1
|
Liu X, Feng J, Guo M, Chen C, Zhao T, Sun X, Zhang Y. Resetting the aging clock through epigenetic reprogramming: Insights from natural products. Pharmacol Ther 2025; 270:108850. [PMID: 40221101 DOI: 10.1016/j.pharmthera.2025.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/04/2024] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Epigenetic modifications play a critical role in regulating gene expression under various physiological and pathological conditions. Epigenetic modifications reprogramming is a recognized hallmark of aging and a key component of the aging clock used to differentiate between chronological and biological age. The potential for prospective diagnosis and regulatory capabilities position epigenetic modifications as an emerging drug target to extend longevity and alleviate age-related organ dysfunctions. In the past few decades, numerous preclinical studies have demonstrated the therapeutic potential of natural products in various human diseases, including aging, with some advancing to clinical trials and clinical application. This review highlights the discovery and recent advancements in the aging clock, as well as the potential use of natural products as anti-aging therapeutics by correcting disordered epigenetic reprogramming. Specifically, the focus is on the imbalance of histone modifications, alterations in DNA methylation patterns, disrupted ATP-dependent chromatin remodeling, and changes in RNA modifications. By exploring these areas, new insights can be gained into aging prediction and anti-aging interventions.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Jing Feng
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Madi Guo
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Chen Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Tong Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Xiuxiu Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China.
| |
Collapse
|
2
|
Li Z, Guo Z, Yang Z, Yang B, Hu Y, Xie X, Zong Z, Chen Z, Zhang K, Zhao P, Li G, Yang X, Bian L. Metabolite-dependent m 6A methylation driven by mechanotransduction-metabolism-epitranscriptomics axis promotes bone development and regeneration. Cell Rep 2025; 44:115611. [PMID: 40272981 DOI: 10.1016/j.celrep.2025.115611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 03/18/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
Intramembranous ossification, a major bone development process, begins with the condensation of precursor cells through the timely structural adaption of extracellular matrix (ECM) catering to rapid cellular morphological changes. Inspired by this, we design a highly cell-adaptable hydrogel to recapitulate an ECM-dependent mechanotransduction-metabolism-epitranscriptomics axis in mesenchymal stromal cells (MSCs). This hydrogel significantly enhances the E-cadherin-mediated cell-cell interactions of MSCs and promotes glucose uptake and tricarboxylic acid (TCA) cycle activities. We further show that elevated succinate inhibits fat mass and obesity-associated protein (FTO), a N6-methyladenosine (m6A) demethylase, thereby enhancing methyltransferase-like 3 (METTL3)-driven m6A methylation. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) indicates increased m6A methylation of runt-related transcription 2 (Runx2), a key osteogenic signaling factor, promoting osteogenesis of hydrogel-delivered MSCs and bone regeneration in critical-sized bone defects. Our findings reveal the mechanism underlying the critical impact of adaptable ECM structures on tissue development and provide valuable guidance for the design of ECM-mimetic cell carriers to enhance the therapeutic outcomes of regenerative medicine.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, China
| | - Zhengnan Guo
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zhengmeng Yang
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, China
| | - Boguang Yang
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, China
| | - Yuan Hu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xian Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, China
| | - Zhixian Zong
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, China
| | - Zekun Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Gang Li
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, China; Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Xuefeng Yang
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China.
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Cheng M, Jin J, Zhang D, Xiao M, Zhao H, Zhao X, Zhang S, Bai Y, Xu J. METTL3 obstructs vascular smooth muscle cells osteogenic reprogramming by methylating Runx2 in chronic kidney disease. Commun Biol 2025; 8:582. [PMID: 40200050 PMCID: PMC11978862 DOI: 10.1038/s42003-025-07972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
The reprogrammed osteogenic phenotype of vascular smooth muscle cells (VSMCs) is considered a critical mechanism of vascular calcification (VC) in chronic kidney disease (CKD). Currently, the RNA N6-methyladenosine (m6A) modification is deciphered to be dynamically and reversibly participated in functional regulation of VSMCs. Here, we discover that serum m6A levels in RNA are dramatically reduced as VC progressed in patients with CKD, and this m6A demethylation is mainly due to the downregulation of methyltransferaselike-3 (METTL3). Functionally, METTL3 depletion exacerbates, whereas its overexpression attenuates calcification progression and osteogenic reprogramming. Mechanistically, Runx2, a crucial osteogenic gene, is identified as a key downstream target of METTL3-mediated m6A methylation. METTL3 negatively regulates Runx2 expression through the m6A modification. Overexpression of METTL3 exacerbates Runx2 mRNA degradation, which is orchestrated by the m6A reader YT521-B homology domain family 2 (YTHDF2) through specifically recognizing its m6A sites in the 3'UTR region. Finally, in vivo METTLs inhibitor SAH treatment aggravates VC and osteogenic conversion in aortas of CKD rats, accompanied by Runx2 expression upregulation. These above data reveal an underlying mechanism by which the m6A writer METTL3 regulates Runx2 expression through YTHDF2-mediated mRNA degradation and suggest a potential therapeutic strategy to reverse the osteogenic reprogramming of VSMCs.
Collapse
MESH Headings
- Methyltransferases/metabolism
- Methyltransferases/genetics
- Core Binding Factor Alpha 1 Subunit/metabolism
- Core Binding Factor Alpha 1 Subunit/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/pathology
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/pathology
- Osteogenesis/genetics
- Rats
- Humans
- Male
- Myocytes, Smooth Muscle/metabolism
- Methylation
- Rats, Sprague-Dawley
- Vascular Calcification/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/pathology
- Cellular Reprogramming
- Adenosine/analogs & derivatives
- Adenosine/metabolism
Collapse
Affiliation(s)
- Meijuan Cheng
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Jingjing Jin
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Dongxue Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Mei Xiao
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Hairong Zhao
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Xiaoying Zhao
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Shenglei Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Yaling Bai
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Jinsheng Xu
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China.
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China.
| |
Collapse
|
4
|
Ahi EP. Regulation of Skeletogenic Pathways by m6A RNA Modification: A Comprehensive Review. Calcif Tissue Int 2025; 116:58. [PMID: 40180675 PMCID: PMC11968561 DOI: 10.1007/s00223-025-01367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
In the complex process of skeletal development, the significance of m6A RNA methylation-a predominant form of RNA modification-has not been fully explored. This review discuss how m6A RNA methylation plays an important, though not yet fully understood, role in regulating skeletal formation. It examines how m6A influences key signaling pathways essential for skeletal development and homeostasis, suggesting various possible interactions between m6A methylation and these critical pathways. While the exact mechanisms for many of these interactions remain to be elucidated, m6A RNA methylation is anticipated to be a key emerging regulator in skeletal structure development across vertebrates. Highlighting the need for further research, this overview provides an in-depth look at the potential regulatory interactions of m6A RNA methylation within skeletal system. Uniquely, this review is the most comprehensive compilation of evidence linking components of m6A RNA methylation to signaling pathways involved in skeletogenesis.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland.
| |
Collapse
|
5
|
Xiao D, Zhang D, Qu Y, Su X. Methyltransferase-Like 3-Mediated N 6-Methyladenosine Modification on RNAs: A Novel Perspective for the Pathogenesis and Treatment of Bone Diseases. J Cell Mol Med 2025; 29:e70483. [PMID: 40052548 PMCID: PMC11886889 DOI: 10.1111/jcmm.70483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025] Open
Abstract
Osteoarthritis, osteoporosis, and osteosarcoma are prevalent osseous pathologies associated with the aberrant functionality of chondrocytes, osteoclasts, and osteoblasts, respectively. These conditions frequently exhibit therapeutic resistance and possess a high mortality risk, thus representing substantial health threats. To mitigate these concerns, it is imperative to investigate novel mechanistic insights. Methyltransferase-like 3 (METTL3) is pivotal in these disorders by modulating gene expression via N6-methyladenosine (m6A) modifications on RNA, thereby impacting cellular processes. Although considerable research has elucidated METTL3's involvement in these diseases, a systematic review is essential to summarise these findings and evaluate METTL3's significance. This review endeavours to aggregate and examine contemporary studies to elucidate METTL3's role in bone pathologies and its clinical implications. We propose that METTL3 constitutes a risk gene in these conditions by mediating m6A modifications on both mRNAs and non-coding RNAs, suggesting that METTL3 may serve as a critical diagnostic biomarker and therapeutic target. In conclusion, this review provides an extensive analysis of METTL3 and its correlation with osteoarthritis, osteoporosis, and osteosarcoma, offering valuable perspectives on extant research and serving as a valuable reference for researchers engaged in both basic and translational studies.
Collapse
Affiliation(s)
- Dongqiong Xiao
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), NHC Key Laboratory of ChronobiologyWest China Second University Hospital, Sichuan UniversityChengduSichuanChina
| | - Deshuang Zhang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), NHC Key Laboratory of ChronobiologyWest China Second University Hospital, Sichuan UniversityChengduSichuanChina
- Division of Neonatology, Department of PediatricsThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanChina
| | - Yi Qu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), NHC Key Laboratory of ChronobiologyWest China Second University Hospital, Sichuan UniversityChengduSichuanChina
| | - Xiaojuan Su
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), NHC Key Laboratory of ChronobiologyWest China Second University Hospital, Sichuan UniversityChengduSichuanChina
| |
Collapse
|
6
|
Chen H, Xuan A, Shi X, Fan T, Xue S, Ruan J, Wang X, Tang S, Qi W, Sun H, Liu C, He S, Ding C, Zhu Z. RNA N6-methyladenosine modification in arthritis: New insights into pathogenesis. Mod Rheumatol 2025; 35:203-214. [PMID: 39235765 DOI: 10.1093/mr/roae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024]
Abstract
The commonest type of eukaryotic RNA modification, N6-methyladenosine (m6A), has drawn increased scrutiny in the context of pathological functioning as well as relevance in determination of RNA stability, splicing, transportation, localization, and translation efficiency. The m6A modification plays an important role in several types of arthritis, especially osteoarthritis and rheumatoid arthritis. Recent studies have reported that m6A modification regulates arthritis pathology in cells, such as chondrocytes and synoviocytes via immune responses and inflammatory responses through functional proteins classified as writers, erasers, and readers. The aim of this review was to highlight recent advances relevant to m6A modification in the context of arthritis pathogenesis and detail underlying molecular mechanisms, regulatory functions, clinical applications, and future perspectives of m6A in arthritis with the aim of providing a foundation for future research directions.
Collapse
Affiliation(s)
- Haowei Chen
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Anran Xuan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaorui Shi
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tianxiang Fan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Song Xue
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianzhao Ruan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoshuai Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Su'an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weizhong Qi
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Canzhao Liu
- Department of Cardiovascular Medicine, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuai He
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, Royal North Shore Hospital and Sydney Musculoskeletal Health, Kolling Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
7
|
Pilala KM, Panoutsopoulou K, Papadimitriou MA, Soureas K, Scorilas A, Avgeris M. Exploring the methyl-verse: Dynamic interplay of epigenome and m6A epitranscriptome. Mol Ther 2025; 33:447-464. [PMID: 39659016 PMCID: PMC11852398 DOI: 10.1016/j.ymthe.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024] Open
Abstract
The orchestration of dynamic epigenetic and epitranscriptomic modifications is pivotal for the fine-tuning of gene expression. However, these modifications are traditionally examined independently. Recent compelling studies have disclosed an interesting communication and interplay between m6A RNA methylation (m6A epitranscriptome) and epigenetic modifications, enabling the formation of feedback circuits and cooperative networks. Intriguingly, the interaction between m6A and DNA methylation machinery, coupled with the crosstalk between m6A RNA and histone modifications shape the transcriptional profile and translational efficiency. Moreover, m6A modifications interact also with non-coding RNAs, modulating their stability, abundance, and regulatory functions. In the light of these findings, m6A imprinting acts as a versatile checkpoint, linking epigenetic and epitranscriptomic layers toward a multilayer and time-dependent control of gene expression and cellular homeostasis. The scope of the present review is to decipher the m6A-coordinated circuits with DNA imprinting, chromatin architecture, and non-coding RNAs networks in normal physiology and carcinogenesis. Ultimately, we summarize the development of innovative CRISPR-dCas engineering platforms fused with m6A catalytic components (m6A writers or erasers) to achieve transcript-specific editing of m6A epitranscriptomes that can create new insights in modern RNA therapeutics.
