1
|
Getachew H, Mehrotra S, Kaur T, Fernandez-Godino R, Pierce EA, Garita-Hernandez M. The RNA content of extracellular vesicles from gene-edited PRPF31 +/- hiPSC-RPE show potential as biomarkers of retinal degeneration. Mol Ther Methods Clin Dev 2025; 33:101452. [PMID: 40231248 PMCID: PMC11995067 DOI: 10.1016/j.omtm.2025.101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/13/2025] [Indexed: 04/16/2025]
Abstract
Retinitis pigmentosa (RP) is the most common inherited retinal degeneration (IRD), causing vision loss via the dysfunction and death of photoreceptors and retinal pigment epithelium (RPE). Mutations in the PRPF31 gene are associated with autosomal dominant RP, impairing RPE function. While adeno-associated virus (AAV)-mediated gene therapy shows promise for treating IRDs, the slow progression of these diseases often makes timely measurement of clinical efficacy challenging. Extracellular vesicles (EVs) are lipid enclosed vesicles secreted by cells, and their RNA contents are being explored as circulating biomarkers for other diseases. We hypothesize that EV RNAs could serve as biomarkers of the health status of the neural retina and RPE. To test this, we used PRPF31 +/+ and PRPF31 +/- human induced pluripotent stem cell (hiPSC)-derived RPE (hi-RPE) to investigate the RNAs contained in RPE-derived EVs and how they change in disease. We also compared the RNA contents of RPE-EVs with the RNAs of the hi-RPE cells themselves. We found that EVs from mutant PRPF31 hi-RPE cells have distinct RNA profiles compared to those from control cells, suggesting that EV RNA contents change during disease. Additionally, we identified 18 miRNAs and 865 poly(A) RNAs enriched in EVs from PRPF31 +/- hi-RPE, which could serve as biomarkers for RPE degeneration.
Collapse
Affiliation(s)
- Heran Getachew
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sudeep Mehrotra
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Tarandeep Kaur
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Rosario Fernandez-Godino
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Eric A. Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Marcela Garita-Hernandez
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Mousawi Z, Choukeir M, Jaffal L, Karam L, Assi A, Ibrahim JN, Chebly A, El Shamieh S. Exploring copy number variations in Lebanese families with rod-cone dystrophy reveals a novel deletion in PRPF31 with haploinsufficiency. Ophthalmic Genet 2025:1-7. [PMID: 40289750 DOI: 10.1080/13816810.2025.2495945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/07/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND AND OBJECTIVES Rod-cone dystrophy (RCD), also known as retinitis pigmentosa, is the most common group of retinal dystrophies, affecting around 1:4,000 individuals worldwide. In the present work, we performed a copy number variation (CNV) analysis on next-generation sequencing (NGS) data from two Lebanese families with RCD, since no disease-causing mutations were identified through the analysis of single nucleotide variants (SNVs) and insertions/deletions (Indels). NGS, real-time PCR (qPCR), and chromosomal microarray were performed to identify, validate, and delineate the causative CNVs identified in both families involved in this study. Additionally, expression analysis using qPCR and western blotting was conducted to assess the effect of the PRPF31 variant on gene and protein expression levels. RESULTS A novel heterozygous deletion (701 bp) spanning exons 6 and 7 of PRPF31 was identified in the first family (F11), resulting in autosomal dominant RCD due to haploinsufficiency. This was confirmed by reduced mRNA levels and the complete absence of protein expression in the affected individuals (F11:III.2 and F11:II.2). In the second family (F26), we identified a previously documented homozygous deletion in the exons 3-19 of MERTK gene, which is responsible for causing severe autosomal recessive RCD. CONCLUSION The current study expands the mutational spectrum of PRPF31 and MERTK genes, underscoring the importance of CNVs and haploinsufficiency in RCD etiology. These findings serve as a foundation for future analyses concerning gene augmentation therapies.
Collapse
Affiliation(s)
- Zahraa Mousawi
- Molecular Testing Laboratory, Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Maysa Choukeir
- Molecular Testing Laboratory, Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Lama Jaffal
- Molecular Testing Laboratory, Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Louna Karam
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | | | - José-Noel Ibrahim
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Alain Chebly
- Centre Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Said El Shamieh
- Molecular Testing Laboratory, Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| |
Collapse
|
3
|
Yan J, Li Z, Shu Y, Chen H, Wang T, Li X, Zhang Y, Li L, Zhang Y. The Unveiled Novel regulator of Adeno-associated virus production in HEK293 cells. Gene 2025; 938:149122. [PMID: 39581356 DOI: 10.1016/j.gene.2024.149122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
The field of gene therapy using Adeno-associated viral (AAV) vector delivery is rapidly advancing in the biotherapeutics industry. Despite its successes, AAV manufacturing remains a challenge due to limited production yields. The triple plasmid transfection of HEK293 cells represents the most extensively utilized system for AAV production. The regulatory factors and mechanisms underlying viral production in HEK293 cells are largely unknown. In this study, we isolated high-titer AAV production clones from a parental HEK293 population using a single limiting dilution step, and subsequently elucidating their underlying molecular mechanisms through whole transcriptome analysis. LncRNA TCONS_00160397 was upregulated in clones and shown to promoted HEK293 cells proliferation and improved the titer of AAV production. Mechanistically, results from proteomics and metabolomics indicated that TCONS_00160397 regulated the ABC transporters pathway. These findings furnish a rich repository of knowledge and actionable targets for the rational optimization of HEK293-based producer lines, thereby paving the way for tangible improvements in AAV vector output and expediting the broad implementation of gene therapies.
Collapse
Affiliation(s)
- Junyu Yan
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Ziqian Li
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Yue Shu
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Hui Chen
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Tianxingzi Wang
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Xin Li
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Yuhang Zhang
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - LiLi Li
- Beijing Institute of Biological Products Company Limited, Beijing, China.
| | - Yuntao Zhang
- Beijing Institute of Biological Products Company Limited, Beijing, China; China National Biotec Group Company Limited, Beijing, China.
| |
Collapse
|
4
|
Armento A, Sonntag I, Almansa-Garcia AC, Sen M, Bolz S, Arango-Gonzalez B, Kilger E, Sharma R, Bharti K, Fernandez-Godino R, de la Cerda B, Clark SJ, Ueffing M. The AMD-associated genetic polymorphism CFH Y402H confers vulnerability to Hydroquinone-induced stress in iPSC-RPE cells. Front Immunol 2025; 16:1527018. [PMID: 39981241 PMCID: PMC11839594 DOI: 10.3389/fimmu.2025.1527018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/23/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Age-related macular degeneration (AMD), a degenerative disease of the macula, is caused by an interplay of diverse risk factors (genetic predisposition, age and lifestyle habits). One of the main genetic risks includes the Y402H polymorphism in complement Factor H (FH), an inhibitor of complement system activation. There has been, and continues to be, much discussion around the functional consequences of this Y402H polymorphism, whether the soluble FH protein confers its risk association, or if the cells expressing the protein themselves are affected by the genetic alteration. In our study, we examined the cell characteristics of the retinal pigment epithelium (RPE) cells, which play a major role in retinal homeostasis and stability and which are synonymously linked to AMD. Methods Here, we employ RPE cells derived from induced pluripotent stem cells (iPSC) generated from donors, carrying either homozygous 402Y (low risk) or 402H (high risk) variants of the CFH gene. RPE cells were treated with Hydroquinone (HQ), a component of cigarette smoke, to induce oxidative damage. Results Intriguingly, RPE cells carrying high genetic risk proved more vulnerable to oxidative insult when exposed to HQ, as demonstrated by increased cytotoxicity and caspase activation, compared to the low-risk RPE cells. The exposure of RPE cells to RPE conditioned medium, normal human serum (NHS) and inactivated NHS (iNHS) had minimal impact on cell cytotoxicity and caspase activation, nor did the presence of purified soluble FH rescue the observed effects. Considering the known connection of oxidative stress to proteotoxic stress and degrading processes, we investigated the unfolded protein response (UPR) and autophagy. When exposed to HQ, RPE cells showed an increase in autophagy markers; however, iPSC-RPE cells carrying high genetic risk showed an overall reduced autophagic flux. Discussion Our findings suggest that the degree of cellular susceptibility to oxidative stress is not conferred by soluble FH protein and other complement sources, but intercellularly because of the corresponding genetic risk predisposition. Our data support the hypothesis that RPE cells carrying high genetic risk are less resilient to oxidative stress.
