1
|
Zinovieva M, Ryapolova A, Karabelsky A, Minskaia E. Oncolytic Vesicular Stomatitis Virus: Optimisation Strategies for Anti-Cancer Therapies. FRONT BIOSCI-LANDMRK 2024; 29:374. [PMID: 39614430 DOI: 10.31083/j.fbl2911374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 12/01/2024]
Abstract
Oncolytic viruses (OVs) represent a targeted anti-cancer therapy approach due to their ability not only to selectively infect and destroy malignant cells but also to induce an immune response. Vesicular stomatitis virus (VSV) offers a promising platform due to its low prevalence and pathogenicity in humans, lack of pre-existing immunity, easily manipulated genome, rapid growth to high titers in a broad range of cell lines, and inability to integrate into the host genome. However, despite its many advantages, many unresolved problems remain: problematic production based on the reverse genetics system, oncological selectivity, and the overall effectiveness of VSV monotherapy. This review will discuss various attempts at viral genome modifications aimed at improving the oncolytic properties of VSV. These strategies include inhibition of viral genes, modification of genes responsible for targeting cancer cells over healthy ones, insertion of foreign genes for boosting immune response, and changing the order of viral and inserted foreign genes. In addition, possible ways to improve VSV-based anti-tumor therapy and achieve higher efficiency will be considered by evaluating the effectiveness of various delivery methods as well as discussing treatment options by combining VSV with other groups of anticancer drugs.
Collapse
Affiliation(s)
- Margarita Zinovieva
- Department of Gene Therapy, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasia Ryapolova
- Department of Gene Therapy, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Alexander Karabelsky
- Department of Gene Therapy, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Ekaterina Minskaia
- Department of Gene Therapy, Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
2
|
Valenzuela-Cardenas M, Fisher C, Bartee MY, Bartee E. IL-12-mediated toxicity from localized oncolytic virotherapy can be reduced using systemic TNF blockade. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200866. [PMID: 39290317 PMCID: PMC11407086 DOI: 10.1016/j.omton.2024.200866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/23/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
Cytokine therapy represents an attractive option to improve the outcomes of cancer patients. However, the systemic delivery of these agents often leads to severe immune-related toxicities, which can prevent their efficient clinical use. One approach to address this issue is the use of recombinant oncolytic viruses to deliver various cytokines directly to the tumor. This improves the biodistribution of the secreted cytokine-transgenes, both augmenting antitumor immune responses and decreasing systemic toxicities. We have shown recently that a doubly recombinant oncolytic myxoma virus that secretes a soluble version of PD1 as well as an interleukin-12 (IL-12) fusion protein (vPD1/IL-12) can cause potent regression of disseminated cancers. Here we show that, despite the predominant localization of both transgenes within the infected tumor, treatment with vPD1/IL-12 still results in systemic, IL-12-mediated toxicities. Interestingly, these toxicities are independent of interferon-γ and instead appear to be mediated by the interaction of tumor necrosis factor α with tumor necrosis factor receptor 2 on hematopoietic cells. Critically, this unique mechanism allows for vPD1/IL-12-mediated toxicities to be alleviated through the use of US Food and Drug Administration (FDA)-approved tumor necrosis factor (TNF) blockers such as etanercept.
Collapse
Affiliation(s)
| | - Carrie Fisher
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Mee Y Bartee
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Eric Bartee
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
3
|
Malone K, Dugas M, Earl N, Alain T, LaCasse EC, Beug ST. Astrocytes and the tumor microenvironment inflammatory state dictate the killing of glioblastoma cells by Smac mimetic compounds. Cell Death Dis 2024; 15:592. [PMID: 39147758 PMCID: PMC11327263 DOI: 10.1038/s41419-024-06971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Smac mimetic compounds (SMCs) are small molecule drugs that sensitize cancer cells to TNF-α-induced cell death and have multiple immunostimulatory effects through alterations in NF-κB signaling. The combination of SMCs with immunotherapies has been reported to result in durable cures of up to 40% in syngeneic, orthotopic murine glioblastoma (GBM) models. Herein, we find that SMC resistance is not due to a cell-intrinsic mechanism of resistance. We thus evaluated the contribution of GBM and brain stromal components to identify parameters leading to SMC efficacy and resistance. The common physiological features of GBM tumors, such as hypoxia, hyaluronic acid, and glucose deprivation were found not to play a significant role in SMC efficacy. SMCs induced the death of microglia and macrophages, which are the major immune infiltrates in the tumor microenvironment. This death of microglia and macrophages then enhances the ability of SMCs to induce GBM cell death. Conversely, astrocytes promoted GBM cell growth and abrogated the ability of SMCs to induce death of GBM cells. The astrocyte-mediated resistance can be overcome in the presence of exogenous TNF-α. Overall, our results highlight that SMCs can induce death of microglia and macrophages, which then provides a source of death ligands for GBM cells, and that the targeting of astrocytes is a potential mechanism for overcoming SMC resistance for the treatment of GBM.
