1
|
Nash PA, Turner KM, Powell CA, Van Haute L, Silva-Pinheiro P, Bubeck F, Wiedtke E, Marques E, Ryan DG, Grimm D, Gammage PA, Minczuk M. Clinically translatable mitochondrial gene therapy in muscle using tandem mtZFN architecture. EMBO Mol Med 2025:10.1038/s44321-025-00231-5. [PMID: 40204990 DOI: 10.1038/s44321-025-00231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
Mutations in the mitochondrial genome (mtDNA) often lead to clinical pathologies. Mitochondrially-targeted zinc finger nucleases (mtZFNs) have been successful in reducing the levels of mutation-bearing mtDNA both in vivo and in vitro, resulting in a shift in the genetic makeup of affected mitochondria and subsequently to phenotypic rescue. Given the uneven distribution in the mtDNA mutation load across tissues in patients, and a great diversity in pathogenic mutations, it is of interest to develop mutation-specific, selective gene therapies that could be delivered to particular tissues. This study demonstrates the effectiveness of in vivo mitochondrial gene therapy using a novel mtZFN architecture on skeletal muscle using adeno-associated viral (AAV) platforms in a murine model harboring a pathogenic mtDNA mutation. We observed effective reduction in mutation load of cardiac and skeletal muscle, which was accompanied by molecular phenotypic rescue. The gene therapy treatment was shown to be safe when markers of immunity and inflammation were assessed. These results highlight the potential of curative approaches for mitochondrial diseases, paving the way for targeted and effective treatments.
Collapse
Affiliation(s)
- Pavel A Nash
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Keira M Turner
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | | - Lindsey Van Haute
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | | - Felix Bubeck
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, Heidelberg University, Heidelberg, Germany
- BioQuant, BQ0030, Heidelberg University, Heidelberg, Germany
| | - Ellen Wiedtke
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, Heidelberg University, Heidelberg, Germany
- BioQuant, BQ0030, Heidelberg University, Heidelberg, Germany
| | - Eloïse Marques
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Dylan G Ryan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, Heidelberg University, Heidelberg, Germany
- BioQuant, BQ0030, Heidelberg University, Heidelberg, Germany
- Faculty of Engineering Sciences, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site Heidelberg, Heidelberg, Germany
| | - Payam A Gammage
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Purdy R, John M, Bray A, Clare AJ, Copland DA, Chan YK, Henderson RH, Nerinckx F, Leroy BP, Yang P, Pennesi ME, MacLaren RE, Fischer MD, Dick AD, Xue K. Gene Therapy-Associated Uveitis (GTAU): Understanding and mitigating the adverse immune response in retinal gene therapy. Prog Retin Eye Res 2025; 106:101354. [PMID: 40090458 DOI: 10.1016/j.preteyeres.2025.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Retinal gene therapy using adeno-associated viral (AAV) vectors has been a groundbreaking step-change in the treatment of inherited retinal diseases (IRDs) and could also be used to treat more common retinal diseases such as age-related macular degeneration and diabetic retinopathy. The delivery and expression of therapeutic transgenes in the eye is limited by innate and adaptive immune responses against components of the vector product, which has been termed gene therapy-associated uveitis (GTAU). This is clinically important as intraocular inflammation could lead to irreversible loss of retinal cells, deterioration of visual function and reduced durability of treatment effect associated with a costly one-off treatment. For retinal gene therapy to achieve an improved efficacy and safety profile for treating additional IRDs and more common diseases, the risk of GTAU must be minimised. We have collated insights from pre-clinical research, clinical trials, and the real-world implementation of AAV-mediated retinal gene therapy to help understand the risk factors for GTAU. We draw attention to an emerging framework, which includes patient demographics, vector construct, vector dose, route of administration, and choice of immunosuppression regime. Importantly, we consider efforts to date and potential future strategies to mitigate the adverse immune response across each of these domains. We advocate for more targeted immunomodulatory approaches to the prevention and treatment of GTAU based on better understanding of the underlying immune response.