Collapse
Affiliation(s)
- Angela Armento
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Inga Sonntag
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | | | - Merve Sen
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Sylvia Bolz
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Blanca Arango-Gonzalez
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Ellen Kilger
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Ruchi Sharma
- Ocular Stem Cells and Translational Research (OSCTR) Section, Ophthalmic Genetic and Visual Function Branch (OGVFB), National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kapil Bharti
- Ocular Stem Cells and Translational Research (OSCTR) Section, Ophthalmic Genetic and Visual Function Branch (OGVFB), National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Berta de la Cerda
- Retinal Neurodegeneration and Advanced Therapies, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla, Spain
| | - Simon J. Clark
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Marius Ueffing
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Ma SZ, Dong S, Zhou ZY, Ji XY, Zhang YY, Wang XQ, Zhang B. The protective role of Cordyceps cicadae and its active ingredient myriocin against sodium iodate-induced age-related macular degeneration via an anti-necroptotic TNF-RIPK1/3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118565. [PMID: 39002821 DOI: 10.1016/j.jep.2024.118565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/05/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cordyceps cicadae (C.cicadae), named "Chan Hua", an anamorph of Isaria cicadae Miquel, is an entomogenous complex formed by fungi parasitizing on the larvae of cicadas and belongs to the Claviciptaceae family and the genus Codyceps, which traditionally holds a significant place in Chinese ethnopharmacology, specifically for eye clarity and as a remedy for age-related ocular conditions. The underlying mechanisms contributing to its eyesight enhancement and potential effectiveness against Age-related macular degeneration (AMD) remain unexplored. AIM OF THE STUDY This study aims to elucidate the protective role of C.cicadae and its active ingredient, Myriocin (Myr), against AMD. MATERIALS AND METHODS A chemical inducer was employed to make retinal pigment epithelium (RPE) damage in vitro and in vivo. The key ingredients of C.cicadae and their related mechanisms for anti-AMD were studied through bioinformatic analysis and molecular biological approaches. RESULTS Myr was identified through high-performance liquid chromatography (HPLC) as an active ingredient in C.cicadae, and demonstrated a protective effect on RPE cells, reducing the structural damage and cell death induced by sodium iodate (SI). Further, Myr reduced eyelid secretions in AMD mice and restored their retinal structure and function. The differentially expressed genes (DEGs) in Myr treatment are primarily associated with TNF and Necroptosis signaling pathways. Molecular docking indicated a strong affinity between TNF and Myr. Myr inhibited the TNF signaling pathway thereby reducing the expression of inflammatory factors in ARPE-19 cells. Additionally, Myr had consistent action with the necroptosis inhibitor Necrostatin-1 (Nec-1), inhibited the RIPK1/RIPK3/MLKL pathway thereby protecting ARPE-19 cells. CONCLUSION The findings present Myr, as a potent protector against SI-induced AMD, predominantly through modulation of the TNF-RIPK1/RIPK3/MLKL signaling pathway, offering the insights of therapeutic C.cicadae as viable candidates for AMD treatment.
Collapse
Affiliation(s)
- Shao Zhuang Ma
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China; Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China.
| | - Shi Dong
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China; Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China.
| | - Zong Yuan Zhou
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China.
| | - Xin Ye Ji
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China; Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China.
| | - Yan Yuan Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China; Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China.
| | - Xiao Qin Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China.
| | - Bo Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China; Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China.
| |
Collapse
|
6
|
Bodenbender JP, Bethge L, Stingl K, Mazzola P, Haack T, Biskup S, Wissinger B, Weisschuh N, Kohl S, Kühlewein L. Clinical and Genetic Findings in a Cohort of Patients with PRPF31-Associated Retinal Dystrophy. Am J Ophthalmol 2024; 267:213-229. [PMID: 38909744 DOI: 10.1016/j.ajo.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
PURPOSE The purpose of our study was to assess the phenotypic and genotypic spectrum in a large cohort of patients with PRPF31-associated retinal dystrophy. DESIGN Retrospective cohort study. METHODS In this retrospective chart review study, we collected cross-sectional data on the phenotype and genotype of patients with PRPF31-associated retinal dystrophy from the clinics for inherited retinal dystrophies at the University of Tuebingen and the local RetDis database and biobank. Patients underwent thorough ophthalmological examinations and genetic testing. RESULTS Eighty-six patients from 61 families were available for clinical assessment, while genomic DNA was available for 111 individuals (index patients and family members). Fifty-three different disease-associated variants were observed in our cohort. Point mutations were the most common class. All but two patients exhibited features of a typical Retinitis pigmentosa (RP). One patient showed a cone-rod dystrophy pattern. One mutation carrier revealed no signs of a retinal dystrophy. There was a statistically significant better visual acuity for patients with large deletions in the 20-39 age group. Cystoid macular edema was common in those with preserved central retina and showed an association with female sex. CONCLUSION Our study confirms high phenotypic variability in disease onset and age at which legal blindness is reached in PRPF31-associated RP. Non-penetrance is commonly documented in family history, although poorly represented in our study, possibly indicating that true asymptomatic mutation carriers are rare if followed-up over lifetime with thorough ophthalmologic workup.
Collapse
Affiliation(s)
- Jan-Philipp Bodenbender
- University Eye Hospital, Center for Ophthalmology, Eberhard Karls University (J.P.B., L.B., K.S., L.K.), Tübingen, Germany
| | - Leon Bethge
- University Eye Hospital, Center for Ophthalmology, Eberhard Karls University (J.P.B., L.B., K.S., L.K.), Tübingen, Germany
| | - Katarina Stingl
- University Eye Hospital, Center for Ophthalmology, Eberhard Karls University (J.P.B., L.B., K.S., L.K.), Tübingen, Germany
| | - Pascale Mazzola
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University (P.M., T.H.), Tübingen, Germany
| | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University (P.M., T.H.), Tübingen, Germany; Center for Rare Diseases, Eberhard Karls University (T.H.), Tübingen, Germany
| | | | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, Eberhard Karls University (B.W., N.W., S.K.), Tübingen, Germany
| | - Nicole Weisschuh
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, Eberhard Karls University (B.W., N.W., S.K.), Tübingen, Germany
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, Eberhard Karls University (B.W., N.W., S.K.), Tübingen, Germany
| | - Laura Kühlewein
- University Eye Hospital, Center for Ophthalmology, Eberhard Karls University (J.P.B., L.B., K.S., L.K.), Tübingen, Germany; Institute for Ophthalmic Research, Center for Ophthalmology, Eberhard Karls University (L.K.), Tübingen, Germany.