Collapse
Affiliation(s)
- Kyle Malone
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Melanie Dugas
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Nathalie Earl
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Tommy Alain
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Eric C LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Shawn T Beug
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Garlisi B, Lauks S, Aitken C, Ogilvie LM, Lockington C, Petrik D, Eichhorn JS, Petrik J. The Complex Tumor Microenvironment in Ovarian Cancer: Therapeutic Challenges and Opportunities. Curr Oncol 2024; 31:3826-3844. [PMID: 39057155 PMCID: PMC11275383 DOI: 10.3390/curroncol31070283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) in ovarian cancer (OC) has much greater complexity than previously understood. In response to aggressive pro-angiogenic stimulus, blood vessels form rapidly and are dysfunctional, resulting in poor perfusion, tissue hypoxia, and leakiness, which leads to increased interstitial fluid pressure (IFP). Decreased perfusion and high IFP significantly inhibit the uptake of therapies into the tumor. Within the TME, there are numerous inhibitor cells, such as myeloid-derived suppressor cells (MDSCs), tumor association macrophages (TAMs), regulatory T cells (Tregs), and cancer-associated fibroblasts (CAFs) that secrete high numbers of immunosuppressive cytokines. This immunosuppressive environment is thought to contribute to the lack of success of immunotherapies such as immune checkpoint inhibitor (ICI) treatment. This review discusses the components of the TME in OC, how these characteristics impede therapeutic efficacy, and some strategies to alleviate this inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (B.G.); (S.L.); (C.A.); (L.M.O.); (C.L.); (D.P.); (J.S.E.)
| |
Collapse
|
5
|
Tin E, Lee JB, Khatri I, Na Y, Minden MD, Zhang L. Double-negative T cells utilize a TNFα-JAK1-ICAM-1 cytotoxic axis against acute myeloid leukemia. Blood Adv 2024; 8:3013-3026. [PMID: 38547431 PMCID: PMC11215209 DOI: 10.1182/bloodadvances.2023011739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/15/2024] [Indexed: 06/13/2024] Open
Abstract
ABSTRACT Allogeneic double-negative T cells (DNTs) are a rare T-cell subset that effectively target acute myeloid leukemia (AML) without inducing graft-versus-host disease in an allogeneic setting. A phase 1 clinical trial demonstrated the feasibility, safety, and potential efficacy of allogeneic DNT therapy among patients with relapsed AML. However, the molecular mechanisms of DNT-mediated cytotoxicity against AML remain elusive. Thus, we used a flow cytometry-based high throughput screening to compare the surface molecule expression profile on DNTs during their interaction with DNT-susceptible or -resistant AML cells and identified a tumor necrosis factor α (TNFα)-dependent cytotoxic pathway in DNT-AML interaction. TNFα secreted by DNTs, upon encountering susceptible AML targets, sensitized AML cells to DNT-mediated killing, including those otherwise resistant to DNTs. Mechanistically, TNFα upregulated ICAM-1 on AML cells through a noncanonical JAK1-dependent pathway. DNTs then engaged with AML cells more effectively through an ICAM-1 receptor, lymphocyte function-associated antigen 1, leading to enhanced killing. These results reveal a TNFα-JAK1-ICAM-1 axis in DNT-mediated cytotoxicity against AML to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Enoch Tin
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jong Bok Lee
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Ismat Khatri
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Yoosu Na
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Mark D. Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Li Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Ventre KS, Roehle K, Bello E, Bhuiyan AM, Biary T, Crowley SJ, Bruck PT, Heckler M, Lenehan PJ, Ali LR, Stump CT, Lippert V, Clancy-Thompson E, Conce Alberto WD, Hoffman MT, Qiang L, Pelletier M, Akin JJ, Dougan M, Dougan SK. cIAP1/2 Antagonism Induces Antigen-Specific T Cell-Dependent Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:991-1003. [PMID: 36881882 PMCID: PMC10036868 DOI: 10.4049/jimmunol.2200646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/24/2023] [Indexed: 03/09/2023]
Abstract
Checkpoint blockade immunotherapy has failed in pancreatic cancer and other poorly responsive tumor types in part due to inadequate T cell priming. Naive T cells can receive costimulation not only via CD28 but also through TNF superfamily receptors that signal via NF-κB. Antagonists of the ubiquitin ligases cellular inhibitor of apoptosis protein (cIAP)1/2, also called second mitochondria-derived activator of caspases (SMAC) mimetics, induce degradation of cIAP1/2 proteins, allowing for the accumulation of NIK and constitutive, ligand-independent activation of alternate NF-κB signaling that mimics costimulation in T cells. In tumor cells, cIAP1/2 antagonists can increase TNF production and TNF-mediated apoptosis; however, pancreatic cancer cells are resistant to cytokine-mediated apoptosis, even in the presence of cIAP1/2 antagonism. Dendritic cell activation is enhanced by cIAP1/2 antagonism in vitro, and intratumoral dendritic cells show higher expression of MHC class II in tumors from cIAP1/2 antagonism-treated mice. In this study, we use in vivo mouse models of syngeneic pancreatic cancer that generate endogenous T cell responses ranging from moderate to poor. Across multiple models, cIAP1/2 antagonism has pleiotropic beneficial effects on antitumor immunity, including direct effects on tumor-specific T cells leading to overall increased activation, increased control of tumor growth in vivo, synergy with multiple immunotherapy modalities, and immunologic memory. In contrast to checkpoint blockade, cIAP1/2 antagonism does not increase intratumoral T cell frequencies. Furthermore, we confirm our previous findings that even poorly immunogenic tumors with a paucity of T cells can experience T cell-dependent antitumor immunity, and we provide transcriptional clues into how these rare T cells coordinate downstream immune responses.