Collapse
Affiliation(s)
- Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece.
| |
Collapse
|
8
|
Li P, Lin Y, Ma H, Zhang J, Zhang Q, Yan R, Fan Y. Epigenetic regulation in female reproduction: the impact of m6A on maternal-fetal health. Cell Death Discov 2025; 11:43. [PMID: 39904996 PMCID: PMC11794895 DOI: 10.1038/s41420-025-02324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
With the development of public health, female diseases have become the focus of current concern. The unique reproductive anatomy of women leads to the development of gynecological diseases gradually become an important part of the socio-economic burden. Epigenetics plays an irreplaceable role in gynecologic diseases. As an important mRNA modification, m6A is involved in the maturation of ovum cells and maternal-fetal microenvironment. At present, researchers have found that m6A is involved in the regulation of gestational diabetes and other reproductive system diseases, but the specific mechanism is not clear. In this manuscript, we summarize the components of m6A, the biological function of m6A, the progression of m6A in the maternal-fetal microenvironment and a variety of gynecological diseases as well as the progression of targeted m6A treatment-related diseases, providing a new perspective for clinical treatment-related diseases.
Collapse
Affiliation(s)
- Peipei Li
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hongyun Ma
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Jiao Zhang
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Qiaorui Zhang
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Ruihua Yan
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yang Fan
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China.
| |
Collapse
|
9
|
Li N, Wei X, Dai J, Yang J, Xiong S. METTL3: a multifunctional regulator in diseases. Mol Cell Biochem 2025:10.1007/s11010-025-05208-z. [PMID: 39853661 DOI: 10.1007/s11010-025-05208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025]
Abstract
N6-methyladenosine (m6A) methylation is the most prevalent and abundant internal modification of mRNAs and is catalyzed by the methyltransferase complex. Methyltransferase-like 3 (METTL3), the best-known m6A methyltransferase, has been confirmed to function as a multifunctional regulator in the reversible epitranscriptome modulation of m6A modification according to follow-up studies. Accumulating evidence in recent years has shown that METTL3 can regulate a variety of functional genes, that aberrant expression of METTL3 is usually associated with many pathological conditions, and that its expression regulatory mechanism is related mainly to its methyltransferase activity or mRNA posttranslational modification. In this review, we discuss the regulatory functions of METTL3 in various diseases, including metabolic diseases, cardiovascular diseases, and cancer. We focus mainly on recent progress in identifying the downstream target genes of METTL3 and its underlying molecular mechanisms and regulators in the above systems. Studies have revealed that the use of METTL3 as a therapeutic target and a new diagnostic biomarker has broad prospects. We hope that this review can serve as a reference for further studies.
Collapse
Affiliation(s)
- Na Li
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Dai
- Department of Critical Care Medicine, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jinfeng Yang
- Department of Medical Affairs, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China.
| | - Sizheng Xiong
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Leng Y, Liu Z, Min J, Ke Q, Shao Y, Lai J, Zhao J. METTL14 Promotes the Osteogenic Differentiation of Human Bone Marrow Stromal Cells via m6A-Dependent Stabilization of USP7 mRNA. Biochem Genet 2025:10.1007/s10528-024-10999-9. [PMID: 39815132 DOI: 10.1007/s10528-024-10999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/04/2024] [Indexed: 01/18/2025]
Abstract
Osteoporosis (OP) is a common clinical bone disease that can cause a high incidence of non-stress fractures and is one of the main degenerative diseases that endangers the health and life of middle-aged and older women. The mechanism underlying the abnormal differentiation and function of human bone marrow stem cells (hBMSCs) remains to be elucidated. Cell proliferation and differentiation were determined using 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, alkaline phosphatase (ALP) staining, and Alizarin Red Staining. The interaction between insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) and ubiquitin-specific protease 7 (USP7) was predicted and validated using bioinformatics approaches, luciferase assays, RNA immunoprecipitation (RIP), and immunoprecipitation (IP). Actinomycin D treatment was used to test the stability of mRNA in the various groups. Methyltransferase-like 14 (METTL14) expression was increased in osteogenic differentiation medium-induced hBSMCs and was associated with enhanced osteogenic differentiation. METTL14 regulated the expression USP7 by modulating its N6-methyladenosine (m6A) level. IGF2BP2 exerted an m6A-dependent effect on USP7 mRNA stability and USP7 increased sirtuin 1 (SIRT1) expression in hBMSCs by enhancing SIRT1 deubiquitination. METTL14 stimulated the osteogenic differentiation of hBMSCs through the m6A-IGF2BP2-USP7 pathway and promoted hBMSCs osteogenic development via SIRT1-Bmi1 signaling. METTL14 stimulated the osteogenic differentiation of hBMSCs by stabilizing USP7 mRNA in an m6A-dependent manner. USP7 was also stabilized by IGF2BP2 and it regulated downstream SIRT1-Bmi1 signaling.
Collapse
Affiliation(s)
- Yu Leng
- Department of Emergency, The First People's Hospital of Jiujiang City, Jiujiang, 332000, Jiangxi Province, P. R. China
| | - Zhiwen Liu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang, 330006, Jiangxi Province, P. R. China
- Nanchang University, Nanchang, 332006, Jiangxi Province, P. R. China
| | - Jun Min
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Qing Ke
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang, 330006, Jiangxi Province, P. R. China
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, P. R. China
| | - Yiqing Shao
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Junyan Lai
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Jing Zhao
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang, 330006, Jiangxi Province, P. R. China.
| |
Collapse
|
11
|
Tian S, Song Y, Guo L, Zhao H, Bai M, Miao M. Epigenetic Mechanisms in Osteoporosis: Exploring the Power of m 6A RNA Modification. J Cell Mol Med 2025; 29:e70344. [PMID: 39779466 PMCID: PMC11710941 DOI: 10.1111/jcmm.70344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Osteoporosis, recognised as a metabolic disorder, has emerged as a significant burden on global health. Although available treatments have made considerable advancements, they remain inadequately addressed. In recent years, the role of epigenetic mechanisms in skeletal disorders has garnered substantial attention, particularly concerning m6A RNA modification. m6A is the most prevalent dynamic and reversible modification in eukaryotes, mediating various metabolic processes of mRNAs, including splicing, structural conversion, translation, translocation and degradation and serves as a crucial component of epigenetic modification. Research has increasingly validated that m6A plays a vital role in the proliferation, differentiation, migration, invasion,and repair of bone marrow mesenchymal stem cells (BMSCs), osteoblasts and osteoclasts, all of which impact the whole process of osteoporosis pathogenesis. Continuous efforts have been made to target m6A regulators and natural products derived from traditional medicine, which exhibit multiple biological activities such as anti-inflammatory and anticancer effects, have emerged as a valuable resources for m6A drug discovery. This paper elaborates on m6A methylation and its regulatory role in osteoporosis, emphasising its implications for diagnosis and treatment, thereby providing theoretical references.
Collapse
Affiliation(s)
- Shuo Tian
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Yagang Song
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Lin Guo
- School of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Hui Zhao
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Ming Bai
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Mingsan Miao
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| |
Collapse
|
12
|
Wang Y, Yu W, E Y, Rui L, Jia C, Zhu W. Qianggu Decoction Alleviated Osteoporosis by Promoting Osteogenesis of BMSCs through Mettl3-Mediated m 6A Methylation. Adv Biol (Weinh) 2024; 8:e2400341. [PMID: 39051421 DOI: 10.1002/adbi.202400341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Osteoporosis development is linked to abnormal bone marrow mesenchymal stem cells (BMSCs) differentiation. N6-methyladenosine (m6A), a prevalent mRNA modification, is known to influence BMSCs' osteogenic capacity. Qianggu decoction (QGD), a traditional Chinese medicine for osteoporosis, has unknown effects on BMSCs differentiation. This study investigates QGD's impact on BMSCs and its potential to ameliorate osteoporosis through m6A regulation. Using Sprague-Dawley (SD) rats with ovariectomy-induced osteoporosis, it is evaluated QGD's antiosteoporotic effects through micro-CT, histology, Western blotting, and osteoblastogenesis markers. QGD is found to enhance bone tissue growth and upregulate osteogenic markers Runx2, OPN, and OCN. It also promoted BMSCs osteogenic differentiation, as shown by increased calcium nodules and ALP activity. QGD treatment significantly increased m6A RNA levels and Mettl3 expression in BMSCs. Silencing Mettl3 with siRNA negated QGD's osteogenic effects. Collectively, QGD may improve BMSCs differentiation and mitigate osteoporosis, potentially through Mettl3-mediated m6A modification.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Orthopedics, Wujin TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, 213161, China
| | - Weizhong Yu
- Department of Orthopedics, Wujin TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, 213161, China
| | - Yuan E
- Department of Orthopedics, Wujin TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, 213161, China
| | - Lining Rui
- Department of Orthopedics, Wujin TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, 213161, China
| | - Chuan Jia
- Department of Orthopedics, Wujin TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, 213161, China
| | - Wenke Zhu
- Department of Orthopedics, Wujin TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, 213161, China
| |
Collapse
|
13
|
Wu H, Liao X, Wu T, Xie B, Ding S, Chen Y, Song L, Wei B. Mechanism of MiR-145a-3p/Runx2 pathway in dexamethasone impairment of MC3T3-E1 osteogenic capacity in mice. PLoS One 2024; 19:e0309951. [PMID: 39561180 PMCID: PMC11575826 DOI: 10.1371/journal.pone.0309951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/21/2024] [Indexed: 11/21/2024] Open
Abstract
OBJECTIVE In this experiment, we screened key miRNAs involved in the dexamethasone-induced decrease in osteogenic capacity of mouse precursor osteoblasts MC3T3-E1 over and investigated their specific regulatory mechanisms. METHODS In this experiment, cell counting kit assay was utilized to act on MC3T3-E1 cells at 0, 5μM, 10μM, 15μM concentrations of dexamethasone for 24h, 48h and 72h to observe the changes in cell viability in order to select the appropriate dexamethasone concentration. Apoptosis and reactive oxygen species were detected by flow cytometry. The transcription of osteogenesis-related genes (Runx2, ALP, OCN, OPN, OPG, COL1A1) and protein expression levels (Runx2, ALP, OCN, OPN) were detected by Western Blot and qRT-PCR to validate the changes in cellular osteogenesis. The differentially expressed miRNAs related to MC3T3-E1 osteogenic differentiation after dexamethasone action were screened out. The expression levels of selected target miRNAs were verified in the experimental group and the control group by qRT-PCR. The miRNA inhibitor was transfected to knock down miRNA in dexamethasone-induced MC3T3-E1 injury. Alkaline phosphatase staining and flow cytometry were performed to detect apoptosis and reactive oxygen species changes. transcript and protein expression levels of osteogenesis-related genes in mouse MC3T3-E1 were detected by qRT-PCR and Western blot experiments. By miRNA target gene prediction, luciferase reporter gene experiments, qRT-PCR and Western blot experiments were used to verify whether the selected target miRNAs targeted the target gene. RESULTS First, it was determined that 10μM dexamethasone solution was effective in inducing a decrease in osteogenic function in mouse MC3T3-E1 by CCK8 experiments, which showed a significant decrease in alkaline phosphatase activity, a decrease in calcium nodules as shown by alizarin red staining, an increase in apoptosis and reactive oxygen species as detected by flow cytometry, as well as a decrease in the expression of osteogenesis-related genes and proteins. Five target miRNAs were identified: miR-706, miR-296-3p, miR-7011-5p, miR-145a-3p, and miR-149-3p. miR-145a-3p, which had the most pronounced and stable expression trend and was the most highly expressed miRNA, was chosen as the target of this experiment by qRT-PCR analysis. -145a-3p, as the subject of this experiment. Knockdown of miR-145a-3p in MC3T3-E1 cells after dexamethasone action significantly improved the expression of their impaired osteogenic indicators. It was shown that after knocking down the target miRNA, alkaline phosphatase staining was significantly increased compared with the dexamethasone-stimulated group and approached the level of the blank control group. Meanwhile, the expression of osteogenic function-related proteins and genes also increased in the dexamethasone-stimulated group after knocking down miR-145a-3p, and approached the level of the blank control group. A direct targeting relationship between miR-145a-3p and Runx2 was indeed confirmed by luciferase reporter gene assays, qRT-PCR and Western blot experiments. CONCLUSIONS The results indicated that dexamethasone impaired the osteogenic differentiation ability of MC3T3-E1 cells by inducing the up-regulation of miR-145a-3p expression. MiR-145a-3p inhibited the osteogenic differentiation ability of MC3T3-E1 cells by targeting and suppressing the expression level of Runx2 protein. Inhibition of miR-145a-3p levels significantly improved the osteogenic differentiation ability of MC3T3-E1 cells.
