1
|
Long X, Cheng S, Lan X, Wei W, Jiang D. Trends in nanobody radiotheranostics. Eur J Nucl Med Mol Imaging 2025; 52:2225-2238. [PMID: 39800806 DOI: 10.1007/s00259-025-07077-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/04/2025] [Indexed: 04/23/2025]
Abstract
As the smallest antibody fragment with specific binding affinity, nanobody-based nuclear medicine has demonstrated significant potential to revolutionize the field of precision medicine, supported by burgeoning preclinical investigations and accumulating clinical evidence. However, the visualization of nanobodies has also exposed their suboptimal biodistribution patterns, which has spurred collaborative efforts to refine their pharmacokinetic and pharmacodynamic profiles for improved therapeutic efficacy. In this review, we present clinical results that exemplify the benefits of nanobody-based molecular imaging in cancer diagnosis. Moreover, we emphasize the indispensable role of molecular imaging as a tool for evaluating and optimizing nanobodies, thereby expanding their therapeutic potential in cancer treatment in the foreseeable future.
Collapse
Affiliation(s)
- Xingru Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
| | - Sixuan Cheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200233, China.
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
| |
Collapse
|
2
|
Li X, Zhang Y, Mixdorf JC, Wu Q, Lee SJ, Engle JW, Barnhart TE, Kenney SC, Rui L, Wei W, Cai W. Development and Preclinical Evaluation of [ 64Cu]Cu-NOTA-ABDB6: A CD70 and Albumin Dual-Binding Tracer with Improved Pharmacokinetics. J Nucl Med 2025; 66:552-558. [PMID: 40015924 PMCID: PMC11960615 DOI: 10.2967/jnumed.124.268835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/03/2025] [Indexed: 03/01/2025] Open
Abstract
CD70 is an emerging biomarker for both solid tumors and hematologic malignancies, highlighting the urgent need for a molecular imaging tracer capable of visualizing CD70 with favorable pharmacokinetics. Methods: ABDB6 was prepared by fusing the albumin-binding domain ABD035 with the CD70-targeting single-domain antibody RCCB6, which we previously reported. The resulting ABDB6 was then conjugated to the bifunctional chelator p-SCN-NOTA and labeled with 64Cu to produce [64Cu]Cu-NOTA-ABDB6. Flow cytometry was used to screen 6 lymphoma cell lines with varying CD70 expression levels. Cell uptake and in vivo immuno-PET imaging studies were conducted to fully evaluate the pharmacokinetic properties and tumor-targeting efficacy of [64Cu]Cu-NOTA-ABDB6. An ABDB6 blocking study was performed to validate the targeting specificity of [64Cu]Cu-NOTA-ABDB6, followed by immunohistochemistry and fluorescent immunostaining studies to correlate tracer uptake with CD70 expression. Results: 64Cu labeling of ABDB6 achieved a high radiochemical yield and specific activity. Significant CD70 expression was observed in 5 lymphoma cell lines (TMD8, HBL1, OCI-LY10, LCL-EBV, and type III latency Burkitt lymphoma [BL] cells) but not in type I latency BL cells, which served as the negative control. [64Cu]Cu-NOTA-ABDB6 exhibited good affinity for CD70 protein at the nanomolar level (inhibitory concentration of 50%, 91.57 nM) and specificity in binding to human CD70. Immuno-PET imaging of [64Cu]Cu-NOTA-ABDB6 demonstrated excellent tumor uptake and retention in various CD70-positive lymphoma models (TMD8, type III latency BL, and LCL-EBV), with the highest tumor uptake values recorded as 24.67 ± 1.36, 18.02 ± 4.29, and 14.68 ± 1.20 percentage injected dose per gram of tissue (%ID/g) at 48 h after injection, respectively. These tumor uptake values were significantly higher than that of the CD70-negative type I latency BL tumor, which had an uptake of 3.59 ± 0.28 %ID/g at the same scanning time point (P < 0.05). In the TMD8 blocking group, tumor uptake was 5.99 ± 1.20 %ID/g at 48 h after injection, significantly lower than in the TMD8 control group (P < 0.01). Both biodistribution and histology results corroborated these imaging findings. Conclusion: [64Cu]Cu-NOTA-ABDB6 immuno-PET effectively visualized varying levels of CD70 in different lymphoma models. Its clinical potential may provide insights into CD70 expression in lymphoma patients.
