1
|
Feng Y, Wu Z, Liu H, Xu R. Combining photodynamic therapy and ATM inhibition using modified bovine serum albumin: A co-delivery nano platform for eliciting pyroptosis and apoptosis to fuel TNBC therapy. Int J Biol Macromol 2025; 307:142140. [PMID: 40112963 DOI: 10.1016/j.ijbiomac.2025.142140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Triple-negative breast cancer (TNBC) presents a formidable challenge due to its poorest prognosis and limited array of treatment options available. Photodynamic therapy (PDT) has emerged as a potent therapeutic modality to generate intratumoral toxic reactive oxygen species (ROS) in combating refractory triple-negative breast cancer (TNBC). However, its therapeutic efficacy is compromised due to insufficient tumor accumulation and therapeutic resistance. Herein, an "all-in-one" tumor-therapeutic nanomedicine named HA@IR780@KU55933@BSA (HIKB) which integrated photosensitizer IR780 with ATM kinase inhibitor KU55933 was designed to facilitate drug delivery and target specific pathways involved in tumor PDT treatment resistance. Co-delivery of IR780 and KU55933 exacerbated intracellular ROS production, mitochondrial dysfunction and DNA damage to form a potent anti-TNBC therapeutic cyclical feedback loop and then induced pyroptosis and apoptosis of TNBC cells by activating the Caspase3/GSDME signaling pathway and regulating apoptosis-related protein expression, respectively. In vivo evaluations in the TNBC orthotopic xenograft mouse model demonstrated that the designed HIKB NPs could accumulate in tumor tissues and exert synergistic therapeutic effects. Altogether, this study described a self-assembling strategy for constructing an all-in-one nanomedicine that effectively integrates multiple therapeutic modalities to provide a comprehensive and systemic approach to tumor suppression.
Collapse
Affiliation(s)
- Yuao Feng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zeliang Wu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Rong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China.
| |
Collapse
|
2
|
Du S, Liang Q, Shi J. Progress of ATM inhibitors: Opportunities and challenges. Eur J Med Chem 2024; 277:116781. [PMID: 39173286 DOI: 10.1016/j.ejmech.2024.116781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Ataxia-telangiectasia mutated (ATM) was first discovered in patients with AT (ataxia telangiectasia), which is characteristic with cerebellar degeneration, immunodeficiency, being susceptible to malignant tumors and sensitive to radiation. ATM kinase could detect DNA double-strand breaks and play a vital role in the DNA damage response. Inhibiting the function of ATM could sensitize tumor cells to both ionizing radiation (IR) and chemotherapy, as well as improve the chemoresistance and radioresistance observed in some patients. As such, ATM is a novel and important target for the cancer therapy. We reviewed ATM inhibitors reported in the last two decades, focusing on their development process, structure-activity relationships, inhibitory efficacy, pharmacokinetics and pharmacodynamics characteristics in the preclinical and clinical studies. We summarized the clinical value of ATM inhibitors in tumors and some neurodegenerative diseases, as well as the main challenges to the development of the drugs, providing directions and references for the future development of ATM inhibitors.
Collapse
Affiliation(s)
- Shan Du
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qi Liang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
3
|
Huang CH, Huang YC, Xu JK, Chen SY, Tseng LC, Huang JL, Lin CS. ATM Inhibition-Induced ISG15/IFI27/OASL Is Correlated with Immunotherapy Response and Inflamed Immunophenotype. Cells 2023; 12:cells12091288. [PMID: 37174688 PMCID: PMC10177353 DOI: 10.3390/cells12091288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy can improve the survival of cancer patients with a high tumor mutation burden (TMB-H) or deficiency in DNA mismatch repair (dMMR) in their tumors. However, most cancer patients without TMB-H and dMMR do not benefit from ICB therapy. The inhibition of ATM can increase DNA damage and activate the interferon response, thus modulating the tumor immune microenvironment (TIME) and the efficacy of ICB therapy. In this study, we showed that ATM inhibition activated interferon signaling and induced interferon-stimulated genes (ISGs) in cisplatin-resistant and parent cancer cells. The ISGs induced by ATM inhibition were correlated with survival in cancer patients who received ICB therapy. In oral cancer, high expressions of ISG15, IFI27, and OASL were associated with low expressions of ATM, the activation of inflamed immune pathways, and increased tumor-infiltrating scores of CD8+ T, natural killer, and dendritic cells. The high expressions of ISG15, IFI27, and OASL were also correlated with complete remission in patients with cervical cancer treated with cisplatin. These results suggest that ATM inhibition can induce the interferon response and inflamed TIME, which may benefit ICB therapy.
