been answered using current animal models. Finally, technical considerations while adopting these models to study AAV gene therapy are also discussed.
Collapse
|
14
|
Differences in wild-type- and R338L-tenase complex formation are at the root of R338L-factor IX assay discrepancies. Blood Adv 2022; 7:458-467. [PMID: 35839077 PMCID: PMC9979717 DOI: 10.1182/bloodadvances.2022007435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Adeno-associated virus (AAV) gene therapy has the potential to functionally cure hemophilia B by restoring factor (F)IX concentrations into the normal range. Next-generation AAV therapies express a naturally occurring gain-of-function FIX variant, FIX-Padua (R338L-FIX), that increases FIX activity (FIX:C) by approximately eightfold compared with wild-type FIX (FIX-WT). Previous studies have shown that R338L-FIX activity varies dramatically across different clinical FIX:C assays, which complicates the monitoring and management of patients. To better understand mechanisms that contribute to R338L-FIX assay discrepancies, we characterized the performance of R338L-FIX in 13 1-stage clotting assays (OSAs) and 2 chromogenic substrate assays (CSAs) in a global field study. This study produced the largest R338L-FIX assay dataset to date and confirmed that clinical FIX:C assay results vary over threefold. Both phospholipid and activating reagents play a role in OSA discrepancies. CSA generated the most divergent FIX:C results. Manipulation of FIX:C CSA kits demonstrated that specific activity gains for R338L-FIX were most profound at lower FIX:C concentrations and that these effects were enhanced during the early phases of FXa generation. Supplementing FX into CSA had the effect of dampening FIX-WT activity relative to R338L-FIX activity, suggesting that FX impairs WT tenase formation to a greater extent than R338L-FIX tenase. Our data describe the scale of R338L-FIX assay discrepancies and provide insights into the causative mechanisms that will help establish best practices for the measurement of R338L-FIX activity in patients after gene therapy.
Collapse
|
15
|
Lundgren TS, Denning G, Stowell SR, Spencer HT, Doering CB. Pharmacokinetic analysis identifies a factor VIII immunogenicity threshold after AAV gene therapy in hemophilia A mice. Blood Adv 2022; 6:2628-2645. [PMID: 35286375 PMCID: PMC9043920 DOI: 10.1182/bloodadvances.2021006359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
Advances in the development of novel treatment options for hemophilia A are prevalent. However, the anti-factor VIII (FVIII) neutralizing antibody (inhibitor) response to existing FVIII products remains a major treatment challenge. Although some novel products are designed to function in the presence of inhibitors, they do not specific address the immunogenicity risk or mechanistic causes of inhibitor development, which remain unclear. Furthermore, most preclinical studies supporting clinical gene therapy programs have reported immunogenicity signals in animal models, especially at higher vector doses and sometimes using multiple vector designs. In these settings, immunogenicity risk factor determination, comparative immunogenicity of competing vector designs, and the potential for obtaining meaningful prognostic data remain relatively unexplored. Additionally, there remains the opportunity to investigate clinical gene therapy as an alternative to standard immune tolerance induction therapy. The current study was designed to address these issues through longitudinal dose-response evaluation of 4 adeno-associated viral (AAV) vector candidates encoding 2 different FVIII transgenes in a murine model of hemophilia A. Plasma FVIII activity and anti-FVIII antibody data were used to generate a pharmacokinetic model that (1) identifies initial AAV-FVIII product expression kinetics as the dominant risk factor for inhibitor development, (2) predicts a therapeutic window where immune tolerance is achieved, and (3) demonstrates evidence of gene therapy-based immune tolerance induction. Although there are known limitations to the predictive value of preclinical immunogenicity testing, these studies can uncover or support the development of design principles that can guide the development of safe and effective genetic medicines.
Collapse
Affiliation(s)
- Taran S. Lundgren
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA
| | | | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| | - H. Trent Spencer
- Expression Therapeutics, Inc., Tucker, GA
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA
| | - Christopher B. Doering
- Expression Therapeutics, Inc., Tucker, GA
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA
| |
Collapse
|
16
|
Mukherjee S, Kotnis A, Ray SK, Vaidyanathan K, Singh S, Mittal R. Current Scenario of Clinical Diagnosis to Identify Inborn Errors of Metabolism with Precision Profiling for Expanded Screening in Infancy in a Resource-limited Setting. Curr Pediatr Rev 2022; 19:34-47. [PMID: 35379152 DOI: 10.2174/1573396318666220404113732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 02/15/2022] [Indexed: 01/28/2023]
Abstract
Inborn errors of metabolism (IEM) are a diverse collection of abnormalities that cause a variety of morbidities and mortality in children and are classified as uncommon genetic diseases. Early and accurate detection of the condition can save a patient's life. By aiding families as they navigate the experience of having a child with an IEM, healthcare practitioners have the chance to reduce the burden of negative emotional consequences. New therapeutic techniques, such as enzyme replacement and small chemical therapies, organ transplantation, and cellular and gene-based therapies using whole-genome sequencing, have become available in addition to traditional medical intake and cofactor treatments. In the realm of metabolic medicine and metabolomics, the twentyfirst century is an exciting time to be alive. The availability of metabolomics and genomic analysis has led to the identification of a slew of novel diseases. Due to the rarity of individual illnesses, obtaining high-quality data for these treatments in clinical trials and real-world settings has proven difficult. Guidelines produced using standardized techniques have helped enhance treatment delivery and clinical outcomes over time. This article gives a comprehensive description of IEM and how to diagnose it in patients who have developed clinical signs early or late. The appropriate use of standard laboratory outcomes in the preliminary patient assessment is also emphasized that can aid in the ordering of specific laboratory tests to confirm a suspected diagnosis, in addition, to begin treatment as soon as possible in a resource limiting setting where genomic analysis or newborn screening facility is not available.
Collapse
Affiliation(s)
- Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | - Ashwin Kotnis
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | | | - Kannan Vaidyanathan
- Department of Biochemistry, Amrita Institute of Medical Science & Research Center, Kochi, Kerala-682041, India
| | - Snighdha Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | - Rishabh Mittal
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
17
|
Braga LAM, Conte Filho CG, Mota FB. Future of genetic therapies for rare genetic diseases: what to expect for the next 15 years? THERAPEUTIC ADVANCES IN RARE DISEASE 2022; 3:26330040221100840. [PMID: 37180410 PMCID: PMC10032453 DOI: 10.1177/26330040221100840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/22/2022] [Indexed: 05/16/2023]
Abstract
Introduction Rare genetic diseases affect millions of people worldwide. Most of them are caused by defective genes that impair quality of life and can lead to premature death. As genetic therapies aim to fix or replace defective genes, they are considered the most promising treatment for rare genetic diseases. Yet, as these therapies are still under development, it is still unclear whether they will be successful in treating these diseases. This study aims to address this gap by assessing researchers' opinions on the future of genetic therapies for the treatment of rare genetic diseases. Methods We conducted a global cross-sectional web-based survey of researchers who recently authored peer-reviewed articles related to rare genetic diseases. Results We assessed the opinions of 1430 researchers with high and good knowledge about genetic therapies for the treatment of rare genetic diseases. Overall, the respondents believed that genetic therapies would be the standard of care for rare genetic diseases before 2036, leading to cures after this period. CRISPR-Cas9 was considered the most likely approach to fixing or replacing defective genes in the next 15 years. The respondents with good knowledge believed that genetic therapies would only have long-lasting effects after 2036, while those with high knowledge were divided on this issue. The respondents with good knowledge on the subject believed that non-viral vectors are more likely to be successful in fixing or replacing defective genes in the next 15 years, while most of the respondents with high knowledge believed viral vectors would be more successful. Conclusion Overall, the researchers who participated in this study expect that in the future genetic therapies will greatly benefit the treatment of patients with rare genetic diseases.
