1
|
Wang X, Li W, Zhang J, Li J, Zhang X, Wang M, Wei Z, Feng S. Discovery of therapeutic targets for spinal cord injury based on molecular mechanisms of axon regeneration after conditioning lesion. J Transl Med 2023; 21:511. [PMID: 37507810 PMCID: PMC10385911 DOI: 10.1186/s12967-023-04375-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Preinjury of peripheral nerves triggers dorsal root ganglia (DRG) axon regeneration, a biological change that is more pronounced in young mice than in old mice, but the complex mechanism has not been clearly explained. Here, we aim to gain insight into the mechanisms of axon regeneration after conditioning lesion in different age groups of mice, thereby providing effective therapeutic targets for central nervous system (CNS) injury. METHODS The microarray GSE58982 and GSE96051 were downloaded and analyzed to identify differentially expressed genes (DEGs). The protein-protein interaction (PPI) network, the miRNA-TF-target gene network, and the drug-hub gene network of conditioning lesion were constructed. The L4 and L5 DRGs, which were previously axotomized by the sciatic nerve conditioning lesions, were harvested for qRT-PCR. Furthermore, histological and behavioral tests were performed to assess the therapeutic effects of the candidate drug telmisartan in spinal cord injury (SCI). RESULTS A total of 693 and 885 DEGs were screened in the old and young mice, respectively. Functional enrichment indicates that shared DEGs are involved in the inflammatory response, innate immune response, and ion transport. QRT-PCR results showed that in DRGs with preinjury of peripheral nerve, Timp1, P2ry6, Nckap1l, Csf1, Ccl9, Anxa1, and C3 were upregulated, while Agtr1a was downregulated. Based on the bioinformatics analysis of DRG after conditioning lesion, Agtr1a was selected as a potential therapeutic target for the SCI treatment. In vivo experiments showed that telmisartan promoted axonal regeneration after SCI by downregulating AGTR1 expression. CONCLUSION This study provides a comprehensive map of transcriptional changes that discriminate between young and old DRGs in response to injury. The hub genes and their related drugs that may affect the axonal regeneration program after conditioning lesion were identified. These findings revealed the speculative pathogenic mechanism involved in conditioning-dependent regenerative growth and may have translational significance for the development of CNS injury treatment in the future.
Collapse
Affiliation(s)
- Xiaoxiong Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
- University of Health and Rehabilitation Sciences, No.17, Shandong Road, Shinan District, Qingdao, 266071, Shandong, People's Republic of China
| | - Wenxiang Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Jianping Zhang
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Jinze Li
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Xianjin Zhang
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Min Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Zhijian Wei
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.
- Department of Orthopedics, Tianjin Medical University General Hospital, No154. Anshan Rd, He Ping Dist, Tianjin, 300052, China.
| | - Shiqing Feng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.
- Department of Orthopedics, Tianjin Medical University General Hospital, No154. Anshan Rd, He Ping Dist, Tianjin, 300052, China.
| |
Collapse
|
2
|
Saruta K, Fukutoku T, Kumagai G, Nagaoki T, Tsukuda M, Nitobe Y, Wada K, Asari T, Fujita T, Sasaki I, Nikaido Y, Shimoyama S, Ueno S, Ishibashi Y. Intraperitoneal Administration of Etizolam Improves Locomotor Function in Mice After Spinal Cord Injury. Neurotrauma Rep 2023; 4:82-96. [PMID: 36874147 PMCID: PMC9983139 DOI: 10.1089/neur.2022.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Neuroinflammation occurs in the acute phase of spinal cord injury (SCI) and inhibits neural regeneration. In mouse models, etizolam (ETZ) is a strong anxiolytic with unclear effects on SCI. This study investigated the effects of short-term administration of ETZ on neuroinflammation and behavior in mice after SCI. We administrated an ETZ (0.5 mg/kg) daily intraperitoneal injection from the day after SCI for 7 days. Mice were randomly divided into three groups (sham group: only laminectomy, saline group, and ETZ group). Inflammatory cytokine concentrations in the injured spinal cord epicenter were measured using an enzyme-linked immunosorbent assay on day 7 after SCI to evaluate spinal cord inflammation in the acute phase. Behavior analysis was performed the day before surgery and on days 7, 14, 28, and 42 after surgery. The behavioral analysis included anxiety-like behavior using the open field test, locomotor function using the Basso Mouse Scale, and sensory function using the mechanical and heat test. Inflammatory cytokine concentrations were significantly lower in the ETZ group than in the saline group in the acute phase after spinal surgery. After SCI, anxiety-like behaviors and sensory functions were comparable between the ETZ and saline groups. ETZ administration reduced neuroinflammation in the spinal cord and improved locomotor function. Gamma-amino butyric acid type A receptor stimulants may be effective therapeutic agents for patients with SCI.
Collapse
Affiliation(s)
- Kenya Saruta
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tatsuhiro Fukutoku
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Gentaro Kumagai
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Toshihide Nagaoki
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Manami Tsukuda
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yohshiro Nitobe
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kanichiro Wada
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Toru Asari
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Taku Fujita
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Isamu Sasaki
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yoshikazu Nikaido
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shuji Shimoyama
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinya Ueno
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
3
|
Wang P, Zhang Y, Xia Y, Xu D, Wang H, Liu D, Xu S, Sun Y. MicroRNA-139-5p Promotes Functional Recovery and Reduces Pain Hypersensitivity in Mice with Spinal Cord Injury by Targeting Mammalian Sterile 20-like Kinase 1. Neurochem Res 2021; 46:349-357. [PMID: 33211272 DOI: 10.1007/s11064-020-03170-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/13/2020] [Accepted: 11/07/2020] [Indexed: 10/22/2022]
Abstract
Currently, there is no cure for spinal cord injury (SCI), a heavy burden on patients physiology and psychology. We found that microRNA-139-5p (miR-139-5p) expression was significantly downregulated in damaged spinal cords in mice. So, we aimed to test the effect of treatment with miR-139-5p on functional recovery and neuropathic pain in mice with SCI and investigate the underlying mechanism. The luciferase reporter assay revealed that miR-139-5p directly targeted mammalian sterile 20-like kinase 1 (Mst1), and miR-139-5p treatment suppressed Mst1 protein expression in damaged spinal cords of mice. Wild-type mice and Mst1(-/-) mice were exposed to SCI and treated with miR-139-5p agomir via intrathecal infusion. Treatment of SCI mice with miR-139-5p accelerated locomotor functional recovery, reduced hypersensitivities to mechanical and thermal stimulations, and promoted neuronal survival in damaged spinal cords. Treatment with miR-139-5p enhanced phosphorylation of adenosine monophosphate-activated protein kinase alpha (AMPKα), improved mitochondrial function, and suppressed NF-κB-related inflammation in damaged spinal cords. Deficiency of Mst1 had similar benefits in mice with SCI. Furthermore, miR-139-5p treatment did not provide further protection in Mst1(-/-) mice against SCI. In conclusion, miR-139-5p treatment enhanced functional recovery and reduced pain hypersensitivity in mice with SCI, possibly through targeting Mst1.
Collapse
Affiliation(s)
- Panfeng Wang
- War and Traumat Emergency Centre, Changhai Hospital, Navy Military Medical University, Changhai Road 168, Shanghai, 200433, China
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Sanxiang Road 1055, Suzhou, 215004, China
| | - Yuntong Zhang
- War and Traumat Emergency Centre, Changhai Hospital, Navy Military Medical University, Changhai Road 168, Shanghai, 200433, China
| | - Yan Xia
- War and Traumat Emergency Centre, Changhai Hospital, Navy Military Medical University, Changhai Road 168, Shanghai, 200433, China
| | - Dayuan Xu
- War and Traumat Emergency Centre, Changhai Hospital, Navy Military Medical University, Changhai Road 168, Shanghai, 200433, China
| | - Hongrui Wang
- War and Traumat Emergency Centre, Changhai Hospital, Navy Military Medical University, Changhai Road 168, Shanghai, 200433, China
| | - Dong Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Sanxiang Road 1055, Suzhou, 215004, China
| | - Shuogui Xu
- War and Traumat Emergency Centre, Changhai Hospital, Navy Military Medical University, Changhai Road 168, Shanghai, 200433, China
| | - Yongming Sun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Sanxiang Road 1055, Suzhou, 215004, China.
| |
Collapse
|
4
|
Bannerman CA, Douchant K, Sheth PM, Ghasemlou N. The gut-brain axis and beyond: Microbiome control of spinal cord injury pain in humans and rodents. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 9:100059. [PMID: 33426367 PMCID: PMC7779861 DOI: 10.1016/j.ynpai.2020.100059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is a devastating injury to the central nervous system in which 60 to 80% of patients experience chronic pain. Unfortunately, this pain is notoriously difficult to treat, with few effective options currently available. Patients are also commonly faced with various compounding injuries and medical challenges, often requiring frequent hospitalization and antibiotic treatment. Change in the gut microbiome from the "normal" state to one of imbalance, referred to as gut dysbiosis, has been found in both patients and rodent models following SCI. Similarities exist in the bacterial changes observed after SCI and other diseases with chronic pain as an outcome. These changes cause a shift in the regulation of inflammation, causing immune cell activation and secretion of inflammatory mediators that likely contribute to the generation/maintenance of SCI pain. Therefore, correcting gut dysbiosis may be used as a tool towards providing patients with effective pain management and improved quality of life.