Collapse
Affiliation(s)
- Chi-Han Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yun-Cian Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jun-Kai Xu
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan
| | - Si-Yun Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Lu-Chia Tseng
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan
| | - Jau-Ling Huang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
4
|
Zhang Y, Zhang Y, Mei Y, Zou R, Niu L, Dong S. Reactive Oxygen Species Enlightened Therapeutic Strategy for Oral and Maxillofacial Diseases-Art of Destruction and Reconstruction. Biomedicines 2022; 10:biomedicines10112905. [PMID: 36428473 PMCID: PMC9687321 DOI: 10.3390/biomedicines10112905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Reactive oxygen species (ROS) are byproducts of cell metabolism produced by living cells and signal mediators in biological processes. As unstable and highly reactive oxygen-derived molecules, excessive ROS production and defective oxidant clearance, or both, are associated with the pathogenesis of several conditions. Among them, ROS are widely involved in oral and maxillofacial diseases, such as periodontitis, as well as other infectious diseases or chronic inflammation, temporomandibular joint disorders, oral mucosal lesions, trigeminal neuralgia, muscle fatigue, and oral cancer. The purpose of this paper is to outline how ROS contribute to the pathophysiology of oral and maxillofacial regions, with an emphasis on oral infectious diseases represented by periodontitis and mucosal diseases represented by oral ulcers and how to effectively utilize and eliminate ROS in these pathological processes, as well as to review recent research on the potential targets and interventions of cutting-edge antioxidant materials. The PubMed, Web of Science, and Embase databases were searched using the MesH terms "oral and maxillofacial diseases", "reactive oxygen species", and "antioxidant materials". Irrelevant, obsolete, imprecise, and repetitive articles were excluded through screening of titles, abstracts, and eventually full content. The full-text data of the selected articles are, therefore, summarized using selection criteria. While there are various emerging biomaterials used as drugs themselves or delivery systems, more attention was paid to antioxidant drugs with broad application prospects and rigorous prophase animal experimental results.
Collapse
Affiliation(s)
- Yuwei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Prosthodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Yifei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Prosthodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Yukun Mei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Prosthodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Prosthodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Correspondence: (L.N.); (S.D.)
| | - Shaojie Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Prosthodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Correspondence: (L.N.); (S.D.)
| |
Collapse
|
5
|
Balachander K, Paramasivam A. Selective autophagy as a potential therapeutic target for oral cancer. Oral Oncol 2022; 130:105934. [DOI: 10.1016/j.oraloncology.2022.105934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022]
|
6
|
Lin HY, Wu HJ, Chen SY, Hou MF, Lin CS, Chu PY. Epigenetic therapy combination of UNC0638 and CI-994 suppresses breast cancer via epigenetic remodeling of BIRC5 and GADD45A. Biomed Pharmacother 2022; 145:112431. [PMID: 34798471 DOI: 10.1016/j.biopha.2021.112431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND There is currently a growing interest in the roles of epigenetic mechanisms in the diagnosis, prognosis, and therapies associated with precision oncology for breast cancer (BC). This study aimed to demonstrate the clinical significance of euchromatic histone lysine methyltransferase 2 (EHMT2), histone deacetylase 1 (HDAC1) and HDAC2 in BC, to evaluate the antitumor effectiveness of a combination of the selective inhibitors UNC0638 and CI-994 (U+C), and to clarify the underlying mechanisms. METHODS Multi-omic analysis was used to study the clinical significance of the biomarkers of interest. The effects of U+C treatment were evaluated by detecting cell viability, cell cycle, apoptosis, and representative gene expressions. RNA-Seq and Gene Set Enrichment Analysis (GSEA) were employed to identify over-represented genes associated with the treatment. Chromatin immunoprecipitation and qPCR (ChIP-qPCR) assay were applied to verify epigenetic profiling on the identified promoters. RESULTS The significance of elevated expressions of EHMT2, HDAC1, and HDAC2 in tumor tissue and BC basal-like subtype in predicting a poor prognosis was noted. The U+C combined treatment showed an enhanced suppressive effect as compared to single agent treatment, perturbed the cell cycle, induced apoptosis, reduced expressions of the genes representing anti-apoptosis, stemness, drug resistance and basal-like state, while increasing luminal-like state genes. In addition, the combined U+C treatment suppressed xenograft tumor growth. The epigenetic reprogramming of histones was identified in the down-regulated BIRC5 and upregulated GADD45A. CONCLUSION These findings demonstrate that selectively targeting EHMT2, HDAC1, and HDAC2 by concurrent U+C treatment suppresses BC tumor progression via epigenetic remodeling of BIRC5 and GADD45A.
