1
|
Chatterjee D, Bhattacharya S, Kumari L, Datta A. Aptamers: ushering in new hopes in targeted glioblastoma therapy. J Drug Target 2024; 32:1005-1028. [PMID: 38923419 DOI: 10.1080/1061186x.2024.2373306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Glioblastoma, a formidable brain cancer, has remained a therapeutic challenge due to its aggressive nature and resistance to conventional treatments. Recent data indicate that aptamers, short synthetic DNA or RNA molecules can be used in anti-cancer therapy due to their better tumour penetration, specific binding affinity, longer retention in tumour sites and their ability to cross the blood-brain barrier. With the ability to modify these oligonucleotides through the selection process, and using rational design to modify them, post-SELEX aptamers offer several advantages in glioblastoma treatment, including precise targeting of cancer cells while sparing healthy tissue. This review discusses the pivotal role of aptamers in glioblastoma therapy and diagnosis, emphasising their potential to enhance treatment efficacy and also highlights recent advancements in aptamer-based therapies which can transform the landscape of glioblastoma treatment, offering renewed hope to patients and clinicians alike.
Collapse
Affiliation(s)
- Debarpan Chatterjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Srijan Bhattacharya
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Leena Kumari
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Aparna Datta
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| |
Collapse
|
2
|
Benigno D, Navarro N, Aviñó A, Esposito V, Galeone A, Virgilio A, Fàbrega C, Eritja R. Aptamer-Drug conjugates for a targeted and synergistic anticancer Response: Exploiting T30923-5-fluoro-2'-deoxyuridine (INT-FdU) derivatives. Eur J Pharm Biopharm 2024; 201:114354. [PMID: 38852755 DOI: 10.1016/j.ejpb.2024.114354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
One of the most appealing approaches for cancer treatment is targeted therapy, which is based on the use of drugs able to target cancer cells without affecting normal ones. This strategy lets to overcome the major limitation of conventional chemotherapy, namely the lack of specificity of anticancer drugs, which often leads to severe side effects, decreasing the therapy effectiveness. Delivery of cell-killing substances to tumor cells is one-way targeted drug therapy can work. Generally, monoclonal antibodies are combined with chemotherapeutic drugs, allowing cellular uptake through the binding to their targets on the surface of cancer cells. Aptamer-drug conjugates represent a promising alternative solution to antibodies to minimize off-target effects, considering the remarkable selective binding capabilities of aptamers. In this study, to enhance the therapeutic efficacy of the antineoplastic agent 5-fluoro-2'-deoxyuridine (FdU) in various cancer cells, we focused on the development of a novel conjugate using the antiproliferative aptamer T30923 (INT) as a drug vehicle. Three derivatives composed of T30923 conjugated with a different number of FdU units were synthesized, and their structural and biological properties were thoroughly characterized, highlighting their potential for targeted and synergistic anticancer responses.
Collapse
Affiliation(s)
- Daniela Benigno
- Department of Pharmacy, University of Naples Federico II, Napoli 80131, Italy
| | - Natalia Navarro
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain; Nucleic Acids Chemistry Group, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona 08034, Spain
| | - Anna Aviñó
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain; Nucleic Acids Chemistry Group, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona 08034, Spain
| | - Veronica Esposito
- Department of Pharmacy, University of Naples Federico II, Napoli 80131, Italy
| | - Aldo Galeone
- Department of Pharmacy, University of Naples Federico II, Napoli 80131, Italy
| | - Antonella Virgilio
- Department of Pharmacy, University of Naples Federico II, Napoli 80131, Italy.
| | - Carme Fàbrega
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain; Nucleic Acids Chemistry Group, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona 08034, Spain.
| | - Ramon Eritja
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain; Nucleic Acids Chemistry Group, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona 08034, Spain.
| |
Collapse
|
3
|
Chintamaneni PK, Pindiprolu SKSS, Swain SS, Karri VVSR, Nesamony J, Chelliah S, Bhaskaran M. Conquering chemoresistance in pancreatic cancer: Exploring novel drug therapies and delivery approaches amidst desmoplasia and hypoxia. Cancer Lett 2024; 588:216782. [PMID: 38453046 DOI: 10.1016/j.canlet.2024.216782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Pancreatic cancer poses a significant challenge within the field of oncology due to its aggressive behaviour, limited treatment choices, and unfavourable outlook. With a mere 10% survival rate at the 5-year mark, finding effective interventions becomes even more pressing. The intricate relationship between desmoplasia and hypoxia in the tumor microenvironment further complicates matters by promoting resistance to chemotherapy and impeding treatment efficacy. The dense extracellular matrix and cancer-associated fibroblasts characteristic of desmoplasia create a physical and biochemical barrier that impedes drug penetration and fosters an immunosuppressive milieu. Concurrently, hypoxia nurtures aggressive tumor behaviour and resistance to conventional therapies. a comprehensive exploration of emerging medications and innovative drug delivery approaches. Notably, advancements in nanoparticle-based delivery systems, local drug delivery implants, and oxygen-carrying strategies are highlighted for their potential to enhance drug accessibility and therapeutic outcomes. The integration of these strategies with traditional chemotherapies and targeted agents reveals the potential for synergistic effects that amplify treatment responses. These emerging interventions can mitigate desmoplasia and hypoxia-induced barriers, leading to improved drug delivery, treatment efficacy, and patient outcomes in pancreatic cancer. This review article delves into the dynamic landscape of emerging anticancer medications and innovative drug delivery strategies poised to overcome the challenges imposed by desmoplasia and hypoxia in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Pavan Kumar Chintamaneni
- Department of Pharmaceutics, GITAM School of Pharmacy, GITAM (Deemed to be University), Rudraram, 502329 Telangana, India.
| | | | - Swati Swagatika Swain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | | | - Jerry Nesamony
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo HSC, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Selvam Chelliah
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX-77004, USA
| | - Mahendran Bhaskaran
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo HSC, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| |
Collapse
|
4
|
Mahmoudian F, Ahmari A, Shabani S, Sadeghi B, Fahimirad S, Fattahi F. Aptamers as an approach to targeted cancer therapy. Cancer Cell Int 2024; 24:108. [PMID: 38493153 PMCID: PMC10943855 DOI: 10.1186/s12935-024-03295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Conventional cancer treatments can cause serious side effects because they are not specific to cancer cells and can damage healthy cells. Aptamers often are single-stranded oligonucleotides arranged in a unique architecture, allowing them to bind specifically to target sites. This feature makes them an ideal choice for targeted therapeutics. They are typically produced through the systematic evolution of ligands by exponential enrichment (SELEX) and undergo extensive pharmacological revision to modify their affinity, specificity, and therapeutic half-life. Aptamers can act as drugs themselves, directly inhibiting tumor cells. Alternatively, they can be used in targeted drug delivery systems to transport drugs directly to tumor cells, minimizing toxicity to healthy cells. In this review, we will discuss the latest and most advanced approaches to using aptamers for cancer treatment, particularly targeted therapy overcoming resistance to conventional therapies.
Collapse
Affiliation(s)
- Fatemeh Mahmoudian
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Azin Ahmari
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Radiation Oncology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Shiva Shabani
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Infectious Diseases, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Bahman Sadeghi
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Community Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Shohreh Fahimirad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Fahimeh Fattahi
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Mohammadinejad A, Gaman LE, Aleyaghoob G, Gaceu L, Mohajeri SA, Moga MA, Badea M. Aptamer-Based Targeting of Cancer: A Powerful Tool for Diagnostic and Therapeutic Aims. BIOSENSORS 2024; 14:78. [PMID: 38391997 PMCID: PMC10887380 DOI: 10.3390/bios14020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Cancer is known as one of the most significant causes of death worldwide, and, in spite of novel therapeutic methods, continues to cause a considerable number of deaths. Targeted molecular diagnosis and therapy using aptamers with high affinity have become popular techniques for pathological angiogenesis and cancer therapy scientists. In this paper, several aptamer-based diagnostic and therapeutic techniques such as aptamer-nanomaterial conjugation, aptamer-drug conjugation (physically or covalently), and biosensors, which have been successfully designed for biomarkers, were critically reviewed. The results demonstrated that aptamers can potentially be incorporated with targeted delivery systems and biosensors for the detection of biomarkers expressed by cancer cells. Aptamer-based therapeutic and diagnostic methods, representing the main field of medical sciences, possess high potential for use in cancer therapy, pathological angiogenesis, and improvement of community health. The clinical use of aptamers is limited due to target impurities, inaccuracy in the systematic evolution of ligands via exponential enrichment (SELEX)stage process, and in vitro synthesis, making them unreliable and leading to lower selectivity for in vivo targets. Moreover, size, behavior, probable toxicity, low distribution, and the unpredictable behavior of nanomaterials in in vivo media make their usage in clinical assays critical. This review is helpful for the implementation of aptamer-based therapies which are effective and applicable for clinical use and the design of future studies.
Collapse
Affiliation(s)
- Arash Mohammadinejad
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, 500019 Brașov, Romania;
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute of Transilvania University of Brasov, 500484 Brașov, Romania
| | - Laura Elena Gaman
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Ghazaleh Aleyaghoob
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- Department of Chemistry, Payame Noor University, Tehran 19395-4697, Iran
| | - Liviu Gaceu
- Faculty of Food and Tourism, Transilvania University of Brasov, 500014 Brașov, Romania;
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran;
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500019 Brașov, Romania;
- Centre for Applied Medicine and Intervention Strategies in Medical Practice, Research and Development Institute of Transilvania University of Brasov, 500484 Brașov, Romania
| | - Mihaela Badea
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, 500019 Brașov, Romania;
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute of Transilvania University of Brasov, 500484 Brașov, Romania
| |
Collapse
|
6
|
Hruba L, Das V, Hajduch M, Dzubak P. Nucleoside-based anticancer drugs: Mechanism of action and drug resistance. Biochem Pharmacol 2023; 215:115741. [PMID: 37567317 DOI: 10.1016/j.bcp.2023.115741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Nucleoside-based drugs, recognized as purine or pyrimidine analogs, have been potent therapeutic agents since their introduction in 1950, deployed widely in the treatment of diverse diseases such as cancers, myelodysplastic syndromes, multiple sclerosis, and viral infections. These antimetabolites establish complex interactions with cellular molecular constituents, primarily via activation of phosphorylation cascades leading to consequential interactions with nucleic acids. However, the therapeutic efficacy of these agents is frequently compromised by the development of drug resistance, a continually emerging challenge in their clinical application. This comprehensive review explores the mechanisms of resistance to nucleoside-based drugs, encompassing a wide spectrum of phenomena from alterations in membrane transporters and activating kinases to changes in drug elimination strategies and DNA damage repair mechanisms. The critical analysis in this review underlines complex interactions of drug and cell and also guides towards novel therapeutic strategies to counteract resistance. The development of targeted therapies, novel nucleoside analogs, and synergistic drug combinations are promising approaches to restore tumor sensitivity and improve patient outcomes.