Collapse
Affiliation(s)
- Xiaoyan Li
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jason C Mixdorf
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Qianyun Wu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sophia J Lee
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Todd E Barnhart
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Shannon C Kenney
- Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Lixin Rui
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin; and
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China;
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin;
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
3
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
4
|
Li X, Song W, Engle JW, Mixdorf JC, Barnhart TE, Sun Y, Zhu Y, Cai W. Immuno-PET Imaging of CD93 Expression with 64Cu-Radiolabeled NOTA-mCD93 ([ 64Cu]Cu-NOTA-mCD93) and Insulin-Like Growth Factor Binding Protein 7 ([ 64Cu]Cu-NOTA-IGFBP7). Mol Pharm 2024; 21:6411-6422. [PMID: 39533706 PMCID: PMC11832137 DOI: 10.1021/acs.molpharmaceut.4c00983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
CD93 is overexpressed in multiple solid tumor types, serving as a novel target for antiangiogenic therapy. The goal of this study was to develop a 64Cu-based positron emission tomography (PET) tracer for noninvasive imaging of CD93 expression. Antimouse-CD93 mAb (mCD93) and the CD93 ligand IGFBP7 were conjugated to a bifunctional chelator, p-isothiocyanatobenzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-NOTA) and labeled with 64Cu. To evaluate the pharmacokinetic properties and tumor-targeting efficacy of [64Cu]Cu-NOTA-mCD93 and [64Cu]Cu-NOTA-IGFBP7, PET imaging and biodistribution were performed on both 4T1 murine breast tumor-bearing mice and MDA-MB-231 human breast tumor-bearing mice. The tumor model HT1080-FAP, which does not overexpress CD93, was used as a negative control. Fluorescent immunostaining was conducted on different tissues to correlate radiotracer uptake with CD93 expression. 64Cu-labeling was achieved with high yield and specific activity. Serial PET imaging revealed that the in vivo performance of [64Cu]Cu-NOTA-IGFBP7 was superior to that of [64Cu]Cu-NOTA-mCD93, and that the tracer [64Cu]Cu-NOTA-IGFBP7 exhibited elevated tumor uptake values and excellent tumor retention in MDA-MB-231 mice, rather than in 4T1 murine mice. The MDA-MB-231 tumor uptake of [64Cu]Cu-NOTA-IGFBP7 was 2.85 ± 0.15, 3.69 ± 0.60, 6.91 ± 0.88, and 6.35 ± 0.55%ID/g at 1, 4, 24, and 48 h p.i., respectively, which were significantly higher than that in the CD93-negative HT1080-FAP tumor (0.73 ± 0.15, 0.97 ± 0.31, 1.00 ± 0.07, and 1.02 ± 0.11%ID/g, respectively). The significant difference between positive and negative tumors indicated [64Cu]Cu-NOTA-IGFBP7 was specifically binding to CD93. Biodistribution data as measured by gamma counting were consistent with the PET analysis. Ex vivo histology further confirmed the high CD93 expression on MDA-MB-231 tumor tissues. Herein, we prepared two novel radiotracers, [64Cu]Cu-NOTA-mCD93 and [64Cu]Cu-NOTA-IGFBP7, for the first immune-PET imaging of CD93 expression. Our results suggest that [64Cu]Cu-NOTA-IGFBP7 is a more potential radiotracer for visualizing angiogenesis due to its sensitive, persistent, and CD93-specific characteristics.