Collapse
Affiliation(s)
- Ryan Purdy
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Molly John
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Alison J Clare
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; University College London (UCL) Institute of Ophthalmology, London, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; University College London (UCL) Institute of Ophthalmology, London, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK
| | - Ying Kai Chan
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; Cirrus Therapeutics, Cambridge, MA, USA
| | - Robert H Henderson
- University College London (UCL) Great Ormond Street Institute of Child Health, London, UK; Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Fanny Nerinckx
- Chirec Delta Hospital, Brussels, Belgium; Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium; Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, USA
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, USA; Retina Foundation of the Southwest, Dallas, TX, USA
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - M Dominik Fischer
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; University College London (UCL) Institute of Ophthalmology, London, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
3
|
Clare AJ, Langer PM, Ward A, Chan YK, Dick AD, Copland DA. Characterization of the ocular inflammatory response to AAV reveals divergence by sex and age. Mol Ther 2025; 33:1246-1263. [PMID: 39825566 PMCID: PMC11897812 DOI: 10.1016/j.ymthe.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/12/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025] Open
Abstract
Progress for ocular adeno-associated virus (AAV) gene therapy has been hindered by AAV-induced inflammation, limiting dose escalation and long-term efficacy. Broadly, the extent of inflammatory responses alters with age and sex, yet these factors are poorly represented in pre-clinical development of ocular AAV gene therapies. Here, we combined clinical imaging, flow cytometry, and bulk sequencing of sorted microglia to interrogate the longitudinal inflammatory response following intravitreal delivery of AAV2 in young (3-month-old), middle aged (9-month-old), and old (18-month-old) Cx3cr1-creER:R26tdTomato+/- mice of both sexes. Young males and females exhibited a similar dynamic response, with peak inflammation evident at days 10-12 and signs of clinical resolution by day 28. However, the magnitude of the transcriptional response by microglia and adaptive T cell infiltrate differed between sexes. With age, increased and persistent inflammation were observed in both sexes, although old males maintained their microglia transcriptional AAV response signature. Contrarily, females demonstrated greater divergence in their inflammatory response across age, with enriched cellular stress and inflammatory gene expression in older mice and corresponding signs of retinal degeneration. These findings inform crucial sex and age differences for the therapeutic application of ocular gene therapy, highlighting the need to further understand these factors to overcome AAV immunogenicity.
Collapse
Affiliation(s)
- Alison J Clare
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, BS8 1TD Bristol, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, EC1V 2PD London, UK.
| | - Philip M Langer
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, BS8 1TD Bristol, UK
| | - Amy Ward
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, BS8 1TD Bristol, UK
| | - Ying Kai Chan
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, BS8 1TD Bristol, UK; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, BS8 1TD Bristol, UK; School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD Bristol, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, EC1V 2PD London, UK; University College London Institute of Ophthalmology, EC1V 9EL London, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, BS8 1TD Bristol, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, EC1V 2PD London, UK.
| |
Collapse
|
4
|
Tan F, Dong Y, Qi J, Yu W, Chai R. Artificial Intelligence-Based Approaches for AAV Vector Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411062. [PMID: 39932449 PMCID: PMC11884542 DOI: 10.1002/advs.202411062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/31/2024] [Indexed: 03/08/2025]
Abstract
Adeno-associated virus (AAV) has emerged as a leading vector for gene therapy due to its broad host range, low pathogenicity, and ability to facilitate long-term gene expression. However, AAV vectors face limitations, including immunogenicity and insufficient targeting specificity. To enhance the efficacy of gene therapy, researchers have been modifying the AAV vector using various methods. Traditional experimental approaches for optimizing AAV vector are often time-consuming, resource-intensive, and difficult to replicate. The advancement of artificial intelligence (AI), particularly machine learning, offers significant potential to accelerate capsid optimization while reducing development time and manufacturing costs. This review compares traditional and AI-based methods of AAV vector engineering and highlights recent research in AAV engineering using AI algorithms.