| |
Collapse
|
7
|
Bernd J, Plastino F, Karayannis JJ, Kvanta A, Locri F, André H. Accelerated maturation of ARPE-19 cells for the translational assessment of gene therapy. FASEB J 2024; 38:e70020. [PMID: 39222301 DOI: 10.1096/fj.202301707rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 07/16/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The human retinal pigment epithelium (RPE) cell line ARPE-19 is widely used as an alternative to primary RPE despite losing many features of primary RPE. We aimed to determine whether a combination of RPE-specific laminin (LN) and nicotinamide (NAM) could improve ARPE-19 redifferentiation to resemble mature RPE and improve the assessment of RPE-specific gene therapy strategies. ARPE-19 cells were propagated on tissue culture plastic supplemented with NAM and human recombinant LN521-coating. RPE maturation was performed by immunocytochemistry and gene expression by qPCR. Viral transduction experiments with adeno-associated virus (AAV)1 or AAV2, carrying a VMD2-driven GFP, were assessed at 2- and 4-weeks post-plating in the different culturing conditions with a low multiplicity of infection. The combination of LN521 coating with NAM supplementation promoted cytoskeletal and tight junction protein reorganization. The expression of maturation markers bestrophin-1 and RPE 65 was promoted concomitantly with a reduction of several epithelial-mesenchymal transition markers, such as TNF-α, TGF-β, CDH2, and vimentin. Redifferentiated ARPE-19 transduced at low multiplicity of infection of both AAV1- and AAV2-VMD2-GFP. Expression of GFP was detected at 2 weeks and increased at 4 weeks post-plating. AAV1 exhibited a greater expression efficacy compared to AAV2 in maturated ARPE-19 cells already after 2 weeks with increased efficiency after 4 weeks. Our study demonstrates an improved maturation protocol for ARPE-19 cells in vitro, mimicking an in vivo phenotype with the expression of signature genes and improved morphology. Viral-mediated RPE-specific gene expression demonstrates that the combination cultures mimic in vivo AAV tropism essential to test new gene therapies for RPE-centered diseases.
Collapse
Affiliation(s)
- Jonathan Bernd
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Flavia Plastino
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Joanna Jackelin Karayannis
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Anders Kvanta
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Filippo Locri
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Kurzawa-Akanbi M, Tzoumas N, Corral-Serrano JC, Guarascio R, Steel DH, Cheetham ME, Armstrong L, Lako M. Pluripotent stem cell-derived models of retinal disease: Elucidating pathogenesis, evaluating novel treatments, and estimating toxicity. Prog Retin Eye Res 2024; 100:101248. [PMID: 38369182 DOI: 10.1016/j.preteyeres.2024.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Blindness poses a growing global challenge, with approximately 26% of cases attributed to degenerative retinal diseases. While gene therapy, optogenetic tools, photosensitive switches, and retinal prostheses offer hope for vision restoration, these high-cost therapies will benefit few patients. Understanding retinal diseases is therefore key to advance effective treatments, requiring in vitro models replicating pathology and allowing quantitative assessments for drug discovery. Pluripotent stem cells (PSCs) provide a unique solution given their limitless supply and ability to differentiate into light-responsive retinal tissues encompassing all cell types. This review focuses on the history and current state of photoreceptor and retinal pigment epithelium (RPE) cell generation from PSCs. We explore the applications of this technology in disease modelling, experimental therapy testing, biomarker identification, and toxicity studies. We consider challenges in scalability, standardisation, and reproducibility, and stress the importance of incorporating vasculature and immune cells into retinal organoids. We advocate for high-throughput automation in data acquisition and analyses and underscore the value of advanced micro-physiological systems that fully capture the interactions between the neural retina, RPE, and choriocapillaris.
Collapse
|
9
|
Lim RR, Shirali S, Rowlan J, Engel AL, Nazario, M, Gonzalez K, Tong A, Neitz J, Neitz M, Chao JR. CFH Haploinsufficiency and Complement Alterations in Early-Onset Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:43. [PMID: 38683564 PMCID: PMC11059804 DOI: 10.1167/iovs.65.4.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Purpose Complement dysregulation is a key component in the pathogenesis of age-related macular degeneration (AMD) and related diseases such as early-onset macular drusen (EOMD). Although genetic variants of complement factor H (CFH) are associated with AMD risk, the impact of CFH and factor H-like protein 1 (FHL-1) expression on local complement activity in human retinal pigment epithelium (RPE) remains unclear. Methods We identified a novel CFH variant in a family with EOMD and generated patient induced pluripotent stem cell (iPSC)-derived RPE cells. We assessed CFH and FHL-1 co-factor activity through C3b breakdown assays and measured complement activation by immunostaining for membrane attack complex (MAC) formation. Expression of CFH, FHL-1, local alternative pathway (AP) components, and regulators of complement activation (RCA) in EOMD RPE cells was determined by quantitative PCR, western blot, and immunostaining. Isogenic EOMD (cEOMD) RPE was generated using CRISPR/Cas9 gene editing. Results The CFH variant (c.351-2A>G) resulted in loss of CFH and FHL-1 expression and significantly reduced CFH and FHL-1 protein expression (∼50%) in EOMD iPSC RPE cells. These cells exhibited increased MAC deposition upon exposure to normal human serum. Under inflammatory or oxidative stress conditions, CFH and FHL-1 expression in EOMD RPE cells paralleled that of controls, whereas RCA expression, including MAC formation inhibitors, was elevated. CRISPR/Cas9 correction restored CFH/FHL-1 expression and mitigated alternative pathway complement activity in cEOMD RPE cells. Conclusions Identification of a novel CFH variant in patients with EOMD resulting in reduced CFH and FHL-1 and increased local complement activity in EOMD iPSC RPE supports the involvement of CFH haploinsufficiency in EOMD pathogenesis.
Collapse
Affiliation(s)
- Rayne R. Lim
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Sharlene Shirali
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Jessica Rowlan
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Abbi L. Engel
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Institute, Seattle, Washington, United States
| | - Marcos Nazario,
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Kelie Gonzalez
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Aspen Tong
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Jennifer R. Chao
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
- Roger and Angie Karalis Johnson Retina Center, University of Washington School of Medicine, Seattle, Washington, United States
| |
Collapse
|
10
|
Aweidah H, Xi Z, Sahel JA, Byrne LC. PRPF31-retinitis pigmentosa: Challenges and opportunities for clinical translation. Vision Res 2023; 213:108315. [PMID: 37714045 PMCID: PMC10872823 DOI: 10.1016/j.visres.2023.108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/17/2023]
Abstract
Mutations in pre-mRNA processing factor 31 cause autosomal dominant retinitis pigmentosa (PRPF31-RP), for which there is currently no efficient treatment, making this disease a prime target for the development of novel therapeutic strategies. PRPF31-RP exhibits incomplete penetrance due to haploinsufficiency, in which reduced levels of gene expression from the mutated allele result in disease. A variety of model systems have been used in the investigation of disease etiology and therapy development. In this review, we discuss recent advances in both in vivo and in vitro model systems, evaluating their advantages and limitations in the context of therapy development for PRPF31-RP. Additionally, we describe the latest approaches for treatment, including AAV-mediated gene augmentation, genome editing, and late-stage therapies such as optogenetics, cell transplantation, and retinal prostheses.