Collapse
Affiliation(s)
| | | | - Fabio Batista Mota
- Laboratory of Cellular Communication, Oswaldo
Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4.365, Pavilhão 108,
Manguinhos, Rio de Janeiro RJ 21040-360, Brazil
| |
Collapse
|
18
|
George LA, Monahan PE, Eyster ME, Sullivan SK, Ragni MV, Croteau SE, Rasko JEJ, Recht M, Samelson-Jones BJ, MacDougall A, Jaworski K, Noble R, Curran M, Kuranda K, Mingozzi F, Chang T, Reape KZ, Anguela XM, High KA. Multiyear Factor VIII Expression after AAV Gene Transfer for Hemophilia A. N Engl J Med 2021; 385:1961-1973. [PMID: 34788507 PMCID: PMC8672712 DOI: 10.1056/nejmoa2104205] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The goal of gene therapy for patients with hemophilia A is to safely impart long-term stable factor VIII expression that predictably ameliorates bleeding with the use of the lowest possible vector dose. METHODS In this phase 1-2 trial, we infused an investigational adeno-associated viral (AAV) vector (SPK-8011) for hepatocyte expression of factor VIII in 18 men with hemophilia A. Four dose cohorts were enrolled; the lowest-dose cohort received a dose of 5 × 1011 vector genomes (vg) per kilogram of body weight, and the highest-dose cohort received 2 × 1012 vg per kilogram. Some participants received glucocorticoids within 52 weeks after vector administration either to prevent or to treat a presumed AAV capsid immune response. Trial objectives included evaluation of the safety and preliminary efficacy of SPK-8011 and of the expression and durability of factor VIII. RESULTS The median safety observation period was 36.6 months (range, 5.5 to 50.3). A total of 33 treatment-related adverse events occurred in 8 participants; 17 events were vector-related, including 1 serious adverse event, and 16 were glucocorticoid-related. Two participants lost all factor VIII expression because of an anti-AAV capsid cellular immune response that was not sensitive to immune suppression. In the remaining 16 participants, factor VIII expression was maintained; 12 of these participants were followed for more than 2 years, and a one-stage factor VIII assay showed no apparent decrease in factor VIII activity over time (mean [±SD] factor VIII activity, 12.9±6.9% of the normal value at 26 to 52 weeks when the participants were not receiving glucocorticoids vs. 12.0±7.1% of the normal value at >52 weeks after vector administration; 95% confidence interval [CI], -2.4 to 0.6 for the difference between matched pairs). The participants had a 91.5% reduction (95% CI, 88.8 to 94.1) in the annualized bleeding rate (median rate, 8.5 events per year [range, 0 to 43.0] before vector administration vs. 0.3 events per year [range, 0 to 6.5] after vector administration). CONCLUSIONS Sustained factor VIII expression in 16 of 18 participants who received SPK-8011 permitted discontinuation of prophylaxis and a reduction in bleeding episodes. No major safety concerns were reported. (Funded by Spark Therapeutics and the National Heart, Lung, and Blood Institute; ClinicalTrials.gov numbers, NCT03003533 and NCT03432520.).
Collapse
Affiliation(s)
- Lindsey A George
- From the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania (L.A.G., B.J.S.-J.), the Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia (L.A.G., B.J.S.-J.), and Spark Therapeutics (P.E.M., A.M., K.J., R.N., M.C., K.K., F.M., T.C., K.Z.R., X.M.A., K.A.H.), Philadelphia, the Department of Medicine, Division of Hematology and Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey (M.E.E.), and the Department of Medicine, University of Pittsburgh, Pittsburgh (M.V.R.) - all in Pennsylvania; the Department of Pediatrics, Division of Hematology, Mississippi Center for Advanced Medicine, Madison (S.K.S.); the Department of Pediatrics, Harvard Medical School, and the Division of Hematology and Oncology, Boston Children's Hospital - both in Boston (S.E.C.); the Department of Cell and Molecular Therapies, Royal Prince Alfred Hospital, and the Gene and Stem Cell Therapy Program, Centenary Institute, Faculty of Medicine and Health, University of Sydney - both in Camperdown, NSW, Australia (J.E.J.R.); the Hemophilia Center, Oregon Health and Science University, Portland (M.R.); and the American Thrombosis and Hemostasis Network, Rochester, NY (M.R.)
| | - Paul E Monahan
- From the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania (L.A.G., B.J.S.-J.), the Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia (L.A.G., B.J.S.-J.), and Spark Therapeutics (P.E.M., A.M., K.J., R.N., M.C., K.K., F.M., T.C., K.Z.R., X.M.A., K.A.H.), Philadelphia, the Department of Medicine, Division of Hematology and Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey (M.E.E.), and the Department of Medicine, University of Pittsburgh, Pittsburgh (M.V.R.) - all in Pennsylvania; the Department of Pediatrics, Division of Hematology, Mississippi Center for Advanced Medicine, Madison (S.K.S.); the Department of Pediatrics, Harvard Medical School, and the Division of Hematology and Oncology, Boston Children's Hospital - both in Boston (S.E.C.); the Department of Cell and Molecular Therapies, Royal Prince Alfred Hospital, and the Gene and Stem Cell Therapy Program, Centenary Institute, Faculty of Medicine and Health, University of Sydney - both in Camperdown, NSW, Australia (J.E.J.R.); the Hemophilia Center, Oregon Health and Science University, Portland (M.R.); and the American Thrombosis and Hemostasis Network, Rochester, NY (M.R.)
| | - M Elaine Eyster
- From the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania (L.A.G., B.J.S.-J.), the Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia (L.A.G., B.J.S.-J.), and Spark Therapeutics (P.E.M., A.M., K.J., R.N., M.C., K.K., F.M., T.C., K.Z.R., X.M.A., K.A.H.), Philadelphia, the Department of Medicine, Division of Hematology and Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey (M.E.E.), and the Department of Medicine, University of Pittsburgh, Pittsburgh (M.V.R.) - all in Pennsylvania; the Department of Pediatrics, Division of Hematology, Mississippi Center for Advanced Medicine, Madison (S.K.S.); the Department of Pediatrics, Harvard Medical School, and the Division of Hematology and Oncology, Boston Children's Hospital - both in Boston (S.E.C.); the Department of Cell and Molecular Therapies, Royal Prince Alfred Hospital, and the Gene and Stem Cell Therapy Program, Centenary Institute, Faculty of Medicine and Health, University of Sydney - both in Camperdown, NSW, Australia (J.E.J.R.); the Hemophilia Center, Oregon Health and Science University, Portland (M.R.); and the American Thrombosis and Hemostasis Network, Rochester, NY (M.R.)
| | - Spencer K Sullivan
- From the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania (L.A.G., B.J.S.-J.), the Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia (L.A.G., B.J.S.-J.), and Spark Therapeutics (P.E.M., A.M., K.J., R.N., M.C., K.K., F.M., T.C., K.Z.R., X.M.A., K.A.H.), Philadelphia, the Department of Medicine, Division of Hematology and Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey (M.E.E.), and the Department of Medicine, University of Pittsburgh, Pittsburgh (M.V.R.) - all in Pennsylvania; the Department of Pediatrics, Division of Hematology, Mississippi Center for Advanced Medicine, Madison (S.K.S.); the Department of Pediatrics, Harvard Medical School, and the Division of Hematology and Oncology, Boston Children's Hospital - both in Boston (S.E.C.); the Department of Cell and Molecular Therapies, Royal Prince Alfred Hospital, and the Gene and Stem Cell Therapy Program, Centenary Institute, Faculty of Medicine and Health, University of Sydney - both in Camperdown, NSW, Australia (J.E.J.R.); the Hemophilia Center, Oregon Health and Science University, Portland (M.R.); and the American Thrombosis and Hemostasis Network, Rochester, NY (M.R.)
| | - Margaret V Ragni
- From the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania (L.A.G., B.J.S.-J.), the Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia (L.A.G., B.J.S.-J.), and Spark Therapeutics (P.E.M., A.M., K.J., R.N., M.C., K.K., F.M., T.C., K.Z.R., X.M.A., K.A.H.), Philadelphia, the Department of Medicine, Division of Hematology and Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey (M.E.E.), and the Department of Medicine, University of Pittsburgh, Pittsburgh (M.V.R.) - all in Pennsylvania; the Department of Pediatrics, Division of Hematology, Mississippi Center for Advanced Medicine, Madison (S.K.S.); the Department of Pediatrics, Harvard Medical School, and the Division of Hematology and Oncology, Boston Children's Hospital - both in Boston (S.E.C.); the Department of Cell and Molecular Therapies, Royal Prince Alfred Hospital, and the Gene and Stem Cell Therapy Program, Centenary Institute, Faculty of Medicine and Health, University of Sydney - both in Camperdown, NSW, Australia (J.E.J.R.); the Hemophilia Center, Oregon Health and Science University, Portland (M.R.); and the American Thrombosis and Hemostasis Network, Rochester, NY (M.R.)
| | - Stacy E Croteau
- From the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania (L.A.G., B.J.S.-J.), the Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia (L.A.G., B.J.S.-J.), and Spark Therapeutics (P.E.M., A.M., K.J., R.N., M.C., K.K., F.M., T.C., K.Z.R., X.M.A., K.A.H.), Philadelphia, the Department of Medicine, Division of Hematology and Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey (M.E.E.), and the Department of Medicine, University of Pittsburgh, Pittsburgh (M.V.R.) - all in Pennsylvania; the Department of Pediatrics, Division of Hematology, Mississippi Center for Advanced Medicine, Madison (S.K.S.); the Department of Pediatrics, Harvard Medical School, and the Division of Hematology and Oncology, Boston Children's Hospital - both in Boston (S.E.C.); the Department of Cell and Molecular Therapies, Royal Prince Alfred Hospital, and the Gene and Stem Cell Therapy Program, Centenary Institute, Faculty of Medicine and Health, University of Sydney - both in Camperdown, NSW, Australia (J.E.J.R.); the Hemophilia Center, Oregon Health and Science University, Portland (M.R.); and the American Thrombosis and Hemostasis Network, Rochester, NY (M.R.)
