1
|
Jin C, Ye Y, Gao L, Zhong Z, Zhou C, Wu X, Li X, Zhou G, Chen S, Wei Y, Cai L, Liu S, Xu J. Biological function of RNA-binding proteins in myocardial infarction: a potential emerging therapeutic limelight. Cell Biosci 2025; 15:65. [PMID: 40413549 PMCID: PMC12102849 DOI: 10.1186/s13578-025-01408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 05/08/2025] [Indexed: 05/27/2025] Open
Abstract
Myocardial infarction (MI) is currently one of the most fatal cardiovascular diseases worldwide. The screening, treatment, and prognosis of MI are top priorities for cardiovascular centers globally due to its characteristic occult onset, high lethality, and poor prognosis. MI is caused by coronary artery occlusion induced by coronary atherosclerotic plaque blockage or other factors, leading to ischemic necrosis and apoptosis of cardiomyocytes. Although significant advancements have been made in the study of cardiomyocytes at the cellular and molecular levels, RNA-binding proteins (RBPs) have not been extensively explored in the context of MI. RBPs, as key regulators coordinating cell differentiation and tissue homeostasis, exhibit specific functions in gene transcription, RNA modification and processing, and post-transcriptional gene expression. By binding to their target RNA, RBPs coordinate various RNA dynamics, including cellular metabolism, subcellular localization, and translation efficiency, thereby controlling the expression of encoded proteins. Classical RBPs, including HuR, hnRNPs, and RBM family molecules, have been identified as critical regulators in myocardial hypoxia, oxidative stress, pro-inflammatory responses, and fibrotic repair. These RBPs exert their effects by modulating key pathophysiological pathways in MI, thereby influencing specific cardiac outcomes. Additionally, specific RBPs, such as QKI and fused in sarcoma (FUS), are implicated in the apoptotic pathways activated during MI. This apoptotic pathway represents a significant molecular phenotype in MI, offering novel perspectives and insights for mitigating cardiomyocyte apoptosis and attenuating the progression of MI. Therefore, this review systematically summarizes the role of RBPs in the main pathophysiological stages of MI and explores their potential therapeutic prospects.
Collapse
Affiliation(s)
- Chenyang Jin
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Ye
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longzhe Gao
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zikan Zhong
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changzuan Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xudong Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Genqing Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songwen Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wei
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lidong Cai
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaowen Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Juan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Huang Z, Wen B, Wang M, Lu Y, Ji Q, Mei J, Shi X, Jiang Z. Molecular structure of VEGFA polysaccharide protein and its regulation of monocyte infiltration and oxidative stress after myocardial infarction. Int J Biol Macromol 2025; 310:143199. [PMID: 40258548 DOI: 10.1016/j.ijbiomac.2025.143199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/03/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
The pathogenesis of myocardial infarction (MI) is complex, involving multiple biomarkers and cell signaling pathways. The aim of this study was to elucidate the molecular structure of VEGFA dioglycan protein and explore how it regulates monocyte infiltration and oxidative stress response after myocardial infarction, so as to provide a new molecular target for the treatment of myocardial infarction. Differential expression analysis and enrichment analysis were performed to investigate the composition and characteristics of immune cells in myocardial infarction. The regulatory network was constructed by network analysis, and in vitro experiments were carried out by BMDM isolation culture. Animal experiments were conducted in mouse models, and data were verified and statistically analyzed by combining immunohistochemical staining, real-time PCR, Western blot and enzyme-linked immunosorbent assay (ELISA). Genome-wide association studies (GWAS) and single-cell data successfully identified key immune-related genes and analyzed differentially expressed mRNA and its characteristics in myocardial infarction. The immune microenvironment of myocardial infarction was investigated, the differentially expressed circRNA and miRNA were characterized, and the circrNa-mirNA-mrna regulatory network was constructed. The characteristics of differentially expressed proteins in myocardial infarction and the changes of mRNA during oxidative stress were identified and compared. By analyzing the changes in chromatin accessibility, the regulatory network between oxidative stress and myocardial infarction in immune cells was constructed, and the expression and co-localization of oxidative stress in myocardial infarction were verified.
Collapse
Affiliation(s)
- Zhenyu Huang
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Bohan Wen
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ming Wang
- Department of Cardiology, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Yanqiao Lu
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qingqi Ji
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ju Mei
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Zhaolei Jiang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
3
|
Hashemi M, Fard AA, Pakshad B, Asheghabadi PS, Hosseinkhani A, Hosseini AS, Moradi P, Mohammadbeygi Niye M, Najafi G, Farahzadi M, Khoushab S, Taheriazam A, Farahani N, Mohammadi M, Daneshi S, Nabavi N, Entezari M. Non-coding RNAs and regulation of the PI3K signaling pathway in lung cancer: Recent insights and potential clinical applications. Noncoding RNA Res 2025; 11:1-21. [PMID: 39720352 PMCID: PMC11665378 DOI: 10.1016/j.ncrna.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Lung cancer (LC) is one of the most common causes of cancer-related death worldwide. It has been demonstrated that the prognosis of current drug treatments is affected by a variety of factors, including late stage, tumor recurrence, inaccessibility to appropriate treatments, and, most importantly, chemotherapy resistance. Non-coding RNAs (ncRNAs) contribute to tumor development, with some acting as tumor suppressors and others as oncogenes. The phosphoinositide 3-kinase (PI3Ks)/AKT serine/threonine kinase pathway is one of the most important common targets of ncRNAs in cancer, which is widely applied to modulate the cell cycle and a variety of biological processes, including cell growth, mobility survival, metabolic activity, and protein production. Discovering the biology of ncRNA-PI3K/AKT signaling may lead to advances in cancer diagnosis and treatment. As a result, we investigated the expression and role of PI3K/AKT-related ncRNAs in clinical characteristics of lung cancer, as well as their functions as potential biomarkers in lung cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Asal Abolghasemi Fard
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bita Pakshad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pezhman Shafiei Asheghabadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amineh Hosseinkhani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atena Sadat Hosseini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parham Moradi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Mohammadbeygi Niye
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazal Najafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohadeseh Farahzadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
He SQ, Huang B, Xu F, Yang JJ, Li C, Liu FR, Yuan LQ, Lin X, Liu J. Functions and application of circRNAs in vascular aging and aging-related vascular diseases. J Nanobiotechnology 2025; 23:216. [PMID: 40098005 PMCID: PMC11917153 DOI: 10.1186/s12951-025-03199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Circular RNAs (circRNAs), constituting a novel class of endogenous non-coding RNAs generated through the reverse splicing of mRNA precursors, possess the capacity to regulate gene transcription and translation. Recently, the pivotal role of circRNAs in controlling vascular aging, as well as the pathogenesis and progression of aging-related vascular diseases, has garnered substantial attention. Vascular aging plays a crucial role in the increased morbidity and mortality of the elderly. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are crucial components of the intima and media layers of the vascular wall, respectively, and are closely involved in the mechanisms underlying vascular aging and aging-related vascular diseases. The review aims to provide a comprehensive exploration of the connection between circRNAs and vascular aging, as well as aging-related vascular diseases. Besides, circRNAs, as potential diagnostic markers or therapeutic targets for vascular aging and aging-related vascular diseases, will be discussed thoroughly, along with the challenges and limitations of their clinical application. Investigating the role and molecular mechanisms of circRNAs in vascular aging and aging-related vascular diseases will provide a novel insight into early diagnosis and therapy, and even effective prognosis assessment of these conditions.
Collapse
Affiliation(s)
- Sha-Qi He
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Bei Huang
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jun-Jie Yang
- Department of Radiology, the Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, China
| | - Cong Li
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Feng-Rong Liu
- Department of Anesthesiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Xiao Lin
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Jun Liu
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Clinical Research Center for Medical Imaging in Hunan Province, Quality Control Center in Hunan Province, Changsha, 410011, China.
| |
Collapse
|
5
|
Abbas M, Gaye A. Emerging roles of noncoding RNAs in cardiovascular pathophysiology. Am J Physiol Heart Circ Physiol 2025; 328:H603-H621. [PMID: 39918596 DOI: 10.1152/ajpheart.00681.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
This review comprehensively examines the diverse roles of noncoding RNAs (ncRNAs) in the pathogenesis and treatment of cardiovascular disease (CVD), focusing on microRNA (miRNA), long noncoding RNA (lncRNA), piwi-interacting RNA (piRNA), small-interfering RNA (siRNA), circular RNA (circRNA), and vesicle-associated RNAs. These ncRNAs are integral regulators of key cellular processes, including gene expression, inflammation, and fibrosis, and they hold great potential as both diagnostic biomarkers and therapeutic targets. The review highlights novel insights into how these RNA species, particularly miRNAs, lncRNAs, and piRNAs, contribute to various CVDs such as hypertension, atherosclerosis, and myocardial infarction. In addition, it explores the emerging role of extracellular vesicles (EVs) in intercellular communication and their therapeutic potential in cardiovascular health. The review underscores the need for continued research into ncRNAs and RNA-based therapies, with a focus on advancing delivery systems and expanding personalized medicine approaches to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Malak Abbas
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Amadou Gaye
- Department of Integrative Genomics and Epidemiology, School of Graduate Studies, Meharry Medical School, Nashville, Tennessee, United States
| |
Collapse
|
6
|
Nai S, Song J, Su W, Liu X. Bidirectional Interplay Among Non-Coding RNAs, the Microbiome, and the Host During Development and Diseases. Genes (Basel) 2025; 16:208. [PMID: 40004537 PMCID: PMC11855195 DOI: 10.3390/genes16020208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
It is widely known that the dysregulation of non-coding RNAs (ncRNAs) and dysbiosis of the gut microbiome play significant roles in host development and the progression of various diseases. Emerging evidence has highlighted the bidirectional interplay between ncRNAs and the gut microbiome. This article aims to review the current understanding of the molecular mechanisms underlying the crosstalk between ncRNAs, especially microRNA (miRNA), and the gut microbiome in the context of development and diseases, such as colorectal cancer, inflammatory bowel diseases, neurological disorders, obesity, and cardiovascular disease. Ultimately, this review seeks to provide a foundation for exploring the potential roles of ncRNAs and gut microbiome interactions as biomarkers and therapeutic targets for clinical diagnosis and treatment, such as ncRNA mimics, antisense oligonucleotides, and small-molecule compounds, as well as probiotics, prebiotics, and diets.