Collapse
Affiliation(s)
- Xiaoyan Li
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Wenyu Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jason C Mixdorf
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Todd E Barnhart
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yi Sun
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53792, United States
| |
Collapse
|
5
|
Wang R, Bai Z, Zhong W, Li C, Wang J, Xiang J, Du J, Jia B, Zhu Z. Synthesis, preclinical evaluation and pilot clinical translation of [ 68Ga]Ga-PMD22, a novel nanobody PET probe targeting CLDN18.2 of gastrointestinal cancer. Eur J Nucl Med Mol Imaging 2024; 51:3731-3743. [PMID: 38926162 DOI: 10.1007/s00259-024-06808-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE Claudin18.2 (CLDN18.2) is a novel target for diagnosis and therapy of gastrointestinal cancer. This study aimed to evaluate the safety and feasibility of a novel CLDN18.2-targeted nanobody, PMD22, labeled with gallium-68 ([68Ga]Ga), for detecting CLDN18.2 expression in patients with gastrointestinal cancer using PET/CT imaging. METHODS [68Ga]Ga-PMD22 was synthesized based on the nanobody, and its cell binding properties were assayed. Preclinical pharmacokinetics were determined in CLDN18.2-positive xenografts using microPET/CT. Effective dosimetry of [68Ga]Ga-PMD22 was evaluated in 5 gastrointestinal cancer patients, and PET/CT imaging of [68Ga]Ga-PMD22 and [18F]FDG were performed head-to-head in 16 gastrointestinal cancer patients. Pathological tissues were obtained for CLDN18.2 immunohistochemical (IHC) staining and comparative analysis with PET/CT findings. RESULTS Cell binding assay showed that [68Ga]Ga-PMD22 had a higher binding ability to AGSCLDN18.2 and BGC823CLDN18.2 cells than to AGS and BGC823 cells (p < 0.001). MicroPET/CT images showed that [68Ga]Ga-PMD22 rapidly accumulated in AGSCLDN18.2 and BGC823CLDN18.2 tumors, and high contrast tumor to background imaging was clearly observed. In the pilot study, the effective dose of [68Ga]Ga-PMD22 was 1.68E-02 ± 1.45E-02 mSv/MBq, and the CLDN18.2 IHC staining result was highly correlated with the SUVmax/BKGstomach of [68Ga]Ga-PMD22 (rs = 0.848, p < 0.01). CONCLUSION A novel [68Ga]Ga-labeled nanobody probe targeting CLDN18.2, [68Ga]Ga-PMD22, was established and preliminarily proved to be safe and effective in revealing CLDN18.2-positive gastrointestinal cancer, providing a basis for the clinical translation of the agent. CLINICAL TRIAL REGISTRATION This study was registered on the ClinicalTrials.gov (NCT05937919).
Collapse
Affiliation(s)
- Rongxi Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Zhidong Bai
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Wentao Zhong
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Chenzhen Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jiarou Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Jialin Xiang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Junfeng Du
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Bing Jia
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Zhaohui Zhu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
6
|
Bai Z, Xie X, Li C, Wang Y, Wang Y, Li H, Gao R, Jia B. Claudin18.2-Targeted SPECT/CT Imaging for Gastric Cancer: Preclinical Evaluation and Clinical Translation of the 99mTc-Labeled Nanobody (PHG102) Radiotracer. ACS Pharmacol Transl Sci 2024; 7:2465-2475. [PMID: 39144570 PMCID: PMC11320725 DOI: 10.1021/acsptsci.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
Claudin18.2 (CLDN18.2) has emerged as a significant target in the treatment of advanced gastric cancer. The screening of patients positive for CLDN18.2 is crucial for the effective application of targeted therapies specific to CLND18.2. In this study, we developed a novel nanobody-based probe, [99mTc]Tc-PHG102, for use in nuclear medicine. We analyzed its radiochemical yield and stability to ensure accurate probe characterization. Additionally, we assessed the probe's affinity and specificity toward the CLDN18.2 target and evaluated its efficacy in the BGC82318.2 xenograft model for SPECT/CT imaging of gastric cancer. The binding of [99mTc]Tc-PHG102 to HEK-293T18.2 and BGC82318.2 cells was notably higher than its binding to HEK-293T18.1, HEK-293T, and BGC823 cells, with bound values of 12.87 ± 1.46%, 6.16 ± 0.34%, 1.25 ± 0.22%, 1.14 ± 0.26%, and 1.32 ± 0.07% AD, respectively. The binding ability of [99mTc]Tc-PHG102 was significantly different between CLDN18.2-positive and negative cells (P < 0.001). Imaging results demonstrated a time-dependent tumor accumulation of the radiotracer. Notably, at 0.5 h postinjection, rapid accumulation was observed with an average tumor uptake of 4.63 ± 0.81% ID/cc (n = 3), resulting in clear tumor visualization. By 1 h postinjection, as [99mTc]Tc-PHG102 was rapidly metabolized, a decrease in uptake by other organs was noted. Preliminary clinical imaging trials further confirmed the safety and effectiveness of the probe, indicating specificity for lesions expressing CLDN18.2 in gastric cancer and favorable in vivo metabolic properties. In conclusion, the nanobody-based probe [99mTc]Tc-PHG102 proves to be a safe and effective tool for detecting CLDN18.2 expression levels in gastric cancer tumors and for screening CLDN18.2-positive patients.