Collapse
Affiliation(s)
- Lenka Hruba
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic; Laboratory of Experimental Medicine, University Hospital, Olomouc 779 00, Czech Republic
| | - Petr Dzubak
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic; Laboratory of Experimental Medicine, University Hospital, Olomouc 779 00, Czech Republic.
| |
Collapse
|
7
|
Sanati M, Afshari AR, Ahmadi SS, Kesharwani P, Sahebkar A. Aptamers against cancer drug resistance: Small fighters switching tactics in the face of defeat. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166720. [PMID: 37062453 DOI: 10.1016/j.bbadis.2023.166720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
Discovering novel cancer therapies has attracted extreme interest in the last decade. In this regard, multidrug resistance (MDR) to chemotherapies is a key challenge in cancer treatment. Cancerous cells are growingly become resistant to existing chemotherapeutics by employing diverse mechanisms, highlighting the significance of discovering approaches to overcome MDR. One promising strategy is utilizing aptamers as unique tools to target elements or signaling pathways incorporated in resistance mechanisms, or develop actively targeted drug delivery systems or chimeras enabling the precise delivery of novel agents to inhibit the conventionally undruggable resistance elements. Furthermore, due to their advantages over their proteinaceous counterparts, particularly antibodies, including improved targeting action, enhanced thermal stability, easier production, and superior tumor penetration, aptamers are emerging and have frequently been considered for developing cancer therapeutics. Here, we highlighted significant chemoresistance pathways in cancer and discussed the use of aptamers as prospective tools to surmount cancer MDR.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Shishparenok AN, Furman VV, Zhdanov DD. DNA-Based Nanomaterials as Drug Delivery Platforms for Increasing the Effect of Drugs in Tumors. Cancers (Basel) 2023; 15:2151. [PMID: 37046816 PMCID: PMC10093432 DOI: 10.3390/cancers15072151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
DNA nanotechnology has significantly advanced and might be used in biomedical applications, drug delivery, and cancer treatment during the past few decades. DNA nanomaterials are widely used in biomedical research involving biosensing, bioimaging, and drug delivery since they are remarkably addressable and biocompatible. Gradually, modified nucleic acids have begun to be employed to construct multifunctional DNA nanostructures with a variety of architectural designs. Aptamers are single-stranded nucleic acids (both DNAs and RNAs) capable of self-pairing to acquire secondary structure and of specifically binding with the target. Diagnosis and tumor therapy are prospective fields in which aptamers can be applied. Many DNA nanomaterials with three-dimensional structures have been studied as drug delivery systems for different anticancer medications or gene therapy agents. Different chemical alterations can be employed to construct a wide range of modified DNA nanostructures. Chemically altered DNA-based nanomaterials are useful for drug delivery because of their improved stability and inclusion of functional groups. In this work, the most common oligonucleotide nanomaterials were reviewed as modern drug delivery systems in tumor cells.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Vitalina V. Furman
- Center of Chemical Engineering, ITMO University, Kronverkskiy Prospekt 49A, 197101 St. Petersburg, Russia
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
9
|
He J, Duan Q, Ran C, Fu T, Liu Y, Tan W. Recent progress of aptamer‒drug conjugates in cancer therapy. Acta Pharm Sin B 2023; 13:1358-1370. [PMID: 37139427 PMCID: PMC10150127 DOI: 10.1016/j.apsb.2023.01.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/18/2022] [Accepted: 12/15/2022] [Indexed: 01/28/2023] Open
Abstract
Aptamers are single-stranded DNA or RNA sequences that can specifically bind with the target protein or molecule via specific secondary structures. Compared to antibody-drug conjugates (ADC), aptamer‒drug conjugate (ApDC) is also an efficient, targeted drug for cancer therapy with a smaller size, higher chemical stability, lower immunogenicity, faster tissue penetration, and facile engineering. Despite all these advantages, several key factors have delayed the clinical translation of ApDC, such as in vivo off-target effects and potential safety issues. In this review, we highlight the most recent progress in the development of ApDC and discuss solutions to the problems noted above.
Collapse
Affiliation(s)
- Jiaxuan He
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Qiao Duan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunyan Ran
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ting Fu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Yuan Liu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Weihong Tan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
He S, Du Y, Tao H, Duan H. Advances in aptamer-mediated targeted delivery system for cancer treatment. Int J Biol Macromol 2023; 238:124173. [PMID: 36965552 DOI: 10.1016/j.ijbiomac.2023.124173] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
Aptamers with high affinity and specificity for certain targets have rapidly become a novel class of targeted ligands applicated in drug delivery. Based on the excellent characteristics of aptamers, different aptamer-mediated drug delivery systems have been developed, including aptamer-drug conjugate (ApDC), aptamer-siRNA, and aptamer-functionalized nanoparticle systems for the effective treatment of cancer, which can reduce potential toxicity and improve therapeutic efficacy. In this review, we summarize the recent progress of aptamer-mediated delivery systems in cancer therapy, and discuss the application prospects and existing problems of innovative approaches based on aptamer therapy. Overall, this review aims to better understand the current aptamer-based targeted delivery applications through in-depth analysis to improve efficacy and develop new therapeutic methods which can ultimately improve treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyu Tao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Huaiyu Duan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
11
|
Liu Z, Parveen N, Rehman U, Aziz A, Sheikh A, Abourehab MAS, Guo W, Huang J, Wang Z, Kesharwani P. Unravelling the enigma of siRNA and aptamer mediated therapies against pancreatic cancer. Mol Cancer 2023; 22:8. [PMID: 36635659 PMCID: PMC9835391 DOI: 10.1186/s12943-022-01696-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 01/13/2023] Open
Abstract
Pancreatic cancer (PC) is a fatal disease that has a poor 5-year survival rate. The poor prognosis can be attributed to both troublesome detections at the initial stage, which makes the majority of the treatment options largely unsuccessful and leads to extensive metastasis, as well as to its distinct pathophysiological characteristics, such as rich desmoplastic tumours bounded by dysplastic and hypo perfused vessels restricting the mobility of therapeutic agents. Continued attempts have been made to utilise innovative measures for battling PC to increase the therapeutic effectiveness of therapies and overcome their cytotoxicity. Combined cancer targeting and gene silencing approach has shown improved outcomes in patients' survival rates and quality of life, offering a potential solution to therapeutic complications. It particularly targets various barriers to alleviate delivery problems and diminish tumour recurrence and metastasis. While aptamers, a type of single-stranded nucleic acids with strong binding affinity and specificity to target molecules, have recently surfaced as a viable PC strategy, siRNA can interfere with the expression of certain genes. By concurrently suppressing genes and boosting targeted approach, the cocktail of siRNA/Aptamer and other therapeutic drugs can circumvent the multi-drug resistance phenomena. Additionally, combination therapy with additive or synergistic effects can considerably increase the therapeutic efficacy of anti-cancer medications. This study outlines the primary difficulties in treating PC, along with recent developments in siRNA/Aptamer mediated drug delivery to solve the major hiccup of oncology field.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Neha Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Urushi Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Aisha Aziz
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Junhao Huang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155N. Nanjing Street, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning, China.
- Institute of Health Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Transdisciplinary Research, Department Of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| |
Collapse
|
12
|
Fàbrega C, Clua A, Eritja R, Aviñó A. Oligonucleotides Carrying Nucleoside Antimetabolites as Potential Prodrugs. Curr Med Chem 2023; 30:1304-1319. [PMID: 34844535 PMCID: PMC11497139 DOI: 10.2174/0929867328666211129124039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nucleoside and nucleobase antimetabolites are an important class of chemotherapeutic agents for the treatment of cancer as well as other diseases. INTRODUCTION In order to avoid undesirable side effects, several prodrug strategies have been developed. In the present review, we describe a relatively unknown strategy that consists of using oligonucleotides modified with nucleoside antimetabolites as prodrugs. METHODS The active nucleotides are generated by enzymatic degradation once incorporated into cells. This strategy has attracted large interest and is widely utilized at present due to the continuous developments made in therapeutic oligonucleotides and the recent advances in nanomaterials and nanomedicine. RESULTS A large research effort was made mainly in the improvement of the antiproliferative properties of nucleoside homopolymers, but recently, chemically modified aptamers, antisense oligonucleotides and/or siRNA carrying antiproliferative nucleotides have demonstrated a great potential due to the synergetic effect of both therapeutic entities. In addition, DNA nanostructures with interesting properties have been built to combine antimetabolites and enhancers of cellular uptake in the same scaffold. Finally, protein nanoparticles functionalized with receptor-binders and antiproliferative oligomers represent a new avenue for a more effective treatment in cancer therapy. CONCLUSION It is expected that oligonucleotides carrying nucleoside antimetabolites will be considered as potential drugs in the near future for biomedical applications.
Collapse
Affiliation(s)
- Carme Fàbrega
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain
| | - Anna Clua
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain
| |
Collapse
|
13
|
Kumar AR, L A, Nair B, Mathew B, Sugunan S, Nath LR. Decoding the Mechanism of Drugs of Heterocyclic Nature against Hepatocellular Carcinoma. Anticancer Agents Med Chem 2023; 23:882-893. [PMID: 35440316 DOI: 10.2174/1871520622666220418115310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/19/2022] [Accepted: 02/18/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Hepatocellular carcinoma (HCC) is the sixth most common type of cancer and accounts for ~90% of cases, with an approximated incidence of >1 million cases by 2025. Currently, the backbone of HCC therapy is the oral multi-kinase inhibitor, Sorafenib, which consists of a Pyridine heterocycle ring system. This review highlights the introspective characteristics of seven anticancer drugs of heterocyclic nature against HCC along with their structural activity relationships and molecular targets. METHODS Literature collection was performed using PubMed, Google Scholar, SCOPUS, and Cross ref. Additional information was taken from the official website of the FDA and GLOBOCAN. Key findings/ Results: Based on the available literature, approved heterocyclic compounds show promising results against HCC, including Sorafenib (Pyridine), Regorafenib (Pyridine), Lenvatinib (Quinoline), Cabozantinib (Quinoline), Gemcitabine (Pyrimidine), 5-Fluorouracil (Pyrimidine)and Capecitabine (Pyrimidine), their mechanism of action and key aspects regarding its structural activity were included in the review. CONCLUSION Heterocyclic compounds represent almost two-thirds of the novel drugs approved by FDA between 2010 and 2020 against Cancer. This review summarizes the clinical relevance, mechanism of action, structural activity relationship, and challenges of the seven available anticancer drugs with heterocyclic ring systems against HCC.