Collapse
Affiliation(s)
| | | | | | - Xiaoqian Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (S.N.); (J.S.); (W.S.)
| |
Collapse
|
7
|
Chao Y, Jin X, Guo R, Zhang H, Cui X, Qi Y. Characterization of Immune-Related circRNAs and mRNAs in Human Chronic Atrophic Gastritis. J Inflamm Res 2024; 17:8487-8500. [PMID: 39534060 PMCID: PMC11556230 DOI: 10.2147/jir.s472213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Background Chronic atrophic gastritis (CAG) is a severe condition characterized by inflammation and loss of appropriate mucosal glands in the stomach. The underlying mechanisms of CAG development remain unclear. Exploring immune-related circular RNAs (circRNAs) could provide insights for potential diagnostic and therapeutic strategies. Methods Samples from 40 patients with CAG and non-CAG (CNAG) underwent high-throughput sequencing, and EdgeR analysis identified differentially expressed circRNAs and mRNAs. Gene Ontology (GO) analysis elucidated biological functions, while Immune Cell Abundance Identifier (ImmuCellAI) estimated immune cell abundance. Flow cytometry analyzed immune cell infiltration. Weighted gene co-expression network analysis (WGCNA) identified hub genes related to the immune response in CAG. CircRNA-mRNA networks were constructed, and qRT-PCR validated findings. Results A total of 163 differentially expressed immune-related genes (DEIRGs) were identified between CAG and CNAG. The upregulated immune-related mRNAs in CAG were significantly enriched in antimicrobial humoral response, viral entry into host cells, neutrophil activation, and leukocyte migration. Conversely, downregulated immune-related mRNAs were linked to regulation of natural killer cell-mediated cytotoxicity, positive regulation of adaptive immune response, antigen receptor-mediated signaling pathway, and B cell activation. Immune Cell Abundance Identifier (ImmuCellAI) and flow cytometry confirmed increased neutrophil infiltration in CAG compared to CNAG. WGCNA identified 56 hub immune-related genes. Additionally, circRNA expression profiles in CNAG and CAG were explored, with 19 upregulated and 23 downregulated circRNAs identified in CAG. The upregulated circRNAs were associated with biological processes like carnitine metabolic process and regulation of B cell receptor signaling pathway. A circRNA-mRNA co-expression network was constructed based on five circRNAs highly related to hub immune-related genes. Furthermore, the expression of eight immune-related mRNAs and five circRNAs were validated in CAG. Conclusion This study is the first systematic analysis of circRNA profiles in CAG and provide important insights for potential immunotherapeutic strategies and early diagnostic biomarkers in CAG treatment.
Collapse
Affiliation(s)
- Yang Chao
- Department of Gastroendoscopy, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Xiya Jin
- Department of Gastroendoscopy, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Rui Guo
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Hongyu Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Xueling Cui
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Yan Qi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
8
|
Sha L, Yao J, Yang S, Hu M, Zhou Q, Zhao J, Bei Y, Cao Y. Collaborative CRISPR-Cas System-Enabled Detection of Circulating Circular RNA for Reliable Monitoring of Acute Myocardial Infarction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402895. [PMID: 39023080 DOI: 10.1002/smll.202402895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/27/2024] [Indexed: 07/20/2024]
Abstract
Acute myocardial infarction (AMI) is one of the major causes of death worldwide, posing significant global health challenges. Circular RNA (circRNA) has recently emerged as a potential diagnostic biomarker for AMI, providing valuable information for timely medical care. In this work, a new electrochemical method for circRNA detection by engineering a collaborative CRISPR-Cas system is developed. This system integrates the unique circRNA-targeting ability with cascade trans-cleavage activities of Cas effectors, using an isothermal primer exchange reaction as the bridge. Using cZNF292, a circulating circRNA biomarker for AMI is identified by this group; as a model, the collaborative CRISPR-Cas system-based method exhibits excellent accuracy and sensitivity with a low detection limit of 2.13 × 10-15 m. Moreover, the method demonstrates a good diagnostic performance for AMI when analyzing whole blood samples. Therefore, the method may provide new insight into the detection of circRNA biomarkers and is expected to have great potential in AMI diagnosis in the future.
Collapse
Affiliation(s)
- Lingjun Sha
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Jianhua Yao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Shuang Yang
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Meiyu Hu
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Qiulian Zhou
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yihua Bei
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
9
|
Joghataie P, Ardakani MB, Sabernia N, Salary A, Khorram S, Sohbatzadeh T, Goodarzi V, Amiri BS. The Role of Circular RNA in the Pathogenesis of Chemotherapy-Induced Cardiotoxicity in Cancer Patients: Focus on the Pathogenesis and Future Perspective. Cardiovasc Toxicol 2024; 24:1151-1167. [PMID: 39158829 DOI: 10.1007/s12012-024-09914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Cardiotoxicity is a serious challenge cancer patients face today. Various factors are involved in cardiotoxicity. Circular RNAs (circRNAs) are one of the effective factors in the occurrence and prevention of cardiotoxicity. circRNAs can lead to increased proliferation, apoptosis, and regeneration of cardiomyocytes by regulating the molecular pathways, as well as increasing or decreasing gene expression; some circRNAs have a dual role in cardiomyocyte regeneration or death. Identifying each of the pathways related to these processes can be effective on managing patients and preventing cardiotoxicity. In this study, an overview of the molecular pathways involved in cardiotoxicity by circRNAs and their effects on the downstream factors have been discussed.
Collapse
Affiliation(s)
- Pegah Joghataie
- Department of Cardiology, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Neda Sabernia
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Tooba Sohbatzadeh
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | - Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Bahareh Shateri Amiri
- Assistant Professor of Internal Medicine, Department of Internal Medicine, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Yuan Z, Huang S, Jin X, Li S. Circular RNAs in Cardiovascular Diseases: Molecular Mechanisms, Therapeutic Advances, and Innovations. Genes (Basel) 2024; 15:1423. [PMID: 39596623 PMCID: PMC11593509 DOI: 10.3390/genes15111423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Circular RNAs (circRNAs) have emerged as promising therapeutic targets due to their unique covalently closed-loop structures and their regulatory roles in gene expression. Despite their potential, challenges in circRNA-based therapies include ensuring stability, tissue specificity, and efficient intracellular delivery. This review explores the implications of circRNAs in cardiovascular diseases (CVDs), providing an overview of their biogenesis, molecular mechanisms, and roles in disease pathology. In addition to discussing molecular features, this review highlights therapeutic advances, including small-molecule drugs targeting circRNAs, synthetic circRNA sponges, and innovations in drug delivery systems that enhance the effectiveness of these therapies. Finally, current challenges and future directions are addressed, emphasizing the need for continued research to fully unlock the therapeutic potential of circRNA-based strategies in cardiovascular medicine.
Collapse
Affiliation(s)
- Zheng Yuan
- College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Shaoyuan Huang
- School of Medicine, Nankai University, Tianjin 300071, China; (S.H.); (X.J.)
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin 300071, China; (S.H.); (X.J.)
| | - Shanshan Li
- School of Medicine, Nankai University, Tianjin 300071, China; (S.H.); (X.J.)
| |
Collapse
|
11
|
Zheng T, Jiang T, Ma H, Zhu Y, Wang M. Targeting PI3K/Akt in Cerebral Ischemia Reperfusion Injury Alleviation: From Signaling Networks to Targeted Therapy. Mol Neurobiol 2024; 61:7930-7949. [PMID: 38441860 DOI: 10.1007/s12035-024-04039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/09/2024] [Indexed: 09/21/2024]
Abstract
Ischemia/reperfusion (I/R) injury is a pathological event that results in reperfusion due to low blood flow to an organ. Cerebral ischemia is a common cerebrovascular disease with high mortality, and reperfusion is the current standard intervention. However, reperfusion may further induce cellular damage and dysfunction known as cerebral ischemia/reperfusion injury (CIRI). Currently, strategies for the clinical management of CIRI are limited, necessitating the exploration of novel and efficacious treatment modalities for the benefit of patients. PI3K/Akt signaling pathway is an important cellular process associated with the disease. Stimulation of the PI3K/Akt pathway enhances I/R injury in multiple organs such as heart, brain, lung, and liver. It stands as a pivotal signaling pathway crucial for diminishing cerebral infarction size and safeguarding the functionality of brain tissue after CIRI. During CIRI, activation of the PI3K/Akt pathway exhibits a protective effect on CIRI. Furthermore, activation of the PI3K/Akt pathway has the potential to augment the activity of antioxidant enzymes, resulting in a decrease in reactive oxygen species (ROS) and the associated oxidative stress. Meanwhile, PI3K/Akt plays a neuroprotective role by inhibiting inflammatory responses and apoptosis. For example, PI3K/Akt interacts with NF-κB, Nrf2, and MAPK signaling pathways to mitigate CIRI. This article is aimed to explore the pivotal role and underlying mechanism of PI3K/Akt in ameliorating CIRI and investigate the influence of ischemic preconditioning and post-processing, as well as the impact of pertinent drugs or activators targeting the PI3K/Akt pathway on CIRI. The primary objective is to furnish compelling evidence supporting the activation of PI3K/Akt in the context of CIRI, elucidating its mechanistic intricacies. By doing so, the paper aims to underscore the critical contribution of PI3K/Akt in mitigating CIRI, providing a theoretical foundation for considering the PI3K/Akt pathway as a viable target for CIRI treatment.