Collapse
Affiliation(s)
- Hung-Yu Lin
- College of Medicine, National Chung Hsing University, Taichung 402, Taiwan; Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Hsing-Ju Wu
- College of Medicine, National Chung Hsing University, Taichung 402, Taiwan; Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan; Department of Biology, National Changhua University of Education, Changhua 500, Taiwan.
| | - Si-Yun Chen
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Biological Sciences, National Sun Yet-sen University, Kaohsiung 804, Taiwan.
| | - Pei-Yi Chu
- College of Medicine, National Chung Hsing University, Taichung 402, Taiwan; Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| |
Collapse
|
7
|
Downregulation of ATM and BRCA1 Predicts Poor Outcome in Head and Neck Cancer: Implications for ATM-Targeted Therapy. J Pers Med 2021; 11:jpm11050389. [PMID: 34068585 PMCID: PMC8151497 DOI: 10.3390/jpm11050389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/04/2022] Open
Abstract
ATM and BRCA1 are DNA repair genes that play a central role in homologous recombination repair. Alterations of ATM and BRCA1 gene expression are found in cancers, some of which are correlated with treatment response and patient outcome. However, the role of ATM and BRCA1 gene expression in head and neck cancer (HNC) is not well characterized. Here, we examined the prognostic role of ATM and BRCA1 expression in two HNC cohorts with and without betel quid (BQ) exposure. The results showed that the expression of ATM and BRCA1 was downregulated in BQ-associated HNC, as the BQ ingredient arecoline could suppress the expression of both genes. Low expression of either ATM or BRCA1 was correlated with poor overall survival (OS) and was an independent prognostic factor in multivariate analysis (ATM HR: 1.895, p = 0.041; BRCA1 HR: 2.163, p = 0.040). The combination of ATM and BRCA1 expression states further improved on the prediction of OS (HR: 4.195, p = 0.001, both low vs. both high expression). Transcriptomic analysis showed that inhibition of ATM kinase by KU55933 induced apoptosis signaling and potentiated cisplatin-induced cytotoxicity. These data unveil poor prognosis in the HNC patient subgroup with low expression of ATM and BRCA1 and support the notion of ATM-targeted therapy.
Collapse
|
8
|
Wang YC, Huang JL, Lee KW, Lu HH, Lin YJ, Chen LF, Wang CS, Cheng YC, Zeng ZT, Chu PY, Lin CS. Downregulation of the DNA Repair Gene DDB2 by Arecoline Is through p53's DNA-Binding Domain and Is Correlated with Poor Outcome of Head and Neck Cancer Patients with Betel Quid Consumption. Cancers (Basel) 2020; 12:cancers12082053. [PMID: 32722430 PMCID: PMC7465463 DOI: 10.3390/cancers12082053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Arecoline is the principal alkaloid in the areca nut, a component of betel quids (BQs), which are carcinogenic to humans. Epidemiological studies indicate that BQ-chewing contributes to the occurrence of head and neck cancer (HNC). Previously, we have reported that arecoline (0.3 mM) is able to inhibit DNA repair in a p53-dependent pathway, but the underlying mechanism is unclear. Here we demonstrated that arecoline suppressed the expression of DDB2, which is transcriptionally regulated by p53 and is required for nucleotide excision repair (NER). Ectopic expression of DDB2 restored NER activity in arecoline-treated cells, suggesting that DDB2 downregulation was critical for arecoline-mediated NER inhibition. Mechanistically, arecoline inhibited p53-induced DDB2 promoter activity through the DNA-binding but not the transactivation domain of p53. Both NER and DDB2 promoter activities declined in the chronic arecoline-exposed cells, which were consistent with the downregulated DDB2 mRNA in BQ-associated HNC specimens, but not in those of The Cancer Genome Atlas (TCGA) cohort (no BQ exposure). Lower DDB2 mRNA expression was correlated with a poor outcome in HNC patients. These data uncover one of mechanisms underlying arecoline-mediated carcinogenicity through inhibiting p53-regulated DDB2 expression and DNA repair.