Collapse
Affiliation(s)
- Katherine S. Ventre
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| | - Kevin Roehle
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
- Novartis Institute for Biomedical Research, Cambridge, MA
| | - Elisa Bello
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Aladdin M. Bhuiyan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Tamara Biary
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Stephanie J. Crowley
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| | - Patrick T. Bruck
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| | - Max Heckler
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Patrick J. Lenehan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Lestat R. Ali
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Courtney T. Stump
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Victoria Lippert
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| | - Eleanor Clancy-Thompson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Winiffer D. Conce Alberto
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Megan T. Hoffman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Li Qiang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Marc Pelletier
- Novartis Institute for Biomedical Research, Cambridge, MA
| | - James J. Akin
- Novartis Institute for Biomedical Research, Cambridge, MA
| | - Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Stephanie K. Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| |
Collapse
|
7
|
Ghasemi M, Abbasi L, Ghanbari Naeini L, Kokabian P, Nameh Goshay Fard N, Givtaj N. Dendritic cells and natural killer cells: The road to a successful oncolytic virotherapy. Front Immunol 2023; 13:950079. [PMID: 36703982 PMCID: PMC9871831 DOI: 10.3389/fimmu.2022.950079] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/02/2022] [Indexed: 01/11/2023] Open
Abstract
Every type of cancer tissue is theoretically more vulnerable to viral infection. This natural proclivity has been harnessed as a new anti-cancer therapy by employing oncolytic viruses (OVs) to selectively infect and destroy cancer cells while providing little or no harm with no toxicity to the host. Whereas the primary oncolytic capabilities of OVs initially sparked the greatest concern, the predominant focus of research is on the association between OVs and the host immune system. Numerous OVs are potent causal agents of class I MHC pathway-related chemicals, enabling early tumor/viral immune recognition and cytokine-mediated response. The modified OVs have been studied for their ability to bind to dendritic cells (DCs) by expressing growth factors, chemokines, cytokines, and defensins inside the viral genome. OVs, like reovirus, can directly infect DCs, causing them to release chemokines and cytokines that attract and excite natural killer (NK) cells. In addition, OVs can directly alter cancer cells' sensitivity to NK by altering the expression levels of NK cell activators and inhibitors on cancerous cells. Therefore, NK cells and DCs in modulating the therapeutic response should be considered when developing and improving future OV-based therapeutics, whether modified to express transgenes or used in combination with other drugs/immunotherapies. Concerning the close relationship between NK cells and DCs in the potential of OVs to kill tumor cells, we explore how DCs and NK cells in tumor microenvironment affect oncolytic virotherapy and summarize additional information about the interaction mentioned above in detail in this work.
Collapse
Affiliation(s)
- Matin Ghasemi
- Faculty of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Laleh Abbasi
- Guilan University of Medical Sciences, Rasht, Iran
| | | | - Pajman Kokabian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nozar Givtaj
- Rajaei Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran,*Correspondence: Nozar Givtaj,
| |
Collapse
|
8
|
Taha Z, Crupi MJ, Alluqmani N, Fareez F, Ng K, Sobh J, Lee E, Chen A, Thomson M, Spinelli MM, Ilkow CS, Bell JC, Arulanandam R, Diallo JS. Syngeneic mouse model of human HER2+ metastatic breast cancer for the evaluation of trastuzumab emtansine combined with oncolytic rhabdovirus. Front Immunol 2023; 14:1181014. [PMID: 37153626 PMCID: PMC10154558 DOI: 10.3389/fimmu.2023.1181014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Background Established mouse models of HER2+ cancer are based on the over-expression of rodent Neu/Erbb2 homologues, which are incompatible with human HER2 (huHER2) targeted therapeutics. Additionally, the use of immune-deficient xenograft or transgenic models precludes assessment of native anti-tumour immune responses. These hurdles have been a challenge for our understanding of the immune mechanisms behind huHER2-targeting immunotherapies. Methods To assess the immune impacts of our huHER2-targeted combination strategy, we generated a syngeneic mouse model of huHER2+ breast cancer, using a truncated form of huHER2, HER2T. Following validation of this model, we next treated tumour-bearing with our immunotherapy strategy: oncolytic vesicular stomatitis virus (VSVΔ51) with clinically approved antibody-drug conjugate targeting huHER2, trastuzumab emtansine (T-DM1). We assessed efficacy through tumour control, survival, and immune analyses. Results The generated truncated HER2T construct was non-immunogenic in wildtype BALB/c mice upon expression in murine mammary carcinoma 4T1.2 cells. Treatment of 4T1.2-HER2T tumours with VSVΔ51+T-DM1 yielded robust curative efficacy compared to controls, and broad immunologic memory. Interrogation of anti-tumour immunity revealed tumour infiltration by CD4+ T cells, and activation of B, NK, and dendritic cell responses, as well as tumour-reactive serum IgG. Conclusions The 4T1.2-HER2T model was used to evaluate the anti-tumour immune responses following our complex pharmacoviral treatment strategy. These data demonstrate utility of the syngeneic HER2T model for assessment of huHER2-targeted therapies in an immune-competent in vivo setting. We further demonstrated that HER2T can be implemented in multiple other syngeneic tumour models, including but not limited to colorectal and ovarian models. These data also suggest that the HER2T platform may be used to assess a range of surface-HER2T targeting approaches, such as CAR-T, T-cell engagers, antibodies, or even retargeted oncolytic viruses.