Collapse
Affiliation(s)
- Ting Zheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Taotao Jiang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hongxiang Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yanping Zhu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Manxia Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
12
|
Tibenda JJ, Wang N, Li N, Dang Y, Zhu Y, Wang X, Zhang Z, Zhao Q. Research progress of circular RNAs in myocardial ischemia. Life Sci 2024; 352:122809. [PMID: 38908786 DOI: 10.1016/j.lfs.2024.122809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/24/2024]
Abstract
Circular RNAs (circRNAs) are a type of single-stranded RNA that forms a covalently closed continuous loop. Its structure, stability, properties, and cell- and tissue-specificity have gained considerable recognition in the research and clinical sectors, as its role has been observed in different diseases, such as cardiovascular diseases, cancers, and central nervous system diseases, etc. Cardiovascular disease is still named as the number one cause of death globally, with myocardial ischemia (MI) accounting for 15 % of mortality annually. A number of circRNAs have been identified and are being studied for their ability to reduce MI by inhibiting the molecular mechanisms associated with myocardial ischemia reperfusion injury, such as inflammation, oxidative stress, autophagy, apoptosis, and so on. CircRNAs play a significant role as crucial regulatory elements at transcriptional levels, regulating different proteins, and at posttranscriptional levels, having interactions with RNA-binding proteins, ribosomal proteins, micro-RNAS, and long non-coding RNAS, making it possible to exert their effects through the circRNA-miRNA-mRNA axis. CircRNAs are a potential novel biomarker and therapeutic target for myocardial ischemia and cardiovascular diseases in general. The purpose of this review is to summarize the relationship, function, and mechanism observed between circRNAs and MI injury, as well as to provide directions for future research and clinical trials.
Collapse
Affiliation(s)
- Jonnea Japhet Tibenda
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Niuniu Wang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Nuan Li
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Yanning Dang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Yafei Zhu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Zhengjun Zhang
- Department of Cardiology, General Hospital of Ningxia Medical University, Ningxia, China.
| | - Qipeng Zhao
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China.
| |
Collapse
|
13
|
Lin L, Chu J, An S, Liu X, Tan R. The Biological Mechanisms and Clinical Roles of RNA-Binding Proteins in Cardiovascular Diseases. Biomolecules 2024; 14:1056. [PMID: 39334823 PMCID: PMC11430443 DOI: 10.3390/biom14091056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
RNA-binding proteins (RBPs) have pivotal roles in cardiovascular biology, influencing various molecular mechanisms underlying cardiovascular diseases (CVDs). This review explores the significant roles of RBPs, focusing on their regulation of RNA alternative splicing, polyadenylation, and RNA editing, and their impact on CVD pathogenesis. For instance, RBPs are crucial in myocardial injury, contributing to disease progression and repair mechanisms. This review systematically analyzes the roles of RBPs in myocardial injury, arrhythmias, myocardial infarction, and heart failure, revealing intricate interactions that influence disease outcomes. Furthermore, the potential of RBPs as therapeutic targets for cardiovascular dysfunction is explored, highlighting the advances in drug development and clinical research. This review also discusses the emerging role of RBPs as biomarkers for cardiovascular diseases, offering insights into their diagnostic and prognostic potential. Despite significant progress, current research faces several limitations, which are critically examined. Finally, this review identifies the major challenges and outlines future research directions to advance the understanding and application of RBPs in cardiovascular medicine.
Collapse
Affiliation(s)
- Lizhu Lin
- Department of Anaesthesiology, The First People’s Hospital of Qinzhou, The Tenth Affiliated Hospital of Guangxi Medical University, Qinzhou 535000, China;
| | - Jiemei Chu
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China; (J.C.); (S.A.)
| | - Sanqi An
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China; (J.C.); (S.A.)
| | - Xinli Liu
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China; (J.C.); (S.A.)
| | - Runxian Tan
- Department of Laboratory Medicine, The First People’s Hospital of Qinzhou, The Tenth Affiliated Hospital of Guangxi Medical University, Qinzhou 535000, China
| |
Collapse
|
14
|
Caporali A, Anwar M, Devaux Y, Katare R, Martelli F, Srivastava PK, Pedrazzini T, Emanueli C. Non-coding RNAs as therapeutic targets and biomarkers in ischaemic heart disease. Nat Rev Cardiol 2024; 21:556-573. [PMID: 38499868 DOI: 10.1038/s41569-024-01001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/20/2024]
Abstract
The adult heart is a complex, multicellular organ that is subjected to a series of regulatory stimuli and circuits and has poor reparative potential. Despite progress in our understanding of disease mechanisms and in the quality of health care, ischaemic heart disease remains the leading cause of death globally, owing to adverse cardiac remodelling, leading to ischaemic cardiomyopathy and heart failure. Therapeutic targets are urgently required for the protection and repair of the ischaemic heart. Moreover, personalized clinical biomarkers are necessary for clinical diagnosis, medical management and to inform the individual response to treatment. Non-coding RNAs (ncRNAs) deeply influence cardiovascular functions and contribute to communication between cells in the cardiac microenvironment and between the heart and other organs. As such, ncRNAs are candidates for translation into clinical practice. However, ncRNA biology has not yet been completely deciphered, given that classes and modes of action have emerged only in the past 5 years. In this Review, we discuss the latest discoveries from basic research on ncRNAs and highlight both the clinical value and the challenges underscoring the translation of these molecules as biomarkers and therapeutic regulators of the processes contributing to the initiation, progression and potentially the prevention or resolution of ischaemic heart disease and heart failure.
Collapse
Affiliation(s)
- Andrea Caporali
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Maryam Anwar
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Luxembourg, Luxemburg
| | - Rajesh Katare
- Department of Physiology, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | | | - Thierry Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
- British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
15
|
Liu X, Yao X, Chen L. Expanding roles of circRNAs in cardiovascular diseases. Noncoding RNA Res 2024; 9:429-436. [PMID: 38511061 PMCID: PMC10950605 DOI: 10.1016/j.ncrna.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 03/22/2024] Open
Abstract
CircRNAs are a class of single-stranded RNAs characterized by covalently looped structures. Emerging advances have promoted our understanding of circRNA biogenesis, nuclear export, biological functions, and functional mechanisms. Roles of circRNAs in diverse diseases have been increasingly recognized in the past decade, with novel approaches in bioinformatics analysis and new strategies in modulating circRNA levels, which have made circRNAs the hot spot for therapeutic applications. Moreover, due to the intrinsic features of circRNAs such as high stability, conservation, and tissue-/stage-specific expression, circRNAs are believed to be promising prognostic and diagnostic markers for diseases. Aiming cardiovascular disease (CVD), one of the leading causes of mortality worldwide, we briefly summarize the current understanding of circRNAs, provide the recent progress in circRNA functions and functional mechanisms in CVD, and discuss the future perspectives both in circRNA research and therapeutics based on existing knowledge.
Collapse
Affiliation(s)
- Xu Liu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xuelin Yao
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
16
|
Chen H, Cheng Z, Wang M, Huang Q, Zheng D, Huang Q, Cai K. Circ_0020887 Silencing Combats Hypoxic-Induced Cardiomyocyte Injury in an MiR-370-3p/CYP1B1-Dependent Manner. Int Heart J 2024; 65:308-317. [PMID: 38479850 DOI: 10.1536/ihj.23-325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Targeting circular RNA has been a novel approach to preventing and limiting acute myocardial infarction (AMI). Here, we planned to investigate the role and mechanism of circ_0020887 in AMI progression.Hypoxic injury in human cardiomyocytes (AC16) was measured using cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, flow cytometry, and colorimetric assay kits. RNA and protein expressions were determined using real-time quantitative PCR and western blotting. Direct interplay between RNAs was determined using dual-luciferase reporter, RNA pull-down, and RIP assays.In the plasma and hypoxia-induced AC16 cells of patients with AMI, circ_0020887 and miR-370-3p were upregulated and downregulated, respectively, concomitant with the upregulation of cytochrome P450 1B1 (CYP1B1). Circ_0020887 interference could inhibit hypoxia-induced AC16 cell apoptosis, oxidative stress, and inflammatory response. Circ_0020887 could sponge miR-370-3p, and miR-370-3p could target CYP1B1. The inhibition effect of circ_0020887 knockdown on hypoxia-induced AC16 cell injury could be reversed by the miR-370-3p inhibitor. Besides, CYP1B1 overexpression also overturned the suppressive effect of miR-370-3p on hypoxia-induced AC16 cell apoptosis, oxidative stress, and inflammatory response.In conclusion, circ_0020887 regulated the miR-370-3p/CYP1B1 axis to regulate hypoxia-induced cardiomyocyte injury, confirming that circ_0020887 might promote cardiomyocyte injury.
Collapse
Affiliation(s)
- Huiqin Chen
- Department of Basic Medical, Quanzhou Medical College
| | - Zhendong Cheng
- Department of Cardiovascular, The Second Affiliated Hospital of Fujian Medical University
| | - Meiai Wang
- Department of Basic Medical, Quanzhou Medical College
| | - Qian Huang
- Department of Basic Medical, Quanzhou Medical College
| | - Dandan Zheng
- Department of Basic Medical, Quanzhou Medical College
| | - Qiuhong Huang
- Department of Basic Medical, Quanzhou Medical College
| | - Kefeng Cai
- Department of Cardiovascular, The Second Affiliated Hospital of Fujian Medical University
| |
Collapse
|
17
|
Huang S, Wu Z, Zhou Y. Hypoxia-induced circRNAs encoded by PPARA are highly expressed in human cardiomyocytes and are potential clinical biomarkers of acute myocardial infarction. Eur J Med Res 2024; 29:159. [PMID: 38475969 DOI: 10.1186/s40001-024-01753-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a serious cardiovascular disease that adversely affects human health. Circular RNAs (circRNAs) are involved in the pathological and physiological processes of AMI, but the biological mechanism of their involvement and their clinical significance remain unknown. We aimed to identify circRNAs that are significantly associated with morbidity in the peripheral blood of patients with AMI and evaluate their diagnostic utility. METHODS High-throughput sequencing was used to screen for differentially expressed circRNAs in peripheral blood samples obtained from five patients with AMI and five sex- and age-matched healthy controls. A series of bioinformatics tools and databases were used to determine the biological functional classification and pathway enrichment of the circRNAs based on data obtained from sequencing. A hypoxia model was established and used to evaluate the effect of hypoxia on circRNA expression in human cardiomyocytes. A cytoplasmic separation assay and enzyme resistance assay were employed to identify the biological characteristics of circRNA. Polymerase chain reaction validity testing and receiver operating characteristic (ROC) curve analysis were used to evaluate the utility of circRNA assessments in the diagnosis of AMI. RESULTS A large number of circRNAs were found to be differentially expressed in the peripheral blood of patients with AMI, and significantly more of these circRNAs were highly expressed than lowly expressed. The genes encoding these circRNAs have a wide range of effects on various functions in the body. A hypoxic environment promoted the upregulation of circRNA expression in human cardiomyocytes, and hsa_circ_0116795 encoded by PPARA was highly expressed in the peripheral blood of the patients with AMI. In terms of biological characteristics, under physiological conditions, hsa_circ_0116795 (circ_PPARA) was mainly located in the cytoplasm of cardiomyocytes and found to be resistant to exonuclease. The ROC curve analysis showed that the expression levels of circ_PPARA in the peripheral blood of patients with AMI were significantly different from those in the peripheral blood of healthy controls. CONCLUSION A large number of abnormally expressed circRNAs are detectable in the peripheral blood of patients with AMI. In particular, circ_PPARA is highly expressed in human myocardial cells under hypoxic conditions, and its biological characteristics indicate that it could be employed as a biomarker for the early diagnosis of AMI.