Collapse
Affiliation(s)
- Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| | - Anitha L
- Department of Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM Deemed to be University, Hyderabad Campus, Rudraram, Sangareddy, Telangana 502329, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| | - Sinoy Sugunan
- Department of Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM Deemed to be University, Hyderabad Campus, Rudraram, Sangareddy, Telangana 502329, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| |
Collapse
|
14
|
Kim S, Lim SW, Choi J. Drug discovery inspired by bioactive small molecules from nature. Anim Cells Syst (Seoul) 2022; 26:254-265. [PMID: 36605590 PMCID: PMC9809404 DOI: 10.1080/19768354.2022.2157480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Natural products (NPs) have greatly contributed to the development of novel treatments for human diseases such as cancer, metabolic disorders, and infections. Compared to synthetic chemical compounds, primary and secondary metabolites from medicinal plants, fungi, microorganisms, and our bodies are promising resources with immense chemical diversity and favorable properties for drug development. In addition to the well-validated significance of secondary metabolites, endogenous small molecules derived from central metabolism and signaling events have shown great potential as drug candidates due to their unique metabolite-protein interactions. In this short review, we highlight the values of NPs, discuss recent scientific and technological advances including metabolomics tools, chemoproteomics approaches, and artificial intelligence-based computation platforms, and explore potential strategies to overcome the current challenges in NP-driven drug discovery.
Collapse
Affiliation(s)
- Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea, Seyun Kim
| | - Seol-Wa Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jiyeon Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
15
|
Artificial Base-Directed In Vivo Formulation of Aptamer-Drug Conjugates with Albumin for Long Circulation and Targeted Delivery. Pharmaceutics 2022; 14:pharmaceutics14122781. [PMID: 36559275 PMCID: PMC9781099 DOI: 10.3390/pharmaceutics14122781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/20/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Aptamer-drug conjugates (ApDCs) are potential targeted pharmaceutics, but their clinical applications are hampered by fast clearance in blood. Herein we report the construction of ApDCs modified with artificial base F and the study of biological activities. Two types of F-base-modified ApDCs were prepared, Sgc8-paclitaxel by conjugation and Sgc8-gemcitabine, by automated solid-phase synthesis. In vitro experiments showed that F-base-modified ApDCs retain the specificity of the aptamer to target cells and the biological stability is improved. In vivo studies demonstrated that the circulatory time is increased by up to 55 h or longer, as the incorporated F base leads to a stable ApDC-albumin complex as the formulation for targeted delivery. Moreover, conjugated drug molecules were released efficiently and the drug (paclitaxel) concentration in the tumor site was improved. The results demonstrate that an F-base-directed ApDC-albumin complex is a potential platform for drug delivery and targeted cancer therapy.
Collapse
|
16
|
Li Y, Zhao J, Xue Z, Tsang C, Qiao X, Dong L, Li H, Yang Y, Yu B, Gao Y. Aptamer nucleotide analog drug conjugates in the targeting therapy of cancers. Front Cell Dev Biol 2022; 10:1053984. [PMID: 36544906 PMCID: PMC9760908 DOI: 10.3389/fcell.2022.1053984] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Aptamers are short single-strand oligonucleotides that can form secondary and tertiary structures, fitting targets with high affinity and specificity. They are so-called "chemical antibodies" and can target specific biomarkers in both diagnostic and therapeutic applications. Systematic evolution of ligands by exponential enrichment (SELEX) is usually used for the enrichment and selection of aptamers, and the targets could be metal ions, small molecules, nucleotides, proteins, cells, or even tissues or organs. Due to the high specificity and distinctive binding affinity of aptamers, aptamer-drug conjugates (ApDCs) have demonstrated their potential role in drug delivery for cancer-targeting therapies. Compared with antibodies which are produced by a cell-based bioreactor, aptamers are chemically synthesized molecules that can be easily conjugated to drugs and modified; however, the conventional ApDCs conjugate the aptamer with an active drug using a linker which may add more concerns to the stability of the ApDC, the drug-releasing efficiency, and the drug-loading capacity. The function of aptamer in conventional ApDC is just as a targeting moiety which could not fully perform the advantages of aptamers. To address these drawbacks, scientists have started using active nucleotide analogs as the cargoes of ApDCs, such as clofarabine, ara-guanosine, gemcitabine, and floxuridine, to replace all or part of the natural nucleotides in aptamer sequences. In turn, these new types of ApDCs, aptamer nucleotide analog drug conjugates, show the strength for targeting efficacy but avoid the complex drug linker designation and improve the synthetic efficiency. More importantly, these classic nucleotide analog drugs have been used for many years, and aptamer nucleotide analog drug conjugates would not increase any unknown druggability risk but improve the target tumor accumulation. In this review, we mainly summarized aptamer-conjugated nucleotide analog drugs in cancer-targeting therapies.
Collapse
Affiliation(s)
- Yongshu Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China,Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China,Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China,*Correspondence: Yongshu Li, ; Yunhua Gao,
| | - Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Zhichao Xue
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Chiman Tsang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoting Qiao
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Lianhua Dong
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China,Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Huijie Li
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Yi Yang
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Bin Yu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yunhua Gao
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China,Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China,*Correspondence: Yongshu Li, ; Yunhua Gao,
| |
Collapse
|
17
|
Xiang W, Peng Y, Zeng H, Yu C, Zhang Q, Liu B, Liu J, Hu X, Wei W, Deng M, Wang N, Liu X, Xie J, Hou W, Tang J, Long Z, Wang L, Liu J. Targeting treatment of bladder cancer using PTK7 aptamer-gemcitabine conjugate. Biomater Res 2022; 26:74. [PMID: 36471380 PMCID: PMC9721011 DOI: 10.1186/s40824-022-00328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/22/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Gemcitabine (GEM) is one of the first-line chemotherapies for bladder cancer (BC), but the GEMs cannot recognize cancer cells and have a low long-term response rate and high recurrence rate with side effects during the treatment of BC. Targeted transport of GEMs to mediate cytotoxicity to tumor and avoid the systemic side effects remains a challenge in the treatment of BC. METHODS Based on a firstly confirmed biomarker in BC-protein tyrosine kinase 7 (PTK7), which is overexpressed on the cell membrane surface in BC cells, a novel targeting system protein tyrosine kinase 7 aptamer-Gemcitabine conjugate (PTK7-GEMs) was designed and synthesized using a specific PTK7 aptamer and GEM through auto-synthesis method to deliver GEM against BC. In addition, the antitumor effects and safety evaluation of PTK7-GEMs was assessed with a series of in vitro and in vivo assays. RESULTS PTK7-GEMs can specifically bind and enter to BC cells dependent on the expression levels of PTK7 and via the macropinocytosis pathway, which induced cytotoxicity after GEM cleavage from PTK7-GEMs respond to the intracellular phosphatase. Moreover, PTK7-GEMs showed stronger anti-tumor efficacy and excellent biosafety in three types of tumor xenograft mice models. CONCLUSION These results demonstrated that PTK7-GEMs is a successful targeted aptamer-drug conjugates strategy (APDCs) to treat BC, which will provide new directions for the precision treatment of BC in the field of biomarker-oriented tumor targeted therapy.
Collapse
Affiliation(s)
- Wei Xiang
- grid.431010.7Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, Hunan 410013 China
| | - Yongbo Peng
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Pharmaceutical Metabolism Research, the Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016 China
| | - Hongliang Zeng
- grid.431010.7Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, Hunan 410013 China ,grid.489633.3Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, No.8, Yuehua Road, Changsha, 410013 China
| | - Chunping Yu
- grid.488530.20000 0004 1803 6191Department of Urology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, Guangdong 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, Guangdong 510060 China
| | - Qun Zhang
- grid.412615.50000 0004 1803 6239Department of Radiotherapy, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong 510080 China
| | - Biao Liu
- grid.431010.7Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, Hunan 410013 China
| | - Jiahao Liu
- grid.431010.7Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, Hunan 410013 China
| | - Xing Hu
- grid.431010.7Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, Hunan 410013 China
| | - Wensu Wei
- grid.488530.20000 0004 1803 6191Department of Urology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, Guangdong 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, Guangdong 510060 China
| | - Minhua Deng
- grid.488530.20000 0004 1803 6191Department of Urology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, Guangdong 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, Guangdong 510060 China
| | - Ning Wang
- grid.488530.20000 0004 1803 6191Department of Urology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, Guangdong 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, Guangdong 510060 China
| | - Xuewen Liu
- grid.431010.7Department of Onology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, Hunan 410013 China
| | - Jianfei Xie
- grid.431010.7Department of Nursing, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, Hunan 410013 China
| | - Weibin Hou
- grid.431010.7Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, Hunan 410013 China
| | - Jin Tang
- grid.431010.7Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, Hunan 410013 China
| | - Zhi Long
- grid.431010.7Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, Hunan 410013 China
| | - Long Wang
- grid.431010.7Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, Hunan 410013 China
| | - Jianye Liu
- grid.431010.7Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, Hunan 410013 China
| |
Collapse
|
18
|
Wang SC, Yan XY, Yang C, Naranmandura H. The Landscape of Nucleic-Acid-Based Aptamers for Treatment of Hematologic Malignancies: Challenges and Future Directions. Bioengineering (Basel) 2022; 9:635. [PMID: 36354547 PMCID: PMC9687288 DOI: 10.3390/bioengineering9110635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Hematologic malignancies, including leukemia, lymphoma, myeloproliferative disorder and plasma cell neoplasia, are genetically heterogeneous and characterized by an uncontrolled proliferation of their corresponding cell lineages in the bone marrow, peripheral blood, tissues or plasma. Although there are many types of therapeutic drugs (e.g., TKIs, chemotherapy drugs) available for treatment of different malignancies, the relapse, drug resistance and severe side effects due to the lack of selectivity seriously limit their clinical application. Currently, although antibody-drug conjugates have been well established as able to target and deliver highly potent chemotherapy agents into cancer cells for the reduction of damage to healthy cells and have achieved success in leukemia treatment, they still also have shortcomings such as high cost, high immunogenicity and low stability. Aptamers are ssDNA or RNA oligonucleotides that can also precisely deliver therapeutic agents into cancer cells through specifically recognizing the membrane protein on cancer cells, which is similar to the capabilities of monoclonal antibodies. Aptamers exhibit higher binding affinity, lower immunogenicity and higher thermal stability than antibodies. Therefore, in this review we comprehensively describe recent advances in the development of aptamer-drug conjugates (ApDCs) with cytotoxic payload through chemical linkers or direct incorporation, as well as further introduce the latest promising aptamers-based therapeutic strategies such as aptamer-T cell therapy and aptamer-PROTAC, clarifying their bright application, development direction and challenges in the treatment of hematologic malignancies.