Collapse
Affiliation(s)
- Zhidong Bai
- Department
of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xin Xie
- Department
of Nuclear Medicine, The First Affiliated
Hospital of Xi’an Jiaotong University, 277W Yanta Road, Xi’an 710061, China
| | - Chenzhen Li
- Department
of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yuchen Wang
- Department
of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yuanbo Wang
- Department
of Nuclear Medicine, The First Affiliated
Hospital of Xi’an Jiaotong University, 277W Yanta Road, Xi’an 710061, China
| | - Huijie Li
- Department
of Nuclear Medicine, The First Affiliated
Hospital of Xi’an Jiaotong University, 277W Yanta Road, Xi’an 710061, China
| | - Rui Gao
- Department
of Nuclear Medicine, The First Affiliated
Hospital of Xi’an Jiaotong University, 277W Yanta Road, Xi’an 710061, China
| | - Bing Jia
- Department
of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
7
|
Wang Y, Ma L, Kuang Z, Li D, Yang J, Liu Y, Zhang L, Li Z, Li Q. Preparation of Radiolabeled Zolbetuximab Targeting CLDN18.2 and Its Preliminary Evaluation for Potential Clinical Applications. Mol Pharm 2024; 21:3838-3847. [PMID: 38949095 DOI: 10.1021/acs.molpharmaceut.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Claudin18.2 (CLDN18.2), due to its high expression in various gastric cancer tissues, is considered an optimal target for antitumor drug molecules. In this study, we obtained the labeled compounds of [125I]I-zolbetuximab using the Iodogen method. Under the optimum labeling conditions, the molar activity of [125I]I-zolbetuximab was 1.75 × 102 GBq/μmol, and the labeling efficiency was more than 99%. The labeled compounds exhibited excellent in vitro stability in both phosphate buffer saline (PBS, pH = 7.4) and fetal bovine serum systems (FBS) (radiochemical purity >90% at 72 h). The uptake percentage of [125I]I-zolbetuximab in MKN45-CLDN18.2 cells is 24.69 ± 0.84% after 6 h. The saturation binding assay and specificity assay further demonstrated the high specificity of [125I]I-zolbetuximab for CLDN18.2. The long retention at the tumor site and rapid metabolic clearance at other organ sites of [125I]I-zolbetuximab were observed in small-animal SPECT-CT imaging. The same trend was also observed in the biodistribution study. Due to the excellent targeting ability of zolbetuximab for CLDN18.2, [125I]I-zolbetuximab exhibits strong specific binding and retention with cells and tumors highly expressing CLDN18.2. However, the balance between mAb's longer cycle time in vivo and targeting binding and retention ability should be intensively considered for using this kind of radiopharmaceutical in the diagnosis and treatment of CLDN18.2-positive gastric cancer.
Collapse
Affiliation(s)
- Yang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijun Kuang
- Shanghai Vista Pharmaceutical Technology Co., Ltd, Shanghai 201816, China
| | - Dengke Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Yang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yuxia Liu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Lan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zheng Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Qingnuan Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
8
|
Wu J, Chen J, Zhao Y, Yuan M, Chen X, He X, Zhang J, Shao G, Sun Q. Molecular SPECT/CT Profiling of Claudin18.2 Expression In Vivo: Implication for Patients with Gastric Cancer. Mol Pharm 2024; 21:3447-3458. [PMID: 38843446 DOI: 10.1021/acs.molpharmaceut.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Zolbetuximab (IMAB362), a monoclonal antibody targeting Claudin18.2 (CLDN 18.2), demonstrates a significant clinical benefit in patients with advanced gastroesophageal cancers. The noninvasive assessment of CLDN18.2 expression through molecular imaging offers a potential avenue for expedited monitoring and the stratification of patients into risk groups. This study elucidates that CLDN18.2 is expressed at a noteworthy frequency in primary gastric cancers and their metastases. The iodogen method was employed to label IMAB362 with 123I/131I. The results demonstrated the efficient and reproducible synthesis of 123I-IMAB362, with a specific binding affinity to CLDN18.2. Immuno-single-photon emission computed tomography (SPECT) imaging revealed the rapid accumulation of 123I-IMAB362 in gastric cancer xenografts at 12 h, remaining stable for 3 days in patient-derived tumor xenograft models. Additionally, tracer uptake of 123I-IMAB362 in MKN45 cells surpassed that in MKN28 cells at each time point, with tumor uptake correlating significantly with CLDN18.2 expression levels. Positron emission tomography/computed tomography imaging indicated that tumor uptake of 18F-FDG and the functional/viable tumor volume in the 131I-IMAB362 group were significantly lower than those in the 123I-IMAB362 group on day 7. In conclusion, 123I-IMAB362 immuno-SPECT imaging offers an effective method for direct, noninvasive, and whole-body quantitative assessment of tumor CLDN18.2 expression in vivo. This approach holds promise for accelerating the monitoring and stratification of patients with gastric cancer.