Collapse
Affiliation(s)
- Hamzah Aweidah
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhouhuan Xi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Ophthalmology, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leah C Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Cheng YM, Ma C, Jin K, Jin ZB. Retinal organoid and gene editing for basic and translational research. Vision Res 2023; 210:108273. [PMID: 37307693 DOI: 10.1016/j.visres.2023.108273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
The rapid evolution of two technologies has greatly transformed the basic, translational, and clinical research in the mammalian retina. One is the retinal organoid (RO) technology. Various induction methods have been created or adapted to generate species-specific, disease-specific, and experimental-targeted retinal organoids (ROs). The process of generating ROs can highly mimic the in vivo retinal development, and consequently, the ROs resemble the retina in many aspects including the molecular and cellular profiles. The other technology is the gene editing, represented by the classical CRISPR-Cas9 editing and its derivatives such as prime editing, homology independent targeted integration (HITI), base editing and others. The combination of ROs and gene editing has opened up countless possibilities in the study of retinal development, pathogenesis, and therapeutics. We review recent advances in the ROs, gene editing methodologies, delivery vectors, and related topics that are particularly relevant to retinal studies.
Collapse
Affiliation(s)
- You-Min Cheng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China
| | - Chao Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China.
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China.
| |
Collapse
|
12
|
Daich Varela M, Georgiadis A, Michaelides M. Genetic treatment for autosomal dominant inherited retinal dystrophies: approaches, challenges and targeted genotypes. Br J Ophthalmol 2023; 107:1223-1230. [PMID: 36038193 DOI: 10.1136/bjo-2022-321903] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 11/04/2022]
Abstract
Inherited retinal diseases (IRDs) have been in the front line of gene therapy development for the last decade, providing a useful platform to test novel therapeutic approaches. More than 40 clinical trials have been completed or are ongoing, tackling autosomal recessive and X-linked conditions, mostly through adeno-associated viral vector delivery of a normal copy of the disease-causing gene. However, only recently has autosomal dominant (ad) disease been targeted, with the commencement of a trial for rhodopsin (RHO)-associated retinitis pigmentosa (RP), implementing antisense oligonucleotide (AON) therapy, with promising preliminary results (NCT04123626).Autosomal dominant RP represents 15%-25% of all RP, with RHO accounting for 20%-30% of these cases. Autosomal dominant macular and cone-rod dystrophies (MD/CORD) correspond to approximately 7.5% of all IRDs, and approximately 35% of all MD/CORD cases, with the main causative gene being BEST1 Autosomal dominant IRDs are not only less frequent than recessive, but also tend to be less severe and have later onset; for example, an individual with RHO-adRP would typically become severely visually impaired at an age 2-3 times older than in X-linked RPGR-RP.Gain-of-function and dominant negative aetiologies are frequently seen in the prevalent adRP genes RHO, RP1 and PRPF31 among others, which would not be effectively addressed by gene supplementation alone and need creative, novel approaches. Zinc fingers, RNA interference, AON, translational read-through therapy, and gene editing by clustered regularly interspaced short palindromic repeats/Cas are some of the strategies that are currently under investigation and will be discussed here.
Collapse
Affiliation(s)
- Malena Daich Varela
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Michel Michaelides
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
13
|
Watson A, Lako M. Retinal organoids provide unique insights into molecular signatures of inherited retinal disease throughout retinogenesis. J Anat 2023; 243:186-203. [PMID: 36177499 PMCID: PMC10335378 DOI: 10.1111/joa.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022] Open
Abstract
The demand for induced pluripotent stem cells (iPSC)-derived retinal organoid and retinal pigment epithelium (RPE) models for the modelling of inherited retinopathies has increased significantly in the last decade. These models are comparable with foetal retinas up until the later stages of retinogenesis, expressing all of the key neuronal markers necessary for retinal function. These models have proven to be invaluable in the understanding of retinogenesis, particular in the context of patient-specific diseases. Inherited retinopathies are infamously described as clinically and phenotypically heterogeneous, such that developing gene/mutation-specific animal models in each instance of retinal disease is not financially or ethically feasible. Further to this, many animal models are insufficient in the study of disease pathogenesis due to anatomical differences and failure to recapitulate human disease phenotypes. In contrast, iPSC-derived retinal models provide a high throughput platform which is physiologically relevant for studying human health and disease. They also serve as a platform for drug screening, gene therapy approaches and in vitro toxicology of novel therapeutics in pre-clinical studies. One unique characteristic of stem cell-derived retinal models is the ability to mimic in vivo retinogenesis, providing unparalleled insights into the effects of pathogenic mutations in cells of the developing retina, in a highly accessible way. This review aims to give the reader an overview of iPSC-derived retinal organoids and/or RPE in the context of disease modelling of several inherited retinopathies including Retinitis Pigmentosa, Stargardt disease and Retinoblastoma. We describe the ability of each model to recapitulate in vivo disease phenotypes, validate previous findings from animal models and identify novel pathomechanisms that underpin individual IRDs.
Collapse
Affiliation(s)
- Avril Watson
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Majlinda Lako
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
14
|
Zufiaurre-Seijo M, García-Arumí J, Duarri A. Clinical and Molecular Aspects of C2orf71/PCARE in Retinal Diseases. Int J Mol Sci 2023; 24:10670. [PMID: 37445847 DOI: 10.3390/ijms241310670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Mutations in the photoreceptor-specific C2orf71 gene (also known as photoreceptor cilium actin regulator protein PCARE) cause autosomal recessive retinitis pigmentosa type 54 and cone-rod dystrophy. No treatments are available for patients with C2orf71 retinal ciliopathies exhibiting a severe clinical phenotype. Our understanding of the disease process and the role of PCARE in the healthy retina significantly limits our capacity to transfer recent technical developments into viable therapy choices. This study summarizes the current understanding of C2orf71-related retinal diseases, including their clinical manifestations and an unclear genotype-phenotype correlation. It discusses molecular and functional studies on the photoreceptor-specific ciliary PCARE, focusing on the photoreceptor cell and its ciliary axoneme. It is proposed that PCARE is an actin-associated protein that interacts with WASF3 to regulate the actin-driven expansion of the ciliary membrane during the development of a new outer segment disk in photoreceptor cells. This review also introduces various cellular and animal models used to model these diseases and provides an overview of potential treatments.
Collapse
Affiliation(s)
- Maddalen Zufiaurre-Seijo
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, 08035 Barcelona, Spain
| | - José García-Arumí
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, 08035 Barcelona, Spain
| | - Anna Duarri
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, 08035 Barcelona, Spain
| |
Collapse
|
15
|
Gene augmentation prevents retinal degeneration in a CRISPR/Cas9-based mouse model of PRPF31 retinitis pigmentosa. Nat Commun 2022; 13:7695. [PMID: 36509783 PMCID: PMC9744804 DOI: 10.1038/s41467-022-35361-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Mutations in PRPF31 cause autosomal dominant retinitis pigmentosa, an untreatable form of blindness. Gene therapy is a promising treatment for PRPF31-retinitis pigmentosa, however, there are currently no suitable animal models in which to develop AAV-mediated gene augmentation. Here we establish Prpf31 mutant mouse models using AAV-mediated CRISPR/Cas9 knockout, and characterize the resulting retinal degeneration phenotype. Mouse models with early-onset morphological and functional impairments like those in patients were established, providing new platforms in which to investigate pathogenetic mechanisms and develop therapeutic methods. AAV-mediated PRPF31 gene augmentation restored the retinal structure and function in a rapidly degenerating mouse model, demonstrating the first in vivo proof-of-concept for AAV-mediated gene therapy to treat PRPF31-retinitis pigmentosa. AAV-CRISPR/Cas9-PRPF31 knockout constructs also mediated efficient PRPF31 knockout in human and non-human primate retinal explants, laying a foundation for establishing non-human primate models using the method developed here.