Collapse
Affiliation(s)
- Courtney A. Bannerman
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Katya Douchant
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Gastrointestinal Disease Research Unit, Kingston Health Sciences Center, Kingston, Ontario, Canada
| | - Prameet M. Sheth
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- Division of Microbiology, Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Gastrointestinal Disease Research Unit, Kingston Health Sciences Center, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Anesthesiology and Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
5
|
Fukutoku T, Kumagai G, Fujita T, Sasaki A, Wada K, Liu X, Tanaka T, Kudo H, Asari T, Nikaido Y, Ueno S, Ishibashi Y. Sex-Related Differences in Anxiety and Functional Recovery after Spinal Cord Injury in Mice. J Neurotrauma 2020; 37:2235-2243. [PMID: 32486893 DOI: 10.1089/neu.2019.6929] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been reported that female rats have a sex-related advantage in functional recovery and neuroprotection after spinal cord injury (SCI). However, the association between anxiety and neurological function after SCI in female and male rats remains unclear. The aim of this study was to examine sex-related differences in anxiety and neurological dysfunction after SCI in adult C57/BL6 male and female mice. After laminectomy at the 10th thoracic level, a contusive SCI was induced. The sham group received only a T10 laminectomy. Behavior testing (anxiety, motor/sensory function) was performed for 6 weeks after SCI. The spinal cord and preserved myelinated areas at the epicenter were histologically evaluated. Correlations between anxiety and motor/sensory function or histological parameters were analyzed using the Spearman correlation coefficient. Female and male mice showed significantly higher anxiety-like behaviors after SCI than before SCI. Anxiousness was significantly higher in female mice than in male mice after SCI. There was no significant difference in motor/sensory functions and histological features between the two groups. Anxiety-like behaviors were significantly correlated with sensory function at 2 weeks after SCI in female mice and with motor function at 2, 4, and 6 weeks after SCI in male mice. Anxiety-like behaviors were not significantly correlated with the spinal cord area at the epicenter in female and male mice. Our results revealed that female mice became more anxious than male mice after SCI. Anxiety-like behavior after SCI may be associated with functional recovery, and improving anxiety may affect functional recovery after injury.
Collapse
Affiliation(s)
- Tatsuhiro Fukutoku
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Gentaro Kumagai
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Taku Fujita
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ayako Sasaki
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kanichiro Wada
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Xizhe Liu
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Toshihiro Tanaka
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hitoshi Kudo
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Toru Asari
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yoshikazu Nikaido
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinya Ueno
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
6
|
McFarlane K, Otto TE, Bailey WM, Veldhorst AK, Donahue RR, Taylor BK, Gensel JC. Effect of Sex on Motor Function, Lesion Size, and Neuropathic Pain after Contusion Spinal Cord Injury in Mice. J Neurotrauma 2020; 37:1983-1990. [PMID: 32597310 PMCID: PMC7470221 DOI: 10.1089/neu.2019.6931] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spinal cord injury (SCI) causes neurodegeneration, impairs locomotor function, and impacts the quality of life particularly in those individuals in whom neuropathic pain develops. Whether the time course of neurodegeneration, locomotor impairment, or neuropathic pain varies with sex, however, remains understudied. Therefore, the objective of this study in male and female C57BL/6 mice was to evaluate the following outcomes for six weeks after a 75-kdyn thoracic contusion SCI: locomotor function using the Basso Mouse Scale (BMS); spinal cord tissue sparing and rostral-caudal lesion length; and mechanical allodynia and heat hyperalgesia using hindpaw application of Von Frey filaments or radiant heat stimuli, respectively. Although motor function was largely similar between sexes, all of the males, but only half of the females, recovered plantar stepping. Rostral-caudal lesion length was shorter in females than in males. Mechanical allodynia and heat hyperalgesia after SCI developed in all animals, regardless of sex; there were no differences in pain outcomes between sexes. We conclude that contusion SCI yields subtle sex differences in mice depending on the outcome measure but no significant differences in behavioral signs of neuropathic pain.
Collapse
Affiliation(s)
- Katelyn McFarlane
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Taylor E Otto
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - William M Bailey
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Amy K Veldhorst
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Renée R Donahue
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Bradley K Taylor
- Department of Anesthesia and Perioperative Medicine, Pittsburgh Center for Pain Research, and Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Nakajima H, Honjoh K, Watanabe S, Kubota A, Matsumine A. Distribution and polarization of microglia and macrophages at injured sites and the lumbar enlargement after spinal cord injury. Neurosci Lett 2020; 737:135152. [PMID: 32531528 DOI: 10.1016/j.neulet.2020.135152] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Abstract
Spinal cord injury (SCI) causes loss of locomotor function and chronic neuropathic pain (NeP). Hematogenous macrophages and activated microglia are key monocytic lineage cell types in the response to SCI, and each has M1- and M2-phenotypes. To understand the roles of these cells in neuronal regeneration and chronic NeP after SCI, differences in distribution and phenotypes of activated microglia and infiltrated macrophages after SCI were examined at the injured site and the lumbar enlargement, as a remote region. Chimeric mice were used for differentiating activated microglia from hematogenous macrophages. The prevalences of activated microglia and infiltrating macrophages increased at day 14 after SCI, at the time of most severe pain hypersensitivity, with mainly M1-type hematogenous macrophages at the injured site and M2-type activated microglia at the lumbar enlargement. Peak expression of TNF-α, an M1-induced cytokine, occurred on day 4 post-SCI at the injured site, but not until day 14 at the lumbar enlargement. Expression of IL-4, a M2-induced cytokine, peaked at 4 days after SCI at both sites. These results suggest different roles of activated microglia and hematogenous macrophages, including both phenotypes of each cell, in neuronal regeneration and chronic NeP after SCI at the injured site and lumbar enlargement. The prevalence of the M1 over the M2 phenotype at the injured site until the subacute phase after SCI may be partially responsible for the lack of functional recovery and chronic NeP after SCI. Activation of M2-type microglia at the lumbar enlargement in response to inflammatory cytokines from the injured site might be important in chronic below-level pain. These findings are useful for establishment of a therapeutic target for prevention of motor deterioration and NeP in the time-dependent response to SCI.
Collapse
Affiliation(s)
- Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| | - Kazuya Honjoh
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Shuji Watanabe
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Arisa Kubota
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Akihiko Matsumine
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| |
Collapse
|
8
|
Honjoh K, Nakajima H, Hirai T, Watanabe S, Matsumine A. Relationship of Inflammatory Cytokines From M1-Type Microglia/Macrophages at the Injured Site and Lumbar Enlargement With Neuropathic Pain After Spinal Cord Injury in the CCL21 Knockout ( plt) Mouse. Front Cell Neurosci 2019; 13:525. [PMID: 31824269 PMCID: PMC6881269 DOI: 10.3389/fncel.2019.00525] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022] Open
Abstract
Spinal cord injury (SCI) causes loss of normal sensation and often leads to debilitating neuropathic pain (NeP). Chronic NeP develops at or below the SCI lesion in as many as 80% of patients with SCI and may be induced by modulators of neuronal excitability released from activated microglia and macrophages. In the inflammatory response after SCI, different microglia/macrophage populations that are classically activated (M1 phenotype) or alternatively activated (M2 phenotype) have become of great interest. Chemokines have also recently attracted attention in neuron-microglia communication. CCL21 is a chemokine that activates microglia in the central nervous system (CNS) and is expressed only in neurons with an insult or mechanical injury. In this study using an SCI model in mutant (plt) mice with deficient CCL21 expression, we assessed post-SCI NeP and expression of microglia/macrophages and inflammatory cytokines at the injured site and lumbar enlargement. SCI-induced hypersensitivities to mechanical and thermal stimulation were relieved in plt mice compared with those in wild-type (C57BL/6) mice, although there was no difference in motor function. Immunohistochemistry and flow cytometry analysis showed that the phenotype of microglia/macrophages was M1 type-dominant in both types of mice at the lesion site and lumbar enlargement. A decrease of M1-type microglia/macrophages was seen in plt mice compared with wild-type, while the number of M2-type microglia/macrophages did not differ between these mice. In immunoblot analysis, expression of M1-induced cytokines [tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ)] was decreased in plt mice, while that of M2-induced cytokines interleukin-4 (IL-4, IL-10) did not differ in the two types of mice. The results of this study indicate that suppression of expression of inflammatory cytokines by decreasing the number of M1-type microglia/macrophages at the injured site and lumbar enlargement is associated with provision of an environment for reduction of NeP. These findings may be useful for the design of new therapies to alleviate NeP after SCI.