Collapse
Affiliation(s)
- Zaid Taha
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Mathieu J.F. Crupi
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nouf Alluqmani
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Faiha Fareez
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Kristy Ng
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Judy Sobh
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Emily Lee
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Andrew Chen
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Max Thomson
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Marcus M. Spinelli
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Carolina S. Ilkow
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - John C. Bell
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rozanne Arulanandam
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jean-Simon Diallo
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Jean-Simon Diallo,
| |
Collapse
|
9
|
Ji Q, Wu Y, Albers A, Fang M, Qian X. Strategies for Advanced Oncolytic Virotherapy: Current Technology Innovations and Clinical Approaches. Pharmaceutics 2022; 14:1811. [PMID: 36145559 PMCID: PMC9504140 DOI: 10.3390/pharmaceutics14091811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 12/22/2022] Open
Abstract
Oncolytic virotherapy is a type of nanomedicine with a dual antitumor mechanism. Viruses are engineered to selectively infect and lyse cancer cells directly, leading to the release of soluble antigens which induce systemic antitumor immunity. Representative drug Talimogene laherparepvec has showed promising therapeutic effects in advanced melanoma, especially when combined with immune checkpoint inhibitors with moderate adverse effects. Diverse viruses like herpes simplex virus, adenovirus, vaccina virus, and so on could be engineered as vectors to express different transgenic payloads, vastly expanding the therapeutic potential of oncolytic virotherapy. A number of related clinical trials are under way which are mainly focusing on solid tumors. Studies about further optimizing the genome of oncolytic viruses or improving the delivering system are in the hotspot, indicating the future development of oncolytic virotherapy in the clinic. This review introduces the latest progress in clinical trials and pre-clinical studies as well as technology innovations directed at oncolytic viruses. The challenges and perspectives of oncolytic virotherapy towards clinical application are also discussed.
Collapse
Affiliation(s)
- Qing Ji
- Department of Rare and Head & Neck Oncology, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yuchen Wu
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Andreas Albers
- Department of Otolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Meiyu Fang
- Department of Rare and Head & Neck Oncology, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xu Qian
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
10
|
Valenzuela-Cardenas M, Gowan C, Dryja P, Bartee MY, Bartee E. TNF blockade enhances the efficacy of myxoma virus-based oncolytic virotherapy. J Immunother Cancer 2022; 10:e004770. [PMID: 35577502 PMCID: PMC9114862 DOI: 10.1136/jitc-2022-004770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Oncolytic virotherapy (OV) represents a method to treat a variety of solid tumors by inducing antitumor immune responses. While this therapy has been extremely efficacious in preclinical models, translating these successes into human patients has proven challenging. One of the major reasons for these failures is the existence of immune-regulatory mechanisms, which dampen the efficacy of virally induced antitumor immunity. Unfortunately, the full extent of these immune-regulatory pathways remains unclear. METHODS To address this issue, we generated a doubly recombinant, oncolytic myxoma virus which expresses both a soluble fragment of programmed cell death protein 1 (PD1) and an interleukin 12 (IL-12) fusion protein (vPD1/IL-12 (virus-expressing PD1 and IL-12)). We then tested the molecular impact and therapeutic efficacy of this construct in multiple models of disseminated disease to identify novel pathways, which are associated with poor therapeutic outcomes. RESULTS Our results demonstrate that vPD1/IL-12 causes robust inflammation during therapy including inducing high levels of tumor necrosis factor (TNF). Surprisingly, although expression of TNF has generally been assumed to be beneficial to OV, the presence of this TNF appears to inhibit therapeutic efficacy by reducing intratumoral T-cell viability. Likely because of this, disruption of the TNF pathway, either through genetic knockout or antibody-based blockade, significantly enhances the overall outcomes of vPD1/IL-12-based therapy that allows for the generation of complete cures in normally non-responsive models. CONCLUSIONS These data suggest that some aspects of OV-induced inflammation might represent a double-edged sword during therapy and that specific blockade of TNF might enhance the efficacy of these treatments.
Collapse
Affiliation(s)
- Miriam Valenzuela-Cardenas
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Cody Gowan
- Division of Nephrology and Hypertension, Mayo Clinical, Jacksonville, Florida, USA
| | - Parker Dryja
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Mee Y Bartee
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Eric Bartee
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
11
|
Feola S, Russo S, Ylösmäki E, Cerullo V. Oncolytic ImmunoViroTherapy: A long history of crosstalk between viruses and immune system for cancer treatment. Pharmacol Ther 2021; 236:108103. [PMID: 34954301 DOI: 10.1016/j.pharmthera.2021.108103] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Cancer Immunotherapy relies on harnessing a patient's immune system to fine-tune specific anti-tumor responses and ultimately eradicate cancer. Among diverse therapeutic approaches, oncolytic viruses (OVs) have emerged as a novel form of cancer immunotherapy. OVs are a naturally occurring or genetically modified class of viruses able to selectively kill cancer cells, leaving healthy cells unharmed; in the last two decades, the role of OVs has been redefined to act beyond their oncolytic activity. Indeed, the immunogenic cancer cell death mediated by OVs induces the release of tumor antigens that in turn induces anti-tumor immunity, allowing OVs to act as in situ therapeutic cancer vaccines. Additionally, OVs can be engineered for intratumoral delivery of immunostimulatory molecules such as tumor antigens or cytokines to further enhance anti-tumor response. Moreover, OVs can be used in combination with other cancer immunotherapeutic approaches such as Immune Checkpoint Inhibitors and CAR-T cells. The current review first defines the three main mechanisms of action (MOA) of OVs currently used in cancer therapy that are: i) Oncolysis, ii) OV-induced cancer-specific immune activation, and iii) Exploiting pre-existing anti-viral immunity to enhance cancer therapy. Secondly, we focus on how OVs can induce and/or improve anti-cancer immunity in a specific or unspecific fashion, highlighting the importance of these approaches. Finally, the last part of the review analyses OVs combined with other cancer immunotherapies, revising present and future clinical applications.