Collapse
|
16
|
Benati D, Leung A, Perdigao P, Toulis V, van der Spuy J, Recchia A. Induced Pluripotent Stem Cells and Genome-Editing Tools in Determining Gene Function and Therapy for Inherited Retinal Disorders. Int J Mol Sci 2022; 23:ijms232315276. [PMID: 36499601 PMCID: PMC9735568 DOI: 10.3390/ijms232315276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal disorders (IRDs) affect millions of people worldwide and are a major cause of irreversible blindness. Therapies based on drugs, gene augmentation or transplantation approaches have been widely investigated and proposed. Among gene therapies for retinal degenerative diseases, the fast-evolving genome-editing CRISPR/Cas technology has emerged as a new potential treatment. The CRISPR/Cas system has been developed as a powerful genome-editing tool in ophthalmic studies and has been applied not only to gain proof of principle for gene therapies in vivo, but has also been extensively used in basic research to model diseases-in-a-dish. Indeed, the CRISPR/Cas technology has been exploited to genetically modify human induced pluripotent stem cells (iPSCs) to model retinal disorders in vitro, to test in vitro drugs and therapies and to provide a cell source for autologous transplantation. In this review, we will focus on the technological advances in iPSC-based cellular reprogramming and gene editing technologies to create human in vitro models that accurately recapitulate IRD mechanisms towards the development of treatments for retinal degenerative diseases.
Collapse
Affiliation(s)
- Daniela Benati
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Amy Leung
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Pedro Perdigao
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | | - Alessandra Recchia
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: (J.v.d.S.); (A.R.)
| |
Collapse
|
17
|
Modeling PRPF31 retinitis pigmentosa using retinal pigment epithelium and organoids combined with gene augmentation rescue. NPJ Regen Med 2022; 7:39. [PMID: 35974011 PMCID: PMC9381579 DOI: 10.1038/s41536-022-00235-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in the ubiquitously expressed pre-mRNA processing factor (PRPF) 31 gene, one of the most common causes of dominant form of Retinitis Pigmentosa (RP), lead to a retina-specific phenotype. It is uncertain which retinal cell types are affected and animal models do not clearly present the RP phenotype observed in PRPF31 patients. Retinal organoids and retinal pigment epithelial (RPE) cells derived from human-induced pluripotent stem cells (iPSCs) provide potential opportunities for studying human PRPF31-related RP. We demonstrate here that RPE cells carrying PRPF31 mutations present important morphological and functional changes and that PRPF31-mutated retinal organoids recapitulate the human RP phenotype, with a rod photoreceptor cell death followed by a loss of cones. The low level of PRPF31 expression may explain the defective phenotypes of PRPF31-mutated RPE and photoreceptor cells, which were not observed in cells derived from asymptomatic patients or after correction of the pathogenic mutation by CRISPR/Cas9. Transcriptome profiles revealed differentially expressed and mis-spliced genes belonging to pathways in line with the observed defective phenotypes. The rescue of RPE and photoreceptor defective phenotypes by PRPF31 gene augmentation provide the proof of concept for future therapeutic strategies.
Collapse
|
18
|
Valdés-Sánchez L, Borrego-González S, Montero-Sánchez A, Massalini S, de la Cerda B, Díaz-Cuenca A, Díaz-Corrales FJ. Mesoporous Silica-Based Nanoparticles as Non-Viral Gene Delivery Platform for Treating Retinitis Pigmentosa. J Clin Med 2022; 11:jcm11082170. [PMID: 35456263 PMCID: PMC9026300 DOI: 10.3390/jcm11082170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Gene therapy is a therapeutic possibility for retinitis pigmentosa (RP), in which therapeutic transgenes are currently delivered to the retina by adeno-associated viral vectors (AAVs). Although their safety and efficacy have been demonstrated in both clinical and preclinical settings, AAVs present some technical handicaps, such as limited cargo capacity and possible immunogenicity in repetitive doses. The development of alternative, non-viral delivery platforms like nanoparticles is of great interest to extend the application of gene therapy for RP. METHODS Amino-functionalized mesoporous silica-based nanoparticles (N-MSiNPs) were synthesized, physico-chemically characterized, and evaluated as gene delivery systems for human cells in vitro and for retinal cells in vivo. Transgene expression was evaluated by WB and immunofluorescence. The safety evaluation of mice subjected to subretinal injection was assessed by ophthalmological tests (electroretinogram, funduscopy, tomography, and optokinetic test). RESULTS N-MSiNPs delivered transgenes to human cells in vitro and to retinal cells in vivo. No adverse effects were detected for the integrity of the retinal tissue or the visual function of treated eyes. N-MSiNPs were able to deliver a therapeutic transgene candidate for RP, PRPF31, both in vitro and in vivo. CONCLUSIONS N-MSiNPs are safe for retinal delivery and thus a potential alternative to viral vectors.
Collapse
Affiliation(s)
- Lourdes Valdés-Sánchez
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
| | - Sara Borrego-González
- Materials Science Institute of Seville (ICMS), Joint CSIC-University of Seville Center, 41092 Seville, Spain;
- Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Adoración Montero-Sánchez
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
| | - Simone Massalini
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
| | - Berta de la Cerda
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
- Correspondence: (B.d.l.C.); (A.D.-C.); (F.J.D.-C.)
| | - Aránzazu Díaz-Cuenca
- Materials Science Institute of Seville (ICMS), Joint CSIC-University of Seville Center, 41092 Seville, Spain;
- Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (B.d.l.C.); (A.D.-C.); (F.J.D.-C.)
| | - Francisco J. Díaz-Corrales
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
- Correspondence: (B.d.l.C.); (A.D.-C.); (F.J.D.-C.)
| |
Collapse
|
19
|
Engel AL, Wang Y, Khuu TH, Worrall E, Manson MA, Lim RR, Knight K, Yanagida A, Qi JH, Ramakrishnan A, Weleber RG, Klein ML, Wilson DJ, Anand-Apte B, Hurley JB, Du J, Chao JR. Extracellular matrix dysfunction in Sorsby patient-derived retinal pigment epithelium. Exp Eye Res 2022; 215:108899. [PMID: 34929159 PMCID: PMC8923943 DOI: 10.1016/j.exer.2021.108899] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023]
Abstract
Sorsby Fundus Dystrophy (SFD) is a rare form of macular degeneration that is clinically similar to age-related macular degeneration (AMD), and a histologic hallmark of SFD is a thick layer of extracellular deposits beneath the retinal pigment epithelium (RPE). Previous studies of SFD patient-induced pluripotent stem cell (iPSC) derived RPE differ as to whether these cultures recapitulate this key clinical feature by forming increased drusenoid deposits. The primary purpose of this study is to examine whether SFD patient-derived iPSC-RPE form basal deposits similar to what is found in affected family member SFD globes and to determine whether SFD iPSC RPE may be more oxidatively stressed. We performed a careful comparison of iPSC RPE from three control individuals, multiple iPSC clones from two SFD patients' iPSC RPE, and post-mortem eyes of affected SFD family members. We also examined the effect of CRISPR-Cas9 gene correction of the S204C TIMP3 mutation on RPE phenotype. Finally, targeted metabolomics with liquid chromatography and mass spectrometry analysis and stable isotope-labeled metabolite analysis were performed to determine whether SFD RPE are more oxidatively stressed. We found that SFD iPSC-RPE formed significantly more sub-RPE deposits (∼6-90 μm in height) compared to control RPE at 8 weeks. These deposits were similar in composition to the thick layer of sub-RPE deposits found in SFD family member globes by immunofluorescence staining and TEM imaging. S204C TIMP3 correction by CRISPR-Cas9 gene editing in SFD iPSC RPE cells resulted in significantly reduced basal laminar and sub-RPE calcium deposits. We detected a ∼18-fold increase in TIMP3 accumulation in the extracellular matrix (ECM) of SFD RPE, and targeted metabolomics showed that intracellular 4-hydroxyproline, a major breakdown product of collagen, is significantly elevated in SFD RPE, suggesting increased ECM turnover. Finally, SFD RPE cells have decreased intracellular reduced glutathione and were found to be more vulnerable to oxidative stress. Our findings suggest that elements of SFD pathology can be demonstrated in culture which may lead to insights into disease mechanisms.