Collapse
Affiliation(s)
- Fangzhi Tan
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Yue Dong
- Immunowake, Inc.Shanghai201210China
| | - Jieyu Qi
- Department of NeurologyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
- State Key Laboratory of Hearing and Balance ScienceBeijing Institute of TechnologyBeijing100081China
- School of Medical EngineeringAffiliated Zhuhai People's HospitalBeijing Institute of TechnologyZhuhai519088China
- Advanced Technology Research InstituteBeijing Institute of TechnologyJinan250300China
| | - Wenwu Yu
- School of MathematicsSoutheast UniversityNanjing210096China
| | - Renjie Chai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Department of NeurologyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610072China
- Southeast University Shenzhen Research InstituteShenzhen518063China
| |
Collapse
|
5
|
Dogbey DM, Barth S. AAV Capsid Modification and Its Influence on Viral Protein Stoichiometry and Packaging Fitness: Current Understandings and Future Direction. Mol Biotechnol 2025:10.1007/s12033-025-01381-0. [PMID: 39881109 DOI: 10.1007/s12033-025-01381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025]
Abstract
The field of gene therapy has witnessed significant advancements in the utilization of Adeno-associated virus (AAV) owing to its inherent biological advantages. Targeted AAV vectors are generated through genetic or chemical modification of the capsid for user-directed purposes. However, this process can result in imbalances in viral protein sequence homogeneity, stoichiometry, and functional transduction vector units, thereby introducing new challenges. This mini review focuses on the ongoing efforts to develop targeted vectors, which inadvertently present unsolicited obstacles for clinical application and provided perspectives on future directions.
Collapse
Affiliation(s)
- Dennis Makafui Dogbey
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7700, South Africa.
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7700, South Africa
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, 7700, South Africa
| |
Collapse
|
6
|
Satish T, Hong KN, Kaski JP, Greenberg BH. Challenges in Cardiomyopathy Gene Therapy Clinical Trial Design. JACC. HEART FAILURE 2025; 13:154-166. [PMID: 39545889 DOI: 10.1016/j.jchf.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 11/17/2024]
Abstract
Gene therapy has emerged as a possible treatment for progressive, debilitating Mendelian cardiomyopathies with limited therapeutic options. This paper arises from discussions at the 2023 Cardiovascular Clinical Trialists Forum and highlights several challenges relevant to gene therapy clinical trials, including low prevalence and high phenotypic heterogeneity of Mendelian cardiomyopathies, outcome selection complexities and resulting regulatory uncertainty, and immune responses to the adeno-associated viral vectors that are being used in ongoing studies. Avenues to address these challenges such as natural history studies, external controls, novel regulatory pathways, and immunosuppression are discussed. Relevant cases of recent therapy approvals are highlighted. Ultimately, this work aims to broadly frame discussions on and provide potential future avenues for clinical trial design for rare cardiomyopathy gene therapies.
Collapse
Affiliation(s)
- Tejus Satish
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kimberly N Hong
- University of California San Diego Health, San Diego, California, USA
| | - Juan Pablo Kaski
- UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Barry H Greenberg
- University of California San Diego Health, San Diego, California, USA.
| |
Collapse
|
7
|
Li N, Kumar SRP, Cao D, Munoz-Melero M, Arisa S, Brian BA, Greenwood CM, Yamada K, Duan D, Herzog RW. Redundancy in Innate Immune Pathways That Promote CD8 + T-Cell Responses in AAV1 Muscle Gene Transfer. Viruses 2024; 16:1507. [PMID: 39459842 PMCID: PMC11512359 DOI: 10.3390/v16101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/28/2024] Open
Abstract
While adeno-associated viral (AAV) vectors are successfully used in a variety of in vivo gene therapy applications, they continue to be hampered by the immune system. Here, we sought to identify innate and cytokine signaling pathways that promote CD8+ T-cell responses against the transgene product upon AAV1 vector administration to murine skeletal muscle. Eliminating just one of several pathways (including DNA sensing via TLR9, IL-1 receptor signaling, and possibly endosomal sensing of double-stranded RNA) substantially reduced the CD8+ T-cell response at lower vector doses but was surprisingly ineffective at higher doses. Using genetic, antibody-mediated, and vector engineering approaches, we show that blockade of at least two innate pathways is required to achieve an effect at higher vector doses. Concurrent blockade of IL-1R1 > MyD88 and TLR9 > MyD88 > type I IFN > IFNaR pathways was often but not always synergistic and had limited utility in preventing antibody formation against the transgene product. Further, even low-frequency CD8+ T-cell responses could eliminate transgene expression, even in MyD88- or IL-1R1-deficient animals that received a low vector dose. However, we provide evidence that CpG depletion of vector genomes and including TLR9 inhibitory sequences can synergize. When this construct was combined with the use of a muscle-specific promoter, transgene expression in muscle was sustained with minimal local or systemic CD8+ T-cell response. Thus, innate immune avoidance/blockade strategies by themselves, albeit helpful, may not be sufficient to prevent destructive cellular responses in muscle gene transfer because of the redundancy of immune-activating pathways.