Collapse
Affiliation(s)
- Kazuya Honjoh
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, Fukui, Japan
| | - Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, Fukui, Japan
| | - Takayuki Hirai
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, Fukui, Japan
| | - Shuji Watanabe
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, Fukui, Japan
| | - Akihiko Matsumine
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, Fukui, Japan
| |
Collapse
|
9
|
Takeura N, Nakajima H, Watanabe S, Honjoh K, Takahashi A, Matsumine A. Role of macrophages and activated microglia in neuropathic pain associated with chronic progressive spinal cord compression. Sci Rep 2019; 9:15656. [PMID: 31666661 PMCID: PMC6821913 DOI: 10.1038/s41598-019-52234-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022] Open
Abstract
Neuropathic pain (NeP) is commonly encountered in patients with diseases associated with spinal cord damage (e.g., spinal cord injury (SCI) and compressive myelopathy). Recent studies described persistent glial activation and neuronal hyperactivity in SCI, but the pathomechanisms of NeP in chronic compression of the spinal cord remains elusive. The purpose of the present study was to determine the roles of microglia and infiltrating macrophages in NeP. The study was conducted in chimeric spinal hyperostotic mice (ttw/ttw), characterized by chronic progressive compression of the spinal cord as a suitable model of human compressive myelopathy. The severity of spinal cord compression correlated with proportion of activated microglia and hematogenous macrophages. Spinal cord compression was associated with overexpression of mitogen-activated protein kinases (MAPKs) in infiltrating macrophages and reversible blood-spinal cord barrier (BSCB) disruption in the dorsal horns. Our results suggested that chronic neuropathic pain in long-term spinal cord compression correlates with infiltrating macrophages, activated microglial cells and the associated damage of BSCB, together with overexpression of p-38 MAPK and p-ERK1/2 in these cells. Our findings are potentially useful for the design of new therapies to alleviate chronic neuropathic pain associated with compressive myelopathy.
Collapse
Affiliation(s)
- Naoto Takeura
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan.
| | - Shuji Watanabe
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Kazuya Honjoh
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Ai Takahashi
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Akihiko Matsumine
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| |
Collapse
|
10
|
Norden DM, Qatanani A, Bethea JR, Jiang J. Chronic spinal cord injury impairs primary CD8 T cell antiviral immunity but does not affect generation or function of memory CD8 T cells. Exp Neurol 2019; 317:298-307. [PMID: 30904474 DOI: 10.1016/j.expneurol.2019.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/08/2019] [Accepted: 03/19/2019] [Indexed: 01/26/2023]
Abstract
Antiviral immunity is severely compromised following trauma to the central nervous system. In mice with chronic spinal cord injury (SCI), primary infection with influenza virus leads to high mortality rates due to impaired expansion of virus-specific CD8 T cells. One strategy to increase resistance to viral infections is to generate memory immune cells that protect from recurrent infections. However, it is unknown if chronic SCI also impairs secondary immune responses to influenza challenge as it does primary responses. Here, we used a mouse model of chronic SCI and a clinically relevant influenza A infection to investigate CD8 T cell response. As shown previously, chronic SCI mice had impaired primary antiviral responses with high mortality rates and decreased expansion of virus-specific CD8 T cells following intranasal infection. To investigate CD8 T cell memory, we used two strains of influenza A virus [PR8(H1N1) and X31(H3N2)] that share internal proteins but differ in surface antigens. Chronic SCI mice immunized with live X31 were able to generate memory CD8 T cells that secreted IFNγ upon stimulation with viral peptides ex vivo, which was comparable to immunized uninjured mice. Importantly, immunization prior to challenge with a lethal dose of PR8 resulted in no mortality and significant CD8 T cell recall responses in both uninjured and chronic SCI mice. In addition, memory CD8 T cells generated before SCI remained functional up to 8 weeks after injury. These pre-existing memory CD8 T cells provided full protection from lethal PR8 challenge given at the chronic timepoint following injury. Overall, this study shows that memory CD8 T cells generated either before or after chronic SCI still remain functional. These results highlight the need for proper immunization of SCI patients and show the potential of memory T cells to confer protection against not only influenza, but other viral infections as well.
Collapse
Affiliation(s)
- Diana M Norden
- Biology Department, Drexel University, Philadelphia, PA 19104, United States of America
| | - Anas Qatanani
- Biology Department, Drexel University, Philadelphia, PA 19104, United States of America
| | - John R Bethea
- Biology Department, Drexel University, Philadelphia, PA 19104, United States of America.
| | - Jiu Jiang
- Biology Department, Drexel University, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
11
|
Norden DM, Faw TD, McKim DB, Deibert RJ, Fisher LC, Sheridan JF, Godbout JP, Basso DM. Bone Marrow-Derived Monocytes Drive the Inflammatory Microenvironment in Local and Remote Regions after Thoracic Spinal Cord Injury. J Neurotrauma 2018; 36:937-949. [PMID: 30014767 DOI: 10.1089/neu.2018.5806] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injury (SCI) produces a toxic inflammatory microenvironment that negatively affects plasticity and recovery. Recently, we showed glial activation and peripheral myeloid cell infiltration extending beyond the epicenter through the remote lumbar cord after thoracic SCI. The presence and role of infiltrating monocytes is important, especially in the lumbar cord where locomotor central pattern generators are housed. Therefore, we compared the inflammatory profile of resident microglia and peripheral myeloid cells after SCI. Bone marrow chimeras received midthoracic contusive SCI, and trafficking was determined 1-7 days later. Fluorescence-activated cell (FAC) sorting showed similar infiltration timing of both neutrophils and macrophages in epicenter and lumbar regions. While neutrophil numbers were attenuated by day 3, macrophages remained unchanged at day 7, suggesting that macrophages have important long-term influence on the microenvironment. Nanostring gene array identified a strong proinflammatory profile of infiltrating macrophages relative to microglia at both epicenter and lumbar sites. Macrophages had elevated expression of inflammatory cytokines (IL-1β, IFNγ), chemokines (CCL2, CXCL2), mediators (COX-1, MMP-9), and receptors (CCR2, Ly6C), and decreased expression of growth promoting genes (GDNF, BDNF). Importantly, lumbar macrophages had elevated expression of active trafficking genes (CCR2, l-selectin, MMP-9) compared with epicenter macrophages. Further, acute rehabilitation exacerbated the inflammatory profile of infiltrated macrophages in the lumbar cord. Such high inflammatory potential and negative response to rehabilitation of infiltrating macrophages within lumbar locomotor central pattern generators likely impedes activity-dependent recovery. Therefore, limiting active trafficking of macrophages into the lumbar cord identifies a novel target for SCI therapies to improve locomotion.