Collapse
Affiliation(s)
- Abbi L. Engel
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - YeKai Wang
- Department of Ophthalmology, West Virginia University, Morgantown, WV 26506,Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Thomas H. Khuu
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Emily Worrall
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Megan A. Manson
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Rayne R. Lim
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Kaitlen Knight
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Aya Yanagida
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Jian Hua Qi
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44106
| | - Aravind Ramakrishnan
- Center for Blood Cancers and Oncology, St. David’s South Austin Medical Center, Austin, TX 78704
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97201
| | - Michael L. Klein
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97201
| | - David J. Wilson
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97201
| | - Bela Anand-Apte
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44106
| | - James B. Hurley
- Department of Ophthalmology, University of Washington, Seattle, WA 98109,Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Jianhai Du
- Department of Ophthalmology, West Virginia University, Morgantown, WV 26506,Department of Biochemistry, West Virginia University, Morgantown, WV 26506,Corresponding authors: , 750 Republican Street, Box 358058, Seattle WA 98109 (206) 221-0594; or , One Medical Center Dr., PO Box 9193, WVU Eye Institute, Morgantown, WV 26505; Phone: (304)-598-6903; Fax: (304)-598- 6928
| | - Jennifer R. Chao
- Department of Ophthalmology, University of Washington, Seattle, WA 98109,Corresponding authors: , 750 Republican Street, Box 358058, Seattle WA 98109 (206) 221-0594; or , One Medical Center Dr., PO Box 9193, WVU Eye Institute, Morgantown, WV 26505; Phone: (304)-598-6903; Fax: (304)-598- 6928
| |
Collapse
|
20
|
Sun C, Zhou J, Meng X. Primary cilia in retinal pigment epithelium development and diseases. J Cell Mol Med 2021; 25:9084-9088. [PMID: 34448530 PMCID: PMC8500982 DOI: 10.1111/jcmm.16882] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Retinal pigment epithelium (RPE) is a highly polarized epithelial monolayer lying between the photoreceptor layer and the Bruch membrane. It is essential for vision through participating in many critical activities, including phagocytosis of photoreceptor outer segments, recycling the visual cycle‐related compounds, forming a barrier to control the transport of nutrients, ions, and water, and the removal of waste. Primary cilia are conservatively present in almost all the vertebrate cells and acts as a sensory organelle to control tissue development and homeostasis maintenance. Numerous studies reveal that abnormalities in RPE lead to various retinal diseases, such as age‐related macular degeneration and diabetic macular oedema, but the mechanism of primary cilia in these physiological and pathological activities remains to be elucidated. Herein, we summarize the functions of primary cilia in the RPE development and the mutations of ciliary genes identified in RPE‐related diseases. By highlighting the significance of primary cilia in regulating the physiological and pathological processes of RPE, we aim to provide novel insights for the treatment of RPE‐related retinal diseases.
Collapse
Affiliation(s)
- Chunjiao Sun
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Xiaoqian Meng
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
21
|
Chinchilla B, Fernandez-Godino R. AMD-Like Substrate Causes Epithelial Mesenchymal Transition in iPSC-Derived Retinal Pigment Epithelial Cells Wild Type but Not C3-Knockout. Int J Mol Sci 2021; 22:ijms22158183. [PMID: 34360950 PMCID: PMC8348968 DOI: 10.3390/ijms22158183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
The Bruch's membrane (BrM) is a five-layered extracellular matrix (ECM) that supports the retinal pigment epithelium (RPE). Normal age-related changes in the BrM may lead to RPE cell damage and ultimately to the onset and progression of age-related macular degeneration (AMD), which is the most common cause of visual loss among the elderly. A role for the complement system in AMD pathology has been established, but the disease mechanisms are poorly understood, which hampers the design of efficient therapies to treat millions of patients. In an effort to identify the mechanisms that lead from normal aging to pathology, we have developed a cell-based model using complement deficient human induced pluripotent stem cell (iPSC)-derived RPE cells cultured on an AMD-like ECM that mimics BrM. The data present evidence that changes in the ECM result in loss of differentiation and promote epithelial mesenchymal transition (EMT) of healthy RPE cells. This pathological process is mediated by complement activation and involves the formation of a randomly oriented collagen meshwork that drives the dedifferentiation of the RPE monolayer. Genetic ablation of complement component 3 has a protective effect against EMT but does not prevent the abnormal deposition of collagens. These findings offer new insights into the sequence of events that initiate AMD and may guide the design of efficient therapies to treat this disease with unmet medical needs.
Collapse
|
22
|
Yang C, Georgiou M, Atkinson R, Collin J, Al-Aama J, Nagaraja-Grellscheid S, Johnson C, Ali R, Armstrong L, Mozaffari-Jovin S, Lako M. Pre-mRNA Processing Factors and Retinitis Pigmentosa: RNA Splicing and Beyond. Front Cell Dev Biol 2021; 9:700276. [PMID: 34395430 PMCID: PMC8355544 DOI: 10.3389/fcell.2021.700276] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
Retinitis pigmentosa (RP) is the most common inherited retinal disease characterized by progressive degeneration of photoreceptors and/or retinal pigment epithelium that eventually results in blindness. Mutations in pre-mRNA processing factors (PRPF3, 4, 6, 8, 31, SNRNP200, and RP9) have been linked to 15–20% of autosomal dominant RP (adRP) cases. Current evidence indicates that PRPF mutations cause retinal specific global spliceosome dysregulation, leading to mis-splicing of numerous genes that are involved in a variety of retina-specific functions and/or general biological processes, including phototransduction, retinol metabolism, photoreceptor disk morphogenesis, retinal cell polarity, ciliogenesis, cytoskeleton and tight junction organization, waste disposal, inflammation, and apoptosis. Importantly, additional PRPF functions beyond RNA splicing have been documented recently, suggesting a more complex mechanism underlying PRPF-RPs driven disease pathogenesis. The current review focuses on the key RP-PRPF genes, depicting the current understanding of their roles in RNA splicing, impact of their mutations on retinal cell’s transcriptome and phenome, discussed in the context of model species including yeast, zebrafish, and mice. Importantly, information on PRPF functions beyond RNA splicing are discussed, aiming at a holistic investigation of PRPF-RP pathogenesis. Finally, work performed in human patient-specific lab models and developing gene and cell-based replacement therapies for the treatment of PRPF-RPs are thoroughly discussed to allow the reader to get a deeper understanding of the disease mechanisms, which we believe will facilitate the establishment of novel and better therapeutic strategies for PRPF-RP patients.