Collapse
Affiliation(s)
- Hang Wu
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xinghua Liao
- Central People's Hospital of Zhanjiang, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingrui Wu
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Xie
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Sicheng Ding
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yiren Chen
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lijun Song
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
14
|
Jayasree PJ, Dutta S, Karemore P, Khandelia P. Crosstalk Between m6A RNA Methylation and miRNA Biogenesis in Cancer: An Unholy Nexus. Mol Biotechnol 2024; 66:3042-3058. [PMID: 37831403 DOI: 10.1007/s12033-023-00921-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
N6-methyladenosine (m6A) is one of the most prevalent internal reversible chemical modification of RNAs in eukaryotes, which has attracted widespread attention recently owing to its regulatory roles in a plethora of normal developmental processes and human diseases like cancer. Deposition of the m6A mark on RNAs is mediated by the dynamic interplay between m6A regulatory proteins such as m6A RNA methyltransferases (m6A writers), m6A RNA demethylases (m6A erasers) and m6A RNA binding proteins (m6A readers). m6A regulators are ectopically expressed in various cancer types, often leading to aberrant expression of tumor-suppressor and oncogenic mRNAs either directly or indirectly via regulating the biogenesis of non-coding RNAs like miRNAs. miRNAs are tiny regulators of gene expression, which often impact various hallmarks of cancer and thus influence tumorigenesis. It is becoming increasingly clear that m6A RNA modification impacts biogenesis and function of miRNAs, and recent studies have interestingly, uncovered many miRNAs whose biogenesis and function are regulated by m6A writers, erasers and readers. In this review, we discuss various mechanisms by which m6A RNA methylation regulates miRNA biogenesis, the functional crosstalk between m6A RNA methylation and miRNAs and how it modulates various aspects of tumorigenesis. The potential of m6A RNA methylation regulated miRNAs as biomarkers and novel therapeutic targets to treat various cancers is also addressed.
Collapse
Affiliation(s)
- P J Jayasree
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India
| | - Shalmoli Dutta
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India
| | - Pragati Karemore
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
15
|
Gao W, Miao X, Xu T. Wilms tumor 1-associated protein mediated m6A modification promotes osteogenic differentiation of stem cells from human exfoliated deciduous teeth. J Dent Sci 2024; 19:2305-2314. [PMID: 39347097 PMCID: PMC11437296 DOI: 10.1016/j.jds.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/20/2024] [Indexed: 10/01/2024] Open
Affiliation(s)
- Weiheng Gao
- Department of Emergency, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Child Health, Hangzhou, China
| | - Xixi Miao
- National Clinical Research Center for Child Health, Hangzhou, China
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Xu
- Department of Stomatology, Nanjing Geriatric Hospital, Nanjing, China
| |
Collapse
|
16
|
Liu XW, Xu HW, Yi YY, Zhang SB, Chang SJ, Pan W, Wang SJ. Inhibition of Mettl3 ameliorates osteoblastic senescence by mitigating m6A modifications on Slc1a5 via Igf2bp2-dependent mechanisms. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167273. [PMID: 38844111 DOI: 10.1016/j.bbadis.2024.167273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Age-related osteoporosis is characterized by a marked decrease in the number of osteoblasts, which has been partly attributed to the senescence of cells of the osteoblastic lineage. Epigenetic studies have provided new insights into the mechanisms of current osteoporosis treatments and bone repair pathophysiology. N6-methyladenosine (m6A) is a novel transcript modification that plays a major role in cellular senescence and is essential for skeletal development and internal environmental stability. Bioinformatics analysis revealed that the expression of the m6A reading protein Igf2bp2 was significantly higher in osteoporosis patients. However, the role of Igf2bp2 in osteoblast senescence has not been elucidated. In this study, we found that Igf2bp2 levels are increased in ageing osteoblasts induced by multiple repetition and H2O2. Increasing Igf2bp2 expression promotes osteoblast senescence by increasing the stability of Slc1a5 mRNA and inhibiting cell cycle progression. Additionally, Mettl3 was identified as Slc1a5 m6A-methylated protein with increased m6A modification. The knockdown of Mettl3 in osteoblasts inhibits the reduction of senescence, whereas the overexpression of Mettl3 promotes the senescence of osteoblasts. We found that administering Cpd-564, a specific inhibitor of Mettl3, induced increased bone mass and decreased bone marrow fat accumulation in aged rats. Notably, in an OVX rat model, Igf2bp2 small interfering RNA delivery also induced an increase in bone mass and decreased fat accumulation in the bone marrow. In conclusion, our study demonstrated that the Mettl3/Igf2bp2-Slc1a5 axis plays a key role in the promotion of osteoblast senescence and age-related bone loss.
Collapse
Affiliation(s)
- Xiao-Wei Liu
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hao-Wei Xu
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yu-Yang Yi
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shu-Bao Zhang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Sheng-Jie Chang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wei Pan
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shan-Jin Wang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
17
|
Xu GE, Zhao X, Li G, Gokulnath P, Wang L, Xiao J. The landscape of epigenetic regulation and therapeutic application of N 6-methyladenosine modifications in non-coding RNAs. Genes Dis 2024; 11:101045. [PMID: 38988321 PMCID: PMC11233902 DOI: 10.1016/j.gendis.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/18/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2024] Open
Abstract
RNA N6-methyladenosine (m6A) methylation is the most abundant and conserved RNA modification in eukaryotes. It participates in the regulation of RNA metabolism and various pathophysiological processes. Non-coding RNAs (ncRNAs) are defined as small or long transcripts which do not encode proteins and display numerous biological regulatory functions. Similar to mRNAs, m6A deposition is observed in ncRNAs. Studying RNA m6A modifications on ncRNAs is of great importance specifically to deepen our understanding of their biological roles and clinical implications. In this review, we summarized the recent research findings regarding the mutual regulation between RNA m6A modification and ncRNAs (with a specific focus on microRNAs, long non-coding RNAs, and circular RNAs) and their functions. We also discussed the challenges of m6A-containing ncRNAs and RNA m6A as therapeutic targets in human diseases and their future perspective in translational roles.
Collapse
Affiliation(s)
- Gui-E Xu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xuan Zhao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Lijun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
18
|
de la Cruz-Thea B, Natali L, Ho-Xuan H, Bruckmann A, Coll-Bonfill N, Strieder N, Peinado VI, Meister G, Musri MM. Differentiation and Growth-Arrest-Related lncRNA ( DAGAR): Initial Characterization in Human Smooth Muscle and Fibroblast Cells. Int J Mol Sci 2024; 25:9497. [PMID: 39273443 PMCID: PMC11394763 DOI: 10.3390/ijms25179497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Vascular smooth muscle cells (SMCs) can transition between a quiescent contractile or "differentiated" phenotype and a "proliferative-dedifferentiated" phenotype in response to environmental cues, similar to what in occurs in the wound healing process observed in fibroblasts. When dysregulated, these processes contribute to the development of various lung and cardiovascular diseases such as Chronic Obstructive Pulmonary Disease (COPD). Long non-coding RNAs (lncRNAs) have emerged as key modulators of SMC differentiation and phenotypic changes. In this study, we examined the expression of lncRNAs in primary human pulmonary artery SMCs (hPASMCs) during cell-to-cell contact-induced SMC differentiation. We discovered a novel lncRNA, which we named Differentiation And Growth Arrest-Related lncRNA (DAGAR) that was significantly upregulated in the quiescent phenotype with respect to proliferative SMCs and in cell-cycle-arrested MRC5 lung fibroblasts. We demonstrated that DAGAR expression is essential for SMC quiescence and its knockdown hinders SMC differentiation. The treatment of quiescent SMCs with the pro-inflammatory cytokine Tumor Necrosis Factor (TNF), a known inducer of SMC dedifferentiation and proliferation, elicited DAGAR downregulation. Consistent with this, we observed diminished DAGAR expression in pulmonary arteries from COPD patients compared to non-smoker controls. Through pulldown experiments followed by mass spectrometry analysis, we identified several proteins that interact with DAGAR that are related to cell differentiation, the cell cycle, cytoskeleton organization, iron metabolism, and the N-6-Methyladenosine (m6A) machinery. In conclusion, our findings highlight DAGAR as a novel lncRNA that plays a crucial role in the regulation of cell proliferation and SMC differentiation. This paper underscores the potential significance of DAGAR in SMC and fibroblast physiology in health and disease.
Collapse
MESH Headings
- Humans
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Fibroblasts/metabolism
- Cell Differentiation/genetics
- Myocytes, Smooth Muscle/metabolism
- Cell Proliferation/genetics
- Pulmonary Artery/metabolism
- Pulmonary Artery/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/genetics
- Pulmonary Disease, Chronic Obstructive/pathology
- Cells, Cultured
Collapse
Affiliation(s)
- Benjamin de la Cruz-Thea
- Mercedes and Martin Ferreyra Medical Research Institute, National Council for Scientific and Technical Research, National University of Córdoba (INIMEC-CONICET-UNC), Córdoba 5016, Argentina
| | - Lautaro Natali
- Mercedes and Martin Ferreyra Medical Research Institute, National Council for Scientific and Technical Research, National University of Córdoba (INIMEC-CONICET-UNC), Córdoba 5016, Argentina
| | - Hung Ho-Xuan
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Astrid Bruckmann
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Núria Coll-Bonfill
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Nicholas Strieder
- NGS-Core, LIT-Leibniz-Institute for Immunotherapy, 93053 Regensburg, Germany
| | - Víctor I Peinado
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Department of Pulmonary Medicine, Hospital Clínic, Biomedical Research Institut August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
- Biomedical Research Networking Center in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Melina M Musri
- Mercedes and Martin Ferreyra Medical Research Institute, National Council for Scientific and Technical Research, National University of Córdoba (INIMEC-CONICET-UNC), Córdoba 5016, Argentina
| |
Collapse
|
19
|
Wu F, Song C, Zhen G, Jin Q, Li W, Liang X, Xu W, Guo W, Yang Y, Dong W, Jiang A, Kong P, Yan J. Exosomes derived from BMSCs in osteogenic differentiation promote type H blood vessel angiogenesis through miR-150-5p mediated metabolic reprogramming of endothelial cells. Cell Mol Life Sci 2024; 81:344. [PMID: 39133273 PMCID: PMC11335269 DOI: 10.1007/s00018-024-05371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/08/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
Osteogenesis is tightly coupled with angiogenesis spatiotemporally. Previous studies have demonstrated that type H blood vessel formed by endothelial cells with high expression of CD31 and Emcn (CD31hi Emcnhi ECs) play a crucial role in bone regeneration. The mechanism of the molecular communication around CD31hi Emcnhi ECs and bone mesenchymal stem cells (BMSCs) in the osteogenic microenvironment is unclear. This study indicates that exosomes from bone mesenchymal stem cells with 7 days osteogenic differentiation (7D-BMSCs-exo) may promote CD31hi Emcnhi ECs angiogenesis, which was verified by tube formation assay, qRT-PCR, Western blot, immunofluorescence staining and µCT assays etc. in vitro and in vivo. Furthermore, by exosomal miRNA microarray and WGCNA assays, we identified downregulated miR-150-5p as the most relative hub gene coupling osteogenic differentiation and type H blood vessel angiogenesis. With bioinformatics assays, dual luciferase reporter experiments, qRT-PCR and Western blot assays, SOX2(SRY-Box Transcription Factor 2) was confirmed as a novel downstream target gene of miR-150-5p in exosomes, which might be a pivotal mechanism regulating CD31hi Emcnhi ECs formation. Additionally, JC-1 immunofluorescence staining, Western blot and seahorse assay results showed that the overexpression of SOX2 could shift metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis to enhance the CD31hi Emcnhi ECs formation. The PI3k/Akt signaling pathway might play a key role in this process. In summary, BMSCs in osteogenic differentiation might secrete exosomes with low miR-150-5p expression to induce type H blood vessel formation by mediating SOX2 overexpression in ECs. These findings might reveal a molecular mechanism of osteogenesis coupled with type H blood vessel angiogenesis in the osteogenic microenvironment and provide a new therapeutic target or cell-free remedy for osteogenesis impaired diseases.