Collapse
Affiliation(s)
- Shasha Huang
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, , Guangdong, China
| | - Zhangying Wu
- Department of Cardiology, Qingdao Huangdao District People's Hospital, Qingdao, 266400, Shangdong, China
| | - Yang Zhou
- Department of Central Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, No. 201-209, Hubinnan Road, Siming District, Xiamen, 361004, Fujian, China.
| |
Collapse
|
18
|
You JR, Wen ZJ, Tian JW, Lv XB, Li R, Li SP, Xin H, Li PF, Zhang YF, Zhang R. Crosstalk between ubiquitin ligases and ncRNAs drives cardiovascular disease progression. Front Immunol 2024; 15:1335519. [PMID: 38515760 PMCID: PMC10954775 DOI: 10.3389/fimmu.2024.1335519] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiovascular diseases (CVDs) are multifactorial chronic diseases and have the highest rates of morbidity and mortality worldwide. The ubiquitin-proteasome system (UPS) plays a crucial role in posttranslational modification and quality control of proteins, maintaining intracellular homeostasis via degradation of misfolded, short-lived, or nonfunctional regulatory proteins. Noncoding RNAs (ncRNAs, such as microRNAs, long noncoding RNAs, circular RNAs and small interfering RNAs) serve as epigenetic factors and directly or indirectly participate in various physiological and pathological processes. NcRNAs that regulate ubiquitination or are regulated by the UPS are involved in the execution of target protein stability. The cross-linked relationship between the UPS, ncRNAs and CVDs has drawn researchers' attention. Herein, we provide an update on recent developments and perspectives on how the crosstalk of the UPS and ncRNAs affects the pathological mechanisms of CVDs, particularly myocardial ischemia/reperfusion injury, myocardial infarction, cardiomyopathy, heart failure, atherosclerosis, hypertension, and ischemic stroke. In addition, we further envision that RNA interference or ncRNA mimics or inhibitors targeting the UPS can potentially be used as therapeutic tools and strategies.
Collapse
Affiliation(s)
- Jia-Rui You
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Zeng-Jin Wen
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Jia-Wei Tian
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiao-Bing Lv
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Rong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Shu-Ping Li
- Department of Cardiology, The Affiliated Qingdao Third People’s Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Rui Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
19
|
Hansen CE, Springstubbe D, Müller S, Petkovic S. Directed Circularization of a Short RNA. Methods Mol Biol 2024; 2765:209-226. [PMID: 38381342 DOI: 10.1007/978-1-0716-3678-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Basic research and functional analyses of circular RNA (circRNA) have been limited by challenges in circRNA formation of desired length and sequence in adequate yields. Nowadays, circular RNA can be obtained using enzymatic, "ribozymatic," or modulated splice events. However, there are few records for the directed circularization of RNA. Here, we present a proof of principle for an affordable and efficient RNA-based system for the controlled synthesis of circRNA with a physiological 3',5'-phosphodiester conjunction. The engineered hairpin ribozyme variant circular ribozyme 3 (CRZ-3) performs self-cleavage poorly. We designed an activator-polyamine complex to complete cleavage as a prerequisite for subsequent circularization. The developed protocol allows synthesizing circRNA without external enzymatic assistance and adds a controllable way of circularization to the existing methods.
Collapse
Affiliation(s)
| | | | - Sabine Müller
- University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Sonja Petkovic
- University Hospital Schleswig-Holstein, Campus Lübeck, Germany.
| |
Collapse
|
20
|
Yang Y, Liang F, Gao J, Li J, Jiang C, Xie W, Wu S, Wang Y, Yi J. Salidroside Ameliorates Ischemia/Reperfusion-Induced Human Cardiomyocyte Injury by Inhibiting the Circ_0097682/miR-671-5p/USP46 Pathway. Cardiovasc Toxicol 2023; 23:406-418. [PMID: 37740139 DOI: 10.1007/s12012-023-09808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023]
Abstract
Salidroside shows an inhibitory effect on myocardial ischemia/reperfusion (I/R) injury; however, the underlying mechanism remains to be explored. The present work analyzes the mechanism that drives salidroside to ameliorate I/R-induced human cardiomyocyte injury. Human cardiomyocytes were subjected to I/R treatment to simulate a myocardial infarction cell model. Cell viability, cell proliferation, and cell apoptosis were analyzed by CCK-8 assay, EdU assay, and flow cytometry analysis, respectively. RNA expression levels of circ_0097682, miR-671-5p, and F-box and ubiquitin-specific peptidase 46 (USP46) were detected by qRT-PCR. Protein expression was measured by Western blotting assay. The levels of IL-6, IL-1β, and TNF-α in cell supernatant were detected by enzyme-linked immunosorbent assays. Salidroside treatment relieved I/R-induced inhibitory effect on AC16 cell proliferation and promoting effects on cell apoptosis, inflammation, and oxidative stress. Salidroside inhibited circ_0097682 expression in I/R-treated AC16 cells. Salidroside-mediated inhibition of I/R-induced cell injury involved the downregulation of circ_0097682 expression. In addition, circ_0097682 bound to miR-671-5p in AC16 cells, and miR-671-5p inhibitors rescued salidroside pretreatment-mediated effects in I/R-treated AC16 cells. Moreover, miR-671-5p targeted USP46 in AC16 cells, and USP46 introduction partially relieved circ_0097682 depletion or salidroside pretreatment-induced effects in I/R-treated AC16 cells. Salidroside ameliorated I/R-induced AC16 cell injury by inhibiting the circ_0097682/miR-671-5p/USP46 pathway.
Collapse
Affiliation(s)
- Yuyang Yang
- College of Traditional Chinese Medicine, North China University of Science Technology, Qinhuangdao, China
| | - Fangqian Liang
- Department of General Practice, North China University of Science and Technology Affiliated Hospital, No. 73, Jianshe South Road, Lubei District, Tangshan, 063000, Hebei, China
| | - Jingyuan Gao
- Department of General Practice, North China University of Science and Technology Affiliated Hospital, No. 73, Jianshe South Road, Lubei District, Tangshan, 063000, Hebei, China.
| | - Jian Li
- College of Traditional Chinese Medicine, North China University of Science Technology, Qinhuangdao, China
| | - Chunhua Jiang
- College of Traditional Chinese Medicine, North China University of Science Technology, Qinhuangdao, China
| | - Wei Xie
- College of Traditional Chinese Medicine, North China University of Science Technology, Qinhuangdao, China
| | - Shujuan Wu
- College of Traditional Chinese Medicine, North China University of Science Technology, Qinhuangdao, China
| | - Ya Wang
- College of Traditional Chinese Medicine, North China University of Science Technology, Qinhuangdao, China
| | - Jing Yi
- College of Traditional Chinese Medicine, North China University of Science Technology, Qinhuangdao, China
| |
Collapse
|
21
|
Liu Y, Ding W, Wang J, Ao X, Xue J. Non-coding RNAs in lung cancer: molecular mechanisms and clinical applications. Front Oncol 2023; 13:1256537. [PMID: 37746261 PMCID: PMC10514911 DOI: 10.3389/fonc.2023.1256537] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Lung cancer (LC) is a heterogeneous disease with high malignant degree, rapid growth, and early metastasis. The clinical outcomes of LC patients are generally poor due to the insufficient elucidation of pathological mechanisms, low efficiency of detection and assessment methods, and lack of individualized therapeutic strategies. Non-coding RNAs (ncRNAs), including microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA), are endogenous regulators that are widely involved in the modulation of almost all aspects of life activities, from organogenesis and aging to immunity and cancer. They commonly play vital roles in various biological processes by regulating gene expression via their interactions with DNA, RNA, or protein. An increasing amount of studies have demonstrated that ncRNAs are closely correlated with the initiation and development of LC. Their dysregulation promotes the progression of LC via distinct mechanisms, such as influencing protein activity, activating oncogenic signaling pathways, or altering specific gene expression. Furthermore, some ncRNAs present certain clinical values as biomarker candidates and therapeutic targets for LC patients. A complete understanding of their mechanisms in LC progression may be highly beneficial to developing ncRNA-based therapeutics for LC patients. This review mainly focuses on the intricate mechanisms of miRNA, lncRNA, and circRNA involved in LC progression and discuss their underlying applications in LC treatment.