| | - John E J Rasko
- From the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania (L.A.G., B.J.S.-J.), the Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia (L.A.G., B.J.S.-J.), and Spark Therapeutics (P.E.M., A.M., K.J., R.N., M.C., K.K., F.M., T.C., K.Z.R., X.M.A., K.A.H.), Philadelphia, the Department of Medicine, Division of Hematology and Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey (M.E.E.), and the Department of Medicine, University of Pittsburgh, Pittsburgh (M.V.R.) - all in Pennsylvania; the Department of Pediatrics, Division of Hematology, Mississippi Center for Advanced Medicine, Madison (S.K.S.); the Department of Pediatrics, Harvard Medical School, and the Division of Hematology and Oncology, Boston Children's Hospital - both in Boston (S.E.C.); the Department of Cell and Molecular Therapies, Royal Prince Alfred Hospital, and the Gene and Stem Cell Therapy Program, Centenary Institute, Faculty of Medicine and Health, University of Sydney - both in Camperdown, NSW, Australia (J.E.J.R.); the Hemophilia Center, Oregon Health and Science University, Portland (M.R.); and the American Thrombosis and Hemostasis Network, Rochester, NY (M.R.)
| | - Michael Recht
- From the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania (L.A.G., B.J.S.-J.), the Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia (L.A.G., B.J.S.-J.), and Spark Therapeutics (P.E.M., A.M., K.J., R.N., M.C., K.K., F.M., T.C., K.Z.R., X.M.A., K.A.H.), Philadelphia, the Department of Medicine, Division of Hematology and Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey (M.E.E.), and the Department of Medicine, University of Pittsburgh, Pittsburgh (M.V.R.) - all in Pennsylvania; the Department of Pediatrics, Division of Hematology, Mississippi Center for Advanced Medicine, Madison (S.K.S.); the Department of Pediatrics, Harvard Medical School, and the Division of Hematology and Oncology, Boston Children's Hospital - both in Boston (S.E.C.); the Department of Cell and Molecular Therapies, Royal Prince Alfred Hospital, and the Gene and Stem Cell Therapy Program, Centenary Institute, Faculty of Medicine and Health, University of Sydney - both in Camperdown, NSW, Australia (J.E.J.R.); the Hemophilia Center, Oregon Health and Science University, Portland (M.R.); and the American Thrombosis and Hemostasis Network, Rochester, NY (M.R.)
| | - Benjamin J Samelson-Jones
- From the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania (L.A.G., B.J.S.-J.), the Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia (L.A.G., B.J.S.-J.), and Spark Therapeutics (P.E.M., A.M., K.J., R.N., M.C., K.K., F.M., T.C., K.Z.R., X.M.A., K.A.H.), Philadelphia, the Department of Medicine, Division of Hematology and Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey (M.E.E.), and the Department of Medicine, University of Pittsburgh, Pittsburgh (M.V.R.) - all in Pennsylvania; the Department of Pediatrics, Division of Hematology, Mississippi Center for Advanced Medicine, Madison (S.K.S.); the Department of Pediatrics, Harvard Medical School, and the Division of Hematology and Oncology, Boston Children's Hospital - both in Boston (S.E.C.); the Department of Cell and Molecular Therapies, Royal Prince Alfred Hospital, and the Gene and Stem Cell Therapy Program, Centenary Institute, Faculty of Medicine and Health, University of Sydney - both in Camperdown, NSW, Australia (J.E.J.R.); the Hemophilia Center, Oregon Health and Science University, Portland (M.R.); and the American Thrombosis and Hemostasis Network, Rochester, NY (M.R.)
| | - Amy MacDougall
- From the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania (L.A.G., B.J.S.-J.), the Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia (L.A.G., B.J.S.-J.), and Spark Therapeutics (P.E.M., A.M., K.J., R.N., M.C., K.K., F.M., T.C., K.Z.R., X.M.A., K.A.H.), Philadelphia, the Department of Medicine, Division of Hematology and Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey (M.E.E.), and the Department of Medicine, University of Pittsburgh, Pittsburgh (M.V.R.) - all in Pennsylvania; the Department of Pediatrics, Division of Hematology, Mississippi Center for Advanced Medicine, Madison (S.K.S.); the Department of Pediatrics, Harvard Medical School, and the Division of Hematology and Oncology, Boston Children's Hospital - both in Boston (S.E.C.); the Department of Cell and Molecular Therapies, Royal Prince Alfred Hospital, and the Gene and Stem Cell Therapy Program, Centenary Institute, Faculty of Medicine and Health, University of Sydney - both in Camperdown, NSW, Australia (J.E.J.R.); the Hemophilia Center, Oregon Health and Science University, Portland (M.R.); and the American Thrombosis and Hemostasis Network, Rochester, NY (M.R.)
| | - Kristen Jaworski
- From the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania (L.A.G., B.J.S.-J.), the Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia (L.A.G., B.J.S.-J.), and Spark Therapeutics (P.E.M., A.M., K.J., R.N., M.C., K.K., F.M., T.C., K.Z.R., X.M.A., K.A.H.), Philadelphia, the Department of Medicine, Division of Hematology and Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey (M.E.E.), and the Department of Medicine, University of Pittsburgh, Pittsburgh (M.V.R.) - all in Pennsylvania; the Department of Pediatrics, Division of Hematology, Mississippi Center for Advanced Medicine, Madison (S.K.S.); the Department of Pediatrics, Harvard Medical School, and the Division of Hematology and Oncology, Boston Children's Hospital - both in Boston (S.E.C.); the Department of Cell and Molecular Therapies, Royal Prince Alfred Hospital, and the Gene and Stem Cell Therapy Program, Centenary Institute, Faculty of Medicine and Health, University of Sydney - both in Camperdown, NSW, Australia (J.E.J.R.); the Hemophilia Center, Oregon Health and Science University, Portland (M.R.); and the American Thrombosis and Hemostasis Network, Rochester, NY (M.R.)
| | - Robert Noble
- From the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania (L.A.G., B.J.S.-J.), the Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia (L.A.G., B.J.S.-J.), and Spark Therapeutics (P.E.M., A.M., K.J., R.N., M.C., K.K., F.M., T.C., K.Z.R., X.M.A., K.A.H.), Philadelphia, the Department of Medicine, Division of Hematology and Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey (M.E.E.), and the Department of Medicine, University of Pittsburgh, Pittsburgh (M.V.R.) - all in Pennsylvania; the Department of Pediatrics, Division of Hematology, Mississippi Center for Advanced Medicine, Madison (S.K.S.); the Department of Pediatrics, Harvard Medical School, and the Division of Hematology and Oncology, Boston Children's Hospital - both in Boston (S.E.C.); the Department of Cell and Molecular Therapies, Royal Prince Alfred Hospital, and the Gene and Stem Cell Therapy Program, Centenary Institute, Faculty of Medicine and Health, University of Sydney - both in Camperdown, NSW, Australia (J.E.J.R.); the Hemophilia Center, Oregon Health and Science University, Portland (M.R.); and the American Thrombosis and Hemostasis Network, Rochester, NY (M.R.)
| | - Marla Curran
- From the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania (L.A.G., B.J.S.-J.), the Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia (L.A.G., B.J.S.-J.), and Spark Therapeutics (P.E.M., A.M., K.J., R.N., M.C., K.K., F.M., T.C., K.Z.R., X.M.A., K.A.H.), Philadelphia, the Department of Medicine, Division of Hematology and Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey (M.E.E.), and the Department of Medicine, University of Pittsburgh, Pittsburgh (M.V.R.) - all in Pennsylvania; the Department of Pediatrics, Division of Hematology, Mississippi Center for Advanced Medicine, Madison (S.K.S.); the Department of Pediatrics, Harvard Medical School, and the Division of Hematology and Oncology, Boston Children's Hospital - both in Boston (S.E.C.); the Department of Cell and Molecular Therapies, Royal Prince Alfred Hospital, and the Gene and Stem Cell Therapy Program, Centenary Institute, Faculty of Medicine and Health, University of Sydney - both in Camperdown, NSW, Australia (J.E.J.R.); the Hemophilia Center, Oregon Health and Science University, Portland (M.R.); and the American Thrombosis and Hemostasis Network, Rochester, NY (M.R.)
| | - Klaudia Kuranda
- From the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania (L.A.G., B.J.S.-J.), the Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia (L.A.G., B.J.S.-J.), and Spark Therapeutics (P.E.M., A.M., K.J., R.N., M.C., K.K., F.M., T.C., K.Z.R., X.M.A., K.A.H.), Philadelphia, the Department of Medicine, Division of Hematology and Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey (M.E.E.), and the Department of Medicine, University of Pittsburgh, Pittsburgh (M.V.R.) - all in Pennsylvania; the Department of Pediatrics, Division of Hematology, Mississippi Center for Advanced Medicine, Madison (S.K.S.); the Department of Pediatrics, Harvard Medical School, and the Division of Hematology and Oncology, Boston Children's Hospital - both in Boston (S.E.C.); the Department of Cell and Molecular Therapies, Royal Prince Alfred Hospital, and the Gene and Stem Cell Therapy Program, Centenary Institute, Faculty of Medicine and Health, University of Sydney - both in Camperdown, NSW, Australia (J.E.J.R.); the Hemophilia Center, Oregon Health and Science University, Portland (M.R.); and the American Thrombosis and Hemostasis Network, Rochester, NY (M.R.)