Collapse
Affiliation(s)
- Feng Wu
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Chengchao Song
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Guanqi Zhen
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Qin Jin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150081, P. R. China
| | - Wei Li
- School of Humanities and Social Sciences, Harbin Medical University, Harbin, Heilongjiang Province, 150081, P.R. China
| | - Xiongjie Liang
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
- Department of Orthopedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou, Guangxi Province, 545000, P.R. China
| | - Wenbo Xu
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Wenhui Guo
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Yang Yang
- Department of Respiratory Diseases, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, 150081, P.R. China
| | - Wei Dong
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, 150081, P. R. China
| | - Anlong Jiang
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Pengyu Kong
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Jinglong Yan
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China.
| |
Collapse
|
20
|
Yalaev B, Tyurin A, Akhiiarova K, Khusainova R. Hypomethylation of the RUNX2 Gene Is a New Potential Biomarker of Primary Osteoporosis in Men and Women. Int J Mol Sci 2024; 25:7312. [PMID: 39000419 PMCID: PMC11242095 DOI: 10.3390/ijms25137312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
The search for the molecular markers of osteoporosis (OP), based on the analysis of differential deoxyribonucleic acid (DNA) methylation in bone cells and peripheral blood cells, is promising for developments in the field of the early diagnosis and targeted therapy of the disease. The Runt-related transcription factor 2 (RUNX2) gene is one of the key genes of bone metabolism, which is of interest in the search for epigenetic signatures and aberrations associated with the risk of developing OP. Based on pyrosequencing, the analysis of the RUNX2 methylation profile from a pool of peripheral blood cells in men and women over 50 years of age of Russian ethnicity from the Volga-Ural region of Russia was carried out. The level of DNA methylation in three CpG sites of the RUNX2 gene was assessed and statistically significant hypomethylation was revealed in all three studied CpG sites in men (U = 746.5, p = 0.004; U = 784, p = 0.01; U = 788.5, p = 0.01, respectively) and in one CpG site in women (U = 537, p = 0.03) with primary OP compared with control. In the general sample, associations were preserved for the first CpG site (U = 2561, p = 0.0001766). The results were obtained for the first time and indicate the existence of potentially new epigenetic signatures of RUNX2 in individuals with OP.
Collapse
Affiliation(s)
- Bulat Yalaev
- Endocrinology Research Centre, Dmitriya Ulianova Street, 11, 117036 Moscow, Russia; (B.Y.); (R.K.)
| | - Anton Tyurin
- Internal Medicine & Clinical Psychology Department, Bashkir State Medical University, 450008 Ufa, Russia;
| | - Karina Akhiiarova
- Internal Medicine & Clinical Psychology Department, Bashkir State Medical University, 450008 Ufa, Russia;
| | - Rita Khusainova
- Endocrinology Research Centre, Dmitriya Ulianova Street, 11, 117036 Moscow, Russia; (B.Y.); (R.K.)
- Medical Genetics Department, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
21
|
Lu Y, Wang W, Yang B, Cao G, Du Y, Liu J. Screening and Analysis of Core Genes for Osteoporosis Based on Bioinformatics Analysis and Machine Learning Algorithms. Indian J Orthop 2024; 58:944-954. [PMID: 38948379 PMCID: PMC11208356 DOI: 10.1007/s43465-024-01152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/08/2024] [Indexed: 07/02/2024]
Abstract
Objective This study aimed to identify osteoporosis-related core genes using bioinformatics analysis and machine learning algorithms. Methods mRNA expression profiles of osteoporosis patients were obtained from the Gene Expression Profiles (GEO) database, with GEO35958 and GEO84500 used as training sets, and GEO35957 and GSE56116 as validation sets. Differential gene expression analysis was performed using the R software "limma" package. A weighted gene co-expression network analysis (WGCNA) was conducted to identify key modules and modular genes of osteoporosis. Kyoto Gene and Genome Encyclopedia (KEGG), Gene Ontology (GO), and gene set enrichment analysis (GSEA) were performed on the differentially expressed genes. LASSO, SVM-RFE, and RF machine learning algorithms were used to screen for core genes, which were subsequently validated in the validation set. Predicted microRNAs (miRNAs) from the core genes were also analyzed, and differential miRNAs were validated using quantitative real-time PCR (qPCR) experiments. Results A total of 1280 differentially expressed genes were identified. A disease key module and 215 module key genes were identified by WGCNA. Three core genes (ADAMTS5, COL10A1, KIAA0040) were screened by machine learning algorithms, and COL10A1 had high diagnostic value for osteoporosis. Four core miRNAs (has-miR-148a-3p, has-miR-195-3p, has-miR-148b-3p, has-miR-4531) were found by intersecting predicted miRNAs with differential miRNAs from the dataset (GSE64433, GSE74209). The qPCR experiments validated that the expression of has-miR-195-3p, has-miR-148b-3p, and has-miR-4531 was significantly increased in osteoporosis patients. Conclusion This study demonstrated the utility of bioinformatics analysis and machine learning algorithms in identifying core genes associated with osteoporosis.
Collapse
Affiliation(s)
- Yongxia Lu
- Department of Endocrinology and Metabolism, Chengdu Seventh People’s Hospital, Chengdu, China
| | - Wei Wang
- Department of Endocrinology and Metabolism, Chengdu Seventh People’s Hospital, Chengdu, China
| | - Baiyuan Yang
- Department of Neurology, Chengdu Seventh People’s Hospital, Chengdu, China
| | - Gui Cao
- Department of Endocrinology and Metabolism, Chengdu Seventh People’s Hospital, Chengdu, China
| | - Yue Du
- Department of Endocrinology and Metabolism, Chengdu Seventh People’s Hospital, Chengdu, China
| | - JingYu Liu
- Department of Neurology, Chengdu Seventh People’s Hospital, Chengdu, China
| |
Collapse
|
22
|
Gu T, Guo R, Fang Y, Xiao Y, Chen L, Li N, Ge XK, Shi Y, Wu J, Yan M, Yu J, Li Z. METTL3-mediated pre-miR-665/DLX3 m 6A methylation facilitates the committed differentiation of stem cells from apical papilla. Exp Mol Med 2024; 56:1426-1438. [PMID: 38825638 PMCID: PMC11263550 DOI: 10.1038/s12276-024-01245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 06/04/2024] Open
Abstract
Methyltransferase-like 3 (METTL3) is a crucial element of N6-methyladenosine (m6A) modifications and has been extensively studied for its involvement in diverse biological and pathological processes. In this study, we explored how METTL3 affects the differentiation of stem cells from the apical papilla (SCAPs) into odonto/osteoblastic lineages through gain- and loss-of-function experiments. The m6A modification levels were assessed using m6A dot blot and activity quantification experiments. In addition, we employed Me-RIP microarray experiments to identify specific targets modified by METTL3. Furthermore, we elucidated the molecular mechanism underlying METTL3 function through dual-luciferase reporter gene experiments and rescue experiments. Our findings indicated that METTL3+/- mice exhibited significant root dysplasia and increased bone loss. The m6A level and odonto/osteoblastic differentiation capacity were affected by the overexpression or inhibition of METTL3. This effect was attributed to the acceleration of pre-miR-665 degradation by METTL3-mediated m6A methylation in cooperation with the "reader" protein YTHDF2. Additionally, the targeting of distal-less homeobox 3 (DLX3) by miR-665 and the potential direct regulation of DLX3 expression by METTL3, mediated by the "reader" protein YTHDF1, were demonstrated. Overall, the METTL3/pre-miR-665/DLX3 pathway might provide a new target for SCAP-based tooth root/maxillofacial bone tissue regeneration.
Collapse
Affiliation(s)
- Tingjie Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Rong Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuxin Fang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ya Xiao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Luyao Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Na Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xingyun Kelesy Ge
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR, China
| | - Yijia Shi
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jintao Wu
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ming Yan
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jinhua Yu
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| | - Zehan Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China.
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
23
|
Zhang Q, Li J, Wang C, Li Z, Luo P, Gao F, Sun W. N6-Methyladenosine in Cell-Fate Determination of BMSCs: From Mechanism to Applications. RESEARCH (WASHINGTON, D.C.) 2024; 7:0340. [PMID: 38665846 PMCID: PMC11045264 DOI: 10.34133/research.0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 04/28/2024]
Abstract
The methylation of adenosine base at the nitrogen-6 position is referred to as "N6-methyladenosine (m6A)" and is one of the most prevalent epigenetic modifications in eukaryotic mRNA and noncoding RNA (ncRNA). Various m6A complex components known as "writers," "erasers," and "readers" are involved in the function of m6A. Numerous studies have demonstrated that m6A plays a crucial role in facilitating communication between different cell types, hence influencing the progression of diverse physiological and pathological phenomena. In recent years, a multitude of functions and molecular pathways linked to m6A have been identified in the osteogenic, adipogenic, and chondrogenic differentiation of bone mesenchymal stem cells (BMSCs). Nevertheless, a comprehensive summary of these findings has yet to be provided. In this review, we primarily examined the m6A alteration of transcripts associated with transcription factors (TFs), as well as other crucial genes and pathways that are involved in the differentiation of BMSCs. Meanwhile, the mutual interactive network between m6A modification, miRNAs, and lncRNAs was intensively elucidated. In the last section, given the beneficial effect of m6A modification in osteogenesis and chondrogenesis of BMSCs, we expounded upon the potential utility of m6A-related therapeutic interventions in the identification and management of human musculoskeletal disorders manifesting bone and cartilage destruction, such as osteoporosis, osteomyelitis, osteoarthritis, and bone defect.
Collapse
Affiliation(s)
- Qingyu Zhang
- Department of Orthopedics,
Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, China
| | - Junyou Li
- School of Mechanical Engineering,
Sungkyunkwan University, Suwon 16419, South Korea
| | - Cheng Wang
- Department of Orthopaedic Surgery,
Peking UniversityThird Hospital, Peking University, Beijing 100191, China
| | - Zhizhuo Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital,
the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Pan Luo
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Fuqiang Gao
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wei Sun
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing 100029, China
- Department of Orthopaedic Surgery of the Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Zhou S, Zhang G, Wang K, Yang Z, Tan Y. METTL3 potentiates osteogenic differentiation of bone marrow mesenchymal stem cells via IGF2BP1/m6A/RUNX2. Oral Dis 2024; 30:1313-1321. [PMID: 36705430 DOI: 10.1111/odi.14526] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Maxillofacial bone defect is a critical obstacle for maxillofacial tumors and periodontal diseases. The osteogenic differentiation of bone marrow mesenchymal stem cells BMSCs is critical for maxillofacial osteogenesis and functional reconstruction. Here, our study focused on the functions and mechanism of N6-methyladenosine during BMSCs osteogenic differentiation BMSCs. SUBJECT AND METHODS Biofunctions of BMSCs were detected using ALP activity and alizarin red S staining assays. The molecular interaction within RNA/protein was identified by RNA immunoprecipitation and/or methylation immunoprecipitation. RESULTS Results indicated that m6A 'writer' METTL3 upregulated during the osteogenic differentiation of BMSCs upon osteogenic induction. Functionally, assays' results revealed that METTL3 overexpression promoted the osteogenic differentiation of BMSC, while METTL3 knockdown repressed the osteogenic differentiation. Mechanistically, results revealed that RUNX2 mRNA was a m6A-methylated target by METTL3 at its 3'-UTR. Moreover, m6A reader IGF2BP1 recognized the m6A site on RUNX2 mRNA to enhance its stability. CONCLUSION In conclusion, our findings revealed the novel roles of METTL3 in BMSCs osteogenic differentiation via the IGF2BP1/m6A/RUNX2 signaling axis of m6A-dependent manner, providing a potential therapeutic target for maxillofacial bone defects treatment.