Collapse
Affiliation(s)
- Ning Li
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Sandeep R. P. Kumar
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Di Cao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Maite Munoz-Melero
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Sreevani Arisa
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Bridget A. Brian
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Calista M. Greenwood
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Kentaro Yamada
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Roland W. Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| |
Collapse
|
8
|
Luo X, Liang R, Liang L, Tang A, Hou S, Ding J, Li Z, Tang X. Advancements, challenges, and future perspectives in developing feline herpesvirus 1 as a vaccine vector. Front Immunol 2024; 15:1445387. [PMID: 39328406 PMCID: PMC11424437 DOI: 10.3389/fimmu.2024.1445387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
As the most prevalent companion animal, cats are threatened by numerous infectious diseases and carry zoonotic pathogens such as Toxoplasma gondii and Bartonella henselae, which are the primary causes of human toxoplasmosis and cat-scratch disease. Vaccines play a crucial role in preventing and controlling the spread of diseases in both humans and animals. Currently, there are only three core vaccines available to prevent feline panleukopenia, feline herpesvirus, and feline calicivirus infections, with few vaccines available for other significant feline infectious and zoonotic diseases. Feline herpesvirus, a major component of the core vaccine, offers several advantages and a stable genetic manipulation platform, making it an ideal model for vaccine vector development to prevent and control feline infectious diseases. This paper reviews the technologies involved in the research and development of the feline herpesvirus vaccine vector, including homologous recombination, CRISPR/Cas9, and bacterial artificial chromosomes. It also examines the design and effectiveness of expressing antigens of other pathogens using the feline herpesvirus as a vaccine vector. Additionally, the paper analyzes existing technical bottlenecks and challenges, providing an outlook on its application prospects. The aim of this review is to provide a scientific basis for the research and development of feline herpesvirus as a vaccine vector and to offer new ideas for the prevention and control of significant feline infectious and zoonotic diseases.
Collapse
Affiliation(s)
- Xinru Luo
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruiying Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aoxing Tang
- Shanghai Veterinary Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shaohua Hou
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiabo Ding
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zibin Li
- College of Life and Health, Dalian University, Dalian, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Wu T, Hu Y, Tang LV. Gene therapy for polygenic or complex diseases. Biomark Res 2024; 12:99. [PMID: 39232780 PMCID: PMC11375922 DOI: 10.1186/s40364-024-00618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/10/2024] [Indexed: 09/06/2024] Open
Abstract
Gene therapy utilizes nucleic acid drugs to treat diseases, encompassing gene supplementation, gene replacement, gene silencing, and gene editing. It represents a distinct therapeutic approach from traditional medications and introduces novel strategies for genetic disorders. Over the past two decades, significant advancements have been made in the field of gene therapy, leading to the approval of various gene therapy drugs. Gene therapy was initially employed for treating genetic diseases and cancers, particularly monogenic conditions classified as orphan diseases due to their low prevalence rates; however, polygenic or complex diseases exhibit higher incidence rates within populations. Extensive research on the etiology of polygenic diseases has unveiled new therapeutic targets that offer fresh opportunities for their treatment. Building upon the progress achieved in gene therapy for monogenic diseases and cancers, extending its application to polygenic or complex diseases would enable targeting a broader range of patient populations. This review aims to discuss the strategies of gene therapy, methods of gene editing (mainly CRISPR-CAS9), and carriers utilized in gene therapy, and highlight the applications of gene therapy in polygenic or complex diseases focused on applications that have either entered clinical stages or are currently undergoing clinical trials.
Collapse
Affiliation(s)
- Tingting Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapies of the Chinese Ministry of Education, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapies of the Chinese Ministry of Education, Wuhan, China.
| | - Liang V Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapies of the Chinese Ministry of Education, Wuhan, China.