| | - Federico Mingozzi
- From the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania (L.A.G., B.J.S.-J.), the Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia (L.A.G., B.J.S.-J.), and Spark Therapeutics (P.E.M., A.M., K.J., R.N., M.C., K.K., F.M., T.C., K.Z.R., X.M.A., K.A.H.), Philadelphia, the Department of Medicine, Division of Hematology and Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey (M.E.E.), and the Department of Medicine, University of Pittsburgh, Pittsburgh (M.V.R.) - all in Pennsylvania; the Department of Pediatrics, Division of Hematology, Mississippi Center for Advanced Medicine, Madison (S.K.S.); the Department of Pediatrics, Harvard Medical School, and the Division of Hematology and Oncology, Boston Children's Hospital - both in Boston (S.E.C.); the Department of Cell and Molecular Therapies, Royal Prince Alfred Hospital, and the Gene and Stem Cell Therapy Program, Centenary Institute, Faculty of Medicine and Health, University of Sydney - both in Camperdown, NSW, Australia (J.E.J.R.); the Hemophilia Center, Oregon Health and Science University, Portland (M.R.); and the American Thrombosis and Hemostasis Network, Rochester, NY (M.R.)
| | - Tiffany Chang
- From the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania (L.A.G., B.J.S.-J.), the Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia (L.A.G., B.J.S.-J.), and Spark Therapeutics (P.E.M., A.M., K.J., R.N., M.C., K.K., F.M., T.C., K.Z.R., X.M.A., K.A.H.), Philadelphia, the Department of Medicine, Division of Hematology and Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey (M.E.E.), and the Department of Medicine, University of Pittsburgh, Pittsburgh (M.V.R.) - all in Pennsylvania; the Department of Pediatrics, Division of Hematology, Mississippi Center for Advanced Medicine, Madison (S.K.S.); the Department of Pediatrics, Harvard Medical School, and the Division of Hematology and Oncology, Boston Children's Hospital - both in Boston (S.E.C.); the Department of Cell and Molecular Therapies, Royal Prince Alfred Hospital, and the Gene and Stem Cell Therapy Program, Centenary Institute, Faculty of Medicine and Health, University of Sydney - both in Camperdown, NSW, Australia (J.E.J.R.); the Hemophilia Center, Oregon Health and Science University, Portland (M.R.); and the American Thrombosis and Hemostasis Network, Rochester, NY (M.R.)
| | - Kathleen Z Reape
- From the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania (L.A.G., B.J.S.-J.), the Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia (L.A.G., B.J.S.-J.), and Spark Therapeutics (P.E.M., A.M., K.J., R.N., M.C., K.K., F.M., T.C., K.Z.R., X.M.A., K.A.H.), Philadelphia, the Department of Medicine, Division of Hematology and Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey (M.E.E.), and the Department of Medicine, University of Pittsburgh, Pittsburgh (M.V.R.) - all in Pennsylvania; the Department of Pediatrics, Division of Hematology, Mississippi Center for Advanced Medicine, Madison (S.K.S.); the Department of Pediatrics, Harvard Medical School, and the Division of Hematology and Oncology, Boston Children's Hospital - both in Boston (S.E.C.); the Department of Cell and Molecular Therapies, Royal Prince Alfred Hospital, and the Gene and Stem Cell Therapy Program, Centenary Institute, Faculty of Medicine and Health, University of Sydney - both in Camperdown, NSW, Australia (J.E.J.R.); the Hemophilia Center, Oregon Health and Science University, Portland (M.R.); and the American Thrombosis and Hemostasis Network, Rochester, NY (M.R.)
| | - Xavier M Anguela
- From the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania (L.A.G., B.J.S.-J.), the Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia (L.A.G., B.J.S.-J.), and Spark Therapeutics (P.E.M., A.M., K.J., R.N., M.C., K.K., F.M., T.C., K.Z.R., X.M.A., K.A.H.), Philadelphia, the Department of Medicine, Division of Hematology and Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey (M.E.E.), and the Department of Medicine, University of Pittsburgh, Pittsburgh (M.V.R.) - all in Pennsylvania; the Department of Pediatrics, Division of Hematology, Mississippi Center for Advanced Medicine, Madison (S.K.S.); the Department of Pediatrics, Harvard Medical School, and the Division of Hematology and Oncology, Boston Children's Hospital - both in Boston (S.E.C.); the Department of Cell and Molecular Therapies, Royal Prince Alfred Hospital, and the Gene and Stem Cell Therapy Program, Centenary Institute, Faculty of Medicine and Health, University of Sydney - both in Camperdown, NSW, Australia (J.E.J.R.); the Hemophilia Center, Oregon Health and Science University, Portland (M.R.); and the American Thrombosis and Hemostasis Network, Rochester, NY (M.R.)
| | - Katherine A High
- From the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania (L.A.G., B.J.S.-J.), the Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia (L.A.G., B.J.S.-J.), and Spark Therapeutics (P.E.M., A.M., K.J., R.N., M.C., K.K., F.M., T.C., K.Z.R., X.M.A., K.A.H.), Philadelphia, the Department of Medicine, Division of Hematology and Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey (M.E.E.), and the Department of Medicine, University of Pittsburgh, Pittsburgh (M.V.R.) - all in Pennsylvania; the Department of Pediatrics, Division of Hematology, Mississippi Center for Advanced Medicine, Madison (S.K.S.); the Department of Pediatrics, Harvard Medical School, and the Division of Hematology and Oncology, Boston Children's Hospital - both in Boston (S.E.C.); the Department of Cell and Molecular Therapies, Royal Prince Alfred Hospital, and the Gene and Stem Cell Therapy Program, Centenary Institute, Faculty of Medicine and Health, University of Sydney - both in Camperdown, NSW, Australia (J.E.J.R.); the Hemophilia Center, Oregon Health and Science University, Portland (M.R.); and the American Thrombosis and Hemostasis Network, Rochester, NY (M.R.)
| |
Collapse
|
19
|
Gong J, Chung TH, Zheng J, Zheng H, Chang LJ. Transduction of modified factor VIII gene improves lentiviral gene therapy efficacy for hemophilia A. J Biol Chem 2021; 297:101397. [PMID: 34774524 PMCID: PMC8649223 DOI: 10.1016/j.jbc.2021.101397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022] Open
Abstract
Hemophilia A (HA) is a bleeding disorder caused by deficiency of the coagulation factor VIII (F8). F8 replacement is standard of care, whereas gene therapy (F8 gene) for HA is an attractive investigational approach. However, the large size of the F8 gene and the immunogenicity of the product present challenges in development of the F8 gene therapy. To resolve these problems, we synthesized a shortened F8 gene (F8-BDD) and cloned it into a lentiviral vector (LV). The F8-BDD produced mainly short cleaved inactive products in LV-transduced cells. To improve F8 functionality, we designed two novel F8-BDD genes, one with an insertion of eight specific N-glycosylation sites (F8-N8) and another which restored all N-glycosylation sites (F8-299) in the B domain. Although the overall protein expression was reduced, high coagulation activity (>100-fold) was detected in the supernatants of LV-F8-N8- and LV-F8-299-transduced cells. Protein analysis of F8 and the procoagulation cofactor, von Willebrand Factor, showed enhanced interaction after restoration of B domain glycosylation using F8-299. HA mouse hematopoietic stem cell transplantation studies illustrated that the bleeding phenotype was corrected after LV-F8-N8 or -299 gene transfer into the hematopoietic stem cells. Importantly, the F8-299 modification markedly reduced immunogenicity of the F8 protein in these HA mice. In conclusion, the modified F8-299 gene could be efficiently packaged into LV and, although with reduced expression, produced highly stable and functional F8 protein that corrected the bleeding phenotype without inhibitory immunogenicity. We anticipate that these results will be beneficial in the development of gene therapies against HA.