Collapse
Affiliation(s)
- Jian Wu
- Department of Science and Technology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Jun Chen
- Department of Nuclear Medicine, The Affiliated Taizhou People's Hospital of Nanjing University of Chinese Medicine, Taizhou 225300, China
- Department of Nuclear Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Yuetong Zhao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Mengyun Yuan
- Department of Science and Technology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Xu Chen
- Department of Science and Technology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Xiangdong He
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Jun Zhang
- Department of Nuclear Medicine, The Affiliated Taizhou People's Hospital of Nanjing University of Chinese Medicine, Taizhou 225300, China
- Department of Nuclear Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Qingmin Sun
- Department of Science and Technology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| |
Collapse
|
9
|
Zhang J, Kang F, Wang X, Chen X, Yang X, Yang Z, Wang J. Recent Advances in Radiotracers Targeting Novel Cancer-Specific Biomarkers in China: A Brief Overview. J Nucl Med 2024; 65:38S-45S. [PMID: 38719241 DOI: 10.2967/jnumed.123.266314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/23/2024] [Indexed: 07/16/2024] Open
Abstract
Radiopharmaceuticals play a critical role in nuclear medicine, providing novel tools for specifically delivering radioisotopes for the diagnosis and treatment of cancers. As the starting point for developing radiopharmaceuticals, cancer-specific biomarkers are important and receive worldwide attention. This field in China is currently experiencing a rapid expansion, with multiple radiotracers targeting novel targets being developed and translated into clinical studies. This review provides a brief overview of the exploration of novel imaging targets, preclinical evaluation of their targeting ligands, and translational research in China from 2020 to 2023, for detecting cancer, guiding targeted therapy, and visualizing the immune microenvironment. We believe that China will play an even more important role in the development of nuclear medicine in the world in the future.
Collapse
Affiliation(s)
- Jingming Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
- Department of Nuclear Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Fei Kang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Xuejiao Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
- Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China
- International Cancer Institute, Peking University Health Science Center, Beijing, China; and
| | - Zhi Yang
- Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China;
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jing Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China;
| |
Collapse
|
10
|
Zeng Z, Li L, Tao J, Liu J, Li H, Qian X, Yang Z, Zhu H. [ 177Lu]Lu-labeled anti-claudin-18.2 antibody demonstrated radioimmunotherapy potential in gastric cancer mouse xenograft models. Eur J Nucl Med Mol Imaging 2024; 51:1221-1232. [PMID: 38062170 DOI: 10.1007/s00259-023-06561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/01/2023] [Indexed: 03/22/2024]
Abstract
PURPOSE Gastric cancer (GC), one of the most prevalent and deadliest tumors worldwide, is often diagnosed at an advanced stage with limited treatment options and poor prognosis. The development of a CLDN18.2-targeted radioimmunotherapy probe is a potential treatment option for GC. METHODS The CLDN18.2 antibody TST001 (provided by Transcenta) was conjugated with DOTA and radiolabeled with the radioactive nuclide 177Lu. The specificity and targeting ability were evaluated by cell uptake, imaging and biodistribution experiments. In BGC823CLDN18.2/AGSCLDN18.2 mouse models, the efficacy of [177Lu]Lu-TST001 against CLDN18.2-expressing tumors was demonstrated, and toxicity was evaluated by H&E staining and blood sample testing. RESULTS [177Lu]Lu-TST001 was labeled with an 99.17%±0.32 radiochemical purity, an 18.50 ± 1.27 MBq/nmol specific activity and a stability of ≥ 94% after 7 days. It exhibited specific and high tumor uptake in CLDN18.2-positive xenografts of GC mouse models. Survival studies in BGC823CLDN18.2 and AGSCLDN18.2 tumor-bearing mouse models indicated that a low dose of 5.55 MBq and a high dose of 11.10 MBq [177Lu]Lu-TST001 significantly inhibited tumor growth compared to the saline control group, with the 11.1 MBq group showing better therapeutic efficacy. Histological staining with hematoxylin and eosin (H&E) and Ki67 immunohistochemistry of residual tissues confirmed tumor tissue destruction and reduced tumor cell proliferation following treatment. H&E showed that there was no significant short-term toxicity observed in the heart, spleen, stomach or other important organs when treated with a high dose of [177Lu]Lu-TST001, and no apparent hematotoxicity or liver toxicity was observed. CONCLUSION In preclinical studies, [177Lu]Lu-TST001 demonstrated significant antitumor efficacy with acceptable toxicity. It exhibits strong potential for clinical translation, providing a new promising treatment option for CLDN18.2-overexpressing tumors, including GC.