Collapse
Affiliation(s)
- Diana M Norden
- 1 School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio.,2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio
| | - Timothy D Faw
- 1 School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio.,2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio.,3 Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio
| | - Daniel B McKim
- 3 Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio.,4 Department of Neuroscience, The Ohio State University, Columbus, Ohio.,5 Division of Biosciences, The Ohio State University, Columbus, Ohio
| | - Rochelle J Deibert
- 1 School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio.,2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio
| | - Lesley C Fisher
- 1 School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio.,2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio
| | - John F Sheridan
- 4 Department of Neuroscience, The Ohio State University, Columbus, Ohio.,5 Division of Biosciences, The Ohio State University, Columbus, Ohio
| | - Jonathan P Godbout
- 2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio.,4 Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - D Michele Basso
- 1 School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio.,2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio
| |
Collapse
|
12
|
Fujita T, Kumagai G, Liu X, Wada K, Tanaka T, Kudo H, Asari T, Fukutoku T, Sasaki A, Nitobe Y, Nikaido Y, Furukawa KI, Hirata M, Kanematsu T, Ueno S, Ishibashi Y. Poor Motor-Function Recovery after Spinal Cord Injury in Anxiety-Model Mice with Phospholipase C-Related Catalytically Inactive Protein Type 1 Knockout. J Neurotrauma 2018; 35:1379-1386. [DOI: 10.1089/neu.2017.5492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Taku Fujita
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Gentaro Kumagai
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Xizhe Liu
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kanichiro Wada
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Toshihiro Tanaka
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hitoshi Kudo
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Toru Asari
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tatsuhiro Fukutoku
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ayako Sasaki
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yohshiro Nitobe
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yoshikazu Nikaido
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ken-Ichi Furukawa
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masato Hirata
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takashi Kanematsu
- Department of Cellular and Molecular Pharmacology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinya Ueno
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
13
|
Faw TD, Lerch JK, Thaxton TT, Deibert RJ, Fisher LC, Basso DM. Unique Sensory and Motor Behavior in Thy1-GFP-M Mice before and after Spinal Cord Injury. J Neurotrauma 2018; 35:2167-2182. [PMID: 29385890 DOI: 10.1089/neu.2017.5395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sensorimotor recovery after spinal cord injury (SCI) is of utmost importance to injured individuals and will rely on improved understanding of SCI pathology and recovery. Novel transgenic mouse lines facilitate discovery, but must be understood to be effective. The purpose of this study was to characterize the sensory and motor behavior of a common transgenic mouse line (Thy1-GFP-M) before and after SCI. Thy1-GFP-M positive (TG+) mice and their transgene negative littermates (TG-) were acquired from two sources (in-house colony, n = 32, Jackson Laboratories, n = 4). C57BL/6J wild-type (WT) mice (Jackson Laboratories, n = 10) were strain controls. Moderate-severe T9 contusion (SCI) or transection (TX) occurred in TG+ (SCI, n = 25, TX, n = 5), TG- (SCI, n = 5), and WT (SCI, n = 10) mice. To determine responsiveness to rehabilitation, a cohort of TG+ mice with SCI (n = 4) had flat treadmill (TM) training 42-49 days post-injury (dpi). To characterize recovery, we performed Basso Mouse Scale, Grid Walk, von Frey Hair, and Plantar Heat Testing before and out to day 42 post-SCI. Open field locomotion was significantly better in the Thy1 SCI groups (TG+ and TG-) compared with WT by 7 dpi (p < 0.01) and was maintained through 42 dpi (p < 0.01). These unexpected locomotor gains were not apparent during grid walking, indicating severe impairment of precise motor control. Thy1 derived mice were hypersensitive to mechanical stimuli at baseline (p < 0.05). After SCI, mechanical hyposensitivity emerged in Thy1 derived groups (p < 0.001), while thermal hyperalgesia occurred in all groups (p < 0.001). Importantly, consistent findings across TG+ and TG- groups suggest that the effects are mediated by the genetic background rather than transgene manipulation itself. Surprisingly, TM training restored mechanical and thermal sensation to baseline levels in TG+ mice with SCI. This behavioral profile and responsiveness to chronic training will be important to consider when choosing models to study the mechanisms underlying sensorimotor recovery after SCI.
Collapse
Affiliation(s)
- Timothy D Faw
- 1 Neuroscience Graduate Program, The Ohio State University , Columbus, Ohio.,2 School of Health and Rehabilitation Sciences, The Ohio State University , Columbus, Ohio.,3 Center for Brain and Spinal Cord Repair, The Ohio State University , Columbus, Ohio
| | - Jessica K Lerch
- 3 Center for Brain and Spinal Cord Repair, The Ohio State University , Columbus, Ohio.,4 Department of Neuroscience, The Ohio State University , Columbus, Ohio
| | - Tyler T Thaxton
- 2 School of Health and Rehabilitation Sciences, The Ohio State University , Columbus, Ohio.,3 Center for Brain and Spinal Cord Repair, The Ohio State University , Columbus, Ohio
| | - Rochelle J Deibert
- 2 School of Health and Rehabilitation Sciences, The Ohio State University , Columbus, Ohio.,3 Center for Brain and Spinal Cord Repair, The Ohio State University , Columbus, Ohio
| | - Lesley C Fisher
- 2 School of Health and Rehabilitation Sciences, The Ohio State University , Columbus, Ohio.,3 Center for Brain and Spinal Cord Repair, The Ohio State University , Columbus, Ohio
| | - D Michele Basso
- 2 School of Health and Rehabilitation Sciences, The Ohio State University , Columbus, Ohio.,3 Center for Brain and Spinal Cord Repair, The Ohio State University , Columbus, Ohio
| |
Collapse
|
14
|
Norden DM, Bethea JR, Jiang J. Impaired CD8 T cell antiviral immunity following acute spinal cord injury. J Neuroinflammation 2018; 15:149. [PMID: 29776424 PMCID: PMC5960104 DOI: 10.1186/s12974-018-1191-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) disrupts essential neuroimmune communication, leading to severe immune depression. Previous studies confirmed immune dysfunction in mice with chronic SCI and following high thoracic level injury where sympathetic innervation of the spleen is disrupted. Here, we induced a mid-thoracic injury where integrity of the sympathetic response is maintained and investigated the antiviral T cell response to influenza virus after acute SCI. METHODS One week following a contusion SCI at thoracic level T9, mice were infected intranasally with influenza virus. Profiles of immune cell populations were analyzed before infection, and virus-specific CD8 T cell response was analyzed 7 days post-infection. RESULTS Following intranasal infection, injured mice had prolonged recovery and significant weight loss. Importantly, expansion and effector functions of virus-specific CD8 T cells were decreased in injured mice. The compromised CD8 T cell response was associated with inflammation and stress responses initiated after injury. Regulatory mechanisms, including increased regulatory T cells (Tregs) and upregulated PD-1/PD-L1, were induced following SCI. Furthermore, we show that increased corticosterone (CORT) levels can inhibit CD8 T cells and that blocking CORT in vivo following SCI enhances CD8 T cell antiviral responses. CONCLUSIONS Our results show that mice with mid-thoracic SCI have impaired CD8 T cell function during the acute stage of injury, indicating that impaired antiviral responses occur rapidly following SCI and is not dependent on injury level.
Collapse
Affiliation(s)
- Diana M Norden
- Department of Biology, Drexel University, 3245 Chestnut Street, Rm 415, Philadelphia, PA, 19104, USA
| | - John R Bethea
- Department of Biology, Drexel University, 3245 Chestnut Street, Rm 415, Philadelphia, PA, 19104, USA
| | - Jiu Jiang
- Department of Biology, Drexel University, 3245 Chestnut Street, Rm 415, Philadelphia, PA, 19104, USA.
| |
Collapse
|
15
|
Qian J, Zhu W, Lu M, Ni B, Yang J. D-β-hydroxybutyrate promotes functional recovery and relieves pain hypersensitivity in mice with spinal cord injury. Br J Pharmacol 2017; 174:1961-1971. [PMID: 28320049 DOI: 10.1111/bph.13788] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 03/05/2017] [Accepted: 03/11/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Spinal cord injury (SCI) leads to severe motor and sensory dysfunction and significantly reduces the quality of life. The aim of the present work was to investigate the effect of administration of exogenous D-β-hydroxybutyrate (DBHB) on functional recovery and neuropathic pain in spinal cord-injured mice. EXPERIMENTAL APPROACH Mice were given a moderate-severe thoracic spinal contusion injury at the T9-10 level and treated with exogenous DBHB. KEY RESULTS Treatment of SCI mice with DBHB markedly improved locomotor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. DBHB treatment partly prevented the SCI-induced loss of motor neurons and suppressed microglial and glial activation. DBHB treatment enhanced histone acetylation and up-regulated expression of the transcription factor FOXO3a, catalase and SOD2 in injured region of SCI mice. DBHB treatment suppressed SCI-induced NLRP3 inflammasome activation and reduced protein expression of IL-1β and IL-18. In addition, DBHB treatment improved mitochondrial function and abated oxidative stress following SCI. CONCLUSIONS AND IMPLICATIONS DBHB promoted functional recovery and relieved pain hypersensitivity in mice with SCI, possibly through inhibition of histone deacetylation and NLRP3 inflammasome activation and preservation of mitochondrial function. DBHB could thus be envisaged as a potential use of interventions for SCI but remains to be tested in humans.
Collapse
Affiliation(s)
- Jiao Qian
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wenjun Zhu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ming Lu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bin Ni
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jun Yang
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
16
|
Early-onset treadmill training reduces mechanical allodynia and modulates calcitonin gene-related peptide fiber density in lamina III/IV in a mouse model of spinal cord contusion injury. Pain 2016; 157:687-697. [PMID: 26588690 DOI: 10.1097/j.pain.0000000000000422] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Below-level central neuropathic pain (CNP) affects a large proportion of spinal cord injured individuals. To better define the dynamic changes of the spinal cord neural network contributing to the development of CNP after spinal cord injury (SCI), we characterized the morphological and behavioral correlates of CNP in female C57BL/6 mice after a moderate T11 contusion SCI (50 kdyn) and the influence of moderate physical activity. Compared with sham-operated animals, injured mice developed mechanical allodynia 2 weeks post injury when tested with small-diameter von Frey hair filaments (0.16 g and 0.4 g filament), but presented hyporesponsiveness to noxious mechanical stimuli (1.4 g filament). The mechano-sensory alterations lasted up to 35 days post injury, the longest time point examined. The response latency to heat stimuli already decreased significantly 10 days post injury reaching a plateau 2 weeks later. In contrast, injured mice developed remarkable hyposensitivity to cold stimuli. Animals that underwent moderate treadmill training (2 × 15 minutes; 5 d/wk) showed a significant reduction in the response rate to light mechanical stimuli as early as 6 days after training. Calcitonin gene-related peptide (CGRP) labeling in lamina III-IV of the dorsal horn revealed significant increases in CGRP-labeling density in injured animals compared with sham control animals. Importantly, treadmill training reduced CGRP-labeling density by about 50% (P < 0.01), partially reducing the injury-induced increases. Analysis of IB4-labeled nonpeptidergic sensory fibers revealed no differences between experimental groups. Abnormalities in temperature sensation were not influenced by physical activity. Thus, treadmill training partially resolves signs of below-level CNP after SCI and modulates the density of CGRP-labeled fibers.