Collapse
Affiliation(s)
- Chunbo Yang
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maria Georgiou
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert Atkinson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jumana Al-Aama
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Colin Johnson
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | - Robin Ali
- King's College London, London, United Kingdom
| | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
23
|
Chinchilla B, Foltopoulou P, Fernandez-Godino R. Tick-over-mediated complement activation is sufficient to cause basal deposit formation in cell-based models of macular degeneration. J Pathol 2021; 255:120-131. [PMID: 34155630 DOI: 10.1002/path.5747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022]
Abstract
Despite numerous unsuccessful clinical trials for anti-complement drugs to treat age-related macular degeneration (AMD), the complement system has not been fully explored as a target to stop drusen growth in patients with dry AMD. We propose that the resilient autoactivation of C3 by hydrolysis of its internal thioester (tick-over), which cannot be prevented by existing drugs, plays a critical role in the formation of drusenoid deposits underneath the retinal pigment epithelium (RPE). We have combined gene editing tools with stem cell technology to generate cell-based models that allow the role of the tick-over in sub-RPE deposit formation to be studied. The results demonstrate that structurally or genetically driven pathological events affecting the RPE and Bruch's membrane can lead to dysregulation of the tick-over, which is sufficient to stimulate the formation of sub-RPE deposits. This can be prevented with therapies that downregulate C3 expression. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Blanca Chinchilla
- The Ocular Genomics Institute at Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Parthena Foltopoulou
- The Ocular Genomics Institute at Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Rosario Fernandez-Godino
- The Ocular Genomics Institute at Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Roshandel D, Thompson JA, Heath Jeffery RC, Zhang D, Lamey TM, McLaren TL, De Roach JN, McLenachan S, Mackey DA, Chen FK. Clinical Evidence for the Importance of the Wild-Type PRPF31 Allele in the Phenotypic Expression of RP11. Genes (Basel) 2021; 12:genes12060915. [PMID: 34198599 PMCID: PMC8232116 DOI: 10.3390/genes12060915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 11/16/2022] Open
Abstract
PRPF31-associated retinopathy (RP11) is a common form of autosomal dominant retinitis pigmentosa (adRP) that exhibits wide variation in phenotype ranging from non-penetrance to early-onset RP. Herein, we report inter-familial and intra-familial variation in the natural history of RP11 using multimodal imaging and microperimetry. Patients were recruited prospectively. The age of symptom onset, best-corrected visual acuity, microperimetry mean sensitivity (MS), residual ellipsoid zone span and hyperautofluorescent ring area were recorded. Genotyping was performed using targeted next-generation and Sanger sequencing and copy number variant analysis. PRPF31 mutations were found in 14 individuals from seven unrelated families. Four disease patterns were observed: (A) childhood onset with rapid progression (N = 4), (B) adult-onset with rapid progression (N = 4), (C) adult-onset with slow progression (N = 4) and (D) non-penetrance (N = 2). Four different patterns were observed in a family harbouring c.267del; patterns B, C and D were observed in a family with c.772_773delins16 and patterns A, B and C were observed in 3 unrelated individuals with large deletions. Our findings suggest that the RP11 phenotype may be related to the wild-type PRPF31 allele rather than the type of mutation. Further studies that correlate in vitro wild-type PRPF31 allele expression level with the disease patterns are required to investigate this association.
Collapse
Affiliation(s)
- Danial Roshandel
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA 6009, Australia; (D.R.); (R.C.H.J.); (T.M.L.); (T.L.M.); (J.N.D.R.); (S.M.); (D.A.M.)
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia;
| | - Jennifer A. Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia;
| | - Rachael C. Heath Jeffery
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA 6009, Australia; (D.R.); (R.C.H.J.); (T.M.L.); (T.L.M.); (J.N.D.R.); (S.M.); (D.A.M.)
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia;
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Dan Zhang
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia;
| | - Tina M. Lamey
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA 6009, Australia; (D.R.); (R.C.H.J.); (T.M.L.); (T.L.M.); (J.N.D.R.); (S.M.); (D.A.M.)
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia;
| | - Terri L. McLaren
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA 6009, Australia; (D.R.); (R.C.H.J.); (T.M.L.); (T.L.M.); (J.N.D.R.); (S.M.); (D.A.M.)
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia;
| | - John N. De Roach
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA 6009, Australia; (D.R.); (R.C.H.J.); (T.M.L.); (T.L.M.); (J.N.D.R.); (S.M.); (D.A.M.)
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia;
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA 6009, Australia; (D.R.); (R.C.H.J.); (T.M.L.); (T.L.M.); (J.N.D.R.); (S.M.); (D.A.M.)
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia;
| | - David A. Mackey
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA 6009, Australia; (D.R.); (R.C.H.J.); (T.M.L.); (T.L.M.); (J.N.D.R.); (S.M.); (D.A.M.)
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia;
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia;
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA 6009, Australia; (D.R.); (R.C.H.J.); (T.M.L.); (T.L.M.); (J.N.D.R.); (S.M.); (D.A.M.)
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia;
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia;
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA 6000, Australia
- Department of Ophthalmology, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- Correspondence: ; Tel.: +61-08-9381-0777
| |
Collapse
|
25
|
Ballios BG, Pierce EA, Huckfeldt RM. Gene editing technology: Towards precision medicine in inherited retinal diseases. Semin Ophthalmol 2021; 36:176-184. [PMID: 33621144 DOI: 10.1080/08820538.2021.1887903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose: To review preclinical and clinical advances in gene therapy, with a focus on gene editing technologies, and application to inherited retinal disease.Methods: A narrative overview of the literature, summarizing the state-of-the-art in clinical gene therapy for inherited retinal disease, as well as the science and application of new gene editing technology.Results: The last three years has seen the first FDA approval of an in vivo gene replacement therapy for a hereditary blinding eye disease and, recently, the first clinical application of an in vivo gene editing technique. Limitations and challenges in this evolving field are highlighted, as well as new technologies developed to address the multitude of molecular mechanisms of disease.Conclusion: Genetic therapy for the treatment of inherited retinal disease is a rapidly expanding area of ophthalmology. New technologies have revolutionized the field of genome engineering and rekindled an interest in precision medicines for these conditions.
Collapse
Affiliation(s)
- Brian G Ballios
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachel M Huckfeldt
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
A CRISPR and high-content imaging assay compliant with ACMG/AMP guidelines for clinical variant interpretation in ciliopathies. Hum Genet 2020; 140:593-607. [PMID: 33095315 PMCID: PMC7981318 DOI: 10.1007/s00439-020-02228-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/14/2020] [Indexed: 11/04/2022]
Abstract
Ciliopathies are a broad range of inherited developmental and degenerative diseases associated with structural or functional defects in motile or primary non-motile cilia. There are around 200 known ciliopathy disease genes and whilst genetic testing can provide an accurate diagnosis, 24–60% of ciliopathy patients who undergo genetic testing do not receive a genetic diagnosis. This is partly because following current guidelines from the American College of Medical Genetics and the Association for Molecular Pathology, it is difficult to provide a confident clinical diagnosis of disease caused by missense or non-coding variants, which account for more than one-third of cases of disease. Mutations in PRPF31 are the second most common cause of the degenerative retinal ciliopathy autosomal dominant retinitis pigmentosa. Here, we present a high-throughput high-content imaging assay providing quantitative measure of effect of missense variants in PRPF31 which meets the recently published criteria for a baseline standard in vitro test for clinical variant interpretation. This assay utilizes a new PRPF31+/– human retinal cell line generated using CRISPR gene editing to provide a stable cell line with significantly fewer cilia in which novel missense variants are expressed and characterised. We show that high-content imaging of cells expressing missense variants in a ciliopathy gene on a null background can allow characterisation of variants according to the cilia phenotype. We hope that this will be a useful tool for clinical characterisation of PRPF31 variants of uncertain significance, and can be extended to variant classification in other ciliopathies.