Collapse
Affiliation(s)
- Ziqing Zeng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Liqiang Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jinping Tao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiayue Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hongjun Li
- Suzhou Transcenta Therapeutics Co., Ltd, Suzhou, Jiangsu, 215127, China
| | - Xueming Qian
- Suzhou Transcenta Therapeutics Co., Ltd, Suzhou, Jiangsu, 215127, China
| | - Zhi Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Hua Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
11
|
Xu J, Yu B, Wang F, Yang J. Xenograft and organoid models in developing precision medicine for gastric cancer (Review). Int J Oncol 2024; 64:41. [PMID: 38390969 PMCID: PMC10919760 DOI: 10.3892/ijo.2024.5629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Gastric cancer (GC), a highly heterogeneous disease, has diverse histological and molecular subtypes. For precision medicine, well‑characterized models encompassing the full spectrum of subtypes are necessary. Patient‑derived tumor xenografts and organoids serve as important preclinical models in GC research. The main advantage of these models is the retention of phenotypic and genotypic heterogeneity present in parental tumor tissues. Utilizing diverse sequencing techniques and preclinical models for GC research facilitates accuracy in predicting personalized clinical responses to anti‑cancer treatments. The present review summarizes the latest advances of these two preclinical models in GC treatment and drug response assessment.
Collapse
Affiliation(s)
- Jiao Xu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Bixin Yu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Fan Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Yang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Phase I Clinical Trial Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
12
|
Li D, Ding L, Chen Y, Wang Z, Zeng Z, Ma X, Huang H, Li H, Qian X, Yang Z, Zhu H. Exploration of radionuclide labeling of a novel scFv-Fc fusion protein targeting CLDN18.2 for tumor diagnosis and treatment. Eur J Med Chem 2024; 266:116134. [PMID: 38266552 DOI: 10.1016/j.ejmech.2024.116134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/26/2024]
Abstract
PURPOSE Claudin 18.2 (CLDN18.2), due to its highly selective expression in tumor cells, has made breakthrough progress in clinical research and is expected to be integrated into routine tumor diagnosis and treatment. METHODS In this research, we obtained an scFv-Fc fusion protein (SF106) targeting CLDN18.2 through hybridoma technology. The scFv-Fc fusion protein was labeled with radioactive isotopes (124I and 177Lu) to generate the radio-probes. The targeting and specificity of the radio-probes were tested in cellular models, and its diagnostic and therapeutic potential was further evaluated in tumor-bearing models. RESULTS The molecular probes [124I]I-SF106 and [177Lu]Lu-DOTA-SF106 possess high radiochemical purity (RCP, 98.18 ± 0.93 % and 97.05 ± 1.1 %) and exhibit good stability in phosphate buffer saline and 5 % human serum albumin (92.44 ± 4.68 % and 91.03 ± 2.42 % at 120 h). [124I]I-SF106 uptake in cells expressing CLDN18.2 was well targeted and specific, and the dissociation constant was 17.74 nM [124I]I-SF106 micro-PET imaging showed that the maximum standardized uptake value (SUVmax) was significantly higher than CLDN18.2-negative tumors (1.83 ± 0.02 vs. 1.23 ± 0.04, p < 0.001). The maximum uptake was attained in tumors expressing CLDN18.2 at 48 h after injection. [124I]I-SF106 and [177Lu]Lu-DOTA-SF106 dosimetric study showed that the effective dose in humans complies with the medical safety standards required for their clinical application. The results of treatment experiments showed that 3 MBq of [177Lu]Lu-DOTA-SF106 in CLDN18.2-expressing tumor-bearing mice could significantly inhibit tumor growth. CONCLUSION These results indicate that radionuclide-labeled scFv-Fc molecular probes ([124I]I-SF106 and [177Lu]Lu-DOTA-SF106) provide a new possibility for the diagnosis and treatment of CLDN18.2-positive cancer patients in clinical practice.
Collapse
Affiliation(s)
- Dapeng Li
- Medical College, Guizhou University, Guiyang, 550025, Guizhou, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lei Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Anesthesiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yan Chen
- Medical College, Guizhou University, Guiyang, 550025, Guizhou, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zilei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Ziqing Zeng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaopan Ma
- Medical College, Guizhou University, Guiyang, 550025, Guizhou, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Haifeng Huang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 550025, Guizhou, China
| | - Hongjun Li
- Suzhou Transcenta Therapeutics Co., Ltd, Suzhou, 215000, China
| | - Xueming Qian
- Suzhou Transcenta Therapeutics Co., Ltd, Suzhou, 215000, China.