Collapse
Affiliation(s)
- Yu-Chu Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.W.); (H.-H.L.); (Y.-J.L.); (L.-F.C.); (C.-S.W.)
| | - Jau-Ling Huang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan; (J.-L.H.); (Y.-C.C.); (Z.-T.Z.)
| | - Ka-Wo Lee
- Department of Otorhinolaryngology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan;
| | - Hsing-Han Lu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.W.); (H.-H.L.); (Y.-J.L.); (L.-F.C.); (C.-S.W.)
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan; (J.-L.H.); (Y.-C.C.); (Z.-T.Z.)
| | - Yuan-Jen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.W.); (H.-H.L.); (Y.-J.L.); (L.-F.C.); (C.-S.W.)
| | - Long-Fong Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.W.); (H.-H.L.); (Y.-J.L.); (L.-F.C.); (C.-S.W.)
- Department of Pathology and Medical Research, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
| | - Chung-Sheng Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.W.); (H.-H.L.); (Y.-J.L.); (L.-F.C.); (C.-S.W.)
| | - Yun-Chiao Cheng
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan; (J.-L.H.); (Y.-C.C.); (Z.-T.Z.)
| | - Zih-Ting Zeng
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan; (J.-L.H.); (Y.-C.C.); (Z.-T.Z.)
| | - Pei-Yi Chu
- Department of Pathology and Medical Research, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
| | - Chang-Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.W.); (H.-H.L.); (Y.-J.L.); (L.-F.C.); (C.-S.W.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence: or
| |
Collapse
|
9
|
Chen PH, Wu J, Ding CKC, Lin CC, Pan S, Bossa N, Xu Y, Yang WH, Mathey-Prevot B, Chi JT. Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism. Cell Death Differ 2020; 27:1008-1022. [PMID: 31320750 PMCID: PMC7206124 DOI: 10.1038/s41418-019-0393-7] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 06/22/2019] [Accepted: 07/01/2019] [Indexed: 01/18/2023] Open
Abstract
Ferroptosis is a specialized iron-dependent cell death that is associated with lethal lipid peroxidation. Modulation of ferroptosis may have therapeutic potential since it has been implicated in various human diseases as well as potential antitumor activities. However, much remains unknown about the underlying mechanisms and genetic determinants of ferroptosis. Given the critical role of kinases in most biological processes and the availability of various kinase inhibitors, we sought to systemically identify kinases essential for ferroptosis. We performed a forward genetic-based kinome screen against ferroptosis in MDA-MB-231 cells triggered by cystine deprivation. This screen identified 34 essential kinases involved in TNFα and NF-kB signaling. Unexpectedly, the DNA damage response serine/threonine kinase ATM (mutated in Ataxia-Telangiectasia) was found to be essential for ferroptosis. The pharmacological or genetic inhibition of ATM consistently rescued multiple cancer cells from ferroptosis triggered by cystine deprivation or erastin. Instead of the canonical DNA damage pathways, ATM inhibition rescued ferroptosis by increasing the expression of iron regulators involved in iron storage (ferritin heavy and light chain, FTH1 and FTL) and export (ferroportin, FPN1). The coordinated changes of these iron regulators during ATM inhibition resulted in a lowering of labile iron and prevented the iron-dependent ferroptosis. Furthermore, we found that ATM inhibition enhanced the nuclear translocation of metal-regulatory transcription factor 1 (MTF1), responsible for regulating expression of Ferritin/FPN1 and ferroptosis protection. Genetic depletion of MTF-1 abolished the regulation of iron-regulatory elements by ATM and resensitized the cells to ferroptosis. Together, we have identified an unexpected ATM-MTF1-Ferritin/FPN1 regulatory axis as novel determinants of ferroptosis through regulating labile iron levels.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Jianli Wu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Chien-Kuang Cornelia Ding
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Chao-Chieh Lin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Samuel Pan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Nathan Bossa
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | - Yitong Xu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Wen-Hsuan Yang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Bernard Mathey-Prevot