Collapse
Affiliation(s)
- Si Chun Wang
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou 310058, China
| | - Xing Yi Yan
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou 310058, China
| | - Chang Yang
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou 310058, China
- Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hua Naranmandura
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou 310058, China
- Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| |
Collapse
|
19
|
Dai H, Abdullah R, Wu X, Li F, Ma Y, Lu A, Zhang G. Pancreatic Cancer: Nucleic Acid Drug Discovery and Targeted Therapy. Front Cell Dev Biol 2022; 10:855474. [PMID: 35652096 PMCID: PMC9149368 DOI: 10.3389/fcell.2022.855474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/07/2022] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal cancers with an almost 10% 5-year survival rate. Because PC is implicated in high heterogeneity, desmoplastic tumor-microenvironment, and inefficient drug-penetration, the chemotherapeutic strategy currently recommended for the treatment of PC has limited clinical benefit. Nucleic acid-based targeting therapies have become strong competitors in the realm of drug discovery and targeted therapy. A vast evidence has demonstrated that antibody-based or alternatively aptamer-based strategy largely contributed to the elevated drug accumulation in tumors with reduced systematic cytotoxicity. This review describes the advanced progress of antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNAs (miRNAs), messenger RNA (mRNAs), and aptamer-drug conjugates (ApDCs) in the treatment of PC, revealing the bright application and development direction in PC therapy.
Collapse
Affiliation(s)
- Hong Dai
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Razack Abdullah
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute for the Advancement of Chinese medicine (IACM) .Ltd, Shatin, Hong Kong SAR, China
| | - Xiaoqiu Wu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| |
Collapse
|
20
|
Yuhan J, Zhu L, Zhu L, Huang K, He X, Xu W. Cell-specific aptamers as potential drugs in therapeutic applications: A review of current progress. J Control Release 2022; 346:405-420. [PMID: 35489545 DOI: 10.1016/j.jconrel.2022.04.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 12/23/2022]
Abstract
Cell-specific aptamers are a promising emerging player in the field of disease therapy. This paper reviews the multidimensional research progress made in terms of their classification, modification, and application. Based on the target location of cell-specific aptamers, it is defined and classified cell-specific aptamers into three groups including aptamers for cell surface markers, aptamers for intracellular components, and aptamers for extracellular components. Moreover, the modification methods of aptamers to achieve improved stability and affinity are concluded. In addition, recent advances in the application of cell-specific aptamers are discussed, mainly focusing on the increasing research attraction of cell state improving helpers and cell recruitment mediators in the improvement of cellular microenvironments to achieve successful disease therapy. This review also highlights 11 types of clinical aptamer drugs. Finally, the challenges and future directions of potential clinical applications are presented. In summary, we believe that cell-specific aptamers are promising drugs in disease therapy.
Collapse
Affiliation(s)
- Jieyu Yuhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
21
|
Zhao J, Tan W, Zheng J, Su Y, Cui M. Aptamer Nanomaterials for Ovarian Cancer Target Theranostics. Front Bioeng Biotechnol 2022; 10:884405. [PMID: 35419352 PMCID: PMC8996158 DOI: 10.3389/fbioe.2022.884405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/14/2022] [Indexed: 12/05/2022] Open
Abstract
Ovarian cancer is among the leading causes of gynecological cancer-related mortality worldwide. Early and accurate diagnosis and an effective treatment strategy are the two primary means of improving the prognosis of patients with ovarian cancer. The development of targeted nanomaterials provides a potentially efficient strategy for ovarian cancer theranostics. Aptamer nanomaterials have emerged as promising nanoplatforms for accurate ovarian cancer diagnosis by recognizing relevant biomarkers in the serum and/or on the surface of tumor cells, as well as for effective ovarian cancer inhibition via target protein blockade on tumor cells and targeted delivery of various therapeutic agents. In this review, we summarize recent advances in aptamer nanomaterials as targeted theranostic platforms for ovarian cancer and discusses the challenges and opportunities for their clinical application. The information presented in this review represents a valuable reference for creation of a new generation of aptamer nanomaterials for use in the precise detection and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, China
| | - Wenxi Tan
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, China
| | - Jingying Zheng
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, China
| | - Yuanzhen Su
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Manhua Cui
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, China,*Correspondence: Manhua Cui,
| |
Collapse
|
22
|
Wu Y, Liu Y, Wang T, Jiang Q, Xu F, Liu Z. Living Cell for Drug Delivery. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
23
|
Zhu L, Yang J, Ma Y, Zhu X, Zhang C. Aptamers Entirely Built from Therapeutic Nucleoside Analogues for Targeted Cancer Therapy. J Am Chem Soc 2022; 144:1493-1497. [DOI: 10.1021/jacs.1c09574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Zhang H, Jin C, Zhang L, Peng B, Zhang Y, Liu Y, Li L, Ye M, Xiong W, Tan W. CD71-Specific Aptamer Conjugated with Monomethyl Auristatin E for the Treatment of Uveal Melanoma. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32-40. [PMID: 34928139 DOI: 10.1021/acsami.1c13980] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy among adults. Despite significant advances in diagnosis and treatment, the general mortality of UM remains alarmingly high. This calls for the development of new approaches for the treatment of UM, such as targeted cancer therapy. CD71, also known as transferrin receptor 1, is overexpressed in UM cell lines and tissues. Herein, we report the development of a CD71-specific aptamer targeting the XQ-2d-MMAE conjugate that can distinguish UM cells from normal human uveal melanocytes. The cytotoxic drug monomethyl auristatin E (MMAE) could be easily coupled onto XQ-2d, a DNA aptamer that specifically targets CD71, to achieve efficiently targeted cancer growth inhibition in a mouse xenograft model, thus implying that XQ-2d-MMAE might be developed into a promising novel anti-tumor agent for the treatment of UM. Collectively, our results demonstrated that CD71 is a reliable target for drug delivery in UM and could be utilized as a model to explore aptamer-mediated targeted UM treatment strategies.
Collapse
Affiliation(s)
- Hui Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Cheng Jin
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Lin Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Bo Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yibin Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yan Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Ling Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Wei Xiong
- Department of Ophthalmology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
25
|
Yang C, Jiang Y, Hao SH, Yan XY, Hong DF, Naranmandura H. Aptamers: an emerging navigation tool of therapeutic agents for targeted cancer therapy. J Mater Chem B 2021; 10:20-33. [PMID: 34881767 DOI: 10.1039/d1tb02098f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemotherapeutic agents have been used for the treatment of numerous cancers, but due to poor selectivity and severe systemic side effects, their clinical application is limited. Single-stranded DNA (ssDNA) or RNA aptamers could conjugate with highly toxic chemotherapy drugs, toxins, therapeutic RNAs or other molecules as novel aptamer-drug conjugates (ApDCs), which are capable of significantly improving the therapeutic efficacy and reducing the systemic toxicity of drugs and have great potential in clinics for targeted cancer therapy. In this review, we have comprehensively discussed and summarized the current advances in the screening approaches of aptamers for specific cancer biomarker targeting and development of the aptamer-drug conjugate strategy for targeted drug delivery. Moreover, considering the huge progress in artificial intelligence (AI) for protein and RNA structure predictions, automatic design of aptamers using deep/machine learning techniques could be a powerful approach for rapid and precise construction of biopharmaceutics (i.e., ApDCs) for application in cancer targeted therapy.
Collapse
Affiliation(s)
- Chang Yang
- Department of Hematology, the First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China. .,Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China
| | - Yu Jiang
- Department of Hematology, the First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China. .,Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sai Heng Hao
- College of Pharmaceutical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Xing Yi Yan
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China.,Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - De Fei Hong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hua Naranmandura
- Department of Hematology, the First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China. .,Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China.,Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
26
|
Kim DH, Seo JM, Shin KJ, Yang SG. Design and clinical developments of aptamer-drug conjugates for targeted cancer therapy. Biomater Res 2021; 25:42. [PMID: 34823601 PMCID: PMC8613924 DOI: 10.1186/s40824-021-00244-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Aptamer has been called "chemical antibody" which displays the specific affinity to target molecules compared to that of antibodies and possesses several therapeutic advantages over antibodies in terms of size, accessibility to synthesis, and modification. Based on the attractive properties, aptamers have been interested in many directions and now are emerged as new target-designed cancer drug. MAIN BODY Currently, new types of aptamers have been reported and attracted many scientists' interesting. Due to simplicity of chemical modification and ready-made molecular engineering, scientists have developed newly designed aptamers conjugated with a wide range of therapeutics, aptamer-drug conjugates; ApDCs, from chemotherapy to phototherapy, gene therapy, and vaccines. ApDCs display synergistic therapeutic effects in cancer treatment. CONCLUSION In this paper, we reviewed various kinds of ApDCs, i.e., ApDC nucleotide analogs, ApDC by drug intercalation, and ApDC by using chemical linker. Current data prove these ApDCs have sufficient potential to complete clinical development soon. Advanced technology of cancer drug delivery and combination treatment of cancers enables aptamer and conjugated drug (ApDCs) efficient means for targeted cancer treatment that reduces potential toxicity and increases therapeutic efficacy.
Collapse
Affiliation(s)
- Do-Hun Kim
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22212, South Korea.,Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, 22332, South Korea
| | - Jin-Myung Seo
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22212, South Korea.,Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, 22332, South Korea
| | - Kyung-Ju Shin
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22212, South Korea
| | - Su-Geun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22212, South Korea. .,Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, 22332, South Korea.
| |
Collapse
|
27
|
Huang Z, Wang D, Long CY, Li SH, Wang XQ, Tan W. Regulating the Anticancer Efficacy of Sgc8-Combretastatin A4 Conjugates: A Case of Recognizing the Significance of Linker Chemistry for the Design of Aptamer-Based Targeted Drug Delivery Strategies. J Am Chem Soc 2021; 143:8559-8564. [PMID: 34097382 DOI: 10.1021/jacs.1c03013] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unique merits of aptamers, including specificity, high binding affinity, easy cell internalization, and rapid tissue accumulation abilities, have led aptamer-drug conjugates to evolve into one of the most attractive strategies for targeted drug delivery purposes. Nevertheless, the critical role of linkers in regulating anticancer efficacy of these conjugates, especially those engineered by automated modular synthesis techniques, has been rarely explored. In this work, we utilized Sgc8c aptamer and combretastatin A4 to develop three conjugates with either a phosphodiester bond linker, a disulfide bond linker, or a carbamate linker to study their payload release mechanisms and the influence on anticancer efficacy. These investigations allowed us to identify the unique activation pathway of the phosphodiester bond linker that is activated by both nucleophilic attack of glutathione and degradation caused by phosphodiesterase, which is highly associated with the higher cytotoxicity of the conjugate. Importantly, the understanding of the chemistry of phosphodiester bond linker activation allowed us to further design another XQ-2d-CA4 conjugate that can induce pancreatic cancer cells apoptosis in a more efficient manner.