Collapse
Affiliation(s)
- Shuzuo Zhou
- Department of Stomatology, Xin Qiao Hospital, Chongqing, China
| | - Gang Zhang
- Department of Stomatology, Xin Qiao Hospital, Chongqing, China
| | - Kun Wang
- Department of Stomatology, Xin Qiao Hospital, Chongqing, China
| | - Zhong Yang
- Department of Stomatology, Xin Qiao Hospital, Chongqing, China
| | - Yinghui Tan
- Department of Stomatology, Xin Qiao Hospital, Chongqing, China
| |
Collapse
|
25
|
Yao Y, Liu P, Li Y, Wang W, Jia H, Bai Y, Yuan Z, Yang Z. Regulatory role of m 6A epitranscriptomic modifications in normal development and congenital malformations during embryogenesis. Biomed Pharmacother 2024; 173:116171. [PMID: 38394844 DOI: 10.1016/j.biopha.2024.116171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
The discovery of N6-methyladenosine (m6A) methylation and its role in translation has led to the emergence of a new field of research. Despite accumulating evidence suggesting that m6A methylation is essential for the pathogenesis of cancers and aging diseases by influencing RNA stability, localization, transformation, and translation efficiency, its role in normal and abnormal embryonic development remains unclear. An increasing number of studies are addressing the development of the nervous and gonadal systems during embryonic development, but only few are assessing that of the immune, hematopoietic, urinary, and respiratory systems. Additionally, these studies are limited by the requirement for reliable embryonic animal models and the difficulty in collecting tissue samples of fetuses during development. Multiple studies on the function of m6A methylation have used suitable cell lines to mimic the complex biological processes of fetal development or the early postnatal phase; hence, the research is still in the primary stage. Herein, we discuss current advances in the extensive biological functions of m6A methylation in the development and maldevelopment of embryos/fetuses and conclude that m6A modification occurs extensively during fetal development. Aberrant expression of m6A regulators is probably correlated with single or multiple defects in organogenesis during the intrauterine life. This comprehensive review will enhance our understanding of the pivotal role of m6A modifications involved in fetal development and examine future research directions in embryogenesis.
Collapse
Affiliation(s)
- Yifan Yao
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peiqi Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huimin Jia
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
26
|
Tatullo M, Piattelli A, Ruggiero R, Marano RM, Iaculli F, Rengo C, Papallo I, Palumbo G, Chiesa R, Paduano F, Spagnuolo G. Functionalized magnesium alloys obtained by superplastic forming process retain osteoinductive and antibacterial properties: An in-vitro study. Dent Mater 2024; 40:557-562. [PMID: 38326212 DOI: 10.1016/j.dental.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVES This study aimed to investigate the biocompatibility, osteogenic and antibacterial activity of biomedical devices based on Magnesium (Mg) Alloys manufactured by Superplastic Forming process (SPF) and subjected to Hydrothermal (HT) and Sol-Gel Treatment (Sol-Gel). METHODS Mg-SPF devices subjected to Hydrothermal (Mg-SPF+HT) and Sol-Gel Treatment (Mg-SPF+Sol-Gel) were investigated. The biocompatibility of Mg-SPF+Sol-Gel and Mg-SPF+HT devices was observed by indirect and direct cytotoxicity assays, whereas the colonization of sample surfaces was assessed by confocal microscopy. qRT-PCR analysis and microbial growth curve analyses were employed to evaluate the osteogenic and antibacterial activity of both SPF-Mg treated devices, respectively. RESULTS Mg-SPF+HT and Mg-SPF+Sol-Gel showed a high degree of biocompatibility. Analysis of mRNA expression of osteogenic genes in cells cultured on Mg-treated devices revealed a significant upregulation of the expression levels of BMP2 and Runx-2. Furthermore, the bacterial growth in strains developed in contact with both the Mg-SPF+HT and Mg-SPF+Sol-Gel devices was lower than that observed in the control. SIGNIFICANCE Hydrothermal and Sol-Gel Treatments of Mg alloys obtained through the SPF process demonstrated bioactive, osteogenic and antibacterial activity, offering a promising alternative to conventional Mg-based devices. The obtained Mg-based materials may have the potential to enhance the tunability of temporary devices in maxillary reconstruction, eliminating the need for second surgeries, and ensuring a good bone reconstruction and a reduced implant failure rate due to bacterial infections.
Collapse
Affiliation(s)
- Marco Tatullo
- Department of Translational Biomedicine and Neuroscience, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Roberta Ruggiero
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy
| | - Rosa Maria Marano
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy
| | - Flavia Iaculli
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Carlo Rengo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Ida Papallo
- CeSMA, University of Naples Federico II, Corso Nicolangelo Protopisani, 80146 Naples, Italy
| | - Gianfranco Palumbo
- Department of Mechanics, Polytechnic University of Bari, 70124 Bari, Italy
| | - Roberto Chiesa
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, 20135 Milan, Italy
| | - Francesco Paduano
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
27
|
Liang J, Yi Q, Liu Y, Li J, Yang Z, Sun W, Sun W. Recent advances of m6A methylation in skeletal system disease. J Transl Med 2024; 22:153. [PMID: 38355483 PMCID: PMC10868056 DOI: 10.1186/s12967-024-04944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Skeletal system disease (SSD) is defined as a class of chronic disorders of skeletal system with poor prognosis and causes heavy economic burden. m6A, methylation at the N6 position of adenosine in RNA, is a reversible and dynamic modification in posttranscriptional mRNA. Evidences suggest that m6A modifications play a crucial role in regulating biological processes of all kinds of diseases, such as malignancy. Recently studies have revealed that as the most abundant epigentic modification, m6A is involved in the progression of SSD. However, the function of m6A modification in SSD is not fully illustrated. Therefore, make clear the relationship between m6A modification and SSD pathogenesis might provide novel sights for prevention and targeted treatment of SSD. This article will summarize the recent advances of m6A regulation in the biological processes of SSD, including osteoporosis, osteosarcoma, rheumatoid arthritis and osteoarthritis, and discuss the potential clinical value, research challenge and future prospect of m6A modification in SSD.
Collapse
Affiliation(s)
- Jianhui Liang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646099, Sichuan, China
| | - Yang Liu
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Jiachen Li
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Zecheng Yang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
28
|
Chen X, Qin Y, Wang X, Lei H, Zhang X, Luo H, Guo C, Sun W, Fang S, Qin W, Jin Z. METTL3-Mediated m6A Modification Regulates the Osteogenic Differentiation through LncRNA CUTALP in Periodontal Mesenchymal Stem Cells of Periodontitis Patients. Stem Cells Int 2024; 2024:3361794. [PMID: 38283119 PMCID: PMC10817817 DOI: 10.1155/2024/3361794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/29/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Objective Periodontitis is a chronic inflammatory disease that causes loss of periodontal support tissue. Our objective was to investigate the mechanism by which METTL3-mediated N6-methyladenosine modification regulates the osteogenic differentiation through lncRNA in periodontal mesenchymal stem cells in patients with periodontitis (pPDLSCs). Material and Methods. We carried out a series of experiments, including methylated RNA immunoprecipitation-PCR, quantitative real-time polymerase chain reaction, and western blotting. The expressions of alkaline phosphatase (ALP), Runx2, Col1, Runx2 protein level, ALP staining, and Alizarin red staining were used to demonstrate the degree of osteogenic differentiation. Results We found that METTL3 was the most significantly differentially expressed methylation-related enzyme in pPDLSCs and promoted osteogenic differentiation of pPDLSCs. METTL3 regulated the stability and expression of lncRNA CUTALP, while lncRNA CUTALP promoted osteogenic differentiation of pPDLSCs by inhibiting miR-30b-3p. At different time points of osteogenic differentiation, lncRNA CUTALP expression was positively correlated with Runx2, while miR-30b-3p showed the opposite pattern. The attenuated osteogenic differentiation induced by METTL3 knockdown was recovered by lncRNA CUTALP overexpression. The attenuated osteogenic differentiation induced by lncRNA CUTALP knockdown could be reversed by the miR-30b-3p inhibitor. Conclusions In summary, METTL3/lncRNA CUTALP/miR-30b-3p/Runx2 is a regulatory network in the osteogenic differentiation of pPDLSCs.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Yuan Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Xian Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Hao Lei
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 730070, China
| | - Xiaochen Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Houzhuo Luo
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Changgang Guo
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Weifu Sun
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Shishu Fang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Wen Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Zuolin Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| |
Collapse
|
29
|
Gu Y, Song Y, Pan Y, Liu J. The essential roles of m 6A modification in osteogenesis and common bone diseases. Genes Dis 2024; 11:335-345. [PMID: 37588215 PMCID: PMC10425797 DOI: 10.1016/j.gendis.2023.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/30/2023] [Indexed: 03/30/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent modification in the eukaryotic transcriptome and has a wide range of functions in coding and noncoding RNAs. It affects the fate of the modified RNA, including its stability, splicing, and translation, and plays an important role in post-transcriptional regulation. Bones play a key role in supporting and protecting muscles and other organs, facilitating the movement of the organism, ensuring blood production, etc. Bone diseases such as osteoarthritis, osteoporosis, and bone tumors are serious public health problems. The processes of bone development and osteogenic differentiation require the precise regulation of gene expression through epigenetic mechanisms including histone, DNA, and RNA modifications. As a reversible dynamic epigenetic mark, m6A modifications affect nearly every important biological process, cellular component, and molecular function, including skeletal development and homeostasis. In recent years, studies have shown that m6A modification is involved in osteogenesis and bone-related diseases. In this review, we summarized the proteins involved in RNA m6A modification and the latest progress in elucidating the regulatory role of m6A modification in bone formation and stem cell directional differentiation. We also discussed the pathological roles and potential molecular mechanisms of m6A modification in bone-related diseases like osteoporosis and osteosarcoma and suggested potential areas for new strategies that could be used to prevent or treat bone defects and bone diseases.
Collapse
Affiliation(s)
- Yuxi Gu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yidan Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yihua Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
30
|
Wei H, Xu Y, Lin L, Li Y, Zhu X. A review on the role of RNA methylation in aging-related diseases. Int J Biol Macromol 2024; 254:127769. [PMID: 38287578 DOI: 10.1016/j.ijbiomac.2023.127769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Senescence is the underlying mechanism of organism aging and is robustly regulated at the post-transcriptional level. This regulation involves the chemical modifications, of which the RNA methylation is the most common. Recently, a rapidly growing number of studies have demonstrated that methylation is relevant to aging and aging-associated diseases. Owing to the rapid development of detection methods, the understanding on RNA methylation has gone deeper. In this review, we summarize the current understanding on the influence of RNA modification on cellular senescence, with a focus on mRNA methylation in aging-related diseases, and discuss the emerging potential of RNA modification in diagnosis and therapy.
Collapse
Affiliation(s)
- Hong Wei
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Department of Neurology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yuhao Xu
- Medical School, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Li Lin
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yuefeng Li
- Medical School, Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| | - Xiaolan Zhu
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| |
Collapse
|
31
|
Zeng Y, Wang F, Li S, Song B. Regulatory Network of Methyltransferase-Like 3 in Stem Cells: Mechanisms and Medical Implications. Cell Transplant 2024; 33:9636897241282792. [PMID: 39466679 PMCID: PMC11528761 DOI: 10.1177/09636897241282792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 10/30/2024] Open
Abstract
Stem cells have the potential to replace defective cells in several human diseases by depending on their self-renewal and differentiation capacities that are controlled by genes. Currently, exploring the regulation mechanism for stem cell capacities from the perspective of methyltransferase-like 3 (METTL3)-mediated N6-methyladenosine modification has obtained great advance, which functions by regulating target genes post-transcriptionally. However, reviews that interpret the regulatory network of METTL3 in stem cells are still lacking. In this review, we systematically analyze the available publications that report the role and mechanisms of METTL3 in stem cells, including embryonic stem cells, pluripotent stem cells, mesenchymal stem cells, and cancer stem cells. The analysis of such publications suggests that METTL3 controls stem cell fates and is indispensable for maintaining its normal capacities. However, its dysfunction induces various pathologies, particularly cancers. To sum up, this review suggests METTL3 as a key regulator for stem cell capacities, with further exploration potential in translational and clinical fields. In conclusion, this review promotes the understanding of how METTL3 functions in stem cells, which provides a valuable reference for further fundamental studies and clinical applications.