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA. .,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
10
|
Zheng K, He Z, Kitazato K, Wang Y. Selective Autophagy Regulates Cell Cycle in Cancer Therapy. Theranostics 2019; 9:104-125. [PMID: 30662557 PMCID: PMC6332805 DOI: 10.7150/thno.30308] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Aberrant function of cell cycle regulators results in uncontrolled cell proliferation, making them attractive therapeutic targets in cancer treatment. Indeed, survival of many cancers exclusively relies on these proteins, and several specific inhibitors are in clinical use. Although the ubiquitin-proteasome system is responsible for the periodic quality control of cell cycle proteins during cell cycle progression, increasing evidence clearly demonstrates the intimate interaction between cell cycle regulation and selective autophagy, important homeostasis maintenance machinery. However, these studies have often led to divergent rather than unifying explanations due to complexity of the autophagy signaling network, the inconsistent functions between general autophagy and selective autophagy, and the different characteristics of autophagic substrates. In this review, we highlight current data illustrating the contradictory and important role of cell cycle proteins in regulating autophagy. We also focus on how selective autophagy acts as a central mechanism to maintain orderly DNA repair and genome integrity by degrading specific cell cycle proteins, regulating cell division, and promoting DNA damage repair. We further discuss the ways in which selective autophagy may impact the cell cycle regulators, since failure to appropriately remove these can interfere with cell death-related processes, including senescence and autophagy-related cell death. Imbalanced cell proliferation is typically utilized by cancer cells to acquire resistance. Finally, we discuss the possibility of a potent anticancer therapeutic strategy that targets selective autophagy or autophagy and cell cycle together.
Collapse
|
11
|
Chwastek J, Jantas D, Lasoń W. The ATM kinase inhibitor KU-55933 provides neuroprotection against hydrogen peroxide-induced cell damage via a γH2AX/p-p53/caspase-3-independent mechanism: Inhibition of calpain and cathepsin D. Int J Biochem Cell Biol 2017; 87:38-53. [PMID: 28341201 DOI: 10.1016/j.biocel.2017.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/20/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
The role of the kinase ataxia-telangiectasia mutated (ATM), a well-known protein engaged in DNA damage repair, in the regulation of neuronal responses to oxidative stress remains unexplored. Thus, the neuroprotective efficacy of KU-55933, a potent inhibitor of ATM, against cell damage evoked by oxidative stress (hydrogen peroxide, H2O2) has been studied in human neuroblastoma SH-SY5Y cells and compared with the efficacy of this agent in models of doxorubicin (Dox)- and staurosporine (St)-evoked cell death. KU-55933 inhibited the cell death induced by H2O2 or Dox but not by St in undifferentiated (UN-) and retinoic acid-differentiated (RA)-SH-SY5Y cells, with a more pronounced effect in the latter cell phenotype. Furthermore, this ATM inhibitor attenuated the Dox- but not H2O2-induced caspase-3 activity in both UN- and RA-SH-SY5Y cells. Although KU-55933 inhibited the H2O2- and Dox-induced activation of ATM, it attenuated the toxin-induced phosphorylation of the proteins H2AX and p53 only in the latter model of cell damage. Moreover, the ATM inhibitor prevented the H2O2-evoked increases in calpain and cathepsin D activity and attenuated cell damage to a similar degree as inhibitors of calpain (MDL28170) and cathepsin D (pepstatin A). Finally, we confirmed the neuroprotective potential of KU-55933 against the H2O2- and Dox-evoked cell damage in primary mouse cerebellar granule cells and in the mouse hippocampal HT-22 cell line. Altogether, our results extend the neuroprotective portfolio of KU-55933 to a model of oxidative stress, with this effect not involving inhibition of the γH2AX/p-p53/caspase-3 pathway and instead associated with the attenuation of calpain and cathepsin D activity.