Collapse
Affiliation(s)
- Zhiyong Huang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Dan Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Cheng-Yu Long
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Shen-Huan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xue-Qiang Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, P. R. China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
28
|
Allemailem KS, Almatroudi A, Alsahli MA, Basfar GT, Alrumaihi F, Rahmani AH, Khan AA. Recent advances in understanding oligonucleotide aptamers and their applications as therapeutic agents. 3 Biotech 2020; 10:551. [PMID: 33269185 PMCID: PMC7686427 DOI: 10.1007/s13205-020-02546-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
The innovative discovery of aptamers was based on target-specific treatment in clinical diagnostics and therapeutics. Aptamers are synthetic, single-stranded oligonucleotides, simply described as chemical antibodies, which can bind to diverse targets with high specificity and affinity. Aptamers are synthesized by the SELEX technique, and possess distinctive properties as small size (10-50 kDa), higher stability, easy manufacture and less immunogenicity. These oligonucleotides are easily degraded by nucleases, so require some important modifications like capping and incorporation of modified nucleotides. RNA aptamers can be modified chemically on 2' positions using -NH3, -F, -deoxy, or -OMe groups to enhance their nuclease resistance. Aptamers have been employed for multiple purposes, as direct drugs or aptamer-drug conjugates targeted against different diseased cells. Different aptamer-conjugated nanovehicles (e.g., micelles, liposomes, silica nano-shells) have been designed to transport diverse anticancer-drugs like doxorubicin and cisplatin in bulk to minimize systemic cytotoxicity. Some drug-loaded nanovehicles (up to 97% loading capacity) and conjugated with specific aptamer resulted in more than 60% tumor inhibition as compared to unconjugated drug-loaded nanovehicles which showed only 31% cancer inhibition. In addition, aptamers have been widely used in basic research, food safety, environmental monitoring, clinical diagnostics and therapeutics. Different FDA-approved RNA and DNA aptamers are now available in the market, used for the treatment of diverse diseases, especially cancer. These aptamers include Macugen, Pegaptanib, etc. Despite a good progress in aptamer use, the present-day chemotherapeutics and drug targeting systems still face great challenges. Here in this review article, we are discussing nucleic acid aptamers, preparation, role in the transportation of different nanoparticle vehicles and their applications as therapeutic agents.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraydah, 51452 Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ghaiyda Talal Basfar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraydah, 51452 Saudi Arabia
| |
Collapse
|
29
|
Tran BT, Kim J, Ahn DR. Systemic delivery of aptamer-drug conjugates for cancer therapy using enzymatically generated self-assembled DNA nanoparticles. NANOSCALE 2020; 12:22945-22951. [PMID: 33188383 DOI: 10.1039/d0nr05652a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aptamer-drug conjugates (ApDCs) are promising anticancer therapeutics with cancer cell specificity. However, versatile in vivo applications of ApDCs are hampered by their limited serum stability and inability to reach the tumour upon systemic administration. Here, we describe DNA nanoparticles of ApDCs as a platform for tumour-targeted systemic delivery of ApDCs. DNA nanoparticles of approximately 75 nm size were fabricated by self-assembly of a polymerised floxuridine (FUdR)-incorporated AS1411 aptamer produced via rolling circle amplification. The DNA nanoparticles of ApDCs showed highly efficient cancer cell uptake, enhanced serum stability, and tumour-targeted accumulation. These properties could be successfully utilised for tumour-specific apoptotic damage by ApDCs, leading to significant suppression of tumour growth without considerable systemic toxicity. Molecular analysis revealed that the enhanced anticancer potency was due to the synergic effect induced by the simultaneous activation of p53 by AS1411 and the inhibition of thymidylate synthase by FUdR, respectively, both of which were generated from the DNA nanoparticles. We therefore expect that the DNA nanoparticles of ApDCs can be a promising platform for tumour-targeted delivery of various nucleoside-incorporated ApDCs to treat cancer.
Collapse
Affiliation(s)
- Binh Thanh Tran
- Division of Biomedical Science and Technology, KIST School, Korea University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| | | | | |
Collapse
|
30
|
An Aptamer for Broad Cancer Targeting and Therapy. Cancers (Basel) 2020; 12:cancers12113217. [PMID: 33142831 PMCID: PMC7694147 DOI: 10.3390/cancers12113217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 01/09/2023] Open
Abstract
Simple Summary Recent efforts to improve chemotherapy’s antitumor effects have increasingly focused on targeted therapies, where the drug is modified with an agent able to specifically deliver it to the tumor while limiting its accumulation in normal tissue. Aptamers, comprised of short pieces of RNA or DNA, are ideal for this type of drug targeting due in part to their ease of chemical synthesis. The E3 aptamer was previously conjugated to highly toxic chemotherapeutics and shown to target and treat prostate tumors. Here, we show that E3 is not limited to prostate cancer targeting but appears to broadly target cancer cells. E3 highly toxic drug conjugates also efficiently kill a broad range of cancer types, and E3 targets tumors that closely model patient tumors. Thus, the E3 aptamer appears to be a general agent for specific delivery of chemotherapy to tumors and should improve antitumor treatment while reducing unwanted toxicities in other tissues. Abstract Recent advances in chemotherapy treatments are increasingly targeted therapies, with the drug conjugated to an antibody able to deliver it directly to the tumor. As high-affinity chemical ligands that are much smaller in size, aptamers are ideal for this type of drug targeting. Aptamer-highly toxic drug conjugates (ApTDCs) based on the E3 aptamer, selected on prostate cancer cells, target and inhibit prostate tumor growth in vivo. Here, we observe that E3 also broadly targets numerous other cancer types, apparently representing a universal aptamer for cancer targeting. Accordingly, ApTDCs formed by conjugation of E3 to the drugs monomethyl auristatin E (MMAE) or monomethyl auristatin F (MMAF) efficiently target and kill a range of different cancer cells. Notably, this targeting extends to both patient-derived explant (PDX) cancer cell lines and tumors, with the E3 MMAE and MMAF conjugates inhibiting PDX cell growth in vitro and with the E3 aptamer targeting PDX colorectal tumors in vivo.
Collapse
|
31
|
Targeted Therapy of Hepatocellular Carcinoma Using Gemcitabine-Incorporated GPC3 Aptamer. Pharmaceutics 2020; 12:pharmaceutics12100985. [PMID: 33080969 PMCID: PMC7588995 DOI: 10.3390/pharmaceutics12100985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common malignancy of the liver, which can progress rapidly and has a poor prognosis. Glypican-3 (GPC3) has been proposed to be an important diagnostic biomarker and therapeutic target for HCC. Aptamers have emerged as promising drug delivery vehicles because of their high binding affinity for target molecules. Herein, we developed G12msi, a gemcitabine-incorporated DNA aptamer, targeting GPC3, and evaluated its binding specificity and anti-tumor efficacy in GPC3-overexpressing HCC cell lines and murine xenograft models. GPC3-targeted aptamers were selected by using the SELEX process and the chemotherapy drug gemcitabine was internally incorporated into the aptamer. To determine the binding affinity and internalization of the G12msi, flow cytometry and confocal microscopy were performed on GPC3-positive HepG2, Hep3B, and Huh7 cells, as well as a GPC3-negative A431 cell. The anti-tumor activities of G12msi were evaluated with in vitro and in vivo models. We found that G12msi binds to GPC3-overexpressing HCC tumor cells with high specificity and is effectively internalized. Moreover, G12msi treatment inhibited the cell proliferation of GPC3-positive HCC cell lines with minimal cytotoxicity in control A431 cells. In vivo systemic administration of G12msi significantly inhibited tumor growth of HCC HepG2 cells in xenograft models without causing toxicity. These results suggest that gemcitabine-incorporated GPC3 aptamer-based drug delivery may be a promising strategy for the treatment of HCC.
Collapse
|
32
|
Uemachi H, Kasahara Y, Tanaka K, Okuda T, Yoneda Y, Obika S. Discovery of cell-internalizing artificial nucleic acid aptamers for lung fibroblasts and targeted drug delivery. Bioorg Chem 2020; 105:104321. [PMID: 33074117 DOI: 10.1016/j.bioorg.2020.104321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/24/2020] [Indexed: 12/31/2022]
Abstract
Lung fibroblasts play major roles in the lung repair/fibrosis process through synthesis and remodeling of extracellular matrix. Those aberrant activations and elevated proliferations are associated with several fibrotic lung diseases, such as idiopathic pulmonary fibrosis (IPF). Targeting fibroblasts is a promising approach for preventing aberrant remodeling of lung architecture and protect irreversible pulmonary fibrosis. In this study, we developed an aptamer that can target lung fibroblasts and explored its potential as a delivery vehicle of cytotoxic agents intracellularly. The aptamer was discovered from artificial nucleic acid libraries through cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX). This indole-modified aptamer can bind to LL97A cells, a fibroblast cell line derived from IPF patients, with high affinity (Kd = 70 nM). It also showed affinity to other lung fibroblasts, while cross-reactivity to epithelial cells was minimal. An aptamer-monomethyl auristatin F (MMAF) conjugate was generated by hybridizing with complementary DNA linked to MMAF. The resulting aptamer-MMAF conjugate inhibited proliferation of fibroblasts but appeared non-toxic to non-targeted epithelial cells. Our results show that artificial nucleic acid aptamer may potentially be used for fibroblast-specific therapy and diagnostic applications.
Collapse
Affiliation(s)
- Hiro Uemachi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan; DSP Cancer Institute, Sumitomo Dainippon Pharma Co., Ltd., Osaka 554-0022, Japan
| | - Yuuya Kasahara
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan.
| | - Keisuke Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Takumi Okuda
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Yoshihiro Yoneda
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| |
Collapse
|
33
|
Aptamers: a novel targeted theranostic platform for pancreatic ductal adenocarcinoma. Radiat Oncol 2020; 15:189. [PMID: 32758252 PMCID: PMC7409417 DOI: 10.1186/s13014-020-01624-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely challenging disease with a high mortality rate and a short overall survival time. The poor prognosis can be explained by aggressive tumor growth, late diagnosis, and therapy resistance. Consistent efforts have been made focusing on early tumor detection and novel drug development. Various strategies aim at increasing target specificity or local enrichment of chemotherapeutics as well as imaging agents in tumor tissue. Aptamers have the potential to provide early detection and permit anti-cancer therapy with significantly reduced side effects. These molecules are in-vitro selected single-stranded oligonucleotides that form stable three-dimensional structures. They are capable of binding to a variety of molecular targets with high affinity and specificity. Several properties such as high binding affinity, the in vitro chemical process of selection, a variety of chemical modifications of molecular platforms for diverse function, non-immunoreactivity, modification of bioavailability, and manipulation of pharmacokinetics make aptamers attractive targets compared to conventional cell-specific ligands. To explore the potential of aptamers for early diagnosis and targeted therapy of PDAC - as single agents and in combination with radiotherapy - we summarize the generation process of aptamers and their application as biosensors, biomarker detection tools, targeted imaging tracers, and drug-delivery carriers. We are furthermore discussing the current implementation aptamers in clinical trials, their limitations and possible future utilization.