Collapse
Affiliation(s)
- Ying Liu
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Wei Ding
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xiang Ao
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Junqiang Xue
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
22
|
Ding Y, Chen Q. The NF-κB Pathway: a Focus on Inflammatory Responses in Spinal Cord Injury. Mol Neurobiol 2023; 60:5292-5308. [PMID: 37286724 DOI: 10.1007/s12035-023-03411-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Spinal cord injury (SCI) is a type of central nervous system trauma that can lead to severe nerve injury. Inflammatory reaction after injury is an important pathological process leading to secondary injury. Long-term stimulation of inflammation can further deteriorate the microenvironment of the injured site, leading to the deterioration of neural function. Understanding the signaling pathways that regulate responses after SCI, especially inflammatory responses, is critical for the development of new therapeutic targets and approaches. Nuclear transfer factor-κB (NF-κB) has long been recognized as a key factor in regulating inflammatory responses. The NF-κB pathway is closely related to the pathological process of SCI. Inhibition of this pathway can improve the inflammatory microenvironment and promote the recovery of neural function after SCI. Therefore, the NF-κB pathway may be a potential therapeutic target for SCI. This article reviews the mechanism of inflammatory response after SCI and the characteristics of NF-κB pathway, emphasizing the effect of inhibiting NF-κB on the inflammatory response of SCI to provide a theoretical basis for the biological treatment of SCI.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
23
|
Lu P, Zhang D, Ding F, Ma J, Xiang YK, Zhao M. Silencing of circCacna1c Inhibits ISO-Induced Cardiac Hypertrophy through miR-29b-2-5p/NFATc1 Axis. Cells 2023; 12:1667. [PMID: 37371137 DOI: 10.3390/cells12121667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/04/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Pathological cardiac hypertrophy is one of the notable causes of heart failure. Circular RNAs (circRNAs) have been studied in association with cardiac hypertrophy; however, the mechanisms by which circRNAs regulate cardiac hypertrophy remain unclear. In this study, we identified a new circRNA, named circCacna1c, in cardiac hypertrophy. Adult male C57BL/6 mice and H9c2 cells were treated with isoprenaline hydrochloride (ISO) to establish a hypertrophy model. We found that circCacna1c was upregulated in ISO-induced hypertrophic heart tissue and H9c2 cells. Western blot and quantitative real-time polymerase chain reaction showed that silencing circCacna1c inhibited hypertrophic gene expression in ISO-induced H9c2 cells. Mechanistically, circCacna1c competitively bound to miR-29b-2-5p in a dual-luciferase reporter assay, which was downregulated in ISO-induced hypertrophic heart tissue and H9c2 cells. MiR-29b-2-5p inhibited the nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) to control hypertrophic gene expression. After silencing circCacna1c, the expression of miR-29b-2-5p increased, which reduced hypertrophic gene expression by inhibiting NFATc1 expression. Together, these experiments indicate that circCacna1c promotes ISO-induced pathological hypertrophy through the miR-29b-2-5p/NFATc1 axis.
Collapse
Affiliation(s)
- Peilei Lu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Danyu Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Fan Ding
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Jialu Ma
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, CA 95616, USA
| | - Meimi Zhao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
24
|
Singh DD, Kim Y, Choi SA, Han I, Yadav DK. Clinical Significance of MicroRNAs, Long Non-Coding RNAs, and CircRNAs in Cardiovascular Diseases. Cells 2023; 12:1629. [PMID: 37371099 DOI: 10.3390/cells12121629] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Based on recent research, the non-coding genome is essential for controlling genes and genetic programming during development, as well as for health and cardiovascular diseases (CVDs). The microRNAs (miRNAs), lncRNAs (long ncRNAs), and circRNAs (circular RNAs) with significant regulatory and structural roles make up approximately 99% of the human genome, which does not contain proteins. Non-coding RNAs (ncRNA) have been discovered to be essential novel regulators of cardiovascular risk factors and cellular processes, making them significant prospects for advanced diagnostics and prognosis evaluation. Cases of CVDs are rising due to limitations in the current therapeutic approach; most of the treatment options are based on the coding transcripts that encode proteins. Recently, various investigations have shown the role of nc-RNA in the early diagnosis and treatment of CVDs. Furthermore, the development of novel diagnoses and treatments based on miRNAs, lncRNAs, and circRNAs could be more helpful in the clinical management of patients with CVDs. CVDs are classified into various types of heart diseases, including cardiac hypertrophy (CH), heart failure (HF), rheumatic heart disease (RHD), acute coronary syndrome (ACS), myocardial infarction (MI), atherosclerosis (AS), myocardial fibrosis (MF), arrhythmia (ARR), and pulmonary arterial hypertension (PAH). Here, we discuss the biological and clinical importance of miRNAs, lncRNAs, and circRNAs and their expression profiles and manipulation of non-coding transcripts in CVDs, which will deliver an in-depth knowledge of the role of ncRNAs in CVDs for progressing new clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Youngsun Kim
- Department of Obstetrics and Gynecology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Ah Choi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul 08826, Republic of Korea
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Biodisplay, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Dharmendra Kumar Yadav
- Department of Pharmacy, Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Incheon 21924, Republic of Korea
| |
Collapse
|
25
|
Liu Y, Ding W, Wang J, Ao X, Xue J. Non-coding RNA-mediated modulation of ferroptosis in cardiovascular diseases. Biomed Pharmacother 2023; 164:114993. [PMID: 37302320 DOI: 10.1016/j.biopha.2023.114993] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023] Open
Abstract
Cardiovascular disease (CVD) is a major contributor to increasing morbidity and mortality worldwide and seriously threatens human health and life. Cardiomyocyte death is considered the pathological basis of various CVDs, including myocardial infarction, heart failure, and aortic dissection. Multiple mechanisms, such as ferroptosis, necrosis, and apoptosis, contribute to cardiomyocyte death. Among them, ferroptosis is an iron-dependent form of programmed cell death that plays a vital role in various physiological and pathological processes, from development and aging to immunity and CVD. The dysregulation of ferroptosis has been shown to be closely associated with CVD progression, yet its underlying mechanisms are still not fully understood. In recent years, a growing amount of evidence suggests that non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, are involved in the regulation of ferroptosis, thus affecting CVD progression. Some ncRNAs also exhibit potential value as biomarker and/or therapeutic target for patients with CVD. In this review, we systematically summarize recent findings on the underlying mechanisms of ncRNAs involved in ferroptosis regulation and their role in CVD progression. We also focus on their clinical applications as diagnostic and prognostic biomarkers as well as therapeutic targets in CVD treatment. DATA AVAILABILITY: No new data were created or analyzed in this study. Data sharing is not applicable to this article.
Collapse
Affiliation(s)
- Ying Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, Shandong, China
| | - Wei Ding
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Xiang Ao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China; School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China.
| | - Junqiang Xue
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China; Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China.
| |
Collapse
|
26
|
Nardin M, Verdoia M, Laera N, Cao D, De Luca G. New Insights into Pathophysiology and New Risk Factors for ACS. J Clin Med 2023; 12:jcm12082883. [PMID: 37109221 PMCID: PMC10146393 DOI: 10.3390/jcm12082883] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Cardiovascular disease still represents the main cause of mortality worldwide. Despite huge improvements, atherosclerosis persists as the principal pathological condition, both in stable and acute presentation. Specifically, acute coronary syndromes have received substantial research and clinical attention in recent years, contributing to improve overall patients' outcome. The identification of different evolution patterns of the atherosclerotic plaque and coronary artery disease has suggested the potential need of different treatment approaches, according to the mechanisms and molecular elements involved. In addition to traditional risk factors, the finer portrayal of other metabolic and lipid-related mediators has led to higher and deep knowledge of atherosclerosis, providing potential new targets for clinical management of the patients. Finally, the impressive advances in genetics and non-coding RNAs have opened a wide field of research both on pathophysiology and the therapeutic side that are extensively under investigation.
Collapse
Affiliation(s)
- Matteo Nardin
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- Third Medicine Division, Department of Medicine, ASST Spedali Civili, 25123 Brescia, Italy
| | - Monica Verdoia
- Division of Cardiology, Ospedale degli Infermi, ASL Biella, 13900 Biella, Italy
- Department of Translational Medicine, Eastern Piedmont University, 13100 Novara, Italy
| | - Nicola Laera
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Davide Cao
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
| | - Giuseppe De Luca
- Division of Cardiology, AOU "Policlinico G. Martino", Department of Clinical and Experimental Medicine, University of Messina, 98166 Messina, Italy
- Division of Cardiology, IRCCS Hospital Galeazzi-Sant'Ambrogio, 20161 Milan, Italy
| |
Collapse
|
27
|
Ao X, Ding W, Li X, Xu Q, Chen X, Zhou X, Wang J, Liu Y. Non-coding RNAs regulating mitochondrial function in cardiovascular diseases. J Mol Med (Berl) 2023; 101:501-526. [PMID: 37014377 DOI: 10.1007/s00109-023-02305-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 04/05/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of disease-related death worldwide and a significant obstacle to improving patients' health and lives. Mitochondria are core organelles for the maintenance of myocardial tissue homeostasis, and their impairment and dysfunction are considered major contributors to the pathogenesis of various CVDs, such as hypertension, myocardial infarction, and heart failure. However, the exact roles of mitochondrial dysfunction involved in CVD pathogenesis remain not fully understood. Non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, have been shown to be crucial regulators in the initiation and development of CVDs. They can participate in CVD progression by impacting mitochondria and regulating mitochondrial function-related genes and signaling pathways. Some ncRNAs also exhibit great potential as diagnostic and/or prognostic biomarkers as well as therapeutic targets for CVD patients. In this review, we mainly focus on the underlying mechanisms of ncRNAs involved in the regulation of mitochondrial functions and their role in CVD progression. We also highlight their clinical implications as biomarkers for diagnosis and prognosis in CVD treatment. The information reviewed herein could be extremely beneficial to the development of ncRNA-based therapeutic strategies for CVD patients.