Collapse
Affiliation(s)
- Jakub Chwastek
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smętna Street 12, 31-343 Kraków, Poland
| | - Danuta Jantas
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smętna Street 12, 31-343 Kraków, Poland.
| | - Władysław Lasoń
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smętna Street 12, 31-343 Kraków, Poland
| |
Collapse
|
12
|
Abstract
Macroautophagy/autophagy is a conserved lysosomal degradation process essential for cell physiology and human health. By regulating apoptosis, inflammation, pathogen clearance, immune response and other cellular processes, autophagy acts as a modulator of pathogenesis and is a potential therapeutic target in diverse diseases. With regard to oral disease, autophagy can be problematic either when it is activated or impaired, because this process is involved in diverse functions, depending on the specific disease and its level of progression. In particular, activated autophagy functions as a cytoprotective mechanism under environmental stress conditions, which regulates tumor growth and mediates resistance to anticancer treatment in established tumors. During infections and inflammation, activated autophagy selectively delivers microbial antigens to the immune systems, and is therefore connected to the elimination of intracellular pathogens. Impaired autophagy contributes to oxidative stress, genomic instability, chronic tissue damage, inflammation and tumorigenesis, and is involved in aberrant bacterial clearance and immune priming. Hence, substantial progress in the study of autophagy provides new insights into the pathogenesis of oral diseases. This review outlines the mechanisms of autophagy, and highlights the emerging roles of this process in oral cancer, periapical lesions, periodontal diseases, and oral candidiasis.
Collapse
Affiliation(s)
- Ya-Qin Tan
- a The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education , School and Hospital of Stomatology, Wuhan University , Wuhan , Hubei , China
| | - Jing Zhang
- a The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education , School and Hospital of Stomatology, Wuhan University , Wuhan , Hubei , China.,b Department of Oral Medicine , School and Hospital of Stomatology, Wuhan University , Wuhan , Hubei , China
| | - Gang Zhou
- a The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education , School and Hospital of Stomatology, Wuhan University , Wuhan , Hubei , China.,b Department of Oral Medicine , School and Hospital of Stomatology, Wuhan University , Wuhan , Hubei , China
| |
Collapse
|
13
|
Utaipan T, Athipornchai A, Suksamrarn A, Jirachotikoon C, Yuan X, Lertcanawanichakul M, Chunglok W. Carbazole alkaloids from Murraya koenigii trigger apoptosis and autophagic flux inhibition in human oral squamous cell carcinoma cells. J Nat Med 2016; 71:158-169. [DOI: 10.1007/s11418-016-1045-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/10/2016] [Indexed: 12/13/2022]
|
14
|
Unravelling the relationship between macroautophagy and mitochondrial ROS in cancer therapy. Apoptosis 2016; 21:517-31. [DOI: 10.1007/s10495-016-1236-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Cosway B, Lovat P. The role of autophagy in squamous cell carcinoma of the head and neck. Oral Oncol 2016; 54:1-6. [PMID: 26774913 DOI: 10.1016/j.oraloncology.2015.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/01/2015] [Accepted: 12/19/2015] [Indexed: 01/07/2023]
Abstract
Half a million new head and neck cancers are diagnosed each year worldwide. Although traditionally thought to be triggered by alcohol and smoking abuse, there is a growing subset of oropharyngeal cancers driven by the oncogenic human papilloma virus (HPV). Despite advances in both surgical and non-surgical treatment strategies, survival rates have remained relatively static emphasising the need for novel therapeutic approaches. Autophagy, the principal catabolic process for the lysosomal--mediated breakdown of cellular products is a hot topic in cancer medicine. Increasing evidence points towards the prognostic significance of autophagy biomarkers in solid tumours as well as strategies through which to harness autophagy modulation to promote tumour cell death. However, the role of autophagy in head and neck cancers is less well defined. In the present review, we summarise the current understanding of autophagy in head and neck cancers, revealing key areas for future translational research.