Collapse
|
17
|
Hansen CN, Norden DM, Faw TD, Deibert R, Wohleb ES, Sheridan JF, Godbout JP, Basso DM. Lumbar Myeloid Cell Trafficking into Locomotor Networks after Thoracic Spinal Cord Injury. Exp Neurol 2016; 282:86-98. [PMID: 27191729 DOI: 10.1016/j.expneurol.2016.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/28/2016] [Accepted: 05/13/2016] [Indexed: 01/05/2023]
Abstract
Spinal cord injury (SCI) promotes inflammation along the neuroaxis that jeopardizes plasticity, intrinsic repair and recovery. While inflammation at the injury site is well-established, less is known within remote spinal networks. The presence of bone marrow-derived immune (myeloid) cells in these areas may further impede functional recovery. Previously, high levels of the gelatinase, matrix metalloproteinase-9 (MMP-9) occurred within the lumbar enlargement after thoracic SCI and impeded activity-dependent recovery. Since SCI-induced MMP-9 potentially increases vascular permeability, myeloid cell infiltration may drive inflammatory toxicity in locomotor networks. Therefore, we examined neurovascular reactivity and myeloid cell infiltration in the lumbar cord after thoracic SCI. We show evidence of region-specific recruitment of myeloid cells into the lumbar but not cervical region. Myeloid infiltration occurred with concomitant increases in chemoattractants (CCL2) and cell adhesion molecules (ICAM-1) around lumbar vasculature 24h and 7days post injury. Bone marrow GFP chimeric mice established robust infiltration of bone marrow-derived myeloid cells into the lumbar gray matter 24h after SCI. This cell infiltration occurred when the blood-spinal cord barrier was intact, suggesting active recruitment across the endothelium. Myeloid cells persisted as ramified macrophages at 7days post injury in parallel with increased inhibitory GAD67 labeling. Importantly, macrophage infiltration required MMP-9.
Collapse
Affiliation(s)
- Christopher N Hansen
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Diana M Norden
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Timothy D Faw
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Rochelle Deibert
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Eric S Wohleb
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, , The Ohio State University, Columbus, OH 43210, USA.
| | - John F Sheridan
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, , The Ohio State University, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan P Godbout
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210, USA
| | - D Michele Basso
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
18
|
Watanabe S, Uchida K, Nakajima H, Matsuo H, Sugita D, Yoshida A, Honjoh K, Johnson WEB, Baba H. Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain-related signaling cascades and reduced inflammatory cell recruitment. Stem Cells 2016; 33:1902-14. [PMID: 25809552 DOI: 10.1002/stem.2006] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/23/2015] [Accepted: 03/11/2015] [Indexed: 12/16/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSC) modulate inflammatory/immune responses and promote motor functional recovery after spinal cord injury (SCI). However, the effects of BMSC transplantation on central neuropathic pain and neuronal hyperexcitability after SCI remain elusive. This is of importance because BMSC-based therapies have been proposed for clinical treatment. We investigated the effects of BMSC transplantation on pain hypersensitivity in green fluorescent protein (GFP)-positive bone marrow-chimeric mice subjected to a contusion SCI, and the mechanisms of such effects. BMSC transplantation at day 3 post-SCI improved motor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. The pain improvements were mediated by suppression of protein kinase C-γ and phosphocyclic AMP response element binding protein expression in dorsal horn neurons. BMSC transplants significantly reduced levels of p-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (p-ERK1/2) in both hematogenous macrophages and resident microglia and significantly reduced the infiltration of CD11b and GFP double-positive hematogenous macrophages without decreasing the CD11b-positive and GFP-negative activated spinal-microglia population. BMSC transplants prevented hematogenous macrophages recruitment by restoration of the blood-spinal cord barrier (BSCB), which was associated with decreased levels of (a) inflammatory cytokines (tumor necrosis factor-α, interleukin-6); (b) mediators of early secondary vascular pathogenesis (matrix metallopeptidase 9); (c) macrophage recruiting factors (CCL2, CCL5, and CXCL10), but increased levels of a microglial stimulating factor (granulocyte-macrophage colony-stimulating factor). These findings support the use of BMSC transplants for SCI treatment. Furthermore, they suggest that BMSC reduce neuropathic pain through a variety of related mechanisms that include neuronal sparing and restoration of the disturbed BSCB, mediated through modulation of the activity of spinal-resident microglia and the activity and recruitment of hematogenous macrophages.
Collapse
Affiliation(s)
- Shuji Watanabe
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| | - Kenzo Uchida
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| | - Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| | - Hideaki Matsuo
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| | - Daisuke Sugita
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| | - Ai Yoshida
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| | - Kazuya Honjoh
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| | - William E B Johnson
- Life and Health Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom
| | - Hisatoshi Baba
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| |
Collapse
|
19
|
Song RB, Basso DM, da Costa RC, Fisher LC, Mo X, Moore SA. von Frey anesthesiometry to assess sensory impairment after acute spinal cord injury caused by thoracolumbar intervertebral disc extrusion in dogs. Vet J 2016; 209:144-9. [PMID: 26832808 PMCID: PMC4749468 DOI: 10.1016/j.tvjl.2015.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 07/06/2015] [Accepted: 07/26/2015] [Indexed: 01/17/2023]
Abstract
Sensory threshold (ST) was measured using an electric von Frey anesthesiometer (VFA) in all limbs of 20 normal dogs and 29 dogs with acute thoracolumbar spinal cord injury (SCI) caused by spontaneous intervertebral disc extrusion. ST values were measured at three separate time points in normal dogs and on days 3, 10 and 30 following decompressive surgery in dogs with SCI. ST values were compared between groups and correlated with locomotor recovery in SCI-affected dogs. ST values were significantly higher (consistent with hypoalgesia) in the pelvic limbs of SCI-affected dogs at day 3, day 10 and day 30 when compared to normal dogs (P <0.05), while no significant difference in thoracic limb ST values was observed between groups. A progressive decrease in pelvic limb ST values occurred in SCI-affected dogs over time, consistent with improvement toward normal sensation or development of allodynia. This finding correlated inversely with locomotor score at 3 and 10 days after surgery. A significant decline in ST values across testing sessions was observed for all limbs of normal and SCI-affected dogs and may be related to patient acclimation, operator training effect, or effect of analgesic medications. This study supports the feasibility of VFA to assess differences in ST between normal and SCI-affected dogs. However, future studies must focus on techniques to minimize or compensate for clinical, environmental and behavioral factors which may impact ST values in the clinical setting.
Collapse
Affiliation(s)
- R B Song
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon TharP St., Columbus, OH 43210, USA
| | - D M Basso
- School of Health and Rehabilitation Sciences, The Ohio State University, 453 West Tenth Ave, Columbus, OH 43210, USA
| | - R C da Costa
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon TharP St., Columbus, OH 43210, USA
| | - L C Fisher
- School of Health and Rehabilitation Sciences, The Ohio State University, 453 West Tenth Ave, Columbus, OH 43210, USA
| | - X Mo
- Center for Biostatistics, The Ohio State University, 601 Vernon TharP St., Columbus, OH 43210, USA
| | - S A Moore
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon TharP St., Columbus, OH 43210, USA.
| |
Collapse
|
20
|
Watson JL, Hala TJ, Putatunda R, Sannie D, Lepore AC. Persistent at-level thermal hyperalgesia and tactile allodynia accompany chronic neuronal and astrocyte activation in superficial dorsal horn following mouse cervical contusion spinal cord injury. PLoS One 2014; 9:e109099. [PMID: 25268642 PMCID: PMC4182513 DOI: 10.1371/journal.pone.0109099] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 09/09/2014] [Indexed: 11/19/2022] Open
Abstract
In humans, sensory abnormalities, including neuropathic pain, often result from traumatic spinal cord injury (SCI). SCI can induce cellular changes in the CNS, termed central sensitization, that alter excitability of spinal cord neurons, including those in the dorsal horn involved in pain transmission. Persistently elevated levels of neuronal activity, glial activation, and glutamatergic transmission are thought to contribute to the hyperexcitability of these dorsal horn neurons, which can lead to maladaptive circuitry, aberrant pain processing and, ultimately, chronic neuropathic pain. Here we present a mouse model of SCI-induced neuropathic pain that exhibits a persistent pain phenotype accompanied by chronic neuronal hyperexcitability and glial activation in the spinal cord dorsal horn. We generated a unilateral cervical contusion injury at the C5 or C6 level of the adult mouse spinal cord. Following injury, an increase in the number of neurons expressing ΔFosB (a marker of chronic neuronal activation), persistent astrocyte activation and proliferation (as measured by GFAP and Ki67 expression), and a decrease in the expression of the astrocyte glutamate transporter GLT1 are observed in the ipsilateral superficial dorsal horn of cervical spinal cord. These changes have previously been associated with neuronal hyperexcitability and may contribute to altered pain transmission and chronic neuropathic pain. In our model, they are accompanied by robust at-level hyperaglesia in the ipsilateral forepaw and allodynia in both forepaws that are evident within two weeks following injury and persist for at least six weeks. Furthermore, the pain phenotype occurs in the absence of alterations in forelimb grip strength, suggesting that it represents sensory and not motor abnormalities. Given the importance of transgenic mouse technology, this clinically-relevant model provides a resource that can be used to study the molecular mechanisms contributing to neuropathic pain following SCI and to identify potential therapeutic targets for the treatment of chronic pathological pain.