Collapse
|
34
|
He F, Wen N, Xiao D, Yan J, Xiong H, Cai S, Liu Z, Liu Y. Aptamer-Based Targeted Drug Delivery Systems: Current Potential and Challenges. Curr Med Chem 2020; 27:2189-2219. [PMID: 30295183 DOI: 10.2174/0929867325666181008142831] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/04/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023]
Abstract
Aptamers are single-stranded DNA or RNA with 20-100 nucleotides in length that can specifically bind to target molecules via formed three-dimensional structures. These innovative targeting molecules have attracted an increasing interest in the biomedical field. Compared to traditional protein antibodies, aptamers have several advantages, such as small size, high binding affinity, specificity, good biocompatibility, high stability and low immunogenicity, which all contribute to their wide application in the biomedical field. Aptamers can bind to the receptors on the cell membrane and mediate themselves or conjugated nanoparticles to enter into cells. Therefore, aptamers can be served as ideal targeting ligands for drug delivery. Since their excellent properties, different aptamer-mediated drug delivery systems had been developed for cancer therapy. This review provides a brief overview of recent advances in drug delivery systems based on aptamers. The advantages, challenges and future prospectives are also discussed.
Collapse
Affiliation(s)
- Fen He
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Nachuan Wen
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Daipeng Xiao
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jianhua Yan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Hongjie Xiong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Shundong Cai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Zhenbao Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yanfei Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
35
|
Tan X, Jia F, Wang P, Zhang K. Nucleic acid-based drug delivery strategies. J Control Release 2020; 323:240-252. [PMID: 32272123 PMCID: PMC8079167 DOI: 10.1016/j.jconrel.2020.03.040] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
Nucleic acids have not been widely considered as an optimal material for drug delivery. Indeed, unmodified nucleic acids are enzymatically unstable, too hydrophilic for cell uptake and payload encapsulation, and may cause unintended biological responses such as immune system activation and prolongation of the blood coagulation pathway. Recently, however, three major areas of development surrounding nucleic acids have made it worthwhile to reconsider their role for drug delivery. These areas include DNA/RNA nanotechnology, multivalent nucleic acid nanostructures, and nucleic acid aptamers, which, respectively, provide the ability to engineer nanostructures with unparalleled levels of structural control, completely reverse certain biological properties of linear/cyclic nucleic acids, and enable antibody-level targeting using an all-nucleic acid construct. These advances, together with nucleic acids' ability to respond to various stimuli (engineered or natural), have led to a rapidly increasing number of drug delivery systems with potential for spatiotemporally controlled drug release. In this review, we discuss recent progress in nucleic acid-based drug delivery strategies, their potential, unique use cases, and risks that must be overcome or avoided.
Collapse
Affiliation(s)
- Xuyu Tan
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Fei Jia
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Ke Zhang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China; Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Xia X, Pollock N, Zhou J, Rossi J. Tissue-Specific Delivery of Oligonucleotides. Methods Mol Biol 2020; 2036:17-50. [PMID: 31410789 DOI: 10.1007/978-1-4939-9670-4_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
From the initial discovery of short-interfering RNA (siRNA) and antisense oligonucleotides for specific gene knockdown at the posttranscriptional level to the current CRISPR-Cas9 system offering gene editing at the genomic level, oligonucleotides, in addition to their biological functions in storing and conveying genetic information, provide the most prominent solutions to targeted gene therapies. Nonetheless, looking into the future of curing cancer and acute diseases, researchers are only cautiously optimistic as the cellular delivery of these polyanionic biomacromolecules is still the biggest hurdle for their therapeutic realization. To overcome the delivery obstacle, oligonucleotides have been encapsulated within or conjugated with delivery vehicles for enhanced membrane penetration, improved payload, and tissue-specific delivery. Such delivery systems include but not limited to virus-based vehicles, gold-nanoparticle vehicles, formulated liposomes, and synthetic polymers. In this chapter, delivery challenges imposed by biological barriers are briefly discussed; followed by recent advances in tissue-specific oligonucleotide delivery utilizing both viral and nonviral delivery vectors, discussing their advantages, and how judicious design and formulation could improve and expand their potential as delivery vehicles.
Collapse
Affiliation(s)
- Xin Xia
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Nicolette Pollock
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - John Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
37
|
Yoon S, Li H, Quintanar L, Armstrong B, Rossi JJ. Uncovering Differently Expressed Markers and Heterogeneity on Human Pancreatic Cancer. Transl Oncol 2020; 13:100749. [PMID: 32143178 PMCID: PMC7056725 DOI: 10.1016/j.tranon.2020.100749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022] Open
Abstract
Discovery of biomarkers is critical to understand tumor heterogeneity and microenvironment. To determine differently expressed makers on cancer tissue for comprehensive profiling, the multiplexed tissue imaging mass cytometer (IMC) which uniquely combines time-of-flight mass spectrometry with metal-labeling technology to enable breakthrough discovery on single cell level was employed to investigate the expression of seven markers related to the epithelial-to-mesenchymal transition [α-smooth muscle actin (α-SMA), vimentin, collagen I, cytokeratin 7, pan-keratin], tumor proliferation (Ki-67), and human leucocyte antigen (HLA-DR) on human pancreatic cancer tissue. The difference was analyzed using bioinformatic tools. We observed the high expression of α-SMA, vimentin, collagen I, and Ki-67 on grade I but not on grade III. HLA-DR was highly expressed on grade I/III but not on grade II. Overall, the expression of markers has elucidated the heterogeneity intratumors. Additionally, to identify biomarkers on pancreatic cancer cells by blind systematic evolution of ligands by exponential enrichment (SELEX), aptamer pull-down assay and liquid chromatography–tandem mass spectrometry were used. Mortalin was identified as a potential a prognostic marker of pancreatic cancer. Our studies demonstrate that the IMC and blind SELEX might be implemented to discover biomarkers which can be used to better understand tumor biology and biomedical research applications.
Collapse
Affiliation(s)
- Sorah Yoon
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, 91010, USA
| | - Haiqing Li
- Research Informatics, City of Hope, Duarte, California, 91010, USA
| | - Loren Quintanar
- Light Microscopy core, City of Hope, Duarte, California, 91010, USA
| | - Brian Armstrong
- Light Microscopy core, City of Hope, Duarte, California, 91010, USA
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, 91010, USA.
| |
Collapse
|
38
|
Deng Z, Yang Q, Peng Y, He J, Xu S, Wang D, Peng T, Wang R, Wang XQ, Tan W. Polymeric Engineering of Aptamer-Drug Conjugates for Targeted Cancer Therapy. Bioconjug Chem 2019; 31:37-42. [PMID: 31815437 DOI: 10.1021/acs.bioconjchem.9b00715] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleic acid aptamers, also known as "chemical antibodies", have been widely employed in targeted cancer therapy and diagnosis. For example, aptamer-drug conjugates (ApDCs), through covalent conjugation of cytotoxic warheads to aptamers, have demonstrated anticancer efficacy both in vitro and in vivo. However, a general strategy to endow ApDCs with enhanced biostability, prolonged circulation half-life, and high drug loading content remained elusive. Herein, we present a polymeric approach to engineer ApDCs via conjugation of cell-targeting aptamers with water-soluble polyprodrugs containing a reductive environmentally sensitive prodrug and biocompatible brush-like backbone. The resultant high-drug loading Aptamer-PolyproDrug Conjugates (ApPDCs) exhibited high nuclease resistance, extended in vivo circulation time, specific recognition, and cellular uptake to target cells, reduction-triggered and fluorescent-reporting drug release, and effective cytotoxicity. We could also further expand this design principle toward combination therapy by using two kinds of therapeutic drugs with distinct pharmacological mechanisms.
Collapse
Affiliation(s)
- Zhengyu Deng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Qiuxia Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Yongbo Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Jiaxuan He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Shujuan Xu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China.,Foundation for Applied Molecular Evolution , 13709 Progress Boulevard , Alachua , Florida 32615 , United States
| | - Dan Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Tianhuan Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Ruowen Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, College of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Xue-Qiang Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences , The Cancer Hospital of the University of Chinese Academy of Sciences , Hangzhou , Zhejiang 310022 , China.,Institute of Molecular Medicine, Renji Hospital, School of Medicine, College of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China.,Foundation for Applied Molecular Evolution , 13709 Progress Boulevard , Alachua , Florida 32615 , United States
| |
Collapse
|
39
|
Yoon S, Huang KW, Andrikakou P, Vasconcelos D, Swiderski P, Reebye V, Sodergren M, Habib N, Rossi JJ. Targeted Delivery of C/EBPα-saRNA by RNA Aptamers Shows Anti-tumor Effects in a Mouse Model of Advanced PDAC. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:142-154. [PMID: 31546149 PMCID: PMC6796740 DOI: 10.1016/j.omtn.2019.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/20/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies; it preferentially metastasizes to the liver and is the main cause of death from this disease. In previous studies, small activating RNA against CCAAT/enhancer-binding protein-α (C/EBPα-saRNA) demonstrated efficacy of PDAC in a local subcutaneous tumor model. In this study, we focused on the efficacy of C/EBPα-saRNA in advanced stage PDAC. For targeted delivery, we selected a new anti-transferrin receptor aptamer (TR14), which demonstrated a high binding affinity to target proteins. The TR14 aptamer was internalized with clathrin-mediated endocytosis, distributed in early endosome, late endosome, and lysosome subcellularly. To investigate its anti-tumor effects to advanced PDAC, we conjugated C/EBPα-saRNA to TR14. Treatment of pancreatic cancer cells with the conjugates upregulated expression of C/EBPα and its downstream target p21, and inhibited cell proliferation. For in vivo assays, we established an advanced PDAC mouse model by engrafting luciferase reporter-PANC-1 cells directly into the livers of non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice. After treatment of aptamer-C/EBPα conjugates, we observed significant reduction of tumor growth in this advanced PDAC mouse model. Combinational treatment of the conjugates with gemcitabine also demonstrated enhanced anti-tumor effects in advanced PDAC. This suggests that aptamer-C/EBPα conjugates could be used as an adjuvant, along with other conventional anti-cancer drugs in advanced PDAC. In conclusion, targeted delivery of C/EBPα-saRNAs by aptamers might have potential therapeutic effects in advanced PDAC.