Collapse
Affiliation(s)
- Benjamin Cosway
- Institute for Cellular Medicine, Newcastle University, United Kingdom.
| | - Penny Lovat
- Institute for Cellular Medicine, Newcastle University, United Kingdom
| |
Collapse
|
16
|
Junco JJ, Mancha-Ramirez A, Malik G, Wei SJ, Kim DJ, Liang H, Slaga TJ. Ursolic acid and resveratrol synergize with chloroquine to reduce melanoma cell viability. Melanoma Res 2015; 25:103-12. [PMID: 25647735 DOI: 10.1097/cmr.0000000000000137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Malignant melanoma is associated with a 5-year survival rate of less than 20% once metastasized. Malignant melanoma cells exhibit increased levels of autophagy, a process of intracellular digestion that allows cells to survive various stresses including chemotherapies, resulting in reduced patient survival. Autophagy can be inhibited by chemicals like chloroquine (CQ), which prevents fusion of autophagosomes to lysosomes, resulting in autophagosome accumulation in most systems. Here, we describe how tested CQ to see whether it could sensitize B16F10 metastatic mouse melanoma cells to the anticancer activities of the natural compounds ursolic acid (UA) and resveratrol (RES). CQ with UA or RES strongly and synergistically reduced the viability of B16F10 mouse melanoma and A375 human melanoma cells. Surprisingly, flow cytometry of acridine orange-stained cells showed that UA or RES in combination with CQ significantly reduced autophagosome levels. Western blotting analysis revealed that CQ plus UA or RES paradoxically increased LC3II, indicative of autophagosome accumulation. In addition, CQ plus RES synergistically decreased the levels of both autophagy initiator beclin-1 and autophagy supporter p62. These results indicate that CQ with UA or RES strongly and synergistically reduces the viability of B16F10 and A375 melanoma cells. However, studies on B16F10 cells have shown that the synergistic effect was not mediated by inhibition of autophagy induced by UA or RES. These compounds are well-tolerated in humans, and CQ has shown promise as an adjuvant therapy. These combinations may be valuable treatment strategies for melanoma.
Collapse
Affiliation(s)
- Jacob J Junco
- aDepartment of Pharmacology bEdinburg Regional Academic Health Center, Medical Research Division, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Sullivan KD, Palaniappan VV, Espinosa JM. ATM regulates cell fate choice upon p53 activation by modulating mitochondrial turnover and ROS levels. Cell Cycle 2015; 14:56-63. [PMID: 25483068 PMCID: PMC4614823 DOI: 10.4161/15384101.2014.973330] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/18/2014] [Accepted: 09/30/2014] [Indexed: 12/15/2022] Open
Abstract
Despite extensive study, the mechanisms of cell fate choice upon p53 activation remain poorly understood. Using genome-wide shRNA screening, we recently identified the ATM kinase as synthetic lethal with Nutlin-3, an MDM2 inhibitor that leads to non-genotoxic p53 activation. Here, we demonstrate that while this synthetic lethal interaction relies upon components of both the intrinsic and extrinsic apoptotic pathways (e.g., BAX and BID), it is not due to significant ATM effects on the expression of p53 target genes. Instead, loss of ATM activity results in increased mitochondria and reactive oxygen species that drive apoptosis. Finally, we provide evidence that pharmacologic inhibition of ATM blocks autophagy in direct opposition to p53, which activates this process, and that inhibition of autophagy is sufficient to elicit an apoptotic response when combined with Nutlin-3.