Collapse
Affiliation(s)
- Jaime L. Watson
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Tamara J. Hala
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Rajarshi Putatunda
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Daniel Sannie
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Angelo C. Lepore
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
21
|
Putatunda R, Hala TJ, Chin J, Lepore AC. Chronic at-level thermal hyperalgesia following rat cervical contusion spinal cord injury is accompanied by neuronal and astrocyte activation and loss of the astrocyte glutamate transporter, GLT1, in superficial dorsal horn. Brain Res 2014; 1581:64-79. [PMID: 24833066 DOI: 10.1016/j.brainres.2014.05.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/30/2014] [Accepted: 05/03/2014] [Indexed: 12/23/2022]
Abstract
Neuropathic pain is a form of pathological nociception that occurs in a significant portion of traumatic spinal cord injury (SCI) patients, resulting in debilitating and often long-term physical and psychological burdens. While many peripheral and central mechanisms have been implicated in neuropathic pain, central sensitization of dorsal horn spinothalamic tract (STT) neurons is a major underlying substrate. Furthermore, dysregulation of extracellular glutamate homeostasis and chronic astrocyte activation play important underlying roles in persistent hyperexcitability of these superficial dorsal horn neurons. To date, central sensitization and astrocyte changes have not been characterized in cervical SCI-induced neuropathic pain models, despite the fact that a major portion of SCI patients suffer contusion trauma to cervical spinal cord. In this study, we have characterized 2 rat models of unilateral cervical contusion SCI that behaviorally result in chronic persistence of thermal hyperalgesia in the ipsilateral forepaw. In addition, we find that STT neurons are chronically activated in both models when compared to laminectomy-only uninjured rats. Finally, persistent astrocyte activation and significantly reduced expression of the major CNS glutamate transporter, GLT1, in superficial dorsal horn astrocytes are associated with both excitability changes in STT neurons and the neuropathic pain behavioral phenotype. In conclusion, we have characterized clinically-relevant rodent models of cervical contusion-induced neuropathic pain that result in chronic activation of both STT neurons and astrocytes, as well as compromise in astrocyte glutamate transporter expression. These models can be used as important tools to further study mechanisms underlying neuropathic pain post-SCI and to test potential therapeutic interventions.
Collapse
Affiliation(s)
- Rajarshi Putatunda
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University Medical College, 900 Walnut Street, JHN 469, Philadelphia, PA 19107, USA
| | - Tamara J Hala
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University Medical College, 900 Walnut Street, JHN 469, Philadelphia, PA 19107, USA
| | - Jeannie Chin
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University Medical College, 900 Walnut Street, JHN 469, Philadelphia, PA 19107, USA
| | - Angelo C Lepore
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University Medical College, 900 Walnut Street, JHN 469, Philadelphia, PA 19107, USA.
| |
Collapse
|
22
|
M'Dahoma S, Bourgoin S, Kayser V, Barthélémy S, Chevarin C, Chali F, Orsal D, Hamon M. Spinal cord transection-induced allodynia in rats--behavioral, physiopathological and pharmacological characterization. PLoS One 2014; 9:e102027. [PMID: 25019623 PMCID: PMC4096923 DOI: 10.1371/journal.pone.0102027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 06/14/2014] [Indexed: 12/31/2022] Open
Abstract
In humans, spinal cord lesions induce not only major motor and neurovegetative deficits but also severe neuropathic pain which is mostly resistant to classical analgesics. Better treatments can be expected from precise characterization of underlying physiopathological mechanisms. This led us to thoroughly investigate (i) mechanical and thermal sensory alterations, (ii) responses to acute treatments with drugs having patent or potential anti-allodynic properties and (iii) the spinal/ganglion expression of transcripts encoding markers of neuronal injury, microglia and astrocyte activation in rats that underwent complete spinal cord transection (SCT). SCT was performed at thoracic T8-T9 level under deep isoflurane anaesthesia, and SCT rats were examined for up to two months post surgery. SCT induced a marked hyper-reflexia at hindpaws and strong mechanical and cold allodynia in a limited (6 cm2) cutaneous territory just rostral to the lesion site. At this level, pressure threshold value to trigger nocifensive reactions to locally applied von Frey filaments was 100-fold lower in SCT- versus sham-operated rats. A marked up-regulation of mRNAs encoding ATF3 (neuronal injury) and glial activation markers (OX-42, GFAP, P2×4, P2×7, TLR4) was observed in spinal cord and/or dorsal root ganglia at T6-T11 levels from day 2 up to day 60 post surgery. Transcripts encoding the proinflammatory cytokines IL-1β, IL-6 and TNF-α were also markedly but differentially up-regulated at T6-T11 levels in SCT rats. Acute treatment with ketamine (50 mg/kg i.p.), morphine (3-10 mg/kg s.c.) and tapentadol (10-20 mg/kg i.p.) significantly increased pressure threshold to trigger nocifensive reaction in the von Frey filaments test, whereas amitriptyline, pregabalin, gabapentin and clonazepam were ineffective. Because all SCT rats developed long lasting, reproducible and stable allodynia, which could be alleviated by drugs effective in humans, thoracic cord transection might be a reliable model for testing innovative therapies aimed at reducing spinal cord lesion-induced central neuropathic pain.
Collapse
Affiliation(s)
- Saïd M'Dahoma
- Centre de Psychiatrie et Neurosciences, Institut National de la Santé et de la Recherche Médicale, INSERM U894, Université Paris Descartes, Paris, France
- Neuropsychopharmacologie, Faculté de Médecine Pierre et Marie Curie, site Pitié-Salpêtrière, Paris, France
- * E-mail:
| | - Sylvie Bourgoin
- Centre de Psychiatrie et Neurosciences, Institut National de la Santé et de la Recherche Médicale, INSERM U894, Université Paris Descartes, Paris, France
- Neuropsychopharmacologie, Faculté de Médecine Pierre et Marie Curie, site Pitié-Salpêtrière, Paris, France
| | - Valérie Kayser
- Centre de Psychiatrie et Neurosciences, Institut National de la Santé et de la Recherche Médicale, INSERM U894, Université Paris Descartes, Paris, France
- Neuropsychopharmacologie, Faculté de Médecine Pierre et Marie Curie, site Pitié-Salpêtrière, Paris, France
| | - Sandrine Barthélémy
- Centre de Psychiatrie et Neurosciences, Institut National de la Santé et de la Recherche Médicale, INSERM U894, Université Paris Descartes, Paris, France
- Neuropsychopharmacologie, Faculté de Médecine Pierre et Marie Curie, site Pitié-Salpêtrière, Paris, France
| | - Caroline Chevarin
- Centre de Psychiatrie et Neurosciences, Institut National de la Santé et de la Recherche Médicale, INSERM U894, Université Paris Descartes, Paris, France
- Neuropsychopharmacologie, Faculté de Médecine Pierre et Marie Curie, site Pitié-Salpêtrière, Paris, France
| | - Farah Chali
- Laboratoire de Neurobiologie des Signaux Intercellulaires, Centre National de la Recherche Scientifique, CNRS UMR 7101, Université Pierre et Marie Curie, Paris, France
| | - Didier Orsal
- Laboratoire de Neurobiologie des Signaux Intercellulaires, Centre National de la Recherche Scientifique, CNRS UMR 7101, Université Pierre et Marie Curie, Paris, France
| | - Michel Hamon
- Centre de Psychiatrie et Neurosciences, Institut National de la Santé et de la Recherche Médicale, INSERM U894, Université Paris Descartes, Paris, France
- Neuropsychopharmacologie, Faculté de Médecine Pierre et Marie Curie, site Pitié-Salpêtrière, Paris, France
| |
Collapse
|
23
|
Marino MJ, Terashima T, Steinauer JJ, Eddinger KA, Yaksh TL, Xu Q. Botulinum toxin B in the sensory afferent: transmitter release, spinal activation, and pain behavior. Pain 2013; 155:674-684. [PMID: 24333775 DOI: 10.1016/j.pain.2013.12.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/22/2013] [Accepted: 12/04/2013] [Indexed: 01/11/2023]
Abstract
We addressed the hypothesis that intraplantar botulinum toxin B (rimabotulinumtoxin B: BoNT-B) has an early local effect upon peripheral afferent terminal releasing function and, over time, will be transported to the central terminals of the primary afferent. Once in the terminals it will cleave synaptic protein, block spinal afferent transmitter release, and thereby prevent spinal nociceptive excitation and behavior. In mice, C57Bl/6 males, intraplantar BoNT-B (1 U) given unilaterally into the hind paw had no effect upon survival or motor function, but ipsilaterally decreased: (1) intraplantar formalin-evoked flinching; (2) intraplantar capsaicin-evoked plasma extravasation in the hind paw measured by Evans blue in the paw; (3) intraplantar formalin-evoked dorsal horn substance P (SP) release (neurokinin 1 [NK1] receptor internalization); (4) intraplantar formalin-evoked dorsal horn neuronal activation (c-fos); (5) ipsilateral dorsal root ganglion (DRG) vesicle-associated membrane protein (VAMP); (6) ipsilateral SP release otherwise evoked bilaterally by intrathecal capsaicin; (7) ipsilateral activation of c-fos otherwise evoked bilaterally by intrathecal SP. These results indicate that BoNT-B, after unilateral intraplantar delivery, is taken up by the peripheral terminal, is locally active (blocking plasma extravasation), is transported to the ipsilateral DRG to cleave VAMP, and is acting presynaptically to block release from the spinal peptidergic terminal. The observations following intrathecal SP offer evidence for a possible transsynaptic effect of intraplantar BoNT. These results provide robust evidence that peripheral BoNT-B can alter peripheral and central terminal release from a nociceptor and attenuate downstream nociceptive processing via a presynaptic effect, with further evidence suggesting a possible postsynaptic effect.