Collapse
Affiliation(s)
- Yan Zeng
- Department of Pediatrics, People’s Hospital of Deyang City, Affiliated Hospital of Chengdu Medical College, Deyang, China
| | - Fengyang Wang
- Department of Pediatrics, People’s Hospital of Deyang City, Affiliated Hospital of Chengdu Medical College, Deyang, China
| | - Silu Li
- Department of Pediatrics, People’s Hospital of Deyang City, Affiliated Hospital of Chengdu Medical College, Deyang, China
| | - Bin Song
- Department of Nephrology, People’s Hospital of Deyang City, Affiliated Hospital of Chengdu Medical College, Deyang, China
| |
Collapse
|
32
|
Luo G, Gong R, Ai Y, Zhu T, Ren Z. Identification of N6-Methyladenosine-Related Factors and the Prediction of the Regulatory Mechanism of Hair Follicle Development in Rex and Hycole Rabbits. BIOLOGY 2023; 12:1448. [PMID: 37998047 PMCID: PMC10669094 DOI: 10.3390/biology12111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Hair follicle development directly affects the development of the rabbit fur industry. The growth and development of a hair follicle is modified and regulated by many genes and mechanisms. M6A is an important RNA modification. However, there are few studies on the effects of the regulation of m6A on hair follicle growth and development. In this study, hematoxylin-eosin (HE) staining was used to explore the difference in hair follicle development between Rex rabbits and Hycole rabbits, and we performed m6A sequencing to identify the key genes with m6A modification in hair follicle growth. The results showed that the hair length, coarse hair percentage, primary hair follicle ratio, and skin thickness of Hycole rabbits were significantly higher than those of Rex rabbits. However, the proportion of secondary hair follicles in Hycole rabbits was significantly lower than that in Rex rabbits. In addition, we found five differential methylases, 20 differential genes, and 24 differential signaling pathways related to hair growth and development. The results of the Sankey diagram showed that 12 genes were related to 13 signal pathways. Finally, we found that five methylases regulated the development of hair follicles through differential genes/signal pathways. These findings laid a molecular foundation for the function of m6A modification in hair development.
Collapse
Affiliation(s)
- Gang Luo
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (G.L.); (R.G.); (Y.A.); (T.Z.)
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Ruiguang Gong
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (G.L.); (R.G.); (Y.A.); (T.Z.)
| | - Yaotian Ai
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (G.L.); (R.G.); (Y.A.); (T.Z.)
| | - Tongyan Zhu
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (G.L.); (R.G.); (Y.A.); (T.Z.)
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (G.L.); (R.G.); (Y.A.); (T.Z.)
| |
Collapse
|
33
|
Ji R, Wu C, Yao J, Xu J, Lin J, Gu H, Fu M, Zhang X, Li Y, Zhang X. IGF2BP2-meidated m 6A modification of CSF2 reprograms MSC to promote gastric cancer progression. Cell Death Dis 2023; 14:693. [PMID: 37865637 PMCID: PMC10590395 DOI: 10.1038/s41419-023-06163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/23/2023]
Abstract
The interaction between tumor cells and stromal cells within the tumor microenvironment plays a critical role in cancer progression. Mesenchymal stem cells (MSCs) are important tumor stromal cells that exhibit pro-oncogenic activities when reprogrammed by the tumor. However, the precise mechanisms underlying MSC reprogramming in gastric cancer remain not well understood. QRT-PCR, western blot, and immunohistochemistry were used to examine gene and protein expression levels. In vitro and in vivo experiments were conducted to assess the biological functions of gastric cancer cells. RNA-sequencing, RNA immunoprecipitation (RIP), and meRIP assays were performed to investigate underlying molecular mechanisms. We found a significant increase in the expression and N6-methyladenosine (m6A) modification levels of colony-stimulating factor 2 (CSF2) in gastric cancer MSCs. CSF2 gene overexpression induced the reprogramming of normal MSCs into cancer-promoting MSCs, thereby enhancing the proliferation, migration, and drug resistance of gastric cancer cells through the secretion of various pro-inflammatory factors. Additionally, we demonstrated that the m6A reader IGF2BP2 bound to and stabilized CSF2 mRNA in gastric cancer MSCs. Notably, overexpression of IGF2BP2 mimicked the effect of CSF2 on MSCs, promoting gastric cancer progression. Finally, we unveiled that CSF2 induced the ubiquitination of Notch1 to reprogram MSCs. Our study highlights a critical role of IGF2BP2-mediated m6A modification of CSF2 in reprogramming MSCs, which presents a promising therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Runbi Ji
- Department of Gastroenterology, Institute of Digestive Diseases, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Clinical Laboratory, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Chenxi Wu
- Department of Gastroenterology, Institute of Digestive Diseases, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Clinical Laboratory, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Jun Yao
- Department of Gastroenterology, Institute of Digestive Diseases, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Jiajin Xu
- Department of Gastroenterology, Institute of Digestive Diseases, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Clinical Laboratory, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Jiang Lin
- Department of Central Laboratory, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Hongbing Gu
- Department of Clinical Laboratory, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Min Fu
- Department of Central Laboratory, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Xiaoxin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yongkang Li
- Department of Clinical Laboratory, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
34
|
Krishnamoorthy HS, Kannan B, Ganapathy D, Jayaseelan VP, Arumugam P. Decreased expression of the m6A RNA methyltransferase METTL3 is associated with residual ridge resorption. J Oral Biol Craniofac Res 2023; 13:563-566. [PMID: 37559689 PMCID: PMC10407425 DOI: 10.1016/j.jobcr.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/18/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023] Open
Abstract
Objective N6-methyladenosine (m6A) methylation and its regulators play crucial roles in the progression of osteoporosis (OP) by regulating the expression of osteoporosis-related genes. In this study, we have analyzed the expression of methyltransferase-like 3 (METTL3) and its target gene Runt-related transcription factor 2 (RUNX2) in patients with residual ridge resorption (RRR). Materials and methods A total 50 number of participants were included in this comparative study (RRR - n25 and healthy control - n25). Total RNA was extracted from peripheral blood and converted into cDNA. METTL3 and RUNX2 expression levels were quantified using RT-qPCR with GAPDH as the reference gene. Bioinformatics tools were used to identify gene functions and pathways. Results Real-time polymerase chain reaction (qPCR) revealed that METTL3 and RUNX2 expression was downregulated in the RRR group compared to that in healthy controls (P < 0.05). In silico functional analysis provided information regarding the role of METTL3 in various biological processes. Conclusion Our findings suggest that METTL3 dysregulation contributes to RRR pathogenesis. Further large-scale samples and functional studies are required to identify their therapeutic potential.
Collapse
Affiliation(s)
- Harini Sri Krishnamoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Balachander Kannan
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Vijayashree Priyadharsini Jayaseelan
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Paramasivam Arumugam
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| |
Collapse
|
35
|
Tian S, Li YL, Wang J, Dong RC, Wei J, Ma Y, Liu YQ. Chinese Ecliptae herba (Eclipta prostrata (L.) L.) extract and its component wedelolactone enhances osteoblastogenesis of bone marrow mesenchymal stem cells via targeting METTL3-mediated m6A RNA methylation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116433. [PMID: 37004744 DOI: 10.1016/j.jep.2023.116433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/05/2023] [Accepted: 03/19/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese Ecliptae herba (Eclipta prostrata (L.) L.) is an ethnomedicinal herb, which is used mainly to nourish kidney and thus strengthen bones according to traditional Chinese medicine theory. Pharmacological studies have supported the ethnomedicine use, showing that Ecliptae herba extract has an anti-osteoporotic effect in vivo and promoted osteoblast proliferation and activity in vitro. However, the molecular mechanism of Ecliptae herba on osteoblast differentiation from bone marrow mesenchymal stem cells (BMSC), the progenitors of osteoblasts, is still unclear. AIM OF THE STUDY N6-methyladenosine (m6A) mRNA epigenetic modification may play a key role in promoting osteoblastic differentiation, and thus treating osteoporosis. This study sought to assess the mechanism through which Eclipate herba and its component wedelolactone influence m6A modification during the process of osteoblastogenesis from BMSC. MATERIAL AND METHODS The alkaline phosphatase (ALP) and Alizarin red S (ARS) staining were applied to determine osteoblastogenesis from BMSC. Western blot and quantitative real-time PCR were performed. RNA sequencing analysis was used to determine the characteristics of m6A methylation. Stable knocking down of METTL3 using lentiviral-based shRNA was performed. RESULTS Upon 9 d treatment of BMSC with ethyl acetate extract of Ecliptae herba (MHL), ALP activity and ossification level increased in comparison with osteogenic medium (OS)-treated control. The expression of methyltransferase METTL3 and METTL14 was significantly increased, but WTAP expression had no change in response to MHL treatment. Knocking down of METTL3 resulted in a decrease in MHL-induced ALP activity, ossification level as well as mRNA expression of Osterix and Osteocalcin, two bone formation-related markers. The level of m6A increased when BMSC was treated with MHL for 9 d. RNA sequencing analysis indicated that MHL treatment altered mRNA m6A modification of genes associated with osteoblastogenesis. By kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, HIF-1α, PI3K/Akt, and Hippo signaling pathways were enriched and associated with m6A modification. The expression of m6A-modified genes including HIF-1α, VEGF-A, and RASSF1, was upregulated by MHL, but the upregulation was reversed after METTL3 knockdown. Additionally, the enhanced expression of METTL3 was also observed after treatment with wedelolactone, a component from MHL. CONCLUSIONS These results suggested a previously uncharacterized mechanism of MHL and wedelolactone on osteoblastogenesis, by which METTL3-mediated m6A methylation is involved and thus contributes to the enhancement of osteoblastogenesis.
Collapse
Affiliation(s)
- Shuo Tian
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yi-Lin Li
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jie Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Ren-Chao Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jun Wei
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yan-Qiu Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
36
|
Cai L, Han XY, Li D, Ma DM, Shi YM, Lu Y, Yang J. Analysis of N6-methyladenosine-modified mRNAs in diabetic cataract. World J Diabetes 2023; 14:1077-1090. [PMID: 37547588 PMCID: PMC10401451 DOI: 10.4239/wjd.v14.i7.1077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Cataracts remain a prime reason for visual disturbance and blindness all over the world, despite the capacity for successful surgical replacement with artificial lenses. Diabetic cataract (DC), a metabolic complication, usually occurs at an earlier age and progresses faster than age-related cataracts. Evidence has linked N6-methyladenosine (m6A) to DC progression. However, there exists a lack of understanding regarding RNA m6A modifications and the role of m6A in DC pathogenesis.
AIM To elucidate the role played by altered m6A and differentially expressed mRNAs (DEmRNAs) in DC.
METHODS Anterior lens capsules were collected from the control subjects and patients with DC. M6A epitranscriptomic microarray was performed to investigate the altered m6A modifications and determine the DEmRNAs. Through Gene Ontology and pathway enrichment (Kyoto Encyclopedia of Genes and Genomes) analyses, the potential role played by dysregulated m6A modification was predicted. Real-time polymerase chain reaction was further carried out to identify the dysregulated expression of RNA methyltransferases, demethylases, and readers.
RESULTS Increased m6A abundance levels were found in the total mRNA of DC samples. Bioinformatics analysis predicted that ferroptosis pathways could be associated with m6A-modified mRNAs. The levels of five methylation-related genes-RBM15, WTAP, ALKBH5, FTO, and YTHDF1-were upregulated in DC samples. Upregulation of RBM15 expression was verified in SRA01/04 cells with high-glucose medium and in samples from DC patients.
CONCLUSION M6a mRNA modifications may be involved in DC progression via the ferroptosis pathway, rendering novel insights into therapeutic strategies for DC.
Collapse
Affiliation(s)
- Lei Cai
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
- Visual Rehabilitation Professional Committee, Chinese Association of Rehabilitation Medicine, Shanghai 200031, China
| | - Xiao-Yan Han
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
- Visual Rehabilitation Professional Committee, Chinese Association of Rehabilitation Medicine, Shanghai 200031, China
| | - Dan Li
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
- Visual Rehabilitation Professional Committee, Chinese Association of Rehabilitation Medicine, Shanghai 200031, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200031, China
| | - Dong-Mei Ma
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
- Visual Rehabilitation Professional Committee, Chinese Association of Rehabilitation Medicine, Shanghai 200031, China
| | - Yu-Meng Shi
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
- Visual Rehabilitation Professional Committee, Chinese Association of Rehabilitation Medicine, Shanghai 200031, China
| | - Yi Lu
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
- Visual Rehabilitation Professional Committee, Chinese Association of Rehabilitation Medicine, Shanghai 200031, China
| | - Jin Yang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200031, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
- Visual Rehabilitation Professional Committee, Chinese Association of Rehabilitation Medicine, Shanghai 200031, China
| |
Collapse
|
37
|
Han X, Li G, Yang H, Zhang C, Cao Y, Wang N, Ge L, Fan Z. METTL3 Promotes Osteo/Odontogenic Differentiation of Stem Cells by Inhibiting miR-196b-5p Maturation. Stem Cells Int 2023; 2023:8992284. [PMID: 37323630 PMCID: PMC10266913 DOI: 10.1155/2023/8992284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/27/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been considered a potential method for the regeneration of tooth and maxillofacial bone defects based on the multidirectional differentiation characteristics of MSCs. miRNAs have been found to play a key role in the differentiation of MSCs. However, its effectiveness still needs to be improved, and its internal mechanism is still unclear. In the present study, our data discovered that the knockdown of miR-196b-5p promoted alkaline phosphatase (ALP) activity assay, mineralization in vitro, and expressions of osteo/odontogenic differentiation markers DSPP and OCN and enhanced in vivo osteo/odontogenic differentiation of stem cells of the apical papilla (SCAPs). Mechanistically, the results indicated that METTL3-dependent N6-methyladenosine (m6A) methylation inhibited miR-196b-5p maturation by the microprocessor protein DGCR8. Moreover, miR-196b-5p indirectly negatively regulates METTL3 in SCAPs. Then, METTL3 was found to strengthen the ALP activity assay, mineralization, and expressions of osteo/dentinogenic differentiation markers. Taken together, our findings highlight the critical roles of the METTL3-miR-196b-5p signaling axis in an m6A-dependent manner in osteo/odontogenic differentiation of SCAPs, identifying some potential targets for tooth and maxillofacial bone defects.