Collapse
Affiliation(s)
- S Feola
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland; TRIMM, Translational Immunology Research Program, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Finland
| | - S Russo
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland; TRIMM, Translational Immunology Research Program, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Finland
| | - E Ylösmäki
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland; TRIMM, Translational Immunology Research Program, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Finland
| | - V Cerullo
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland; TRIMM, Translational Immunology Research Program, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Finland; Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University Federico II, S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
12
|
Molyer B, Kumar A, Angel JB. SMAC Mimetics as Therapeutic Agents in HIV Infection. Front Immunol 2021; 12:780400. [PMID: 34899741 PMCID: PMC8660680 DOI: 10.3389/fimmu.2021.780400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Although combination antiretroviral therapy is extremely effective in lowering HIV RNA to undetectable levels in the blood, HIV persists in latently infected CD4+ T-cells and persistently infected macrophages. In latently/persistently infected cells, HIV proteins have shown to affect the expression of proteins involved in the apoptosis pathway, notably the inhibitors of apoptosis proteins (IAPs), and thereby influence cell survival. IAPs, which are inhibited by endogenous second mitochondrial-derived activators of caspases (SMAC), can serve as targets for SMAC mimetics, synthetic compounds capable of inducing apoptosis. There is increasing evidence that SMAC mimetics can be used to reverse HIV latency and/or kill cells that are latently/persistently infected with HIV. Here, we review the current state of knowledge of SMAC mimetics as an approach to eliminate HIV infected cells and discuss the potential future use of SMAC mimetics as part of an HIV cure strategy.
Collapse
Affiliation(s)
- Bengisu Molyer
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Ashok Kumar
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Apoptosis Research Center of Children's Hospital of Eastern Ontario, Department of Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Jonathan B Angel
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Division of Infectious Diseases, Ottawa Hospital, Ottawa, ON, Canada
| |
Collapse
|
13
|
Jiang J, Wang W, Xiang W, Jiang L, Zhou Q. The phosphoinositide 3-kinase inhibitor ZSTK474 increases the susceptibility of osteosarcoma cells to oncolytic vesicular stomatitis virus VSVΔ51 via aggravating endoplasmic reticulum stress. Bioengineered 2021; 12:11847-11857. [PMID: 34720036 PMCID: PMC8809975 DOI: 10.1080/21655979.2021.1999372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 11/17/2022] Open
Abstract
Blockage of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signal pathway is effective to increase the cytotoxic effects of oncolytic virus on cancer cells, but the detailed mechanisms are still largely unknown. Based on this, the present study managed to investigate the anti-tumor effects of PI3K inhibitor ZSTK474 and oncolytic vesicular stomatitis virus VSVΔ51 combination treatments on osteosarcoma (OS) in vitro and in vivo. Specifically, ZSTK474 aggravated the inhibiting effects of VSVΔ51 on osteosarcoma development by triggering endoplasmic reticulum (ER)-stress mediated apoptotic cell death. Mechanistically, either ZSTK474 or VSVΔ51 alone had limited effects on cell viability in osteosarcoma cells, while ZSTK474 and VSVΔ51 combination treatments significantly induced osteosarcoma cell apoptosis. Interestingly, VSVΔ51 increased the expression levels of IRE1α and p-PERK to initiate ER stress in osteosarcoma cells, which were aggravated by co-treating cells with ZSTK474. Next, the promoting effects of ZSTK474-VSVΔ51 combined treatment on osteosarcoma cell death were abrogated by the ER-stress inhibitor 4-phenyl butyric acid (4-PBA), indicating that ZSTK474 enhanced the cytotoxic effects of VSVΔ51 on osteosarcoma cells in an ER-stress dependent manner. Finally, the xenograft tumor-bearing mice models were established, and the results showed that ZSTK474-VSVΔ51 combined treatment synergistically hindered tumorigenesis of osteosarcoma cells in vivo. Taken together, our data suggested that ZSTK474 was a novel agent to enhance the cytotoxic effects of VSVΔ51 on osteosarcoma by aggravating ER-stress, and the present study might provide alternative therapy treatments for osteosarcoma in clinic.
Collapse
Affiliation(s)
- Jinqiong Jiang
- Department of Oncology, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Weida Wang
- Department of Spine Surgery, The First Hospital of Changsha, Changsha, Hunan, China
| | - Weineng Xiang
- Department of Spine Surgery, The First Hospital of Changsha, Changsha, Hunan, China
| | - Lin Jiang
- Department of Spine Surgery, The First Hospital of Changsha, Changsha, Hunan, China
| | - Qian Zhou
- Department of Spine Surgery, The First Hospital of Changsha, Changsha, Hunan, China
| |
Collapse
|
14
|
Spiesschaert B, Angerer K, Park J, Wollmann G. Combining Oncolytic Viruses and Small Molecule Therapeutics: Mutual Benefits. Cancers (Basel) 2021; 13:3386. [PMID: 34298601 PMCID: PMC8306439 DOI: 10.3390/cancers13143386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
The focus of treating cancer with oncolytic viruses (OVs) has increasingly shifted towards achieving efficacy through the induction and augmentation of an antitumor immune response. However, innate antiviral responses can limit the activity of many OVs within the tumor and several immunosuppressive factors can hamper any subsequent antitumor immune responses. In recent decades, numerous small molecule compounds that either inhibit the immunosuppressive features of tumor cells or antagonize antiviral immunity have been developed and tested for. Here we comprehensively review small molecule compounds that can achieve therapeutic synergy with OVs. We also elaborate on the mechanisms by which these treatments elicit anti-tumor effects as monotherapies and how these complement OV treatment.