Collapse
Affiliation(s)
- Sorah Yoon
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Kai-Wen Huang
- Department of Surgery and Hepatitis Research Center, National Taiwan University Hospital, Taipei 10051, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Pinelopi Andrikakou
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | | | - Piotr Swiderski
- DNA/RNA Synthesis Core Facility, Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | | | - Mikael Sodergren
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Nagy Habib
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
40
|
Lv C, Yang C, Ding D, Sun Y, Wang R, Han D, Tan W. Endocytic Pathways and Intracellular Transport of Aptamer-Drug Conjugates in Live Cells Monitored by Single-Particle Tracking. Anal Chem 2019; 91:13818-13823. [PMID: 31593429 DOI: 10.1021/acs.analchem.9b03281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aptamer-drug conjugates (ApDCs) are emerging as targeted therapeutic drugs that can effectively broaden the chemotherapeutic window with higher efficacy and less toxicity. They show promising targeted tumor-killing effects both in vitro and in vivo. However, the mechanisms underlying the cellular internalization and transport of ApDCs remain unclear, and no systematic study on this topic has been reported. Therefore, we herein investigated the endocytic internalization and subsequent transport of ApDCs in mammalian cells through single-particle tracking. We found that ApDC enters the cells mainly by caveolin-mediated endocytosis and that it exhibits cytoskeleton-dependent transport, along microfilaments and microtubules, to acidic endosomes near the cell nucleus in cytoplasm. We also found that the cellular uptake pathways of ApDCs are identical to those of the aptamer itself, confirming that aptamers play a prominent role in the internalization of ApDCs. This study extends our understanding of the internalization and transport process of ApDCs such that the results could serve as the theoretical foundation for designing new ApDCs and, in turn, promoting cancer-targeted therapy.
Collapse
Affiliation(s)
- Cheng Lv
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Cai Yang
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Ding Ding
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Yang Sun
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Ruowen Wang
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Da Han
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences , The Cancer Hospital of the University of Chinese Academy of Sciences , Hangzhou , Zhejiang 310022 , China
| |
Collapse
|
41
|
Takakura K, Kawamura A, Torisu Y, Koido S, Yahagi N, Saruta M. The Clinical Potential of Oligonucleotide Therapeutics against Pancreatic Cancer. Int J Mol Sci 2019; 20:ijms20133331. [PMID: 31284594 PMCID: PMC6651255 DOI: 10.3390/ijms20133331] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Although many diagnostic and therapeutic modalities for pancreatic cancer have been proposed, an urgent need for improved therapeutic strategies remains. Oligonucleotide therapeutics, such as those based on antisense RNAs, small interfering RNA (siRNA), microRNA (miRNA), aptamers, and decoys, are promising agents against pancreatic cancer, because they can identify a specific mRNA fragment of a given sequence or protein, and interfere with gene expression as molecular-targeted agents. Within the past 25 years, the diversity and feasibility of these drugs as diagnostic or therapeutic tools have dramatically increased. Several clinical and preclinical studies of oligonucleotides have been conducted for patients with pancreatic cancer. To support the discovery of effective diagnostic or therapeutic options using oligonucleotide-based strategies, in the absence of satisfactory therapies for long-term survival and the increasing trend of diseases, we summarize the current clinical trials of oligonucleotide therapeutics for pancreatic cancer patients, with underlying preclinical and scientific data, and focus on the possibility of oligonucleotides for targeting pancreatic cancer in clinical implications.
Collapse
Affiliation(s)
- Kazuki Takakura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Atsushi Kawamura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yuichi Torisu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Naohisa Yahagi
- Division of Research and Development for Minimally Invasive Treatment, Cancer Center, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| |
Collapse
|
42
|
Citartan M, Kaur H, Presela R, Tang TH. Aptamers as the chaperones (Aptachaperones) of drugs-from siRNAs to DNA nanorobots. Int J Pharm 2019; 567:118483. [PMID: 31260780 DOI: 10.1016/j.ijpharm.2019.118483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022]
Abstract
Aptamers, nucleic acid ligands that are specific against their corresponding targets are increasingly employed in a variety of applications including diagnostics and therapeutics. The specificity of the aptamers against their targets is also used as the basis for the formulation of the aptamer-based drug delivery system. In this review, we aim to provide an overview on the chaperoning roles of aptamers in acting as the cargo or load carriers, delivering contents to the targeted sites via cell surface receptors. Internalization of the aptamer-biomolecule conjugates via receptor-mediated endocytosis and the strategies to augment the rate of endocytosis are underscored. The cargos chaperoned by aptamers, ranging from siRNAs to DNA origami are illuminated. Possible impediments to the aptamer-based drug deliveries such as susceptibility to nuclease resistance, potentiality for immunogenicity activation, tumor heterogeneity are speculated and the corresponding amendment strategies to address these shortcomings are discussed. We prophesy that the future of the aptamer-based drug delivery will take a trajectory towards DNA nanorobot-based assay.
Collapse
Affiliation(s)
- Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| | - Harleen Kaur
- Aurobindo Biologics, Biologics R&D Center, Unit-17, Industrial Area, Survey No: 77 & 78, Indrakaran Village, Kandi(Mandal), Sangareddy (District), Hyderabad 502329, India
| | - Ravinderan Presela
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Thean-Hock Tang
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
43
|
Gao G, Liu C, Jain S, Li D, Wang H, Zhao Y, Liu J. Potential use of aptamers for diagnosis and treatment of pancreatic cancer. J Drug Target 2019; 27:853-865. [PMID: 30596288 DOI: 10.1080/1061186x.2018.1564924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer (PC) is highly malignant with a low 5-year survival rate. PC currently does not have good early diagnostic markers and responses poorly to chemotherapeutic drugs. The search for better biomarkers and developing more effective chemotherapy are important ways to improve the healthcare of PC patients. Aptamers are single-stranded nucleic acids with high binding affinity and specificity to target molecules. Many aptamers against different forms of cancer including PC have been selected for both diagnostic and therapeutic use. Aptamers can work as ligands to distinguish tumour cells from normal cells. Using cells as selection targets, the obtained aptamers have been used to discover new cancer biomarkers after identification of the binding target. Aptamers have been shown to have antagonists effect on cancer cell proliferation, apoptosis, and metastasis. In addition, aptamers have been used as carriers to deliver therapeutic agents to selectively kill PC cells. This review summarises the potential use of aptamers in the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Ge Gao
- a Faculty of Laboratory Medicine , Xiangya Medical College, Central South University , Changsha , China.,b Department of Clinical Laboratory , Third Xiangya Hospital, Central South University , Changsha , China
| | - Can Liu
- a Faculty of Laboratory Medicine , Xiangya Medical College, Central South University , Changsha , China.,b Department of Clinical Laboratory , Third Xiangya Hospital, Central South University , Changsha , China
| | - Sona Jain
- c Department of Chemistry , Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo , Canada
| | - Dai Li
- c Department of Chemistry , Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo , Canada.,d Department of Pharmacology , Xiangya Hospital, Central South University , Changsha , China
| | - Hai Wang
- a Faculty of Laboratory Medicine , Xiangya Medical College, Central South University , Changsha , China.,b Department of Clinical Laboratory , Third Xiangya Hospital, Central South University , Changsha , China
| | - Yongxin Zhao
- a Faculty of Laboratory Medicine , Xiangya Medical College, Central South University , Changsha , China.,b Department of Clinical Laboratory , Third Xiangya Hospital, Central South University , Changsha , China
| | - Juewen Liu
- c Department of Chemistry , Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo , Canada
| |
Collapse
|
44
|
Pusuluri A, Krishnan V, Lensch V, Sarode A, Bunyan E, Vogus DR, Menegatti S, Soh HT, Mitragotri S. Treating Tumors at Low Drug Doses Using an Aptamer-Peptide Synergistic Drug Conjugate. Angew Chem Int Ed Engl 2018; 58:1437-1441. [PMID: 30537284 DOI: 10.1002/anie.201812650] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Indexed: 11/06/2022]
Abstract
Combination chemotherapy must strike a difficult balance between safety and efficacy. Current regimens suffer from poor therapeutic impact because drugs are given at their maximum tolerated dose (MTD), which compounds the toxicity risk and exposes tumors to non-optimal drug ratios. A modular framework has been developed that selectively delivers drug combinations at synergistic ratios via tumor-targeting aptamers for effective low-dose treatment. A nucleolin-recognizing aptamer was coupled to peptide scaffolds laden with precise ratios of doxorubicin (DOX) and camptothecin (CPT). This construct had an extremely low IC50 (31.9 nm) against MDA-MB-231 breast cancer cells in vitro, and exhibited in vivo efficacy at micro-dose injections (500 and 350 μg kg-1 dose-1 of DOX and CPT, respectively) that are 20-30-fold lower than their previously-reported MTDs. This approach represents a generalizable strategy for the safe and consistent delivery of combination drugs in oncology.