Collapse
Affiliation(s)
- Marc J Marino
- Anesthesiology Research, Department of Anesthesiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA Department of Anesthesiology, Dokkyo Medical University, School of Medicine, Mibu, Tochigi, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Elevated MMP-9 in the lumbar cord early after thoracic spinal cord injury impedes motor relearning in mice. J Neurosci 2013; 33:13101-11. [PMID: 23926264 DOI: 10.1523/jneurosci.1576-13.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injury results in distant pathology around putative locomotor networks that may jeopardize the recovery of locomotion. We previously showed that activated microglia and increased cytokine expression extend at least 10 segments below the injury to influence sensory function. Matrix metalloproteinase-9 (MMP-9) is a potent regulator of acute neuroinflammation. Whether MMP-9 is produced remote to the injury or influences locomotor plasticity remains unexamined. Therefore, we characterized the lumbar enlargement after a T9 spinal cord injury in C57BL/6 (wild-type [WT]) and MMP-9-null (knock-out [KO]) mice. Within 24 h, resident microglia displayed an activated phenotype alongside increased expression of progelatinase MMP-3 in WT mice. By 7 d, increases in active MMP-9 around lumbar vasculature and production of proinflammatory TNF-α were evident. Deletion of MMP-9 attenuated remote microglial activation and restored TNF-α expression to homeostatic levels. To determine whether MMP-9 impedes locomotor plasticity, we delivered lumbar-focused treadmill training in WT and KO mice during early (2-9 d) or late (35-42 d) phases of recovery. Robust behavioral improvements were observed by 7 d, when only trained KO mice stepped in the open field. Locomotor improvements were retained for 4 weeks as identified using state of the art mouse kinematics. Neither training nor MMP-9 depletion alone promoted recovery. The same intervention delivered late was ineffective, suggesting that lesion site sparing is insufficient to facilitate activity-based training and recovery. Our work suggests that by attenuating remote mechanisms of inflammation, acute treadmill training can harness endogenous spinal plasticity to promote robust recovery.
Collapse
|
25
|
Pitcher GM, Ritchie J, Henry JL. Peripheral neuropathy induces cutaneous hypersensitivity in chronically spinalized rats. PAIN MEDICINE 2013; 14:1057-71. [PMID: 23855791 DOI: 10.1111/pme.12123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVES The present study was aimed at the issue of whether peripheral nerve injury-induced chronic pain is maintained by supraspinal structures governing descending facilitation to the spinal dorsal horn, or whether altered peripheral nociceptive mechanisms sustain central hyperexcitability and, in turn, neuropathic pain. We examined this question by determining the contribution of peripheral/spinal mechanisms, isolated from supraspinal influence(s), in cutaneous hypersensitivity in an animal model of peripheral neuropathy. METHODS Adult rats were spinalized at T8-T9; 8 days later, peripheral neuropathy was induced by implanting a 2-mm polyethylene cuff around the left sciatic nerve. Hind paw withdrawal responses to mechanical or thermal plantar stimulation were evaluated using von Frey filaments or a heat lamp, respectively. RESULTS Spinalized rats without cuff implantation exhibited a moderate decrease in mechanical withdrawal threshold on ~day 10 (P < 0.05) and in thermal withdrawal threshold on ~day 18 (P < 0.05). However, cuff-implanted spinalized rats developed a more rapid and significant decrease in mechanical (~day 4; P < 0.001) and thermal (~day 10; P < 0.05) withdrawal thresholds that remained significantly decreased through the duration of the study. CONCLUSIONS Our findings demonstrate an aberrant peripheral/spinal mechanism that induces and maintains thermal and to a greater degree tactile cutaneous hypersensitivity in the cuff model of neuropathic pain, and raise the prospect that altered peripheral/spinal nociceptive mechanisms in humans with peripheral neuropathy may have a pathologically relevant role in both inducing and sustaining neuropathic pain.
Collapse
Affiliation(s)
- Graham M Pitcher
- Departments of Physiology and Psychiatry, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
26
|
Oral administration of a small molecule targeted to block proNGF binding to p75 promotes myelin sparing and functional recovery after spinal cord injury. J Neurosci 2013; 33:397-410. [PMID: 23303920 DOI: 10.1523/jneurosci.0399-12.2013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The lack of effective therapies for spinal cord injury points to the need for identifying novel targets for therapeutic intervention. Here we report that a small molecule, LM11A-31, developed to block proNGF-p75 interaction and p75-mediated cell death crosses the blood-brain barrier efficiently when delivered orally. Administered starting 4 h postinjury, LM11A-31 promotes functional recovery without causing any toxicity or increased pain in a mouse model of spinal contusion injury. In both weight-bearing open-field tests and nonweight-bearing swim tests, LM11A-31 was effective in improving motor function and coordination. Such functional improvement correlated with a >50% increase in the number of surviving oligodendrocytes and myelinated axons. We also demonstrate that LM11A-31 indeed inhibits proNGF-p75 interaction in vivo, thereby curtailing the JNK3-mediated apoptotic cascade. These results thus highlight p75 as a novel therapeutic target for an orally delivered treatment for spinal cord injury.
Collapse
|
27
|
Cruz-Almeida Y, Felix ER, Martinez-Arizala A, Widerström-Noga EG. Decreased spinothalamic and dorsal column medial lemniscus-mediated function is associated with neuropathic pain after spinal cord injury. J Neurotrauma 2012; 29:2706-15. [PMID: 22845918 DOI: 10.1089/neu.2012.2343] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain (NP) after spinal cord injury (SCI) can significantly and negatively affect quality of life and is often refractory to currently available treatments. In order to find more effective therapeutic avenues, it would be helpful to identify the primary underlying pathophysiological mechanisms in each individual. The aim of the present study was to assess the relationship between the presence and severity of NP after SCI and measures of somatosensory function mediated via the dorsal column medial lemniscal (DCML) pathway and the spinothalamic tract (STT). Vibratory, mechanical, thermal, and pain thresholds measured in areas at and below the neurological level of injury (LOI) in persons with SCI and NP (SCI-NP, n=47) and in persons with SCI without NP (SCI-noNP, n=18) were normalized to data obtained from able-bodied pain-free control subjects (A-B, n=30). STT-mediated function at and below the LOI was significantly impaired in both SCI groups compared with A-B controls (p<0.001), but not significantly different between the two SCI groups (NP vs. no-NP). In contrast, the SCI-NP group had significantly greater impairment of DCML-mediated function at the LOI, as reflected by greater vibratory detection deficits (z=-3.89±0.5), compared with the SCI-noNP group (z=-1.95±0.7, p=0.034). Within the SCI-NP group, NP severity was significantly associated with increased thermal sensitivity below the LOI (r=0.50, p=0.038). Our results suggest that both impaired STT and DCML-mediated function are necessary for the development of NP after SCI. However, within the SCI-NP group, greater NP severity was associated with greater sensitivity to thermal stimuli below the LOI. This finding concurs with other studies suggesting that STT damage with some sparing is associated with NP.