Collapse
Affiliation(s)
- Jie Gong
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Tsai-Hua Chung
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China; Shenzhen Geno-Immune Medical Institute, Shenzhen, China
| | - Jie Zheng
- Hematology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Huyong Zheng
- Hematology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Lung-Ji Chang
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China; Shenzhen Geno-Immune Medical Institute, Shenzhen, China; Hematology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
20
|
Samelson-Jones BJ, George LA. Haemophilia care: the only constant is change. Br J Haematol 2021; 194:805-807. [PMID: 34340257 DOI: 10.1111/bjh.17661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamin J Samelson-Jones
- Division of Hematology and the Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsey A George
- Division of Hematology and the Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
|
22
|
Evolutionary insights into coagulation factor IX Padua and other high-specific-activity variants. Blood Adv 2021; 5:1324-1332. [PMID: 33656538 DOI: 10.1182/bloodadvances.2019000405] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
The high-specific-activity factor IX (FIX) variant Padua (R338L) is the most promising transgene for hemophilia B (HB) gene therapy. Although R338 is strongly conserved in mammalian evolution, amino acid substitutions at this position are underrepresented in HB databases. We therefore undertook a complete 20 amino acid scan and determined the specific activity of human (h) and canine (c) FIX variants with every amino acid substituted at position 338. Notably, we observe that hFIX-R338L is the most active variant and cFIX-R338L is sevenfold higher than wild-type (WT) cFIX. This is consistent with the previous identification of hFIX-R338L as a cause of a rare X-linked thrombophilia risk factor. Moreover, WT hFIX and cFIX are some of the least active variants. We confirmed the increased specific activity relative to FIX-WT in vivo of a new variant, cFIX-R338I, after gene therapy in an HB dog. Last, we screened 232 pediatric subjects with thromboembolic disease without identifying F9 R338 variants. Together these observations suggest a surprising evolutionary pressure to limit FIX activity with WT FIX rather than maximize FIX activity.
Collapse
|
23
|
Molecular coevolution of coagulation factor VIII and von Willebrand factor. Blood Adv 2021; 5:812-822. [PMID: 33560395 DOI: 10.1182/bloodadvances.2020002971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Ancestral sequence reconstruction provides a unique platform for investigating the molecular evolution of single gene products and recently has shown success in engineering advanced biological therapeutics. To date, the coevolution of proteins within complexes and protein-protein interactions is mostly investigated in silico via proteomics and/or within single-celled systems. Herein, ancestral sequence reconstruction is used to investigate the molecular evolution of 2 proteins linked not only by stabilizing association in circulation but also by their independent roles within the primary and secondary hemostatic systems of mammals. Using sequence analysis and biochemical characterization of recombinant ancestral von Willebrand factor (VWF) and coagulation factor VIII (FVIII), we investigated the evolution of the essential macromolecular FVIII/VWF complex. Our data support the hypothesis that these coagulation proteins coevolved throughout mammalian diversification, maintaining strong binding affinities while modulating independent and distinct hemostatic activities in diverse lineages.
Collapse
|
24
|
Li B, Wu Z, Xu W, Han W, Liu J, Wang D, Zhang G. Treatment of a Hemophilia B Mouse Model with Platelet-Targeted Expression of Factor IX Padua. Hum Gene Ther 2021; 32:506-516. [PMID: 33764159 DOI: 10.1089/hum.2020.309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Targeting the coagulation factor IX (FIX) expression in platelets has been shown to be effective in ameliorating bleeding in hemophilia B (HB) mice. To improve the therapeutic effects and evaluate the safety of this gene therapy strategy, we generated a transgenic mouse model on an HB background with FIX Padua target expressed in platelets. The transgenic mice exhibited stable expression and storage of FIX Padua in platelets. The platelet-stored FIX Padua could be released with the activation of platelets, and the proportion of platelet-stored FIX Padua in whole blood was the same as that of platelet-stored wild-type human FIX. The platelet-derived FIX Padua showed substantially increased specific activity compared with wild-type FIX. Reduced bleeding volume in the FIX Padua transgenic mice demonstrated that bleeding in the mice was improved. Levels of thrombin-antithrombin complex, fibrinogen, D-Dimer, and blood cell counts were normal in the transgenic mice, suggesting that thrombotic risk was not increased in this mouse model. However, the leakage and failure to overcome the presence of inhibitor to wild-type FIX is also observed with FIX Padua, as expected. Taken together, our results support the conclusion that targeting FIX Padua expression in platelets may be an effective and safe gene therapy strategy for HB, and could provide an ideal model to evaluate the safety of platelet-targeted gene therapy for treating hemophilia.
Collapse
Affiliation(s)
- Binbin Li
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Basic Medical Sciences, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Zhihan Wu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Basic Medical Sciences, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Wenjue Xu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Basic Medical Sciences, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Wenwen Han
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Basic Medical Sciences, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Jiayu Liu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Basic Medical Sciences, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Dawei Wang
- National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guowei Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Basic Medical Sciences, Hangzhou Normal University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
Gardiner C, Coleman R, de Maat MPM, Dorgalaleh A, Echenagucia M, Gosselin RC, Ieko M, Kitchen S. International Council for Standardization in Haematology (ICSH) laboratory guidance for the verification of haemostasis analyser-reagent test systems. Part 2: Specialist tests and calibrated assays. Int J Lab Hematol 2021; 43:907-916. [PMID: 33876567 DOI: 10.1111/ijlh.13550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/28/2022]
Abstract
Before a new method is used for clinical testing, it is essential that it is evaluated for suitability for its intended purpose. This document gives guidance for the performance, verification and implementation processes required by regulatory and accreditation bodies. It covers the planning and verification of specialist haemostatic tests, including factor assays, D-dimers, direct anticoagulants and thrombophilia testing.
Collapse
Affiliation(s)
- Chris Gardiner
- Haemostasis Research Unit, University College London, London, U.K
| | - Robyn Coleman
- Department of Haematology, Sullivan Nicolaides Pathology, Bowen Hills, QLD, Australia
| | - Moniek P M de Maat
- Department of Haematology, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Akbar Dorgalaleh
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marión Echenagucia
- Centro Nacional de Hemofilia, Banco Municipal de Sangre del Distrito Capital, Caracas, Venezuela
| | - Robert C Gosselin
- Thrombosis and Hemostasis Center, University of California, Davis Health System, Sacramento, CA, USA
| | - Masahiro Ieko
- Department of Hematology/Clinical Laboratory, Iwate Prefectural Chubu Hospital, Kitakami, Japan
| | - Steve Kitchen
- Sheffield Haemophilia and Thrombosis Centre, Royal Hallamshire Hospital, Sheffield, U.K
| |
Collapse
|
26
|
Hendrikse NM, Sandegren A, Andersson T, Blomqvist J, Makower Å, Possner D, Su C, Thalén N, Tjernberg A, Westermark U, Rockberg J, Svensson Gelius S, Syrén PO, Nordling E. Ancestral lysosomal enzymes with increased activity harbor therapeutic potential for treatment of Hunter syndrome. iScience 2021; 24:102154. [PMID: 33665572 PMCID: PMC7907806 DOI: 10.1016/j.isci.2021.102154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/11/2020] [Accepted: 02/02/2021] [Indexed: 11/18/2022] Open
Abstract
We show the successful application of ancestral sequence reconstruction to enhance the activity of iduronate-2-sulfatase (IDS), thereby increasing its therapeutic potential for the treatment of Hunter syndrome—a lysosomal storage disease caused by impaired function of IDS. Current treatment, enzyme replacement therapy with recombinant human IDS, does not alleviate all symptoms, and an unmet medical need remains. We reconstructed putative ancestral sequences of mammalian IDS and compared them with extant IDS. Some ancestral variants displayed up to 2-fold higher activity than human IDS in in vitro assays and cleared more substrate in ex vivo experiments in patient fibroblasts. This could potentially allow for lower dosage or enhanced therapeutic effect in enzyme replacement therapy, thereby improving treatment outcomes and cost efficiency, as well as reducing treatment burden. In summary, we showed that ancestral sequence reconstruction can be applied to lysosomal enzymes that function in concert with modern enzymes and receptors in cells. Reconstruction of ancestral lysosomal enzymes that function in complex cellular context Ancestral iduronate-2-sulfatases with increased activity compared with the human enzyme Increased clearance of substrate in patient fibroblasts indicates therapeutic potential
Collapse
Affiliation(s)
- Natalie M. Hendrikse
- Swedish Orphan Biovitrum AB, Stockholm 112 76, Sweden
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna 171 21, Sweden
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| | | | | | | | - Åsa Makower
- Swedish Orphan Biovitrum AB, Stockholm 112 76, Sweden
| | | | - Chao Su
- Swedish Orphan Biovitrum AB, Stockholm 112 76, Sweden
| | - Niklas Thalén
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 10691, Sweden
| | | | | | - Johan Rockberg
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 10691, Sweden
| | | | - Per-Olof Syrén
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna 171 21, Sweden
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 10691, Sweden
- Corresponding author
| | - Erik Nordling
- Swedish Orphan Biovitrum AB, Stockholm 112 76, Sweden
- Corresponding author
| |
Collapse
|
27
|
Abstract
Decades of preclinical and clinical studies developing gene therapy for hemophilia are poised to bear fruit with current promising pivotal studies likely to lead to regulatory approval. However, this recent success should not obscure the multiple challenges that were overcome to reach this destination. Gene therapy for hemophilia A and B benefited from advancements in the general gene therapy field, such as the development of adeno-associated viral vectors, as well as disease-specific breakthroughs, like the identification of B-domain deleted factor VIII and hyperactive factor IX Padua. The gene therapy field has also benefited from hemophilia B clinical studies, which revealed for the first time critical safety concerns related to immune responses to the vector capsid not anticipated in preclinical models. Preclinical studies have also investigated gene transfer approaches for other rare inherited bleeding disorders, including factor VII deficiency, von Willebrand disease, and Glanzmann thrombasthenia. Here we review the successful gene therapy journey for hemophilia and pose some unanswered questions. We then discuss the current state of gene therapy for these other rare inherited bleeding disorders and how the lessons of hemophilia gene therapy may guide clinical development.