Collapse
Affiliation(s)
- Bart Spiesschaert
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
- ViraTherapeutics GmbH, 6063 Rum, Austria
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Katharina Angerer
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - John Park
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Guido Wollmann
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
15
|
Miles MA, Caruso S, Baxter AA, Poon IKH, Hawkins CJ. Smac mimetics can provoke lytic cell death that is neither apoptotic nor necroptotic. Apoptosis 2021; 25:500-518. [PMID: 32440848 DOI: 10.1007/s10495-020-01610-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Smac mimetics, or IAP antagonists, are a class of drugs currently being evaluated as anti-cancer therapeutics. These agents antagonize IAP proteins, including cIAP1/2 and XIAP, to induce cell death via apoptotic or, upon caspase-8 deficiency, necroptotic cell death pathways. Many cancer cells are unresponsive to Smac mimetic treatment as a single agent but can be sensitized to killing in the presence of the cytokine TNFα, provided either exogenously or via autocrine production. We found that high concentrations of a subset of Smac mimetics could provoke death in cells that did not produce TNFα, despite sensitization at lower concentrations by TNFα. The ability of these drugs to kill did not correlate with valency. These cells remained responsive to the lethal effects of Smac mimetics at high concentrations despite genetic or pharmacological impairments in apoptotic, necroptotic, pyroptotic, autophagic and ferroptotic cell death pathways. Analysis of dying cells revealed necrotic morphology, which was accompanied by the release of lactate dehydrogenase and cell membrane rupture without prior phosphatidylserine exposure implying cell lysis, which occurred over a several hours. Our study reveals that cells incapable of autocrine TNFα production are sensitive to some Smac mimetic compounds when used at high concentrations, and this exposure elicits a lytic cell death phenotype that occurs via a mechanism not requiring apoptotic caspases or necroptotic effectors RIPK3 or MLKL. These data reveal the possibility that non-canonical cell death pathways can be triggered by these drugs when applied at high concentrations.
Collapse
Affiliation(s)
- Mark A Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Sarah Caruso
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Amy A Baxter
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Christine J Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| |
Collapse
|
16
|
Wu TM, Liu JB, Liu Y, Shi Y, Li W, Wang GR, Ma YS, Fu D. Power and Promise of Next-Generation Sequencing in Liquid Biopsies and Cancer Control. Cancer Control 2021; 27:1073274820934805. [PMID: 32806937 PMCID: PMC7791471 DOI: 10.1177/1073274820934805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traditional methods of cancer treatment are usually based on the morphological
and histological diagnosis of tumors, and they are not optimized according to
the specific situation. Precision medicine adjusts the existing treatment
regimen based on the patient’s genomic information to make it most suitable for
patients. Detection of genetic mutations in tumors is the basis of precise
cancer medicine. Through the analysis of genetic mutations in patients with
cancer, we can tailor the treatment plan for each patient with cancer to
maximize the curative effect, minimize damage to healthy tissues, and optimize
resources. In recent years, next-generation sequencing technology has developed
rapidly and has become the core technology of precise targeted therapy and
immunotherapy for cancer. From early cancer screening to treatment guidance for
patients with advanced cancer, liquid biopsy is increasingly used in cancer
management. This is as a result of the development of better noninvasive,
repeatable, sensitive, and accurate tools used in early screening, diagnosis,
evaluation, and monitoring of patients. Cell-free DNA, which is a new
noninvasive molecular pathological detection method, often carries
tumor-specific gene changes. It plays an important role in optimizing treatment
and evaluating the efficacy of different treatment options in clinical trials,
and it has broad clinical applications.
Collapse
Affiliation(s)
- Ting-Miao Wu
- Department of Radiology, 12485The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ji-Bin Liu
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China
| | - Yu Liu
- National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, 12571Central South University of Forestry and Technology, Chaha, China
| | - Yi Shi
- National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, 12571Central South University of Forestry and Technology, Chaha, China
| | - Wen Li
- National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, 12571Central South University of Forestry and Technology, Chaha, China
| | - Gao-Ren Wang
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China
| | - Yu-Shui Ma
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, 12476Tongji University School of Medicine, Shanghai, China
| | - Da Fu
- Department of Radiology, 12485The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, 12476Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Ma YS, Liu JB, Wu TM, Fu D. New Therapeutic Options for Advanced Hepatocellular Carcinoma. Cancer Control 2021; 27:1073274820945975. [PMID: 32799550 PMCID: PMC7791453 DOI: 10.1177/1073274820945975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most common lethal diseases in the world, has a 5-year survival rate of only 7%. Hepatocellular carcinoma has no symptoms in the early stage but obvious symptoms in the late stage, leading to delayed diagnosis and reduced treatment efficacy. In recent years, as the scope of HCC research has increased in depth, the clinical development and application of molecular targeted drugs and immunotherapy drugs have brought new breakthroughs in HCC treatment. Targeted therapy drugs for HCC have high specificity, allowing them to selectively kill tumor cells and minimize damage to normal tissues. At present, these targeted drugs are mainly classified into 3 categories: small molecule targeted drugs, HCC antigen-specific targeted drugs, and immune checkpoint targeted drugs. This article reviews the latest research progress on the targeted drugs for HCC.