| | - Zhi Yang
- Medical College, Guizhou University, Guiyang, 550025, Guizhou, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Hua Zhu
- Medical College, Guizhou University, Guiyang, 550025, Guizhou, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
13
|
Wang XY, Yao DF, Ren G. Progress in research of tumor biomarkers and molecular imaging probes for gastric cancer. Shijie Huaren Xiaohua Zazhi 2024; 32:1-7. [DOI: 10.11569/wcjd.v32.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/10/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
Gastric cancer is a malignant tumor still associated with high morbidity and mortality worldwide. Its onset is relatively insidious, and when detected, it is already at an advanced stage, lacks effective individualized treatments, and has a poor prognosis. If gastric cancer can be diagnosed at an early stage, the survival rate of patients can be greatly improved. However, traditional imaging modalities lack specificity and sensitivity. In recent years, molecular imaging technology is booming, which can non-invasively and dynamically monitor gastric cancer at the cellular and molecular levels, and provide more reference information for clinical selection of treatment options and assessment of efficacy and prognosis. This article reviews the biomarkers of gastric cancer and molecular probes in various imaging modalities.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- Gang-Ren, Department of Radiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University of Medicine, Shanghai 200092, China
| | - De-Fan Yao
- Gang-Ren, Department of Radiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University of Medicine, Shanghai 200092, China
| | | |
Collapse
|
14
|
Wang Z, Zhao C, Ding J, Chen Y, Liu J, Hou X, Kong X, Dong B, Yang Z, Zhu H. Screening, Construction, and Preliminary Evaluation of CLDN18.2-Specific Peptides for Noninvasive Molecular Imaging. ACS Pharmacol Transl Sci 2023; 6:1829-1840. [PMID: 38093841 PMCID: PMC10714438 DOI: 10.1021/acsptsci.3c00165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/08/2023] [Accepted: 11/07/2023] [Indexed: 04/23/2025]
Abstract
Recent global clinical trials have shown that CLDN18.2 is an ideal target for the treatment of gastric cancer and that patients with high CLDN18.2 expression can benefit from targeted therapy. Therefore, accurate and comprehensive detection of CLDN18.2 expression is important for patient screening and guidance in anti-CLDN18.2 therapy. Phage display technology was used to screen CLDN18.2-specific peptides from 100 billion libraries. 293TCLDN18.1 cells were used to exclude nonspecific binding and CLDN18.1 binding sequences, while 293TCLDN18.2 cells were used to screen CLDN18.2-specific binding peptides. The monoclonal clones obtained from phage screening were sequenced, and peptides were synthesized based on the sequencing results. Binding specificity and affinity were assessed with a fluorescein isothiocyanate (FITC)-conjugated peptide. A 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated peptide was also synthesized for 68Ga radiolabeling. The in vitro and in vivo stability, partition coefficients, in vivo molecular imaging, and biodistribution were also characterized. Overall, 54 monoclonal clones were selected after phage display screening. Subsequently, based on the cell ELISA results, CLDN18.2 preference monoclonal clones were selected for deoxyribonucleic acid (DNA) sequencing, and four 7-peptide sequences were obtained after sequence comparison; among them, a peptide named T37 was further validated in vitro and in vivo. The T37 peptide specifically recognized CLDN18.2 but not CLDN18.1 and bound strongly to CLDN18.2-positive cell membranes. The 68Ga-DOTA-T37 probe exhibits good in vitro properties and high stability as a hydrophilic probe; it has high biological safety, and positron emission tomography/computed tomography (PET/CT) studies have shown that it can specifically target CLDN18.2 protein and CLDN18.2-positive tumors in mice. 68Ga-DOTA-T37 demonstrated the superiority and feasibility of using a CLDN18.2-specific probe in PCT/CT imaging, which deserves further development and exploitation.