Collapse
Affiliation(s)
- Valder R. Arruda
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Division of Hematology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania
| | - Jesse Weber
- Department of Pediatrics, Division of Hematology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin J. Samelson-Jones
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Division of Hematology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Rehill AM, McCluskey S, O'Donnell JS, Dockal M, Preston RJS. Heterogeneity in Bleeding Tendency and Arthropathy Development in Individuals with Hemophilia. Semin Thromb Hemost 2021; 47:183-191. [PMID: 33636749 DOI: 10.1055/s-0041-1723769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
People with hemophilia (PWH) have an increased tendency to bleed, often into their joints, causing debilitating joint disease if left untreated. To reduce the incidence of bleeding events, PWH receive prophylactic replacement therapy with recombinant factor VIII (FVIII) or FIX. Bleeding events in PWH are typically proportional to their plasma FVIII or IX levels; however, in many PWH, bleeding tendency and the likelihood of developing arthropathy often varies independently of endogenous factor levels. Consequently, many PWH suffer repeated bleeding events before correct dosing of replacement factor can be established. Diagnostic approaches to define an individual's bleeding tendency remain limited. Multiple modulators of bleeding phenotype in PWH have been proposed, including the type of disease-causing variant, age of onset of bleeding episodes, plasma modifiers of blood coagulation or clot fibrinolysis pathway activity, interindividual differences in platelet reactivity, and endothelial anticoagulant activity. In this review, we summarize current knowledge of established factors modulating bleeding tendency and discuss emerging concepts of additional biological elements that may contribute to variable bleeding tendency in PWH. Finally, we consider how variance in responses to new gene therapies may also necessitate consideration of patient-specific tailoring of treatment. Cumulatively, these studies highlight the need to reconsider the current "one size fits all" approach to treatment regimens for PWH and consider therapies guided by the bleeding phenotype of each individual PWH at the onset of therapy. Further characterization of the biological bases of bleeding heterogeneity in PWH, combined with the development of novel diagnostic assays to identify those factors that modulate bleeding risk in PWH, will be required to meet these aspirations.
Collapse
Affiliation(s)
- Aisling M Rehill
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Seán McCluskey
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - James S O'Donnell
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.,St James' Hospital, Dublin, Ireland
| | - Michael Dockal
- Baxalta Innovations GmbH, A Member of the Takeda Group of Companies, Vienna, Austria
| | - Roger J S Preston
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | | |
Collapse
|
29
|
Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, Goodspeed K, Gray SJ, Kay CN, Boye SL, Boye SE, George LA, Salabarria S, Corti M, Byrne BJ, Tremblay JP. Current Clinical Applications of In Vivo Gene Therapy with AAVs. Mol Ther 2020; 29:464-488. [PMID: 33309881 PMCID: PMC7854298 DOI: 10.1016/j.ymthe.2020.12.007] [Citation(s) in RCA: 439] [Impact Index Per Article: 87.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/16/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
Hereditary diseases are caused by mutations in genes, and more than 7,000 rare diseases affect over 30 million Americans. For more than 30 years, hundreds of researchers have maintained that genetic modifications would provide effective treatments for many inherited human diseases, offering durable and possibly curative clinical benefit with a single treatment. This review is limited to gene therapy using adeno-associated virus (AAV) because the gene delivered by this vector does not integrate into the patient genome and has a low immunogenicity. There are now five treatments approved for commercialization and currently available, i.e., Luxturna, Zolgensma, the two chimeric antigen receptor T cell (CAR-T) therapies (Yescarta and Kymriah), and Strimvelis (the gammaretrovirus approved for adenosine deaminase-severe combined immunodeficiency [ADA-SCID] in Europe). Dozens of other treatments are under clinical trials. The review article presents a broad overview of the field of therapy by in vivo gene transfer. We review gene therapy for neuromuscular disorders (spinal muscular atrophy [SMA]; Duchenne muscular dystrophy [DMD]; X-linked myotubular myopathy [XLMTM]; and diseases of the central nervous system, including Alzheimer’s disease, Parkinson’s disease, Canavan disease, aromatic l-amino acid decarboxylase [AADC] deficiency, and giant axonal neuropathy), ocular disorders (Leber congenital amaurosis, age-related macular degeneration [AMD], choroideremia, achromatopsia, retinitis pigmentosa, and X-linked retinoschisis), the bleeding disorder hemophilia, and lysosomal storage disorders.
Collapse
Affiliation(s)
- Jerry R Mendell
- Center of Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH, USA
| | | | | | - Kimberly Goodspeed
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Steven J Gray
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Sanford L Boye
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Shannon E Boye
- Division of Cellular and Molecular Therapeutics, University of Florida, Gainesville, FL, USA
| | - Lindsey A George
- Division of Hematology and the Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, PA, USA; Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephanie Salabarria
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Manuela Corti
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA; Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA; Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
30
|
Sousa Bomfim A, Corrêa de Freitas MC, Picanço Castro V, Abreu Soares Neto M, Pádua R, Covas DT, Sousa Russo EM. Generation of hyperfunctional recombinant human factor IX variants expressed in human cell line SK-Hep-1. Biotechnol Lett 2020; 43:143-152. [PMID: 33130980 DOI: 10.1007/s10529-020-03040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To develop recombinant factor IX (FIX) variants with augmented clotting activity. RESULTS We generated three new variants, FIX-YKALW, FIX-ALL and FIX-LLW, expressed in SK-Hep-1 cells and characterized in vitro and in vivo. FIX-YKALW showed the highest antigen expression level among the variants (2.17 µg-mL), followed by FIX-LLW (1.5 µg-mL) and FIX-ALL (0.9 µg-mL). The expression level of FIX variants was two-five fold lower than FIX-wild-type (FIX-WT) (4.37 µg-mL). However, the biological activities of FIX variants were 15-31 times greater than FIX-WT in the chromogenic assay. Moreover, the new variants FIX-YKALW, FIX-LLW and FIX-ALL also presented higher specific activity than FIX-WT (17, 20 and 29-fold higher, respectively). FIX variants demonstrated a better clotting time than FIX-WT. In hemophilia B mice, we observed that FIX-YKALW promoted hemostatic protection. CONCLUSION We have developed three improved FIX proteins with potential for use in protein replacement therapy for hemophilia B.
Collapse
Affiliation(s)
- Aline Sousa Bomfim
- Department of Clinical, Toxicological and Food Science Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil. .,Laboratory of Biotechnology, Center for Cell-Based Therapy and Regional Blood Center, University of São Paulo, São Paulo, Brazil. .,Department of Clinical, Toxicological and Food Science Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Café Avenue, Block R, Room 7, Ribeirão Preto, SP, ZIP 14040-903, Brazil.
| | | | - Virgínia Picanço Castro
- Laboratory of Biotechnology, Center for Cell-Based Therapy and Regional Blood Center, University of São Paulo, São Paulo, Brazil
| | - Mario Abreu Soares Neto
- Laboratory of Biotechnology, Center for Cell-Based Therapy and Regional Blood Center, University of São Paulo, São Paulo, Brazil
| | - Ricardo Pádua
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Laboratory of Biotechnology, Center for Cell-Based Therapy and Regional Blood Center, University of São Paulo, São Paulo, Brazil.,Department of Medical Clinic, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Elisa Maria Sousa Russo
- Department of Clinical, Toxicological and Food Science Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.,Laboratory of Biotechnology, Center for Cell-Based Therapy and Regional Blood Center, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Biswas M, Palaschak B, Kumar SRP, Rana J, Markusic DM. B Cell Depletion Eliminates FVIII Memory B Cells and Enhances AAV8-coF8 Immune Tolerance Induction When Combined With Rapamycin. Front Immunol 2020; 11:1293. [PMID: 32670285 PMCID: PMC7327091 DOI: 10.3389/fimmu.2020.01293] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/21/2020] [Indexed: 01/19/2023] Open
Abstract
Hemophilia A is an inherited coagulation disorder resulting in the loss of functional clotting factor VIII (FVIII). Presently, the most effective treatment is prophylactic protein replacement therapy. However, this requires frequent life-long intravenous infusions of plasma derived or recombinant clotting factors and is not a cure. A major complication is the development of inhibitory antibodies that nullify the replacement factor. Immune tolerance induction (ITI) therapy to reverse inhibitors can last from months to years, requires daily or every other day infusions of supraphysiological levels of FVIII and is effective in only up to 70% of hemophilia A patients. Preclinical and recent clinical studies have shown that gene replacement therapy with AAV vectors can effectively cure hemophilia A patients. However, it is unclear how hemophilia patients with high risk inhibitor F8 mutations or with established inhibitors will respond to gene therapy, as these patients have been excluded from ongoing clinical trials. AAV8-coF8 gene transfer in naïve BALB/c-F8e16−/Y mice (BALB/c-HA) results in anti-FVIII IgG1 inhibitors following gene transfer, which can be prevented by transient immune modulation with anti-mCD20 (18B12) and oral rapamycin. We investigated if we could improve ITI in inhibitor positive mice by combining anti-mCD20 and rapamycin with AAV8-coF8 gene therapy. Our hypothesis was that continuous expression of FVIII protein from gene transfer compared to transient FVIII from weekly protein therapy, would enhance regulatory T cell induction and promote deletion of FVIII reactive B cells, following reconstitution. Mice that received anti-CD20 had a sharp decline in inhibitors, which corresponded to FVIII memory B (Bmem) cell deletion. Importantly, only mice receiving both anti-mCD20 and rapamycin failed to increase inhibitors following rechallenge with intravenous FVIII protein therapy. Our data show that B and T cell immune modulation complements AAV8-coF8 gene therapy in naïve and inhibitor positive hemophilia A mice and suggest that such protocols should be considered for AAV gene therapy in high risk or inhibitor positive hemophilia patients.