Collapse
Affiliation(s)
- Xiang Ao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Wei Ding
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Xiaoge Li
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Qingling Xu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Xinhui Chen
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Xuehao Zhou
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
28
|
The Role of ncRNAs in Cardiac Infarction and Regeneration. J Cardiovasc Dev Dis 2023; 10:jcdd10030123. [PMID: 36975887 PMCID: PMC10052289 DOI: 10.3390/jcdd10030123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Myocardial infarction is the most prevalent cardiovascular disease worldwide, and it is defined as cardiomyocyte cell death due to a lack of oxygen supply. Such a temporary absence of oxygen supply, or ischemia, leads to extensive cardiomyocyte cell death in the affected myocardium. Notably, reactive oxygen species are generated during the reperfusion process, driving a novel wave of cell death. Consequently, the inflammatory process starts, followed by fibrotic scar formation. Limiting inflammation and resolving the fibrotic scar are essential biological processes with respect to providing a favorable environment for cardiac regeneration that is only achieved in a limited number of species. Distinct inductive signals and transcriptional regulatory factors are key components that modulate cardiac injury and regeneration. Over the last decade, the impact of non-coding RNAs has begun to be addressed in many cellular and pathological processes including myocardial infarction and regeneration. Herein, we provide a state-of-the-art review of the current functional role of diverse non-coding RNAs, particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in different biological processes involved in cardiac injury as well as in distinct experimental models of cardiac regeneration.
Collapse
|
29
|
Azizidoost S, Nasrolahi A, Sheykhi-Sabzehpoush M, Akiash N, Assareh AR, Anbiyaee O, Antosik P, Dzięgiel P, Farzaneh M, Kempisty B. Potential roles of endothelial cells-related non-coding RNAs in cardiovascular diseases. Pathol Res Pract 2023; 242:154330. [PMID: 36696805 DOI: 10.1016/j.prp.2023.154330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Endothelial dysfunction is identified by a conversion of the endothelium toward decreased vasodilation and prothrombic features and is known as a primary pathogenic incident in cardiovascular diseases. An insight based on particular and promising biomarkers of endothelial dysfunction may possess vital clinical significances. Currently, non-coding RNAs due to their participation in critical cardiovascular processes like initiation and progression have gained much attention as possible diagnostic as well as prognostic biomarkers in cardiovascular diseases. Emerging line of proof has demonstrated that abnormal expression of non-coding RNAs is nearly correlated with the pathogenesis of cardiovascular diseases. In the present review, we focus on the expression and functional effects of various kinds of non-coding RNAs in cardiovascular diseases and negotiate their possible clinical implications as diagnostic or prognostic biomarkers and curative targets.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Nehzat Akiash
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Reza Assareh
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paweł Antosik
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland; Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland; North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC 27695, USA.
| |
Collapse
|
30
|
Joaquim VHA, Pereira NP, Fernandes T, Oliveira EM. Circular RNAs as a Diagnostic and Therapeutic Target in Cardiovascular Diseases. Int J Mol Sci 2023; 24:2125. [PMID: 36768449 PMCID: PMC9916891 DOI: 10.3390/ijms24032125] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 01/25/2023] Open
Abstract
Circular RNAs (circRNAs) are a family of noncoding RNAs (ncRNAs) that are endogenous and widely distributed in different species, performing several functions, mainly their association with microRNAs (miRNAs) and RNA-binding proteins. CVDs remain the leading cause of death worldwide; therefore, the development of new therapies and strategies, such as gene therapies or nonpharmacological therapies, with low cost, such as physical exercise, to alleviate these diseases is of extreme importance for society. With increasing evidence of ncRNA participating in the progression of CVDs, several studies have reported these RNAs as promising targets for diagnosis and treatment. There are several studies of CVDs and the role of miRNAs and lncRNAs; however, little is known about the new class of RNAs, called circRNAs, and CVDs. In this mini review, we focus on the mechanisms of circRNAs and CVDs.
Collapse
Affiliation(s)
| | | | | | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology Applied to the Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil
| |
Collapse
|
31
|
Li F, Yin YK, Zhang JT, Gong HP, Hao XD. Role of circular RNAs in retinoblastoma. Funct Integr Genomics 2022; 23:13. [PMID: 36547723 DOI: 10.1007/s10142-022-00942-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Retinoblastoma (RB), the most common malignant retinal tumor among children under 3 years old, is lethal if left untreated. Early diagnosis, together with timely and effective treatment, is important to improve retinoblastoma-related outcomes. Circular RNAs (circRNAs), a new class of non-coding RNAs with the capacity to regulate cellular activities, have great potential in retinoblastoma diagnosis and treatment. Recent studies have identified circular RNAs that regulate multiple cellular processes involved in retinoblastoma, including cell viability, proliferation, apoptosis, autophagy, migration, and invasion. Six circular RNAs (circ-FAM158A, circ-DHDDS, circ-E2F3, circ-TRHDE, circ-E2F5, and circ-RNF20) promote disease progression and metastasis in retinoblastoma and function as oncogenic factors. Other circular RNAs, such as circ-TET1, circ-SHPRH, circ-MKLN1, and circ-CUL2, play tumor suppressive roles in retinoblastoma. At present, the studies on the regulatory mechanism of circular RNAs in retinoblastoma are not very clear. The purpose of this review is to summarize recent studies on the functional roles and molecular mechanisms of circular RNAs in retinoblastoma and highlight novel strategies for retinoblastoma diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Fei Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yi-Ke Yin
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Ji-Tao Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Hai-Pai Gong
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xiao-Dan Hao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
32
|
Liu Y, Li X, Zhou X, Wang J, Ao X. FADD as a key molecular player in cancer progression. Mol Med 2022; 28:132. [DOI: 10.1186/s10020-022-00560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractCancer is a leading disease-related cause of death worldwide. Despite advances in therapeutic interventions, cancer remains a major global public health problem. Cancer pathogenesis is extremely intricate and largely unknown. Fas-associated protein with death domain (FADD) was initially identified as an adaptor protein for death receptor-mediated extrinsic apoptosis. Recent evidence suggests that FADD plays a vital role in non-apoptotic cellular processes, such as proliferation, autophagy, and necroptosis. FADD expression and activity of are modulated by a complicated network of processes, such as DNA methylation, non-coding RNA, and post-translational modification. FADD dysregulation has been shown to be closely associated with the pathogenesis of numerous types of cancer. However, the detailed mechanisms of FADD dysregulation involved in cancer progression are still not fully understood. This review mainly summarizes recent findings on the structure, functions, and regulatory mechanisms of FADD and focuses on its role in cancer progression. The clinical implications of FADD as a biomarker and therapeutic target for cancer patients are also discussed. The information reviewed herein may expand researchers’ understanding of FADD and contribute to the development of FADD-based therapeutic strategies for cancer patients.
Collapse
|
33
|
Underlying mechanisms of epithelial splicing regulatory proteins in cancer progression. J Mol Med (Berl) 2022; 100:1539-1556. [PMID: 36163376 DOI: 10.1007/s00109-022-02257-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022]
Abstract
Cancer is the second-leading disease-related cause of global mortality after cardiovascular disease. Despite significant advances in cancer therapeutic strategies, cancer remains one of the major obstacles to human life extension. Cancer pathogenesis is extremely complicated and not fully understood. Epithelial splicing regulatory proteins (ESRPs), including ESRP1 and ESRP2, belong to the heterogeneous nuclear ribonucleoprotein family of RNA-binding proteins and are crucial regulators of the alternative splicing of messenger RNAs (mRNAs). The expression and activity of ESRPs are modulated by various mechanisms, including post-translational modifications and non-coding RNAs. Although a growing body of evidence suggests that ESRP dysregulation is closely associated with cancer progression, the detailed mechanisms remain inconclusive. In this review, we summarize recent findings on the structures, functions, and regulatory mechanisms of ESRPs and focus on their underlying mechanisms in cancer progression. We also highlight the clinical implications of ESRPs as prognostic biomarkers and therapeutic targets in cancer treatment. The information reviewed herein could be extremely beneficial to the development of individualized therapeutic strategies for cancer patients.
Collapse
|
34
|
Hong Q, Mai P, Wu B, Wang H, Xiao M, You J. Long non-coding RNA TDRG1 aggravates colorectal cancer stemness by binding with miR-873-5p to upregulate PRKAR2. ENVIRONMENTAL TOXICOLOGY 2022; 37:2366-2374. [PMID: 35730470 DOI: 10.1002/tox.23602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/24/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
The effects of long non-coding RNA TDRG1 have been established in several tumors; however, its roles in colorectal cancer (CRC) progression are never been found. Here, we found that TDRG1 level was upregulated in CRC cells compared to that in normal colon epithelial cells. Additionally, TDRG1 level was remarkably upregulated in 3D non-adherent spheres derived from the parental CRC cells. Further in vitro and in vivo revealed that TDRG1 knockdown suppressed the stemness of CRC cells. What's more, combined with bioinformatics analysis, luciferase reporter and RNA pull down experiments showed that TDRG1 could bind to miR-873-5p, downregulated its level and thus increase the expression of PRKAR2. Finally, it was shown that TDRG1 functioned through the miR-873-5p/PRKAR2 axis. This study demonstrated a novel TDRG1/miR-873-5p/PRKAR2 signaling in CRC progression.
Collapse
Affiliation(s)
- Qingqi Hong
- Department of Gastrointestinal oncology Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, P. R. China. The School of Clinical Medicine, Fujian Medical University. The Graduate School of Fujian Medical University, Xiamen, China
| | - Peishan Mai
- Department of Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bin Wu
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Haibin Wang
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mingzhe Xiao
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
| | - Jun You
- Department of Gastrointestinal oncology Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, P. R. China. The School of Clinical Medicine, Fujian Medical University. The Graduate School of Fujian Medical University, Xiamen, China
| |
Collapse
|
35
|
Emerging Role of Non-Coding RNAs in Aortic Dissection. Biomolecules 2022; 12:biom12101336. [PMID: 36291545 PMCID: PMC9599213 DOI: 10.3390/biom12101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Aortic dissection (AD) is a fatal cardiovascular acute disease with high incidence and mortality, and it seriously threatens patients’ lives and health. The pathogenesis of AD mainly includes vascular inflammation, extracellular matrix degradation, and phenotypic conversion as well as apoptosis of vascular smooth muscle cells (VSMCs); however, its detailed mechanisms are still not fully elucidated. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are an emerging class of RNA molecules without protein-coding ability, and they play crucial roles in the progression of many diseases, including AD. A growing number of studies have shown that the dysregulation of ncRNAs contributes to the occurrence and development of AD by modulating the expression of specific target genes or the activity of related proteins. In addition, some ncRNAs exhibit great potential as promising biomarkers and therapeutic targets in AD treatment. In this review, we systematically summarize the recent findings on the underlying mechanism of ncRNA involved in AD regulation and highlight their clinical application as biomarkers and therapeutic targets in AD treatment. The information reviewed here will be of great benefit to the development of ncRNA-based therapeutic strategies for AD patients.