Collapse
Affiliation(s)
- Kelly D Sullivan
- Howard Hughes Medical Institute and Department of Molecular; Cellular and Developmental Biology; University of Colorado; Boulder, CO USA
| | - Vignesh V Palaniappan
- Howard Hughes Medical Institute and Department of Molecular; Cellular and Developmental Biology; University of Colorado; Boulder, CO USA
| | - Joaquín M Espinosa
- Howard Hughes Medical Institute and Department of Molecular; Cellular and Developmental Biology; University of Colorado; Boulder, CO USA
| |
Collapse
|
18
|
Farooqi AA, Attar R, Arslan BA, Romero MA, ul Haq MF, Qadir MI. Recently emerging signaling landscape of ataxia-telangiectasia mutated (ATM) kinase. Asian Pac J Cancer Prev 2014; 15:6485-8. [PMID: 25169474 DOI: 10.7314/apjcp.2014.15.16.6485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Research over the years has progressively and sequentially provided near complete resolution of regulators of the DNA repair pathways which are so important for cancer prevention. Ataxia-telangiectasia mutated kinase (ATM), a high-molecular-weight PI3K-family kinase has emerged as a master regulator of DNA damage signaling and extensive cross-talk between ATM and downstream proteins forms an interlaced signaling network. There is rapidly growing scientific evidence emphasizing newly emerging paradigms in ATM biology. In this review, we provide latest information regarding how oxidative stress induced activation of ATM can be utilized as a therapeutic target in different cancer cell lines and in xenografted mice. Moreover, crosstalk between autophagy and ATM is also discussed with focus on how autophagy inhibition induces apoptosis in cancer cells.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan E-mail :
| | | | | | | | | | | |
Collapse
|
19
|
Foster CR, Daniel LL, Daniels CR, Dalal S, Singh M, Singh K. Deficiency of ataxia telangiectasia mutated kinase modulates cardiac remodeling following myocardial infarction: involvement in fibrosis and apoptosis. PLoS One 2013; 8:e83513. [PMID: 24358288 PMCID: PMC3865210 DOI: 10.1371/journal.pone.0083513] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/05/2013] [Indexed: 12/19/2022] Open
Abstract
Ataxia telangiectasia mutated kinase (ATM) is a cell cycle checkpoint protein activated in response to DNA damage. We recently reported that ATM plays a protective role in myocardial remodeling following β-adrenergic receptor stimulation. Here we investigated the role of ATM in cardiac remodeling using myocardial infarction (MI) as a model. Methods and Results: Left ventricular (LV) structure, function, apoptosis, fibrosis, and protein levels of apoptosis- and fibrosis-related proteins were examined in wild-type (WT) and ATM heterozygous knockout (hKO) mice 7 days post-MI. Infarct sizes were similar in both MI groups. However, infarct thickness was higher in hKO-MI group. Two dimensional M-mode echocardiography revealed decreased percent fractional shortening (%FS) and ejection fraction (EF) in both MI groups when compared to their respective sham groups. However, the decrease in %FS and EF was significantly greater in WT-MI vs hKO-MI. LV end systolic and diastolic diameters were greater in WT-MI vs hKO-MI. Fibrosis, apoptosis, and α-smooth muscle actin staining was significantly higher in hKO-MI vs WT-MI. MMP-2 protein levels and activity were increased to a similar extent in the infarct regions of both groups. MMP-9 protein levels were increased in the non-infarct region of WT-MI vs WT-sham. MMP-9 protein levels and activity were significantly lower in the infarct region of WT vs hKO. TIMP-2 protein levels similarly increased in both MI groups, whereas TIMP-4 protein levels were significantly lower in the infarct region of hKO group. Phosphorylation of p53 protein was higher, while protein levels of manganese superoxide dismutase were significantly lower in the infarct region of hKO vs WT. In vitro, inhibition of ATM using KU-55933 increased oxidative stress and apoptosis in cardiac myocytes.
Collapse
Affiliation(s)
- Cerrone R. Foster
- Department of Biomedical Sciences, James H Quillen College of Medicine, James H Quillen Veterans Affairs Medical Center, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Laura L. Daniel
- Department of Biomedical Sciences, James H Quillen College of Medicine, James H Quillen Veterans Affairs Medical Center, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Christopher R. Daniels
- Department of Biomedical Sciences, James H Quillen College of Medicine, James H Quillen Veterans Affairs Medical Center, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Suman Dalal
- Department of Biomedical Sciences, James H Quillen College of Medicine, James H Quillen Veterans Affairs Medical Center, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Mahipal Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, James H Quillen Veterans Affairs Medical Center, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Krishna Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, James H Quillen Veterans Affairs Medical Center, East Tennessee State University, Johnson City, Tennessee, United States of America
- * E-mail:
| |
Collapse
|