Collapse
Affiliation(s)
- Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brett Palaschak
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Sandeep R P Kumar
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jyoti Rana
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - David M Markusic
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
32
|
Samelson-Jones BJ, Finn JD, Favaro P, Wright JF, Arruda VR. Timing of Intensive Immunosuppression Impacts Risk of Transgene Antibodies after AAV Gene Therapy in Nonhuman Primates. Mol Ther Methods Clin Dev 2020; 17:1129-1138. [PMID: 32490034 PMCID: PMC7256432 DOI: 10.1016/j.omtm.2020.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/07/2020] [Indexed: 01/21/2023]
Abstract
Adeno-associated virus (AAV) vector gene therapy is a promising treatment for a variety of genetic diseases, including hemophilia. Systemic administration of AAV vectors is associated with a cytotoxic immune response triggered against AAV capsid proteins, which if untreated can result in loss of transgene expression. Immunosuppression (IS) with corticosteroids has limited transgene loss in some AAV gene therapy clinical trials, but was insufficient to prevent loss in other studies. We used a nonhuman primate model to evaluate intensive T cell-directed IS combined with AAV-mediated transfer of the human factor IX (FIX) gene. Early administration of rabbit anti-thymocyte globulin (ATG) concomitant with AAV administration resulted in the development of anti-FIX antibodies, whereas delayed ATG by 5 weeks administration did not. The anti-FIX immune response was associated with increases in inflammatory cytokines, as well as a skewed Th17/regulatory T cell (Treg) ratio. We conclude that the timing of T cell-directed IS is critical in determining transgene-product immunogenicity or tolerance. These data have implications for systemically administered AAV gene therapy being evaluated for hemophilia A and B, as well as other genetic diseases.
Collapse
Affiliation(s)
- Benjamin J. Samelson-Jones
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, PA 19104, USA
| | - Jonathan D. Finn
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Patricia Favaro
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - J. Fraser Wright
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, PA 19104, USA
| | - Valder R. Arruda
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Pipe SW. Delivering on the promise of gene therapy for haemophilia. Haemophilia 2020; 27 Suppl 3:114-121. [PMID: 32490590 DOI: 10.1111/hae.14027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 04/20/2020] [Indexed: 01/19/2023]
Abstract
The promise of gene therapy is a single treatment ('one and done') that leads to steady-state expression of endogenous factor VIII or factor IX sufficient to achieve a functional cure (free of recurrent haemophilic bleeding) if not normalized haemostasis. The elimination of the need for continued prophylaxis, or factor replacement following trauma or prior to surgery would lead to annual cost savings. Such optimized health and well-being would be reaching a level of health equity that was unimaginable several decades ago. 'Before anything else, preparation is the key to success'-Alexander Graham Bell. This quote from the famous inventor, scientist and engineer highlights that, although we currently stand on the threshold of this achievement, delivering on this promise will require broad-based multistakeholder preparation (scientists, manufacturers, federal regulators, health technology assessors, persons with haemophilia, national advocacy groups and multidisciplinary healthcare teams) with a focused emphasis on education, approval of safe and effective therapies, removal of barriers to access and excellence in clinical delivery.
Collapse
Affiliation(s)
- Steven W Pipe
- Pediatrics and Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
34
|
Ricobaraza A, Gonzalez-Aparicio M, Mora-Jimenez L, Lumbreras S, Hernandez-Alcoceba R. High-Capacity Adenoviral Vectors: Expanding the Scope of Gene Therapy. Int J Mol Sci 2020; 21:E3643. [PMID: 32455640 PMCID: PMC7279171 DOI: 10.3390/ijms21103643] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
The adaptation of adenoviruses as gene delivery tools has resulted in the development of high-capacity adenoviral vectors (HC-AdVs), also known, helper-dependent or "gutless". Compared with earlier generations (E1/E3-deleted vectors), HC-AdVs retain relevant features such as genetic stability, remarkable efficacy of in vivo transduction, and production at high titers. More importantly, the lack of viral coding sequences in the genomes of HC-AdVs extends the cloning capacity up to 37 Kb, and allows long-term episomal persistence of transgenes in non-dividing cells. These properties open a wide repertoire of therapeutic opportunities in the fields of gene supplementation and gene correction, which have been explored at the preclinical level over the past two decades. During this time, production methods have been optimized to obtain the yield, purity, and reliability required for clinical implementation. Better understanding of inflammatory responses and the implementation of methods to control them have increased the safety of these vectors. We will review the most significant achievements that are turning an interesting research tool into a sound vector platform, which could contribute to overcome current limitations in the gene therapy field.
Collapse
Affiliation(s)
| | | | | | | | - Ruben Hernandez-Alcoceba
- Gene Therapy Program. University of Navarra-CIMA. Navarra Institute of Health Research, 31008 Pamplona, Spain; (A.R.); (M.G.-A.); (L.M.-J.); (S.L.)
| |
Collapse
|
35
|
Samelson-Jones BJ, Arruda VR. Translational Potential of Immune Tolerance Induction by AAV Liver-Directed Factor VIII Gene Therapy for Hemophilia A. Front Immunol 2020; 11:618. [PMID: 32425925 PMCID: PMC7212376 DOI: 10.3389/fimmu.2020.00618] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/18/2020] [Indexed: 12/26/2022] Open
Abstract
Hemophilia A (HA) is an X-linked bleeding disorder due to deficiencies in coagulation factor VIII (FVIII). The major complication of current protein-based therapies is the development of neutralizing anti-FVIII antibodies, termed inhibitors, that block the hemostatic effect of therapeutic FVIII. Inhibitors develop in about 20-30% of people with severe HA, but the risk is dependent on the interaction between environmental and genetic factors, including the underlying F8 gene mutation. Recently, multiple clinical trials evaluating adeno-associated viral (AAV) vector liver-directed gene therapy for HA have reported promising results of therapeutically relevant to curative FVIII levels. The inclusion criteria for most trials prevented enrollment of subjects with a history of inhibitors. However, preclinical data from small and large animal models of HA with inhibitors suggests that liver-directed gene therapy can in fact eradicate pre-existing anti-FVIII antibodies, induce immune tolerance, and provide long-term therapeutic FVIII expression to prevent bleeding. Herein, we review the accumulating evidence that continuous uninterrupted expression of FVIII and other transgenes after liver-directed AAV gene therapy can bias the immune system toward immune tolerance induction, discuss the current understanding of the immunological mechanisms of this process, and outline questions that will need to be addressed to translate this strategy to clinical trials.
Collapse
Affiliation(s)
- Benjamin J. Samelson-Jones
- The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, PA, United States
| | - Valder R. Arruda
- The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, PA, United States
| |
Collapse
|
36
|
Butterfield JSS, Hege KM, Herzog RW, Kaczmarek R. A Molecular Revolution in the Treatment of Hemophilia. Mol Ther 2020; 28:997-1015. [PMID: 31843450 PMCID: PMC7132613 DOI: 10.1016/j.ymthe.2019.11.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
For decades, the monogenetic bleeding disorders hemophilia A and B (coagulation factor VIII and IX deficiency) have been treated with systemic protein replacement therapy. Now, diverse molecular medicines, ranging from antibody to gene to RNA therapy, are transforming treatment. Traditional replacement therapy requires twice to thrice weekly intravenous infusions of factor. While extended half-life products may reduce the frequency of injections, patients continue to face a lifelong burden of the therapy, suboptimal protection from bleeding and joint damage, and potential development of neutralizing anti-drug antibodies (inhibitors) that require less efficacious bypassing agents and further reduce quality of life. Novel non-replacement and gene therapies aim to address these remaining issues. A recently approved factor VIII-mimetic antibody accomplishes hemostatic correction in patients both with and without inhibitors. Antibodies against tissue factor pathway inhibitor (TFPI) and antithrombin-specific small interfering RNA (siRNA) target natural anticoagulant pathways to rebalance hemostasis. Adeno-associated virus (AAV) gene therapy provides lasting clotting factor replacement and can also be used to induce immune tolerance. Multiple gene-editing techniques are under clinical or preclinical investigation. Here, we provide a comprehensive overview of these approaches, explain how they differ from standard therapies, and predict how the hemophilia treatment landscape will be reshaped.