Collapse
|
27
|
Morizur L, Herardot E, Monville C, Ben M'Barek K. Human pluripotent stem cells: A toolbox to understand and treat retinal degeneration. Mol Cell Neurosci 2020; 107:103523. [PMID: 32634576 DOI: 10.1016/j.mcn.2020.103523] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/24/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Age-related Macular Degeneration (AMD) and Retinitis Pigmentosa (RP) are retinal degenerative disorders that dramatically damage the retina. As there is no therapeutic option for the majority of patients, vision is progressively and irremediably lost. Owing to their unlimited renewal and potency to give rise to any cell type of the human adult body, human pluripotent stem cells (hPSCs) have been extensively studied in recent years to develop more physiologically relevant in vitro cellular models. Such models open new perspectives to investigate the pathological molecular mechanisms of AMD and RP but also in drug screening. Moreover, proof-of-concept of hPSC-derived retinal cell therapy in animal models have led to first clinical trials. This review outlines the recent advances in the use of hPSCs in pathological modeling of retinal degeneration and their use in regenerative medicine. We also address the associated limitations and challenges that need to be overcome when using hPSCs.
Collapse
Affiliation(s)
- Lise Morizur
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France; Université Paris-Saclay, Université d'Evry, U861, 91100 Corbeil-Essonnes, France; Centre d'Etude des Cellules Souches, 91100 Corbeil-Essonnes, France
| | - Elise Herardot
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France; Université Paris-Saclay, Université d'Evry, U861, 91100 Corbeil-Essonnes, France
| | - Christelle Monville
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France; Université Paris-Saclay, Université d'Evry, U861, 91100 Corbeil-Essonnes, France.
| | - Karim Ben M'Barek
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France; Université Paris-Saclay, Université d'Evry, U861, 91100 Corbeil-Essonnes, France; Centre d'Etude des Cellules Souches, 91100 Corbeil-Essonnes, France.
| |
Collapse
|
28
|
Zhou P, Zhou J. The Primary Cilium as a Therapeutic Target in Ocular Diseases. Front Pharmacol 2020; 11:977. [PMID: 32676032 PMCID: PMC7333185 DOI: 10.3389/fphar.2020.00977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/16/2020] [Indexed: 12/24/2022] Open
Abstract
Primary cilia are microtubule-based cellular structures located on the surfaces of most mammalian cells and play important roles in detecting external stimuli, signal transduction, and cell cycle regulation. Primary cilia are also present in several structures of the eye, and their abnormal development or dysfunction can cause various ocular diseases. The rapid development of proteomics and metabolomics technologies have helped in the identification of many ocular disease-related proteins, some of which are dysregulated in primary cilia. This review focuses on ciliary dysregulation in a number of ocular diseases and discusses the potential of targeting primary cilia in gene and stem cell therapy for these diseases.
Collapse
Affiliation(s)
- Peng Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
29
|
Buck TM, Wijnholds J. Recombinant Adeno-Associated Viral Vectors (rAAV)-Vector Elements in Ocular Gene Therapy Clinical Trials and Transgene Expression and Bioactivity Assays. Int J Mol Sci 2020; 21:E4197. [PMID: 32545533 PMCID: PMC7352801 DOI: 10.3390/ijms21124197] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Inherited retinal dystrophies and optic neuropathies cause chronic disabling loss of visual function. The development of recombinant adeno-associated viral vectors (rAAV) gene therapies in all disease fields have been promising, but the translation to the clinic has been slow. The safety and efficacy profiles of rAAV are linked to the dose of applied vectors. DNA changes in the rAAV gene cassette affect potency, the expression pattern (cell-specificity), and the production yield. Here, we present a library of rAAV vectors and elements that provide a workflow to design novel vectors. We first performed a meta-analysis on recombinant rAAV elements in clinical trials (2007-2020) for ocular gene therapies. We analyzed 33 unique rAAV gene cassettes used in 57 ocular clinical trials. The rAAV gene therapy vectors used six unique capsid variants, 16 different promoters, and six unique polyadenylation sequences. Further, we compiled a list of promoters, enhancers, and other sequences used in current rAAV gene cassettes in preclinical studies. Then, we give an update on pro-viral plasmid backbones used to produce the gene therapy vectors, inverted terminal repeats, production yield, and rAAV safety considerations. Finally, we assess rAAV transgene and bioactivity assays applied to cells or organoids in vitro, explants ex vivo, and clinical studies.
Collapse
Affiliation(s)
- Thilo M. Buck
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
- Netherlands Institute of Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
30
|
Application of CRISPR Tools for Variant Interpretation and Disease Modeling in Inherited Retinal Dystrophies. Genes (Basel) 2020; 11:genes11050473. [PMID: 32349249 PMCID: PMC7290804 DOI: 10.3390/genes11050473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022] Open
Abstract
Inherited retinal dystrophies are an assorted group of rare diseases that collectively account for the major cause of visual impairment of genetic origin worldwide. Besides clinically, these vision loss disorders present a high genetic and allelic heterogeneity. To date, over 250 genes have been associated to retinal dystrophies with reported causative variants of every nature (nonsense, missense, frameshift, splice-site, large rearrangements, and so forth). Except for a fistful of mutations, most of them are private and affect one or few families, making it a challenge to ratify the newly identified candidate genes or the pathogenicity of dubious variants in disease-associated loci. A recurrent option involves altering the gene in in vitro or in vivo systems to contrast the resulting phenotype and molecular imprint. To validate specific mutations, the process must rely on simulating the precise genetic change, which, until recently, proved to be a difficult endeavor. The rise of the CRISPR/Cas9 technology and its adaptation for genetic engineering now offers a resourceful suite of tools to alleviate the process of functional studies. Here we review the implementation of these RNA-programmable Cas9 nucleases in culture-based and animal models to elucidate the role of novel genes and variants in retinal dystrophies.
Collapse
|
31
|
Mutation spectrum of PRPF31, genotype-phenotype correlation in retinitis pigmentosa, and opportunities for therapy. Exp Eye Res 2020; 192:107950. [PMID: 32014492 PMCID: PMC7065041 DOI: 10.1016/j.exer.2020.107950] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Pathogenic variants in pre-messenger RNA (pre-mRNA) splicing factor 31, PRPF31, are the second most common genetic cause of autosomal dominant retinitis pigmentosa (adRP) in most populations. This remains a completely untreatable and incurable form of blindness, and it can be difficult to predict the clinical course of disease. In order to design appropriate targeted therapies, a thorough understanding of the genetics and molecular mechanism of this disease is required. Here, we present the structure of the PRPF31 gene and PRPF31 protein, current understanding of PRPF31 protein function and the full spectrum of all reported clinically relevant variants in PRPF31. We delineate the correlation between specific PRPF31 genotype and RP phenotype, suggesting that, except in cases of complete gene deletion or large-scale deletions, dominant negative effects contribute to phenotype as well as haploinsufficiency. This has important impacts on design of targeted therapies, particularly the feasibility of gene augmentation as a broad approach for treatment of PRPF31-associated RP. We discuss other opportunities for therapy, including antisense oligonucleotide therapy and gene-independent approaches and offer future perspectives on treatment of this form of RP. PRPF31 is the second most common cause of autosomal dominant retinitis pigmentosa and a potential target for gene therapy. We present all reported pathogenic variants in PRPF31 as a resource for clinicians, diagnostic genetics labs, and researchers. Genotype-phenotype correlations suggest that, dominant negative effects contribute to disease in addition to haploinsufficiency. This finding has important impacts on the suitability of gene augmentation approaches across all mutation types. This finding may aid prognosis of disease in PRPF31-associated RP patients.
Collapse
|