Collapse
Affiliation(s)
- Xiao Han
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Guoyue Li
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Haoqing Yang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Chen Zhang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yangyang Cao
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Ning Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Lihua Ge
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, China
| |
Collapse
|
38
|
Liang Y, Wang H, Wu B, Peng N, Yu D, Wu X, Zhong X. The emerging role of N 6-methyladenine RNA methylation in metal ion metabolism and metal-induced carcinogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121897. [PMID: 37244530 DOI: 10.1016/j.envpol.2023.121897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
N6-methyladenine (m6A) is the most common and abundant internal modification in eukaryotic mRNAs, which can regulate gene expression and perform important biological tasks. Metal ions participate in nucleotide biosynthesis and repair, signal transduction, energy generation, immune defense, and other important metabolic processes. However, long-term environmental and occupational exposure to metals through food, air, soil, water, and industry can result in toxicity, serious health problems, and cancer. Recent evidence indicates dynamic and reversible m6A modification modulates various metal ion metabolism, such as iron absorption, calcium uptake and transport. In turn, environmental heavy metal can alter m6A modification by directly affecting catalytic activity and expression level of methyltransferases and demethylases, or through reactive oxygen species, eventually disrupting normal biological function and leading to diseases. Therefore, m6A RNA methylation may play a bridging role in heavy metal pollution-induced carcinogenesis. This review discusses interaction among heavy metal, m6A, and metal ions metabolism, and their regulatory mechanism, focuses on the role of m6A methylation and heavy metal pollution in cancer. Finally, the role of nutritional therapy that targeting m6A methylation to prevent metal ion metabolism disorder-induced cancer is summarized.
Collapse
Affiliation(s)
- Yaxu Liang
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Huan Wang
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Bencheng Wu
- Anyou Biotechnology Group Co., LTD., Taicang, 215437, China
| | - Ning Peng
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Dongming Yu
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiang Zhong
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
39
|
Xu Y, Zhang Y, Luo Y, Qiu G, Lu J, He M, Wang Y. Novel insights into the METTL3-METTL14 complex in musculoskeletal diseases. Cell Death Discov 2023; 9:170. [PMID: 37202385 DOI: 10.1038/s41420-023-01435-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023] Open
Abstract
N6-methyladenosine (m6A) modification, catalyzed by methyltransferase complexes (MTCs), plays many roles in multifaceted biological activities. As the most important subunit of MTCs, the METTL3-METTL14 complex is reported to be the initial factor that catalyzes the methylation of adenosines. Recently, accumulating evidence has indicated that the METTL3-METTL14 complex plays a key role in musculoskeletal diseases in an m6A-dependent or -independent manner. Although the functions of m6A modifications in a variety of musculoskeletal diseases have been widely recognized, the critical role of the METTL3-METTL14 complex in certain musculoskeletal disorders, such as osteoporosis, osteoarthritis, rheumatoid arthritis and osteosarcoma, has not been systematically revealed. In the current review, the structure, mechanisms and functions of the METTL3-METTL14 complex and the mechanisms and functions of its downstream pathways in the aforementioned musculoskeletal diseases are categorized and summarized.
Collapse
Affiliation(s)
- Yeqiu Xu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, People's Republic of China
| | - Yuanzhuang Zhang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, People's Republic of China
| | - Yinzhou Luo
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, People's Republic of China
| | - Guanzhen Qiu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, People's Republic of China
| | - Jie Lu
- Department of Cardiology, Shenyang Fourth People's Hospital, China Medical University, 110031, Shenyang, Liaoning, People's Republic of China
| | - Ming He
- Department of Orthopedics, Shengjing Hospital of China Medical University, 110004, Shenyang, Liaoning, People's Republic of China
| | - Yong Wang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
40
|
Smith N, Shirazi S, Cakouros D, Gronthos S. Impact of Environmental and Epigenetic Changes on Mesenchymal Stem Cells during Aging. Int J Mol Sci 2023; 24:ijms24076499. [PMID: 37047469 PMCID: PMC10095074 DOI: 10.3390/ijms24076499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Many crucial epigenetic changes occur during early skeletal development and throughout life due to aging, disease and are heavily influenced by an individual’s lifestyle. Epigenetics is the study of heritable changes in gene expression as the result of changes in the environment without any mutation in the underlying DNA sequence. The epigenetic profiles of cells are dynamic and mediated by different mechanisms, including histone modifications, non-coding RNA-associated gene silencing and DNA methylation. Given the underlining role of dysfunctional mesenchymal tissues in common age-related skeletal diseases such as osteoporosis and osteoarthritis, investigations into skeletal stem cells or mesenchymal stem cells (MSC) and their functional deregulation during aging has been of great interest and how this is mediated by an evolving epigenetic landscape. The present review describes the recent findings in epigenetic changes of MSCs that effect growth and cell fate determination in the context of aging, diet, exercise and bone-related diseases.
Collapse
Affiliation(s)
- Nicholas Smith
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Suzanna Shirazi
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| |
Collapse
|
41
|
Ghafouri-Fard S, Shoorei H, Hussen BM, Dong P, Zhai T, Taheri M, Samadian M. The significance of N6-methyladenosine-modified non-coding RNAs in different disorders. Eur J Pharmacol 2023; 946:175644. [PMID: 36921707 DOI: 10.1016/j.ejphar.2023.175644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
N6-methyladenosine (m6A) is the most widespread endogenous modification affecting the expression of eukaryotic mRNA transcripts. Recent studies have shown that the m6A marks within non-coding RNAs can affect their functions and expression in a manner similar to that of mRNA-coding genes. Since non-coding RNAs are involved in the pathophysiology of several disorders, identification of the role of m6A marks in the regulation of expression of non-coding RNAs can open a new era for identifying underlying mechanisms of several disorders and designing novel therapeutic modalities for a variety of disorders, particularly cancers. Moreover, a number of non-coding RNAs can affect m6A levels. In the current review, we discuss the impacts of m6A marks on the expression of non-coding RNAs in the context of different disorders, such as bone, gastrointestinal, neurologic, renal, pulmonary, hepatic and other disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran; Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tianyue Zhai
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Department of Neurosurgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Yang X, Lin Y, Chen T, Hu W, Li P, Qiu X, Yang B, Liang A, Gao W. YTHDF1 Enhances Chondrogenic Differentiation by Activating the Wnt/β-Catenin Signaling Pathway. Stem Cells Dev 2023; 32:115-130. [PMID: 36647682 DOI: 10.1089/scd.2022.0216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cartilage is derived from the chondrogenic differentiation of stem cells, for which the regulatory mechanism has not been fully elucidated. N6-methyladenosine (m6A) messenger RNA (mRNA) methylation is the most common posttranscriptional modification in eukaryotic mRNAs and is mediated by m6A regulators. However, whether m6A regulators play roles in chondrogenic differentiation is unknown. Herein, we aim to determine the role of a main m6A reader protein, YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), in chondrogenic differentiation regulation. Western blotting (WB) assays found that the expression of YTHDF1 increased during chondrogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). The results of quantitative polymerase chain reaction, WB, immunohistochemistry, and Alcian blue staining revealed that overexpression of YTHDF1 increased cartilage matrix synthesis and the expression of chondrogenic markers when hBMSCs, ATDC5 cells, or C3H10T1/2 cells were induced to undergo chondrogenesis. Conversely, chondrogenesis was clearly inhibited when YTHDF1 was knocked down in hBMSCs, ATDC5 cells, or C3H10T1/2 cells. Further RNA sequencing and molecular biology experiments found that YTHDF1 activated the Wnt/β-catenin signaling pathway during chondrogenic differentiation. Finally, the effects of overexpression and knockdown of YTHDF1 on chondrogenic differentiation were reversed by inhibiting or activating β-catenin activity. Therefore, we demonstrated that YTDHF1 promoted chondrogenic differentiation through activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiaoming Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Youxi Lin
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Taiqiu Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Wenjun Hu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Pengfei Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Xuemei Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Bo Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Anjing Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Wenjie Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
43
|
Yu W, Wang HL, Zhang J, Yin C. The effects of epigenetic modifications on bone remodeling in age-related osteoporosis. Connect Tissue Res 2023; 64:105-116. [PMID: 36271658 DOI: 10.1080/03008207.2022.2120392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE As the population ages, there is an increased risk of fracture and morbidity diseases associated with aging, such as age-related osteoporosis and other bone diseases linked to aging skeletons. RESULTS Several bone-related cells, including multipotent bone mesenchymal stem cells, osteoblasts that form bone tissue, and osteoclasts that break it down, are in symbiotic relationships throughout life. Growing evidence indicates that epigenetic modifications of cells caused by aging contribute to compromised bone remodeling and lead to osteoporosis. A number of epigenetic mechanisms are at play, including DNA/RNA modifications, histone modifications, microRNAs (miRNAs), and long noncoding RNAs (lncRNAs), as well as chromatin remodeling. CONCLUSION In this review, we summarized the epigenetic modifications of different bone-related cells during the development and progression of osteoporosis associated with aging. Additionally, we described a compensatory recovery mechanism under epigenetic regulation that may lead to new strategies for regulating bone remodeling in age-related osteoporosis.
Collapse
Affiliation(s)
- Wenyue Yu
- School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - He-Ling Wang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Jianying Zhang
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Chengcheng Yin
- School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| |
Collapse
|
44
|
Sun X, Zhou C, Zhu J, Wu S, Liang T, Jiang J, Chen J, Chen T, Huang SS, Chen L, Ye Z, Guo H, Zhan X, Liu C. Identification of clinical heterogeneity and construction of a novel subtype predictive model in patients with ankylosing spondylitis: An unsupervised machine learning study. Int Immunopharmacol 2023; 117:109879. [PMID: 36822084 DOI: 10.1016/j.intimp.2023.109879] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Accurate classification of patients with ankylosing spondylitis (AS) is the premise of precision medicine so as to perform different medical interventions for different patient types. AS pathology is closely related to the changes in the immune microenvironment. In this study, we used unsupervised machine learning (UML) to classify patients with AS based on clinical characteristics. We then constructed a novel subtype predictive model for AS based on the clinical classification, after which we investigated the difference in the immune microenvironment to unravel the AS pathogenesis. METHODS Overall, 196 patients with AS were enrolled. UML was used to cluster AS patients by similar clinical characteristics. Functional ability, disease status, and grading of radiologic features were assessed to verify the accuracy and heterogeneity of UML clustering. Least Absolute Shrinkage and Selection Operator (LASSO) regression and Random Forest algorithm were used to screen and identify predictive factors for the novel subtype of AS. Logistic regression was also performed to construct a predictive model of this novel subtype. Datasets were downloaded from the Gene Expression Omnibus database to assess immune cell infiltration, and the results were validated using data of routine blood tests from 3671 AS patients and 5720 non-AS patients. The differential expression of Fat Mass and Obesity-Associated Protein (FTO), an m6A regulator, between AS patients and healthy control subjects was confirmed using immunohistochemistry. RESULTS UML clustering identified two clusters. The clinical characteristics of the two clusters were significantly heterogeneous. For the novel subtype of AS identified in UML clustering, a predictive model was built using three predictive factors, namely, C-reactive protein (CRP), absolute value of neutrophils (NEU), and absolute value of monocytes (MONO). The area under the curve of the predictive model was 0.983. Heterogeneity in the neutrophil and monocyte counts in AS was verified through immune cell infiltration analysis. Data from routine blood tests revealed that NEU and MONO were significantly higher in AS patients than in non-AS patients (p < 0.001). FTO expression was negatively correlated with both NEU and MONO. Immunohistochemistry analysis confirmed the downregulated expression of FTO. CONCLUSIONS UML provides an explicable and remarkable classification of a heterogeneous cohort of AS patients. A novel subtype of AS was identified in UML clustering. CRP, NEU, and MONO were the independent predictive factors for the novel subtype of AS. FTO expression was correlated with immune cell infiltration in AS patients.