Collapse
Affiliation(s)
| | - Kerry M Hege
- Department of Pediatrics, Indiana University School of Medicine, IUPUI-Wells Center for Pediatric Research, Indianapolis, IN, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida, Gainesville, FL, USA; Department of Pediatrics, Indiana University School of Medicine, IUPUI-Wells Center for Pediatric Research, Indianapolis, IN, USA.
| | - Radoslaw Kaczmarek
- Department of Pediatrics, Indiana University School of Medicine, IUPUI-Wells Center for Pediatric Research, Indianapolis, IN, USA; Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland.
| |
Collapse
|
37
|
Alexaki A, Hettiarachchi GK, Athey JC, Katneni UK, Simhadri V, Hamasaki-Katagiri N, Nanavaty P, Lin B, Takeda K, Freedberg D, Monroe D, McGill JR, Peters R, Kames JM, Holcomb DD, Hunt RC, Sauna ZE, Gelinas A, Janjic N, DiCuccio M, Bar H, Komar AA, Kimchi-Sarfaty C. Effects of codon optimization on coagulation factor IX translation and structure: Implications for protein and gene therapies. Sci Rep 2019; 9:15449. [PMID: 31664102 PMCID: PMC6820528 DOI: 10.1038/s41598-019-51984-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022] Open
Abstract
Synonymous codons occur with different frequencies in different organisms, a phenomenon termed codon usage bias. Codon optimization, a common term for a variety of approaches used widely by the biopharmaceutical industry, involves synonymous substitutions to increase protein expression. It had long been presumed that synonymous variants, which, by definition, do not alter the primary amino acid sequence, have no effect on protein structure and function. However, a critical mass of reports suggests that synonymous codon variations may impact protein conformation. To investigate the impact of synonymous codons usage on protein expression and function, we designed an optimized coagulation factor IX (FIX) variant and used multiple methods to compare its properties to the wild-type FIX upon expression in HEK293T cells. We found that the two variants differ in their conformation, even when controlling for the difference in expression levels. Using ribosome profiling, we identified robust changes in the translational kinetics of the two variants and were able to identify a region in the gene that may have a role in altering the conformation of the protein. Our data have direct implications for codon optimization strategies, for production of recombinant proteins and gene therapies.
Collapse
Affiliation(s)
- Aikaterini Alexaki
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Gaya K Hettiarachchi
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - John C Athey
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Upendra K Katneni
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Vijaya Simhadri
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Nobuko Hamasaki-Katagiri
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Puja Nanavaty
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - Brian Lin
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Kazuyo Takeda
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Darón Freedberg
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Dougald Monroe
- University of North Carolina at Chapel hill, Chapel hill, NC, USA
| | - Joseph R McGill
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | | | - Jacob M Kames
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - David D Holcomb
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Ryan C Hunt
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Zuben E Sauna
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | | | | | - Michael DiCuccio
- National Center of Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Haim Bar
- Department of Statistics, University of Connecticut, Storrs, CT, USA
| | - Anton A Komar
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - Chava Kimchi-Sarfaty
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
38
|
Peyvandi F, Garagiola I. Clinical advances in gene therapy updates on clinical trials of gene therapy in haemophilia. Haemophilia 2019; 25:738-746. [PMID: 31282050 DOI: 10.1111/hae.13816] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/28/2022]
Abstract
Gene therapy is rapidly becoming a new therapeutic strategy for haemophilia A and B treatment. In the 1990s, studies in animal models showed that adeno-associated vectors (AAV) exhibited an efficient expression of factor IX (FIX). In the first clinical trial in patients with haemophilia B, therapeutic levels of FIX were documented but the expression remained only for few weeks. Subsequently, improvements in vector design, such as the use of different AAV serotypes, the development of the self-complementary vector, the engineering of the transgene with codon optimization and liver-specific expression cassette resulted in circulating FIX level between 2% and 5% for long-lasting period. Recently, a natural gain of function FIX variant (Padua) inserted in the F9 cDNA improved the expression of FIX achieving a level of more than 30% resulting in cessation of infusions and in a greatly reduction of bleeding events. Encouraging clinical progresses have been also obtained from trials of gene therapy for haemophilia A. Transgene expression persisted for three years with circulating FVIII activity levels of 52.3% in patients treated with AAV vector containing a codon-optimized F8 cDNA. A complication, reported in both clinical trials for haemophilia A and B, was the elevation of liver enzymes, which resolved with steroid treatment in a large group of patients. However, to date, the pathophysiological mechanism for the liver toxicity remains still unclear. Clinical trials with adeno-associated vectors have documented a significant success for haemophilia gene therapy demonstrating potential to transform haemophilia treatment offering hope for a long-term expression.
Collapse
Affiliation(s)
- Flora Peyvandi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Isabella Garagiola
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Milan, Italy
| |
Collapse
|
39
|
Balestra D, Branchini A. Molecular Mechanisms and Determinants of Innovative Correction Approaches in Coagulation Factor Deficiencies. Int J Mol Sci 2019; 20:ijms20123036. [PMID: 31234407 PMCID: PMC6627357 DOI: 10.3390/ijms20123036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/07/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Molecular strategies tailored to promote/correct the expression and/or processing of defective coagulation factors would represent innovative therapeutic approaches beyond standard substitutive therapy. Here, we focus on the molecular mechanisms and determinants underlying innovative approaches acting at DNA, mRNA and protein levels in inherited coagulation factor deficiencies, and in particular on: (i) gene editing approaches, which have permitted intervention at the DNA level through the specific recognition, cleavage, repair/correction or activation of target sequences, even in mutated gene contexts; (ii) the rescue of altered pre-mRNA processing through the engineering of key spliceosome components able to promote correct exon recognition and, in turn, the synthesis and secretion of functional factors, as well as the effects on the splicing of missense changes affecting exonic splicing elements; this section includes antisense oligonucleotide- or siRNA-mediated approaches to down-regulate target genes; (iii) the rescue of protein synthesis/function through the induction of ribosome readthrough targeting nonsense variants or the correction of folding defects caused by amino acid substitutions. Overall, these approaches have shown the ability to rescue the expression and/or function of potentially therapeutic levels of coagulation factors in different disease models, thus supporting further studies in the future aimed at evaluating the clinical translatability of these new strategies.
Collapse
Affiliation(s)
- Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
40
|
Samelson-Jones BJ, Finn JD, George LA, Camire RM, Arruda VR. Hyperactivity of factor IX Padua (R338L) depends on factor VIIIa cofactor activity. JCI Insight 2019; 5:128683. [PMID: 31219805 DOI: 10.1172/jci.insight.128683] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Adeno-associated-viral (AAV) vector liver-directed gene therapy (GT) for hemophilia B (HB) is limited by a vector-dose-dependent hepatotoxicity. Recently, this obstacle has been partially circumvented by the use of a hyperactive factor IX (FIX) variant, R338L (Padua), which has an eightfold increased specific activity compared to FIX-WT. FIX-R338L has emerged as the standard for HB GT. However, the underlying mechanism of its hyperactivity is undefined; as such, safety concerns of unregulated coagulation and the potential for thrombotic complications have not been fully addressed. To this end, we evaluated the enzymatic and clotting activity as well as the activation, inactivation, and cofactor-dependence of FIX-R338L relative to FIX-WT. We observed that the high-specific-activity of FIX-R338L requires factor VIIIa (FVIIIa) cofactor. In a novel system utilizing emicizumab, a FVIII-mimicking bispecific antibody, the hyperactivity of both recombinant FIX-R338L and AAV-mediated-transgene-expressed FIX-R338L from HB GT subjects is ablated without FVIIIa activity. We conclude that the molecular regulation of activation, inactivation, and cofactor-dependence of FIX-R338L is similar to FIX-WT, but that the FVIIIa-dependent hyperactivity of FIX-R338L is the result of a faster rate of factor X activation. This mechanism helps mitigate safety concerns of unregulated coagulation and supports the expanded use of FIX-R338L in HB therapy.
Collapse
Affiliation(s)
- Benjamin J Samelson-Jones
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
| | - Jonathan D Finn
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lindsey A George
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
| | - Rodney M Camire
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
| | - Valder R Arruda
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
Affiliation(s)
- Dao Pan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Chen Ling
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|