Collapse
Affiliation(s)
- Yu-Shui Ma
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China.,Department of Radiology, 12485The Forth Affiliated Hospital of Anhui Medical University, Hefei, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, 12476Tongji University School of Medicine, Shanghai, China
| | - Ji-Bin Liu
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China
| | - Ting-Miao Wu
- Department of Radiology, 12485The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Da Fu
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, 12476Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Abstract
Tumors represent a hostile environment for the effector cells of cancer immunosurveillance. Immunosuppressive receptors and soluble or membrane-bound ligands are abundantly exposed and released by malignant entities and their stromal accomplices. As a consequence, executioners of antitumor immunity inefficiently navigate across cancer tissues and fail to eliminate malignant targets. By inducing immunogenic cancer cell death, oncolytic viruses profoundly reshape the tumor microenvironment. They trigger the local spread of danger signals and tumor-associated (as well as viral) antigens, thus attracting antigen-presenting cells, promoting the activation and expansion of lymphocytic populations, facilitating their infiltration in the tumor bed, and reinvigorating cytotoxic immune activity. The present review recapitulates key chemokines, growth factors and other cytokines that orchestrate this ballet of antitumoral leukocytes upon oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G Pol
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France.
| | - Samuel T Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Shashi Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
19
|
Future Therapeutic Directions for Smac-Mimetics. Cells 2020; 9:cells9020406. [PMID: 32053868 PMCID: PMC7072318 DOI: 10.3390/cells9020406] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
It is well accepted that the ability of cancer cells to circumvent the cell death program that untransformed cells are subject to helps promote tumor growth. Strategies designed to reinstate the cell death program in cancer cells have therefore been investigated for decades. Overexpression of members of the Inhibitor of APoptosis (IAP) protein family is one possible mechanism hindering the death of cancer cells. To promote cell death, drugs that mimic natural IAP antagonists, such as second mitochondria-derived activator of caspases (Smac/DIABLO) were developed. Smac-Mimetics (SMs) have entered clinical trials for hematological and solid cancers, unfortunately with variable and limited results so far. This review explores the use of SMs for the treatment of cancer, their potential to synergize with up-coming treatments and, finally, discusses the challenges and optimism facing this strategy.
Collapse
|
20
|
The Immuno-Modulatory Effects of Inhibitor of Apoptosis Protein Antagonists in Cancer Immunotherapy. Cells 2020; 9:cells9010207. [PMID: 31947615 PMCID: PMC7017284 DOI: 10.3390/cells9010207] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/06/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
One of the hallmarks of cancer cells is their ability to evade cell death via apoptosis. The inhibitor of apoptosis proteins (IAPs) are a family of proteins that act to promote cell survival. For this reason, upregulation of IAPs is associated with a number of cancer types as a mechanism of resistance to cell death and chemotherapy. As such, IAPs are considered a promising therapeutic target for cancer treatment, based on the role of IAPs in resistance to apoptosis, tumour progression and poor patient prognosis. The mitochondrial protein smac (second mitochondrial activator of caspases), is an endogenous inhibitor of IAPs, and several small molecule mimetics of smac (smac-mimetics) have been developed in order to antagonise IAPs in cancer cells and restore sensitivity to apoptotic stimuli. However, recent studies have revealed that smac-mimetics have broader effects than was first attributed. It is now understood that they are key regulators of innate immune signalling and have wide reaching immuno-modulatory properties. As such, they are ideal candidates for immunotherapy combinations. Pre-clinically, successful combination therapies incorporating smac-mimetics and oncolytic viruses, as with chimeric antigen receptor (CAR) T cell therapy, have been reported, and clinical trials incorporating smac-mimetics and immune checkpoint blockade are ongoing. Here, the potential of IAP antagonism to enhance immunotherapy strategies for the treatment of cancer will be discussed.
Collapse
|
21
|
Shekhar TM, Burvenich IJG, Harris MA, Rigopoulos A, Zanker D, Spurling A, Parker BS, Walkley CR, Scott AM, Hawkins CJ. Smac mimetics LCL161 and GDC-0152 inhibit osteosarcoma growth and metastasis in mice. BMC Cancer 2019; 19:924. [PMID: 31521127 PMCID: PMC6744692 DOI: 10.1186/s12885-019-6103-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Current therapies fail to cure over a third of osteosarcoma patients and around three quarters of those with metastatic disease. "Smac mimetics" (also known as "IAP antagonists") are a new class of anti-cancer agents. Previous work revealed that cells from murine osteosarcomas were efficiently sensitized by physiologically achievable concentrations of some Smac mimetics (including GDC-0152 and LCL161) to killing by the inflammatory cytokine TNFα in vitro, but survived exposure to Smac mimetics as sole agents. METHODS Nude mice were subcutaneously or intramuscularly implanted with luciferase-expressing murine 1029H or human KRIB osteosarcoma cells. The impacts of treatment with GDC-0152, LCL161 and/or doxorubicin were assessed by caliper measurements, bioluminescence, 18FDG-PET and MRI imaging, and by weighing resected tumors at the experimental endpoint. Metastatic burden was examined by quantitative PCR, through amplification of a region of the luciferase gene from lung DNA. ATP levels in treated and untreated osteosarcoma cells were compared to assess in vitro sensitivity. Immunophenotyping of cells within treated and untreated tumors was performed by flow cytometry, and TNFα levels in blood and tumors were measured using cytokine bead arrays. RESULTS Treatment with GDC-0152 or LCL161 suppressed the growth of subcutaneously or intramuscularly implanted osteosarcomas. In both models, co-treatment with doxorubicin and Smac mimetics impeded average osteosarcoma growth to a greater extent than either drug alone, although these differences were not statistically significant. Co-treatments were also more toxic. Co-treatment with LCL161 and doxorubicin was particularly effective in the KRIB intramuscular model, impeding primary tumor growth and delaying or preventing metastasis. Although the Smac mimetics were effective in vivo, in vitro they only efficiently killed osteosarcoma cells when TNFα was supplied. Implanted tumors contained high levels of TNFα, produced by infiltrating immune cells. Spontaneous osteosarcomas that arose in genetically-engineered immunocompetent mice also contained abundant TNFα. CONCLUSIONS These data imply that Smac mimetics can cooperate with TNFα secreted by tumor-associated immune cells to kill osteosarcoma cells in vivo. Smac mimetics may therefore benefit osteosarcoma patients whose tumors contain Smac mimetic-responsive cancer cells and TNFα-producing infiltrating cells.