Collapse
Affiliation(s)
- Xuhua Sun
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Chenxing Zhou
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Jichong Zhu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Shaofeng Wu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Tuo Liang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Jie Jiang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Jiarui Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Tianyou Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Sheng Sheng Huang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Liyi Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Zhen Ye
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Hao Guo
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Xinli Zhan
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Chong Liu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| |
Collapse
|
45
|
Luo D, Peng S, Li Q, Rao P, Tao G, Wang L, Xiao J. Methyltransferase-like 3 modulates osteogenic differentiation of adipose-derived stem cells in osteoporotic rats. J Gene Med 2023; 25:e3481. [PMID: 36782035 DOI: 10.1002/jgm.3481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Osteoporosis (OP) is a metabolic bone disease involving reduced bone mass. Adipose-derived stem cells (ASCs) play an important role in bone regeneration. Emerging evidence suggests that methyltransferase-like 3 (METTL3) plays a significant role in bone development and metabolism. Therefore, this study investigates changes to METTL3 in the osteogenic differentiation of adipose stem cells in osteoporotic rats (OP-ASCs) and explores ways to enhance their osteogenic ability. METHODS An animal model of osteoporosis was established by removing both ovaries in rats. Real-time PCR and western blotting were performed to detect the expression of METTL3 and bone-related molecules, including runt-related transcription factor 2 (Runx2) and osteopontin (Opn). Furthermore, alkaline phosphatase staining was used to confirm the osteogenic potential of stem cells. Mettl3 small interfering RNA and Mettl3 overexpression lentivirus were used to assess the role of METTL3 in osteogenic differentiation of ASCs and OP-ASCs. RESULTS The osteogenic differentiation capacity and Mettl3 expression significantly decreased in OP-ASCs. Moreover, Mettl3 silencing down-regulated the osteogenic ability of ASCs, and overexpression of Mettl3 recovered the impaired osteogenic capacity in OP-ASCs in vitro. CONCLUSION The Mettl3 expression levels and osteogenic potential of OP-ASCs decreased. However, overexpression of METTL3 rescued the osteogenic ability of OP-ASCs, providing a new target for treatment of osteoporotic bone defects.
Collapse
Affiliation(s)
- Daowen Luo
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Shuanglin Peng
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qing Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Pengcheng Rao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gang Tao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Lang Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China.,Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Jingang Xiao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China.,Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
46
|
Li Q, Yang L, Zhang F, Liu J, Jiang M, Chen Y, Ren C. m6A methyltransferase METTL3 inhibits endometriosis by regulating alternative splicing of MIR17HG. Reproduction 2023; 165:197-208. [PMID: 36445237 DOI: 10.1530/rep-22-0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
In brief Inflammation and abnormal immune response are the key processes in the development of endometriosis (EMs), and m6A modification can regulate the inflammatory response. This study reveals that METTL3-mediated N6-methyladenosine (m6A) modification plays an important role in EMs. Abstract m6A modification is largely involved in the development of different diseases. This study intended to investigate the implication of m6A methylation transferase methyltransferase like 3 (METTL3) in EMs. EMs- and m6A-related mRNAs and long non-coding RNAs were identified through bioinformatics analysis. Next, EM mouse models established by endometrial autotransplantation and mouse endometrial stromal cell (mESC) were prepared and treated with oe-METTL3 or sh-MIR17HG for pinpointing the in vitro and in vivo effects of METTL3 on EMs in relation to MIR17HG through the determination of mESC biological processes as well as estradiol (E2) and related lipoprotein levels. We demonstrated that METTL3 and MIR17HG were downregulated in the EMs mouse model. Overexpression of METTL3 suppressed the proliferation, migration, and invasion of mESCs. In addition, METTL3 enhanced the expression of MIR17HG through m6A modification. Moreover, METTL3 could inhibit the E2 level and alter related lipoprotein levels in EMs mice through the upregulation of MIR17HG. The present study highlighted that the m6A methylation transferase METTL3 prevents EMs progression by upregulating MIR17HG expression.
Collapse
Affiliation(s)
- Qian Li
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Li Yang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Feng Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Jiaxi Liu
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Min Jiang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Yannan Chen
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Chenchen Ren
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| |
Collapse
|
47
|
Qiao Y, Li J, Liu D, Zhang C, Liu Y, Zheng S. Identification and experimental validation of key m6A modification regulators as potential biomarkers of osteoporosis. Front Genet 2023; 13:1072948. [PMID: 36685841 PMCID: PMC9852729 DOI: 10.3389/fgene.2022.1072948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 01/08/2023] Open
Abstract
Osteoporosis (OP) is a severe systemic bone metabolic disease that occurs worldwide. During the coronavirus pandemic, prioritization of urgent services and delay of elective care attenuated routine screening and monitoring of OP patients. There is an urgent need for novel and effective screening diagnostic biomarkers that require minimal technical and time investments. Several studies have indicated that N6-methyladenosine (m6A) regulators play essential roles in metabolic diseases, including OP. The aim of this study was to identify key m6A regulators as biomarkers of OP through gene expression data analysis and experimental verification. GSE56815 dataset was served as the training dataset for 40 women with high bone mineral density (BMD) and 40 women with low BMD. The expression levels of 14 major m6A regulators were analyzed to screen for differentially expressed m6A regulators in the two groups. The impact of m6A modification on bone metabolism microenvironment characteristics was explored, including osteoblast-related and osteoclast-related gene sets. Most m6A regulators and bone metabolism-related gene sets were dysregulated in the low-BMD samples, and their relationship was also tightly linked. In addition, consensus cluster analysis was performed, and two distinct m6A modification patterns were identified in the low-BMD samples. Subsequently, by univariate and multivariate logistic regression analyses, we identified four key m6A regulators, namely, METTL16, CBLL1, FTO, and YTHDF2. We built a diagnostic model based on the four m6A regulators. CBLL1 and YTHDF2 were protective factors, whereas METTL16 and FTO were risk factors, and the ROC curve and test dataset validated that this model had moderate accuracy in distinguishing high- and low-BMD samples. Furthermore, a regulatory network was constructed of the four hub m6A regulators and 26 m6A target bone metabolism-related genes, which enhanced our understanding of the regulatory mechanisms of m6A modification in OP. Finally, the expression of the four key m6A regulators was validated in vivo and in vitro, which is consistent with the bioinformatic analysis results. Our findings identified four key m6A regulators that are essential for bone metabolism and have specific diagnostic value in OP. These modules could be used as biomarkers of OP in the future.
Collapse
Affiliation(s)
| | | | | | | | - Yang Liu
- *Correspondence: Yang Liu, ; Shuguo Zheng,
| | | |
Collapse
|
48
|
Jin R, Zhang H, Lin C, Guo J, Zou W, Chen Z, Liu H. Inhibition of miR338 rescues cleidocranial dysplasia in Runx2 mutant mice partially via the Hif1a-Vegfa axis. Exp Mol Med 2023; 55:69-80. [PMID: 36599929 PMCID: PMC9898552 DOI: 10.1038/s12276-022-00914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 01/06/2023] Open
Abstract
Haploinsufficiency of Runt-related transcription factor-2 (RUNX2) is responsible for cleidocranial dysplasia (CCD), a rare hereditary disease with a range of defects, including delayed closure of the cranial sutures and short stature. Symptom-based treatments, such as a combined surgical-orthodontic approach, are commonly used to treat CCD patients. However, there have been few reports of treatments based on Runx2-specific regulation targeting dwarfism symptoms. Previously, we found that the miR338 cluster, a potential diagnostic and therapeutic target for postmenopausal osteoporosis, could directly target Runx2 during osteoblast differentiation in vitro. Here, we generated miR338-/-;Runx2+/- mice to investigate whether inhibition of miR338 could rescue CCD defects caused by Runx2 mutation in vivo. We found that the dwarfism phenotype caused by Runx2 haploinsufficiency was recovered in miR338-/-;Runx2+/- mice, with complete bone density restoration and quicker closure of fontanels. Single-cell RNA-seq analysis revealed that knockout of miR338 specifically rescued the osteoblast lineage priming ability of bone marrow stromal cells in Runx2+/- femurs, which was further confirmed by Osterix-specific conditional knockout of miR338 in Runx2+/- mice (OsxCre; miR338 fl/fl;Runx2+/-). Mechanistically, ablation of the miR338 cluster in Runx2+/- femurs directly rescued the Hif1a-Vegfa pathway in Runx2+/- osteoblasts, as proven by gene expression profiles and ChIP and Re-ChIP assays. Collectively, our data revealed the genetic interaction between Runx2 and the miR338 cluster during osteoblast differentiation and implied that the miR338 cluster could be a potential therapeutic target for CCD.
Collapse
Affiliation(s)
- Runze Jin
- grid.49470.3e0000 0001 2331 6153The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079 China
| | - Hanshu Zhang
- grid.49470.3e0000 0001 2331 6153The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079 China
| | - Chujiao Lin
- grid.49470.3e0000 0001 2331 6153The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079 China ,grid.168645.80000 0001 0742 0364Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Jinqiang Guo
- grid.49470.3e0000 0001 2331 6153The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079 China
| | - Weiguo Zou
- grid.410726.60000 0004 1797 8419State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China.
| | - Huan Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China. .,Department of Periodontology, School of Stomatology, Wuhan University, Wuhan, 430079, China. .,Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
49
|
Mei Z, Mou Y, Zhang N, Liu X, He Z, Gu S. Emerging Mutual Regulatory Roles between m 6A Modification and microRNAs. Int J Mol Sci 2023; 24:ijms24010773. [PMID: 36614216 PMCID: PMC9821650 DOI: 10.3390/ijms24010773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 01/03/2023] Open
Abstract
N6-metyladenosine (m6A), one of the most common RNA methylation modifications in mammals, has attracted extensive attentions owing to its regulatory roles in a variety of physiological and pathological processes. As a reversible epigenetic modification on RNAs, m6A is dynamically mediated by the functional interplay among the regulatory proteins of methyltransferases, demethylases and methyl-binding proteins. In recent years, it has become increasingly clear that m6A modification is associated with the production and function of microRNAs (miRNAs). In this review, we summarize the specific kinds of m6A modification methyltransferases, demethylases and methyl-binding proteins. In particular, we focus on describing the roles of m6A modification and its regulatory proteins in the production and function of miRNAs in a variety of pathological and physiological processes. More importantly, we further discuss the mediating mechanisms of miRNAs in m6A modification and its regulatory proteins during the occurrence and development of various diseases.
Collapse
|
50
|
Wang Z, Wen S, Zhong M, Yang Z, Xiong W, Zhang K, Yang S, Li H, Guo S. Epigenetics: Novel crucial approach for osteogenesis of mesenchymal stem cells. J Tissue Eng 2023; 14:20417314231175364. [PMID: 37342486 PMCID: PMC10278427 DOI: 10.1177/20417314231175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/26/2023] [Indexed: 06/23/2023] Open
Abstract
Bone has a robust regenerative potential, but its capacity to repair critical-sized bone defects is limited. In recent years, stem cells have attracted significant interest for their potential in tissue engineering. Applying mesenchymal stem cells (MSCs) for enhancing bone regeneration is a promising therapeutic strategy. However, maintaining optimal cell efficacy or viability of MSCs is limited by several factors. Epigenetic modification can cause changes in gene expression levels without changing its sequence, mainly including nucleic acids methylation, histone modification, and non-coding RNAs. This modification is believed to be one of the determinants of MSCs fate and differentiation. Understanding the epigenetic modification of MSCs can improve the activity and function of stem cells. This review summarizes recent advances in the epigenetic mechanisms of MSCs differentiation into osteoblast lineages. We expound that epigenetic modification of MSCs can be harnessed to treat bone defects and promote bone regeneration, providing potential therapeutic targets for bone-related diseases.
Collapse
Affiliation(s)
- Zhaohua Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Si Wen
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Meiqi Zhong
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ziming Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Hospital of Shihezi University School of Medicine, Shihezi, China
| | - Kuo Zhang
- College of Humanities and Social Sciences, Dalian Medical University, Dalian, Liaoning Province, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Huizheng Li
- Department of Otorhinolaryngology & Head and Neck Surgery, Dalian Friendship Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|