Collapse
|
36
|
Zhou X, Ao X, Jia Z, Li Y, Kuang S, Du C, Zhang J, Wang J, Liu Y. Non-coding RNA in cancer drug resistance: Underlying mechanisms and clinical applications. Front Oncol 2022; 12:951864. [PMID: 36059609 PMCID: PMC9428469 DOI: 10.3389/fonc.2022.951864] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/02/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the most frequently diagnosed malignant diseases worldwide, posing a serious, long-term threat to patients’ health and life. Systemic chemotherapy remains the first-line therapeutic approach for recurrent or metastatic cancer patients after surgery, with the potential to effectively extend patient survival. However, the development of drug resistance seriously limits the clinical efficiency of chemotherapy and ultimately results in treatment failure and patient death. A large number of studies have shown that non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, are widely involved in the regulation of cancer drug resistance. Their dysregulation contributes to the development of cancer drug resistance by modulating the expression of specific target genes involved in cellular apoptosis, autophagy, drug efflux, epithelial-to-mesenchymal transition (EMT), and cancer stem cells (CSCs). Moreover, some ncRNAs also possess great potential as efficient, specific biomarkers in diagnosis and prognosis as well as therapeutic targets in cancer patients. In this review, we summarize the recent findings on the emerging role and underlying mechanisms of ncRNAs involved in cancer drug resistance and focus on their clinical applications as biomarkers and therapeutic targets in cancer treatment. This information will be of great benefit to early diagnosis and prognostic assessments of cancer as well as the development of ncRNA-based therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Xuehao Zhou
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhaojun Jia
- College of New Materials and Chemical Engineering, Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Yiwen Li
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shouxiang Kuang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Chengcheng Du
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jinyu Zhang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ying Liu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
37
|
The FOXO family of transcription factors: key molecular players in gastric cancer. J Mol Med (Berl) 2022; 100:997-1015. [PMID: 35680690 DOI: 10.1007/s00109-022-02219-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Gastric cancer (GC) is the fifth most frequently diagnosed cancer worldwide and the third leading cause of cancer-related death with an oncological origin. Despite its decline in incidence and mortality in recent years, GC remains a global public problem that seriously threatens patients' health and lives. The forkhead box O proteins (FOXOs) are a family of evolutionarily conserved transcription factors (TFs) with crucial roles in cell fate decisions. In mammals, the FOXO family consists of four members FOXO1, 3a, 4, and 6. FOXOs play crucial roles in a variety of biological processes, such as development, metabolism, and stem cell maintenance, by regulating the expression of their target genes in space and time. An accumulating amount of evidence has shown that the dysregulation of FOXOs is involved in GC progression by affecting multiple cellular processes, including proliferation, apoptosis, invasion, metastasis, cell cycle progression, carcinogenesis, and resistance to chemotherapeutic drugs. In this review, we systematically summarize the recent findings on the regulatory mechanisms of FOXO family expression and activity and elucidate its roles in GC progression. Moreover, we also highlight the clinical implications of FOXOs in GC treatment.
Collapse
|
38
|
He X, Li Y, Deng B, Lin A, Zhang G, Ma M, Wang Y, Yang Y, Kang X. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Prolif 2022; 55:e13275. [PMID: 35754255 PMCID: PMC9436900 DOI: 10.1111/cpr.13275] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Objects Traumatic spinal cord injury (TSCI) causes neurological dysfunction below the injured segment of the spinal cord, which significantly impacts the quality of life in affected patients. The phosphoinositide 3kinase/serine‐threonine kinase (PI3K/AKT) signaling pathway offers a potential therapeutic target for the inhibition of secondary TSCI. This review summarizes updates concerning the role of the PI3K/AKT pathway in TSCI. Materials and Methods By searching articles related to the TSCI field and the PI3K/AKT signaling pathway, we summarized the mechanisms of secondary TSCI and the PI3K/AKT signaling pathway; we also discuss current and potential future treatment methods for TSCI based on the PI3K/AKT signaling pathway. Results Early apoptosis and autophagy after TSCI protect the body against injury; a prolonged inflammatory response leads to the accumulation of pro‐inflammatory factors and excessive apoptosis, as well as excessive autophagy in the surrounding normal nerve cells, thus aggravating TSCI in the subacute stage of secondary injury. Initial glial scar formation in the subacute phase is a protective mechanism for TSCI, which limits the spread of damage and inflammation. However, mature scar tissue in the chronic phase hinders axon regeneration and prevents the recovery of nerve function. Activation of PI3K/AKT signaling pathway can inhibit the inflammatory response and apoptosis in the subacute phase after secondary TSCI; inhibiting this pathway in the chronic phase can reduce the formation of glial scar. Conclusion The PI3K/AKT signaling pathway has an important role in the recovery of spinal cord function after secondary injury. Inducing the activation of PI3K/AKT signaling pathway in the subacute phase of secondary injury and inhibiting this pathway in the chronic phase may be one of the potential strategies for the treatment of TSCI.
Collapse
Affiliation(s)
- Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Ying Li
- Medical School of Yan'an University, Yan'an University, Yan'an, China
| | - Bo Deng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Aixin Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Miao Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Yong Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| |
Collapse
|
39
|
Liu Y, Wang Y, Li X, Jia Y, Wang J, Ao X. FOXO3a in cancer drug resistance. Cancer Lett 2022; 540:215724. [DOI: 10.1016/j.canlet.2022.215724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
|
40
|
Zhou J, He S, Wang B, Yang W, Zheng Y, Jiang S, Li D, Lin J. Construction and Bioinformatics Analysis of circRNA-miRNA-mRNA Network in Acute Myocardial Infarction. Front Genet 2022; 13:854993. [PMID: 35422846 PMCID: PMC9002054 DOI: 10.3389/fgene.2022.854993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Acute myocardial infarction (AMI) is one of the main fatal diseases of cardiovascular diseases. Circular RNA (circRNA) is a non-coding RNA (ncRNA), which plays a role in cardiovascular disease as a competitive endogenous RNA (ceRNA). However, their role in AMI has not been fully clarified. This study aims to explore the mechanism of circRNA-related ceRNA network in AMI, and to identify the corresponding immune infiltration characteristics. Materials and Methods: The circRNA (GSE160717), miRNA (GSE24548), and mRNA (GSE60993) microarray datasets of AMI were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed circRNAs (DEcircRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs) were identified by the “limma” package. After integrating the circRNA, miRNA and mRNA interaction, we constructed a circRNA-miRNA-mRNA network. The “clusterProfiler” package and String database were used for functional enrichment analysis and protein-protein interaction (PPI) analysis, respectively. After that, we constructed a circRNA-miRNA-hub gene network and validated the circRNAs and mRNAs using an independent dataset (GSE61144) as well as qRT-PCR. Finally, we used CIBERSORTx database to analyze the immune infiltration characteristics of AMI and the correlation between hub genes and immune cells. Results: Using the “limma” package of the R, 83 DEcircRNAs, 54 DEmiRNAs, and 754 DEmRNAs were identified in the microarray datasets of AMI. Among 83 DEcircRNAs, there are 55 exonic DEcircRNAs. Then, a circRNA-miRNA-mRNA network consists of 21 DEcircRNAs, 11 DEmiRNAs, and 106 DEmRNAs were predicted by the database. After that, 10 hub genes from the PPI network were identified. Then, a new circRNA-miRNA-hub gene network consists of 14 DEcircRNAs, 7 DEmiRNAs, and 9 DEmRNAs was constructed. After that, three key circRNAs (hsa_circ_0009018, hsa_circ_0030569 and hsa_circ_0031017) and three hub genes (BCL6, PTGS2 and PTEN) were identified from the network by qRT-PCR. Finally, immune infiltration analysis showed that hub genes were significantly positively correlated with up-regulated immune cells (neutrophils, macrophages and plasma cells) in AMI. Conclusion: Our study constructed a circRNA-related ceRNA networks in AMI, consists of hsa_circ_0031017/hsa-miR-142-5p/PTEN axis, hsa_circ_0030569/hsa-miR-545/PTGS2 axis and hsa_circ_0009018/hsa-miR-139-3p/BCL6 axis. These three hub genes were significantly positively correlated with up-regulated immune cells (neutrophils, macrophages and plasma cells) in AMI. It helps improve understanding of AMI mechanism and provides future potential therapeutic targets.
Collapse
Affiliation(s)
- Jin Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaolin He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boyuan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenling Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqi Zheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijiu Jiang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dazhu Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jibin Lin
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Jin X, Yu W, Ye P. MiR-125b enhances doxorubicin-induced cardiotoxicity by suppressing the nucleus-cytoplasmic translocation of YAP via targeting STARD13. ENVIRONMENTAL TOXICOLOGY 2022; 37:730-740. [PMID: 34921586 DOI: 10.1002/tox.23438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/09/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The clinical application of doxorubicin (Dox) is limited due to its cardiotoxicity, while the pathogenesis remains to be fully understood. Recent studies have suggested that microRNA (miRNA) plays an important role in Dox-induced cardiotoxicity. This work aims to investigate the effects of miR-125b in Dox-induced cardiotoxicity. Here, mice model combined with cell line analysis were used, and cell viability assay, detection of reactive oxygen species (ROS), malondialdehyde (MDA) activity, lactate dehydrogenase (LDH) activity, glutathione (GSH) level, glutathione peroxidase (GSH-Px) level, superoxide dismutase (SOD) activity, and histopathological changes were performed to characterize miR-125b effects; real-time quantitative polymerase chain reaction (PCR), luciferase reporter assay, RNA immunoprecipitation, and western blot analysis were subjected to reveal the underlying mechanisms. It was found that miR-125b level was upregulated in myocardial cell line H9C2 treated with Dox and miR-125b overexpression enhanced Dox-induced cytotoxicology of H9C2 cells, while miR-125b inhibition exhibited a protective effect by measuring ROS level and cell viability. In consistent, in vivo experiments with miR-125b agomir or antagomir obtained a consistent result through examining the activity of MDA, LDH, GSH, GSH-Px, SOD, and histopathological changes. Furthermore, we found that miR-125b could target STARD13 and thus suppressed the nucleus-cytoplasmic translocation of yes-associated protein (YAP). Additionally, this STARD13/YAP axis is necessary for miR-125b-mediated regulation on Dox-induced cytotoxicology of H9C2 cells. In conclusion, our study demonstrated that miR-125b could enhance Dox-induced cardiotoxicity through targeting the STARD13/YAP axis.