Collapse
Affiliation(s)
- Tanmay M. Shekhar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| | - Ingrid J. G. Burvenich
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Michael A. Harris
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| | - Angela Rigopoulos
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Damien Zanker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| | - Alex Spurling
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| | - Belinda S. Parker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| | - Carl R. Walkley
- St. Vincent’s Institute, Fitzroy, Victoria 3065 Australia
- Department of Medicine, St. Vincent’s Hospital, University of Melbourne, Fitzroy, Victoria 3065 Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria 3000 Australia
| | - Andrew M. Scott
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
- Departments of Medical Oncology and Molecular Imaging & Therapy, Austin Health, Heidelberg, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Christine J. Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| |
Collapse
|
22
|
Overexpression of Smac by an Armed Vesicular Stomatitis Virus Overcomes Tumor Resistance. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:188-195. [PMID: 31312717 PMCID: PMC6610632 DOI: 10.1016/j.omto.2019.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 05/15/2019] [Indexed: 01/04/2023]
Abstract
Despite reports of successful clinical cases, many tumors appear to resist infection by oncolytic viruses (OVs). To circumvent this problem, an armed vesicular stomatitis virus was constructed by inserting a transgene to express Smac/DIABLO during virus infection (VSV-S). Endogenous Smac in HeLa cells was diminished during wtVSV infection, whereas the Smac level was enhanced during VSV-S infection. Apoptosis was readily induced by VSV-S, but not wtVSV, infection. More importantly, the tumor volume was reduced to a larger extent when xenografts of 4T1 cells in BALB/c mice and OV-resistant T-47D cells in nude mice were intratumorally injected with VSV-S. VSV-S represents a novel mechanism to overcome tumor resistance, resulting in more significant tumor regression due to enhanced apoptosis.
Collapse
|
23
|
Khair DO, Bax HJ, Mele S, Crescioli S, Pellizzari G, Khiabany A, Nakamura M, Harris RJ, French E, Hoffmann RM, Williams IP, Cheung A, Thair B, Beales CT, Touizer E, Signell AW, Tasnova NL, Spicer JF, Josephs DH, Geh JL, MacKenzie Ross A, Healy C, Papa S, Lacy KE, Karagiannis SN. Combining Immune Checkpoint Inhibitors: Established and Emerging Targets and Strategies to Improve Outcomes in Melanoma. Front Immunol 2019; 10:453. [PMID: 30941125 PMCID: PMC6435047 DOI: 10.3389/fimmu.2019.00453] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
The immune system employs several checkpoint pathways to regulate responses, maintain homeostasis and prevent self-reactivity and autoimmunity. Tumor cells can hijack these protective mechanisms to enable immune escape, cancer survival and proliferation. Blocking antibodies, designed to interfere with checkpoint molecules CTLA-4 and PD-1/PD-L1 and counteract these immune suppressive mechanisms, have shown significant success in promoting immune responses against cancer and can result in tumor regression in many patients. While inhibitors to CTLA-4 and the PD-1/PD-L1 axis are well-established for the clinical management of melanoma, many patients do not respond or develop resistance to these interventions. Concerted efforts have focused on combinations of approved therapies aiming to further augment positive outcomes and survival. While CTLA-4 and PD-1 are the most-extensively researched targets, results from pre-clinical studies and clinical trials indicate that novel agents, specific for checkpoints such as A2AR, LAG-3, IDO and others, may further contribute to the improvement of patient outcomes, most likely in combinations with anti-CTLA-4 or anti-PD-1 blockade. This review discusses the rationale for, and results to date of, the development of inhibitory immune checkpoint blockade combination therapies in melanoma. The clinical potential of new pipeline therapeutics, and possible future therapy design and directions that hold promise to significantly improve clinical prognosis compared with monotherapy, are discussed.
Collapse
Affiliation(s)
- Duaa O. Khair
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Heather J. Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
- School of Cancer & Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Silvia Mele
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Giulia Pellizzari
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Atousa Khiabany
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Mano Nakamura
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | | | - Elise French
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Ricarda M. Hoffmann
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
- School of Cancer & Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Iwan P. Williams
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Anthony Cheung
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, Guy's Cancer Centre, King's College London, London, United Kingdom
| | - Benjamin Thair
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Charlie T. Beales
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Emma Touizer
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Adrian W. Signell
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Nahrin L. Tasnova
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - James F. Spicer
- School of Cancer & Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Debra H. Josephs
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
- School of Cancer & Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Jenny L. Geh
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Alastair MacKenzie Ross
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Ciaran Healy
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Sophie Papa
- School of Cancer & Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Katie E. Lacy
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Sophia N. Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| |
Collapse
|