Collapse
Affiliation(s)
- Anusha Pusuluri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.,Wyss Institute of Biologically Inspired Engineering, Harvard University, Harvard University, Boston, MA, 02115, USA.,Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Vinu Krishnan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.,Wyss Institute of Biologically Inspired Engineering, Harvard University, Harvard University, Boston, MA, 02115, USA
| | - Valerie Lensch
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Apoorva Sarode
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.,Wyss Institute of Biologically Inspired Engineering, Harvard University, Harvard University, Boston, MA, 02115, USA
| | - Elaine Bunyan
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Douglas R Vogus
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.,Wyss Institute of Biologically Inspired Engineering, Harvard University, Harvard University, Boston, MA, 02115, USA
| | - Stefano Menegatti
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - H Tom Soh
- Department of Electrical Engineering and Department of Radiology, Stanford University, Palo Alto, CA, 94305, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.,Wyss Institute of Biologically Inspired Engineering, Harvard University, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
45
|
Pusuluri A, Krishnan V, Lensch V, Sarode A, Bunyan E, Vogus DR, Menegatti S, Soh HT, Mitragotri S. Treating Tumors at Low Drug Doses Using an Aptamer–Peptide Synergistic Drug Conjugate. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anusha Pusuluri
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University Harvard University Boston MA 02115 USA
- Department of Chemical Engineering University of California Santa Barbara CA 93106 USA
| | - Vinu Krishnan
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University Harvard University Boston MA 02115 USA
| | - Valerie Lensch
- Department of Chemical Engineering University of California Santa Barbara CA 93106 USA
| | - Apoorva Sarode
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University Harvard University Boston MA 02115 USA
| | - Elaine Bunyan
- Department of Chemical Engineering University of California Santa Barbara CA 93106 USA
| | - Douglas R. Vogus
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University Harvard University Boston MA 02115 USA
| | - Stefano Menegatti
- Department of Chemical & Biomolecular Engineering North Carolina State University Raleigh NC 27606 USA
| | - H. Tom Soh
- Department of Electrical Engineering and Department of Radiology Stanford University Palo Alto CA 94305 USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University Harvard University Boston MA 02115 USA
| |
Collapse
|
46
|
Yoon S, Wu X, Armstrong B, Habib N, Rossi JJ. An RNA Aptamer Targeting the Receptor Tyrosine Kinase PDGFRα Induces Anti-tumor Effects through STAT3 and p53 in Glioblastoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 14:131-141. [PMID: 30594071 PMCID: PMC6307106 DOI: 10.1016/j.omtn.2018.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 01/02/2023]
Abstract
Human glioblastoma (GBM) is the most aggressive malignancy of the CNS, with less than 5% survival. Despite great efforts to find effective therapeutics, current options remain very limited. To develop a targeted cancer therapeutic, we selected RNA aptamers against platelet-derived growth factor receptor α (PDGFRα), which is a receptor tyrosine kinase. One RNA aptamer (PDR3) with high affinity (0.25 nM) showed PDGFRα specificity and was internalized in U251-MG cells. Following treatment with the PDR3 aptamer, expression of the transcription factor STAT3 (signal transducer and activator of transcription 3) was inhibited, whereas the expression of the histone demethylase JMJD3 and the tumor suppressor p53 were upregulated. PDR3 also upregulated serine phosphorylation of p53, which subsequently mediated apoptosis through the death receptors: tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptors 1/2 (TRAIL-R1/R2), Fas-associated via death domain (FADD), and Fas. PDR3 significantly decreased cell viability in a dose-dependent manner. Furthermore, translocation of PDR3 into the nucleus induced hypomethylation at the promoters of cyclin D2. To assess the feasibility of targeted delivery, we conjugated PDR3 aptamer with STAT3-siRNA for a chimera. The PDR3-siSTAT3 chimera successfully inhibited the expression of target genes and showed significant inhibition of cell viability. In summary, our results show that well-tailored RNA aptamers targeting the PDGFRα-STAT3 axis have the potential to act as anti-cancer therapeutics in GBM.
Collapse
Affiliation(s)
- Sorah Yoon
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xiwei Wu
- Integrative Genomic Core, City of Hope, Duarte, CA 91010, USA
| | | | - Nagy Habib
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
47
|
Wang Y, Hoinka J, Liang Y, Adamus T, Swiderski P, Przytycka TM. AptaBlocks: Designing RNA complexes and accelerating RNA-based drug delivery systems. Nucleic Acids Res 2018; 46:8133-8142. [PMID: 29986050 PMCID: PMC6144873 DOI: 10.1093/nar/gky577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/12/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022] Open
Abstract
RNA-based therapeutics, i.e. the utilization of synthetic RNA molecules to alter cellular functions, have the potential to address targets which are currently out of scope for traditional drug design pipelines. This potential however hinges on the ability to selectively deliver and internalize therapeutic RNAs into cells of interest. Cell internalizing RNA aptamers selected against surface receptors and discriminatively expressed on target cells hold particular promise as suitable candidates for such delivery agents. Specifically, these aptamers can be combined with a therapeutic cargo and facilitate internalization of the cargo into the cell of interest. A recently proposed method to obtain such aptamer-cargo constructs employs a double-stranded "sticky bridge" where the complementary strands constituting the bridge are conjugated with the aptamer and the cargo respectively. The design of appropriate sticky bridge sequences however has proven highly challenging given the structural and functional constraints imposed on them during synthesis and administration. These include, but are not limited to, guaranteed formation and stability of the complex, non-interference with the aptamer or the cargo, as well as the prevention of spurious aggregation of the molecules during incubation. In order to address these issues, we have developed AptaBlocks - a computational method to design RNA complexes that hybridize via sticky bridges. The effectiveness of our approach has been verified computationally, and experimentally in the context of drug delivery to pancreatic cancer cells. Importantly, AptaBlocks is a general method for the assembly of nucleic acid systems that, in addition to designing of RNA-based drug delivery systems, can be used in other applications of RNA nanotechnology. AptaBlocks is available at https://github.com/wyjhxq/AptaBlocks.
Collapse
Affiliation(s)
- Yijie Wang
- National Center of Biotechnology Information, National Library of Medicine, NIH, Bethesda MD 20894, USA
| | - Jan Hoinka
- National Center of Biotechnology Information, National Library of Medicine, NIH, Bethesda MD 20894, USA
| | - Yong Liang
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Tomasz Adamus
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Piotr Swiderski
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Teresa M Przytycka
- National Center of Biotechnology Information, National Library of Medicine, NIH, Bethesda MD 20894, USA
| |
Collapse
|
48
|
Park JY, Cho YL, Chae JR, Moon SH, Cho WG, Choi YJ, Lee SJ, Kang WJ. Gemcitabine-Incorporated G-Quadruplex Aptamer for Targeted Drug Delivery into Pancreas Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:543-553. [PMID: 30195790 PMCID: PMC6077122 DOI: 10.1016/j.omtn.2018.06.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 01/07/2023]
Abstract
Gemcitabine has been considered a first-line chemotherapy agent for the treatment of pancreatic cancer. However, the initial response rate of gemcitabine is low and chemoresistance occurs frequently. Aptamers can be effectively internalized into cancer cells via binding to target molecules with high affinity and specificity. In the current study, we constructed an aptamer-based gemcitabine delivery system, APTA-12, and assessed its therapeutic effects on pancreatic cancer cells in vitro and in vivo. APTA-12 was effective in vitro and in vivo in pancreatic cancer cells with high expression of nucleolin. The results of in vitro cytotoxicity assays indicated that APTA-12 inhibited the growth of pancreatic cancer cell lines. In vivo evaluation showed that APTA-12 effectively inhibited the growth of pancreatic cancer in Capan-1 tumor-bearing mice compared to mice that received gemcitabine alone or vehicle. These results suggest that the gemcitabine-incorporated APTA-12 aptamer may be a promising targeted therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Jun Young Park
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Ye Lim Cho
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Ri Chae
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | | | - Won Gil Cho
- Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Yun Jung Choi
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Jin Lee
- Aptabio Therapeutics Inc., Gyeonggi-do, Korea.
| | - Won Jun Kang
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
49
|
Balachandran A, Zambre A, Kainth JS, Nagarajha Selvan LD, Parameswaran S, Afrasiabi Z, Krishnakumar S, Kannan R, Upendran A. Targeting HMGA protein inhibits retinoblastoma cell proliferation. RSC Adv 2018; 8:31510-31514. [PMID: 35548247 PMCID: PMC9085636 DOI: 10.1039/c8ra06026f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/26/2018] [Indexed: 01/03/2023] Open
Abstract
We describe a novel synthetic strategy for conjugating HMGA2 siRNA and the HMGA aptamer to the nucleolin aptamer and nucleolin antibody, respectively. Our studies demonstrate that these conjugates inhibit cell proliferation in retinoblastoma cells. A novel approach to target HMGA proteins in retinoblastoma using HMGA2 siRNA–nucleolin aptamer and HMGA aptamer–nucleolin antibody conjugates was developed.![]()
Collapse
Affiliation(s)
- Akilandeswari Balachandran
- Department of Nanobiotechnology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology Chennai India
| | - Ajit Zambre
- Department of Radiology, University of Missouri Columbia MO USA
| | - Jagjot Singh Kainth
- Department of Radiology, University of Missouri Columbia MO USA .,Department of Life Sciences, Lincoln University Jefferson City MO USA
| | - Lakshmi Dhevi Nagarajha Selvan
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology Chennai India
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology Chennai India
| | - Zahra Afrasiabi
- Department of Life Sciences, Lincoln University Jefferson City MO USA
| | - Subramanian Krishnakumar
- Department of Nanobiotechnology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology Chennai India .,L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology Chennai India.,Radheshyam Kanoi Stem Cell Laboratory, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology Chennai India
| | - Raghuraman Kannan
- Department of Radiology, University of Missouri Columbia MO USA .,Department of Biological Engineering, University of Missouri Columbia MO USA
| | - Anandhi Upendran
- Department of Medical Pharmacology and Physiology, University of Missouri Columbia MO USA.,Institute of Clinical and Translational Sciences (MU-iCATS), School of Medicine, University of Missouri Columbia MO USA
| |
Collapse
|
50
|
Vandghanooni S, Eskandani M, Barar J, Omidi Y. Bispecific therapeutic aptamers for targeted therapy of cancer: a review on cellular perspective. J Mol Med (Berl) 2018; 96:885-902. [PMID: 30056527 DOI: 10.1007/s00109-018-1669-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 06/03/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022]
Abstract
Aptamers (Aps), as short single-strand nucleic acids, can bind to their corresponding molecular targets with the high affinity and specificity. In comparison with the monoclonal antibodies (mAbs) and peptides, unique physicochemical and biological characteristics of Aps make them excellent targeting agents for different types of cancer molecular markers (CMMs). Much attention has been paid to the Ap-based multifunctional chimeric and therapeutic systems, which provide promising outcomes in the targeted therapy of various formidable diseases, including malignancies. In the Ap-based chimeric systems, a targeting Ap is conjugated to another therapeutic molecule (e.g., siRNA/miRNA, Ap, toxins, chemotherapeutic agents, DNAzyme/ribozymes) with a capability of binding to a specific cell surface receptor at the desired target site. Having been engineered as multifunctional nanosystems (NSs), Ap-based hybrid scaffolds can be used to concurrently target multiple markers/pathways in cancerous cells, causing drastic inhibitory effects on the growth and the progression of tumor cells. Multi/bispecific Aps composed of two/more Aps provide a versatile tool for the optimal and active targeting of cell surface receptor(s) with markedly high affinity and avidity. Targeting the optimum activity of key receptors and dominant signaling pathways in the activation of immunity, the multi/bispecific Ap-based therapeutics can also be used to enhance the antitumor activity of the immune system. Further, the bispecific systems can be designed to induce cytotoxicity in a heterogeneous population of cancer cells with different CMMs. In this review, we provide some important insights into the construction and applications of the Ap-based chimeric NSs and discuss the multifunctional Ap chimera and their effects on the signaling pathways in cancer.
Collapse
Affiliation(s)
- Somayeh Vandghanooni
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|