Collapse
Affiliation(s)
- Zilei Wang
- State
Key Laboratory of Holistic Integrative Management of Gastrointestinal
Cancers, Beijing Key Laboratory of Carcinogenesis and Translational
Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals
(National Medical Products Administration), Department of Nuclear
Medicine, Peking University Cancer Hospital
& Institute, Beijing 100142, China
| | - Chuanke Zhao
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jin Ding
- State
Key Laboratory of Holistic Integrative Management of Gastrointestinal
Cancers, Beijing Key Laboratory of Carcinogenesis and Translational
Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals
(National Medical Products Administration), Department of Nuclear
Medicine, Peking University Cancer Hospital
& Institute, Beijing 100142, China
| | - Yan Chen
- State
Key Laboratory of Holistic Integrative Management of Gastrointestinal
Cancers, Beijing Key Laboratory of Carcinogenesis and Translational
Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals
(National Medical Products Administration), Department of Nuclear
Medicine, Peking University Cancer Hospital
& Institute, Beijing 100142, China
| | - Jiayue Liu
- State
Key Laboratory of Holistic Integrative Management of Gastrointestinal
Cancers, Beijing Key Laboratory of Carcinogenesis and Translational
Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals
(National Medical Products Administration), Department of Nuclear
Medicine, Peking University Cancer Hospital
& Institute, Beijing 100142, China
| | - Xingguo Hou
- State
Key Laboratory of Holistic Integrative Management of Gastrointestinal
Cancers, Beijing Key Laboratory of Carcinogenesis and Translational
Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals
(National Medical Products Administration), Department of Nuclear
Medicine, Peking University Cancer Hospital
& Institute, Beijing 100142, China
| | - XiangXing Kong
- State
Key Laboratory of Holistic Integrative Management of Gastrointestinal
Cancers, Beijing Key Laboratory of Carcinogenesis and Translational
Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals
(National Medical Products Administration), Department of Nuclear
Medicine, Peking University Cancer Hospital
& Institute, Beijing 100142, China
| | - Bin Dong
- Central
Laboratory, Peking University Cancer Hospital
& Institute, Beijing 100142, China
| | - Zhi Yang
- State
Key Laboratory of Holistic Integrative Management of Gastrointestinal
Cancers, Beijing Key Laboratory of Carcinogenesis and Translational
Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals
(National Medical Products Administration), Department of Nuclear
Medicine, Peking University Cancer Hospital
& Institute, Beijing 100142, China
| | - Hua Zhu
- State
Key Laboratory of Holistic Integrative Management of Gastrointestinal
Cancers, Beijing Key Laboratory of Carcinogenesis and Translational
Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals
(National Medical Products Administration), Department of Nuclear
Medicine, Peking University Cancer Hospital
& Institute, Beijing 100142, China
| |
Collapse
|
15
|
Zhang Q, Zhang N, Xiao H, Wang C, He L. Small Antibodies with Big Applications: Nanobody-Based Cancer Diagnostics and Therapeutics. Cancers (Basel) 2023; 15:5639. [PMID: 38067344 PMCID: PMC10705070 DOI: 10.3390/cancers15235639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 02/13/2025] Open
Abstract
Monoclonal antibodies (mAbs) have exhibited substantial potential as targeted therapeutics in cancer treatment due to their precise antigen-binding specificity. Despite their success in tumor-targeted therapies, their effectiveness is hindered by their large size and limited tissue permeability. Camelid-derived single-domain antibodies, also known as nanobodies, represent the smallest naturally occurring antibody fragments. Nanobodies offer distinct advantages over traditional mAbs, including their smaller size, high stability, lower manufacturing costs, and deeper tissue penetration capabilities. They have demonstrated significant roles as both diagnostic and therapeutic tools in cancer research and are also considered as the next generation of antibody drugs. In this review, our objective is to provide readers with insights into the development and various applications of nanobodies in the field of cancer treatment, along with an exploration of the challenges and strategies for their prospective clinical trials.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| | - Nan Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China;
| | - Han Xiao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730030, China;
| | - Chen Wang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| | - Lian He
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| |
Collapse
|
16
|
Li C, Chen X, Zhang J. Comment on: "Development of a CLDN18.2-targeting immuno-PET probe for non-invasive imaging in gastrointestinal tumors". J Pharm Anal 2023; 13:958-959. [PMID: 37842653 PMCID: PMC10568078 DOI: 10.1016/j.jpha.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 10/17/2023] Open
Affiliation(s)
- Cuicui Li
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Department of Nuclear Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, 100050, China
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Departments of Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
17
|
Zhang D, Huang G, Liu J, Wei W. Claudin18.2-targeted cancer theranostics. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2023; 13:64-69. [PMID: 37214268 PMCID: PMC10193197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/02/2023] [Indexed: 05/24/2023]
Abstract
Claudin 18.2 (CLDN18.2) is an emerging target for the treatment of CLDN18.2-expressing cancers such as gastric and pancreatic cancers. Cell and antibody therapies targeting CLDN18.2 are under intensive clinical trials. In this setting, how to efficiently and specifically detect CLDN18.2 expression before and after the therapies is a clinical challenge. In recent years, molecular imaging with radiolabeled antibodies or antibody fragments have shown promise in noninvasively annotating antigen expression across the body. In this Perspective, we will bring together the most recent progress on CLDN18.2-targeted imaging and therapy of solid tumors.
Collapse
Affiliation(s)
- Di Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|