Collapse
Affiliation(s)
- Xiaoping Jin
- Department of Cardiology, Nanjing First Hospital, Nanjing, China
| | - Wande Yu
- Department of Cardiology, Nanjing First Hospital, Nanjing, China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing, China
| |
Collapse
|
42
|
Liu Y, Ao X, Wang Y, Li X, Wang J. Long Non-Coding RNA in Gastric Cancer: Mechanisms and Clinical Implications for Drug Resistance. Front Oncol 2022; 12:841411. [PMID: 35155266 PMCID: PMC8831387 DOI: 10.3389/fonc.2022.841411] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide, with high recurrence and mortality rate. Chemotherapy, including 5-fluorouracil (5-FU), adriamycin (ADR), vincristine (VCR), paclitaxel (PTX), and platinum drugs, remains one of the fundamental methods of GC treatment and has efficiently improved patients’ prognosis. However, most patients eventually develop resistance to chemotherapeutic agents, leading to the failure of clinical treatment and patients’ death. Recent studies suggest that long non-coding RNAs (lncRNAs) are involved in the drug resistance of GC by modulating the expression of drug resistance-related genes via sponging microRNAs (miRNAs). Moreover, lncRNAs also play crucial roles in GC drug resistance via a variety of mechanisms, such as the regulation of the oncogenic signaling pathways, inhibition of apoptosis, induction of autophagy, modulation of cancer stem cells (CSCs), and promotion of the epithelial-to-mesenchymal transition (EMT) process. Some of lncRNAs exhibit great potential as diagnostic and prognostic biomarkers, as well as therapeutic targets for GC patients. Therefore, understanding the role of lncRNAs and their mechanisms in GC drug resistance may provide us with novel insights for developing strategies for individual diagnosis and therapy. In this review, we summarize the recent findings on the mechanisms underlying GC drug resistance regulated by lncRNAs. We also discuss the potential clinical applications of lncRNAs as biomarkers and therapeutic targets in GC.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
- *Correspondence: Ying Liu,
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yu Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiaoge Li
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
43
|
Hao XD, Gao H, Xu WH, Shan C, Liu Y, Zhou ZX, Wang K, Li PF. Systematically Displaying the Pathogenesis of Keratoconus via Multi-Level Related Gene Enrichment-Based Review. Front Med (Lausanne) 2022; 8:770138. [PMID: 35141241 PMCID: PMC8818795 DOI: 10.3389/fmed.2021.770138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/31/2021] [Indexed: 01/20/2023] Open
Abstract
Keratoconus (KC) is an etiologically heterogeneous corneal ectatic disorder. To systematically display the pathogenesis of keratoconus (KC), this study reviewed all the reported genes involved in KC, and performed an enrichment analysis of genes identified at the genome, transcription, and protein levels respectively. Combined analysis of multi-level results revealed their shared genes, gene ontology (GO), and pathway terms, to explore the possible pathogenesis of KC. After an initial search, 80 candidate genes, 2,933 transcriptional differential genes, and 947 differential proteins were collected. The candidate genes were significantly enriched in extracellular matrix (ECM) related terms, Wnt signaling pathway and cytokine activities. The enriched GO/pathway terms of transcription and protein levels highlight the importance of ECM, cell adhesion, and inflammatory once again. Combined analysis of multi-levels identified 13 genes, 43 GOs, and 12 pathways. The pathogenic relationships among these overlapping factors maybe as follows. The gene mutations/variants caused insufficient protein dosage or abnormal function, together with environmental stimulation, leading to the related functions and pathways changes in the corneal cells. These included response to the glucocorticoid and reactive oxygen species; regulation of various signaling (P13K-AKT, MAPK and NF-kappaB), apoptosis and aging; upregulation of cytokines and collagen-related enzymes; and downregulation of collagen and other ECM-related proteins. These undoubtedly lead to a reduction of extracellular components and induction of cell apoptosis, resulting in the loosening and thinning of corneal tissue structure. This study, in addition to providing information about the genes involved, also provides an integrated insight into the gene-based etiology and pathogenesis of KC.
Collapse
Affiliation(s)
- Xiao-Dan Hao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
- Shandong Eye Hospital, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wen-Hua Xu
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Chan Shan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Zhi-Xia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
44
|
Liu Y, Ao X, Zhou X, Du C, Kuang S. The regulation of PBXs and their emerging role in cancer. J Cell Mol Med 2022; 26:1363-1379. [PMID: 35068042 PMCID: PMC8899182 DOI: 10.1111/jcmm.17196] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/11/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Pre‐B‐cell leukaemia transcription factor (PBX) proteins are a subfamily of evolutionarily conserved, atypical homeodomain transcription factors that belong to the superfamily of three amino acid loop extension (TALE) homeodomain proteins. Members of the PBX family play crucial roles in regulating multiple pathophysiological processes, such as the development of organs, congenital cardiac defects and carcinogenesis. The dysregulation of PBXs has been shown to be closely associated with many diseases, particularly cancer. However, the detailed mechanisms of PBX dysregulation in cancer progression are still inconclusive. In this review, we summarize the recent advances in the structures, functions and regulatory mechanisms of PBXs, and discuss their underlying mechanisms in cancer progression. We also highlight the great potential of PBXs as biomarkers for the early diagnosis and prognostic evaluation of cancer as well as their therapeutic applications. The information reviewed here may expand researchers’ understanding of PBXs and could strengthen the clinical implication of PBXs in cancer treatment.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Xiang Ao
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Xuehao Zhou
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Chengcheng Du
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Shouxiang Kuang
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| |
Collapse
|
45
|
Li W, Liu JB, Hou LK, Yu F, Zhang J, Wu W, Tang XM, Sun F, Lu HM, Deng J, Bai J, Li J, Wu CY, Lin QL, Lv ZW, Wang GR, Jiang GX, Ma YS, Fu D. Liquid biopsy in lung cancer: significance in diagnostics, prediction, and treatment monitoring. Mol Cancer 2022; 21:25. [PMID: 35057806 PMCID: PMC8772097 DOI: 10.1186/s12943-022-01505-z] [Citation(s) in RCA: 226] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Primary lung cancer is one of the most common malignant tumors in China. Approximately 60% of lung cancer patients have distant metastasis at the initial diagnosis, so it is necessary to find new tumor markers for early diagnosis and individualized treatment. Tumor markers contribute to the early diagnosis of lung cancer and play important roles in early detection and treatment, as well as in precision medicine, efficacy monitoring, and prognosis prediction. The pathological diagnosis of lung cancer in small biopsy specimens determines whether there are tumor cells in the biopsy and tumor type. Because biopsy is traumatic and the compliance of patients with multiple biopsies is poor, liquid biopsy has become a hot research direction. Liquid biopsies are advantageous because they are nontraumatic, easy to obtain, reflect the overall state of the tumor, and allow for real-time monitoring. At present, liquid biopsies mainly include circulating tumor cells, circulating tumor DNA, exosomes, microRNA, circulating RNA, tumor platelets, and tumor endothelial cells. This review introduces the research progress and clinical application prospect of liquid biopsy technology for lung cancer.
Collapse
|
46
|
Peng S, Petersen JL, Bellone RR, Kalbfleisch T, Kingsley NB, Barber AM, Cappelletti E, Giulotto E, Finno CJ. Decoding the Equine Genome: Lessons from ENCODE. Genes (Basel) 2021; 12:genes12111707. [PMID: 34828313 PMCID: PMC8625040 DOI: 10.3390/genes12111707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
The horse reference genome assemblies, EquCab2.0 and EquCab3.0, have enabled great advancements in the equine genomics field, from tools to novel discoveries. However, significant gaps of knowledge regarding genome function remain, hindering the study of complex traits in horses. In an effort to address these gaps and with inspiration from the Encyclopedia of DNA Elements (ENCODE) project, the equine Functional Annotation of Animal Genome (FAANG) initiative was proposed to bridge the gap between genome and gene expression, providing further insights into functional regulation within the horse genome. Three years after launching the initiative, the equine FAANG group has generated data from more than 400 experiments using over 50 tissues, targeting a variety of regulatory features of the equine genome. In this review, we examine how valuable lessons learned from the ENCODE project informed our decisions in the equine FAANG project. We report the current state of the equine FAANG project and discuss how FAANG can serve as a template for future expansion of functional annotation in the equine genome and be used as a reference for studies of complex traits in horse. A well-annotated reference functional atlas will also help advance equine genetics in the pan-genome and precision medicine era.
Collapse
Affiliation(s)
- Sichong Peng
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA; (S.P.); (R.R.B.); (N.B.K.)
| | - Jessica L. Petersen
- Department of Animal Science, University of Nebraska, Lincoln, NE 68583-0908, USA; (J.L.P.); (A.M.B.)
| | - Rebecca R. Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA; (S.P.); (R.R.B.); (N.B.K.)
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Ted Kalbfleisch
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40503, USA;
| | - N. B. Kingsley
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA; (S.P.); (R.R.B.); (N.B.K.)
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Alexa M. Barber
- Department of Animal Science, University of Nebraska, Lincoln, NE 68583-0908, USA; (J.L.P.); (A.M.B.)
| | - Eleonora Cappelletti
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.); (E.G.)
| | - Elena Giulotto
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.); (E.G.)
| | - Carrie J. Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA; (S.P.); (R.R.B.); (N.B.K.)
- Correspondence:
| |
Collapse
|