Collapse
Affiliation(s)
- Yenisel Cruz-Almeida
- Research Service, Department of Veterans Affairs Medical Center, Miami, Florida, USA
| | | | | | | |
Collapse
|
28
|
Lee HJ, Bian S, Jakovcevski I, Wu B, Irintchev A, Schachner M. Delayed Applications of L1 and Chondroitinase ABC Promote Recovery after Spinal Cord Injury. J Neurotrauma 2012; 29:1850-63. [DOI: 10.1089/neu.2011.2290] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Hyun Joon Lee
- Zentrum für Molekulare Neurobiologie, University Hospital Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Shan Bian
- Zentrum für Molekulare Neurobiologie, University Hospital Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Igor Jakovcevski
- Zentrum für Molekulare Neurobiologie, University Hospital Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Bin Wu
- Zentrum für Molekulare Neurobiologie, University Hospital Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Andrey Irintchev
- Zentrum für Molekulare Neurobiologie, University Hospital Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie, University Hospital Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
- W.M. Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers the State University of New Jersey, Piscataway, New Jersey
- Center for Neuroscience, Shantou University Medical College, Shantou, P.R. China
| |
Collapse
|
29
|
Specific inhibition of the JNK pathway promotes locomotor recovery and neuroprotection after mouse spinal cord injury. Neurobiol Dis 2012; 46:710-21. [DOI: 10.1016/j.nbd.2012.03.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 01/31/2012] [Accepted: 03/01/2012] [Indexed: 12/23/2022] Open
|
30
|
Alexander JK, Cox GM, Tian JB, Zha AM, Wei P, Kigerl KA, Reddy MK, Dagia NM, Sielecki T, Zhu MX, Satoskar AR, McTigue DM, Whitacre CC, Popovich PG. Macrophage migration inhibitory factor (MIF) is essential for inflammatory and neuropathic pain and enhances pain in response to stress. Exp Neurol 2012; 236:351-62. [PMID: 22575600 DOI: 10.1016/j.expneurol.2012.04.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 04/19/2012] [Accepted: 04/23/2012] [Indexed: 01/27/2023]
Abstract
Stress and glucocorticoids exacerbate pain via undefined mechanisms. Macrophage migration inhibitory factor (MIF) is a constitutively expressed protein that is secreted to maintain immune function when glucocorticoids are elevated by trauma or stress. Here we show that MIF is essential for the development of neuropathic and inflammatory pain, and for stress-induced enhancement of neuropathic pain. Mif null mutant mice fail to develop pain-like behaviors in response to inflammatory stimuli or nerve injury. Pharmacological inhibition of MIF attenuates pain-like behaviors caused by nerve injury and prevents sensitization of these behaviors by stress. Conversely, injection of recombinant MIF into naïve mice produces dose-dependent mechanical sensitivity that is exacerbated by stress. MIF elicits pro-inflammatory signaling in microglia and activates sensory neurons, mechanisms that underlie pain. These data implicate MIF as a key regulator of pain and provide a mechanism whereby stressors exacerbate pain. MIF inhibitors warrant clinical investigation for the treatment of chronic pain.
Collapse
Affiliation(s)
- Jessica K Alexander
- Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
The animal model of spinal cord injury as an experimental pain model. J Biomed Biotechnol 2011; 2011:939023. [PMID: 21436995 PMCID: PMC3062973 DOI: 10.1155/2011/939023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 12/19/2010] [Indexed: 12/25/2022] Open
Abstract
Pain, which remains largely unsolved, is one of the most crucial problems for spinal cord injury patients. Due to sensory problems, as well as motor dysfunctions, spinal cord injury research has proven to be complex and difficult. Furthermore, many types of pain are associated with spinal cord injury, such as neuropathic, visceral, and musculoskeletal pain. Many animal models of spinal cord injury exist to emulate clinical situations, which could help to determine common mechanisms of pathology. However, results can be easily misunderstood and falsely interpreted. Therefore, it is important to fully understand the symptoms of human spinal cord injury, as well as the various spinal cord injury models and the possible pathologies. The present paper summarizes results from animal models of spinal cord injury, as well as the most effective use of these models.
Collapse
|
32
|
|
33
|
Jakeman LB, Hoschouer EL, Basso DM. Injured mice at the gym: review, results and considerations for combining chondroitinase and locomotor exercise to enhance recovery after spinal cord injury. Brain Res Bull 2010; 84:317-26. [PMID: 20558254 DOI: 10.1016/j.brainresbull.2010.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 06/02/2010] [Accepted: 06/02/2010] [Indexed: 01/08/2023]
Abstract
Exercise provides a number of important benefits after spinal cord injury in clinical studies and animal models. However, the amount of functional improvement in overground locomotion obtained with exercise alone has been limited thus far, for reasons that are still poorly understood. One hypothesis is that the complex network of endogenous extracellular matrix components, including chondroitin sulfate proteoglycans (CSPGs), can inhibit exercise-induced remodeling and limit plasticity of spared circuitry in the adult central nervous system. Recent animal studies have shown that chondroitinase ABC (ChABC) can enhance plasticity in the adult nervous system by cleaving glycosaminoglycan sidechains from CSPGs. In this article we review the current literature on plasticity observed with locomotor training and following degradation of CSPGs with ChABC and then present a rationale for the use of exercise combined with ChABC to promote functional recovery after spinal cord injury. We also present results of a preliminary study that tested the simplest approach for combining these treatments; use of a single intraparenchymal injection of ChABC administered to the lumbar enlargement of mice with voluntary wheel running exercise after a mid-thoracic spinal contusion injury. The results are negative, yet serve to highlight limitations in our understanding of the most effective protocols for combining these approaches. Further work is directed to identify the timing, type, and quantity of exercise and pharmacological interventions that can be used to maximize functional improvements by strengthening appropriate synaptic connections.
Collapse
Affiliation(s)
- Lyn B Jakeman
- Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, USA.
| | | | | |
Collapse
|
34
|
Hoschouer EL, Finseth T, Flinn S, Basso DM, Jakeman LB. Sensory stimulation prior to spinal cord injury induces post-injury dysesthesia in mice. J Neurotrauma 2010; 27:777-87. [PMID: 20121420 PMCID: PMC2943942 DOI: 10.1089/neu.2009.1182] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chronic pain and dysesthesias are debilitating conditions that can arise following spinal cord injury (SCI). Research studies frequently employ rodent models of SCI to better understand the underlying mechanisms and develop better treatments for these phenomena. While evoked withdrawal tests can assess hypersensitivity in these SCI models, there is little consensus over how to evaluate spontaneous sensory abnormalities that are seen in clinical SCI subjects. Overgrooming (OG) and biting after peripheral nerve injury or spinal cord excitotoxic lesions are thought to be one behavioral demonstration of spontaneous neuropathic pain or dysesthesia. However, reports of OG after contusion SCI are largely anecdotal and conditions causing this response are poorly understood. The present study investigated whether repeated application of sensory stimuli to the trunk prior to mid-thoracic contusion SCI would induce OG after SCI in mice. One week prior to SCI or laminectomy, mice were subjected either to nociceptive and mechanical stimulation, mechanical stimulation only, the testing situation without stimulation, or no treatment. They were then examined for 14 days after surgery and the sizes and locations of OG sites were recorded on anatomical maps. Mice subjected to either stimulus paradigm showed increased OG compared with unstimulated or uninjured mice. Histological analysis showed no difference in spinal cord lesion size due to sensory stimulation, or between mice that overgroomed or did not overgroom. The relationship between prior stimulation and contusion injury in mice that display OG indicates a critical interaction that may underlie one facet of spontaneous neuropathic symptoms after SCI.
Collapse
Affiliation(s)
- Emily L. Hoschouer
- Department of Physiology and Cell Biology, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
- Neuroscience Graduate Studies Program, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
- Center for Brain and Spinal Cord Repair, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
| | - Taylor Finseth
- College of Medicine, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
| | - Sharon Flinn
- Division of Occupational Therapy, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
| | - D. Michele Basso
- Department of Neuroscience, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
- Neuroscience Graduate Studies Program, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
- Center for Brain and Spinal Cord Repair, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
- Division of Physical Therapy, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
| | - Lyn B. Jakeman
- Department of Physiology and Cell Biology, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
- Department of Neuroscience, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
- Neuroscience Graduate Studies Program, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
- Center for Brain and Spinal Cord Repair, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
| |
Collapse
|