| |
Collapse
|
10
|
Araujo AE, Bentler M, Perez Garmendia X, Kaleem A, Fabian C, Morgan M, Hacker UT, Büning H. Adeno-Associated Virus Vectors-a Target of Cellular and Humoral Immunity-are Expanding Their Reach Toward Hematopoietic Stem Cell Modification and Immunotherapies. Hum Gene Ther 2024; 35:586-603. [PMID: 39193633 DOI: 10.1089/hum.2024.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
All current market-approved gene therapy medical products for in vivo gene therapy of monogenic diseases rely on adeno-associated virus (AAV) vectors. Advances in gene editing technologies and vector engineering have expanded the spectrum of target cells and, thus, diseases that can be addressed. Consequently, AAV vectors are now being explored to modify cells of the hematopoietic system, including hematopoietic stem and progenitor cells (HSPCs), to develop novel strategies to treat monogenic diseases, but also to generate cell- and vaccine-based immunotherapies. However, the cell types that represent important new targets for the AAV vector system are centrally involved in immune responses against the vector and its transgene product as discussed briefly in the first part of this review. In the second part, studies exploring AAV vectors for genetic engineering of HSPCs, T and B lymphocytes, and beyond are presented.
Collapse
Affiliation(s)
- Angela E Araujo
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Martin Bentler
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Asma Kaleem
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Claire Fabian
- Laboratory for Vector based immunotherapy, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Medical Department II, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Cancer Center Central Germany, Leipzig, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Ulrich T Hacker
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Laboratory for Vector based immunotherapy, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Medical Department II, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Cancer Center Central Germany, Leipzig, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|
11
|
Słyk Ż, Stachowiak N, Małecki M. Recombinant Adeno-Associated Virus Vectors for Gene Therapy of the Central Nervous System: Delivery Routes and Clinical Aspects. Biomedicines 2024; 12:1523. [PMID: 39062095 PMCID: PMC11274884 DOI: 10.3390/biomedicines12071523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The Central Nervous System (CNS) is vulnerable to a range of diseases, including neurodegenerative and oncological conditions, which present significant treatment challenges. The blood-brain barrier (BBB) restricts molecule penetration, complicating the achievement of therapeutic concentrations in the CNS following systemic administration. Gene therapy using recombinant adeno-associated virus (rAAV) vectors emerges as a promising strategy for treating CNS diseases, demonstrated by the registration of six gene therapy products in the past six years and 87 ongoing clinical trials. This review explores the implementation of rAAV vectors in CNS disease treatment, emphasizing AAV biology and vector engineering. Various administration methods-such as intravenous, intrathecal, and intraparenchymal routes-and experimental approaches like intranasal and intramuscular administration are evaluated, discussing their advantages and limitations in different CNS contexts. Additionally, the review underscores the importance of optimizing therapeutic efficacy through the pharmacokinetics (PK) and pharmacodynamics (PD) of rAAV vectors. A comprehensive analysis of clinical trials reveals successes and challenges, including barriers to commercialization. This review provides insights into therapeutic strategies using rAAV vectors in neurological diseases and identifies areas requiring further research, particularly in optimizing rAAV PK/PD.
Collapse
Affiliation(s)
- Żaneta Słyk
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Natalia Stachowiak
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Maciej Małecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
12
|
Jacobs R, Dogbey MD, Mnyandu N, Neves K, Barth S, Arbuthnot P, Maepa MB. AAV Immunotoxicity: Implications in Anti-HBV Gene Therapy. Microorganisms 2023; 11:2985. [PMID: 38138129 PMCID: PMC10745739 DOI: 10.3390/microorganisms11122985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis B virus (HBV) has afflicted humankind for decades and there is still no treatment that can clear the infection. The development of recombinant adeno-associated virus (rAAV)-based gene therapy for HBV infection has become important in recent years and research has made exciting leaps. Initial studies, mainly using mouse models, showed that rAAVs are non-toxic and induce minimal immune responses. However, several later studies demonstrated rAAV toxicity, which is inextricably associated with immunogenicity. This is a major setback for the progression of rAAV-based therapies toward clinical application. Research aimed at understanding the mechanisms behind rAAV immunity and toxicity has contributed significantly to the inception of approaches to overcoming these challenges. The target tissue, the features of the vector, and the vector dose are some of the determinants of AAV toxicity, with the latter being associated with the most severe adverse events. This review discusses our current understanding of rAAV immunogenicity, toxicity, and approaches to overcoming these hurdles. How this information and current knowledge about HBV biology and immunity can be harnessed in the efforts to design safe and effective anti-HBV rAAVs is discussed.
Collapse
Affiliation(s)
- Ridhwaanah Jacobs
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Makafui Dennis Dogbey
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; (M.D.D.)
| | - Njabulo Mnyandu
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Keila Neves
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; (M.D.D.)
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| |
Collapse
|