1
|
Unlu AM, Andersen NS, Larsen SL, Skarphedinsson S, Chrysidis S, Knudtzen FC, Lage-Hansen PR. Differentiating Lyme arthritis: a case-based review. Rheumatol Int 2024; 44:2671-2678. [PMID: 38795123 DOI: 10.1007/s00296-024-05618-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/10/2024] [Indexed: 05/27/2024]
Abstract
The incidence or prevalence of Lyme arthritis (LA) in Denmark is unknown and assumed very low. No published cases of polymerase chain reaction (PCR)-confirmed LA from Denmark exist. Clinically, LA does not differ from other rheumatic oligoarthritic disorders posing a differential diagnostic challenge. To review the incidence and prevalence of LA to our knowledge and to present a case series of PCR-confirmed LA cases from Denmark. We conducted a systematic literature review via MEDLINE and EMBASE to explore incidence and prevalence rates of LA. Additionally, we present six cases of patients diagnosed with LA in Denmark. Our literature review identified 23 studies reporting prevalence or incidence, yet only ten studies provided estimates ranging from 1.1 to 280/100.000 in the general population. Our case series identified six patients with LA from a localized region in Southern Denmark; all confirmed by Borrelia-specific real-time PCR from synovial fluid. The diagnostic delay was up to 38 months. All patients except one had a history of previous tick bites; none had erythema migrans lesions. All presented with recurrent arthritis in the knee joint, and two had arthritis in the wrist. The literature review showed an incidence of LA ranging from 1.1 to 15.8 per 100.000 in Europe. Our case series suggests a potentially higher prevalence of LA in Denmark than previously believed. Lack of tick exposure history, antibody assessments and test of Borrelia burgdorferi sensu lato DNA in synovial fluid might lead to misdiagnosed cases potentially explaining the assumed low incidence of LA in Denmark.
Collapse
Affiliation(s)
- Ayse Mine Unlu
- Department of Rheumatology, University Hospital of Southern Denmark, Esbjerg, DK-6700, Denmark.
- Department of Rheumatology, Hospital South West Jutland, Esbjerg, DK-6700, Denmark.
| | - Nanna Skaarup Andersen
- Clinical Center for Emerging and Vectorborne Infections, Odense University Hospital, Odense, DK-5000, Denmark
- Department of Clinical Microbiology, Odense University Hospital, Odense, DK-5000, Denmark
- Clinical Microbiology research unit, University of Southern Denmark, Odense, Denmark
| | - Sanne Løkkegaard Larsen
- Clinical Center for Emerging and Vectorborne Infections, Odense University Hospital, Odense, DK-5000, Denmark
- Department of Clinical Microbiology, Odense University Hospital, Odense, DK-5000, Denmark
- Clinical Microbiology research unit, University of Southern Denmark, Odense, Denmark
| | - Sigurdur Skarphedinsson
- Clinical Microbiology research unit, University of Southern Denmark, Odense, Denmark
- Department of Infectious Diseases Q, Odense University Hospital, Odense, DK-5000, Denmark
| | - Stavros Chrysidis
- Department of Rheumatology, University Hospital of Southern Denmark, Esbjerg, DK-6700, Denmark
| | - Fredrikke Christie Knudtzen
- Clinical Center for Emerging and Vectorborne Infections, Odense University Hospital, Odense, DK-5000, Denmark
- Department of Infectious Diseases Q, Odense University Hospital, Odense, DK-5000, Denmark
| | - Philip Rask Lage-Hansen
- Department of Rheumatology, University Hospital of Southern Denmark, Esbjerg, DK-6700, Denmark
| |
Collapse
|
2
|
Fabri ND, Hofmeester TR, Ecke F, Sprong H, Timmermans J, Heesterbeek H, Cromsigt JP. Ixodes ricinus tick presence is associated with abiotic but not biotic factors. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100206. [PMID: 39224900 PMCID: PMC11367641 DOI: 10.1016/j.crpvbd.2024.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Species composition and densities of wild ungulate communities in Europe have changed over the last decades. As ungulates play an important role in the life-cycle of the tick species Ixodes ricinus, these changes could affect both the life-cycle of I. ricinus and the transmission of tick-borne pathogens like Borrelia burgdorferi (s.l.) and Anaplasma phagocytophilum. Due to morphological and behavioural differences among the ungulate species, these species might have different effects on the densities of questing I. ricinus, either directly through a bloodmeal or indirectly via the impact of ungulates on rodent numbers via the vegetation. In this study, we aimed to investigate these direct and indirect effects of five different ungulate species, fallow deer (Dama dama), roe deer (Capreolus capreolus), red deer (Cervus elaphus), moose (Alces alces), and wild boar (Sus scrofa), on the presence and abundance of I. ricinus ticks. In the summer of 2019, on 20 1 × 1 km transects in south-central Sweden that differed in ungulate community composition, we collected data on tick presence and abundance (by dragging a cloth), ungulate community composition (using camera traps), vegetation height (using the drop-disc method), temperature above field layer and rodent abundance (by snap-trapping). Using generalized linear mixed models we did not find any associations between vegetation height and tick presence/abundance or ungulate visitation frequencies, or between ungulate visitation frequencies and the presence/abundance of questing I. ricinus. The power of our analyses was, however, low due to very low tick and rodent numbers. We did find a negative association between adult ticks and air temperature, where we were more likely to find adult ticks if temperature in the field layer was lower. We conclude that more elaborate long-term studies are needed to elucidate the investigated associations. Such future studies should differentiate among the potential impacts of different ungulate species instead of treating all ungulate species as one group.
Collapse
Affiliation(s)
- Nannet D. Fabri
- Department of Wildlife, Fish, and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, the Netherlands
| | - Tim R. Hofmeester
- Department of Wildlife, Fish, and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Frauke Ecke
- Department of Wildlife, Fish, and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, the Netherlands
| | - Jordi Timmermans
- Wildlife Ecology and Conservation Group, Wageningen University and Research, Droevendaalsesteeg 3a, 6708 PB, Wageningen, the Netherlands
| | - Hans Heesterbeek
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, the Netherlands
| | - Joris P.G.M. Cromsigt
- Department of Wildlife, Fish, and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
- Centre for African Conservation Ecology, Department of Zoology, Nelson Mandela University, PO Box 77000, Port Elizabeth, 6031, South Africa
- Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB, Utrecht, the Netherlands
| |
Collapse
|
3
|
Kjær LJ, Jensen LM, Chriél M, Bødker R, Petersen HH. The raccoon dog ( Nyctereutes procyonoides) as a reservoir of zoonotic diseases in Denmark. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 16:175-182. [PMID: 34660192 PMCID: PMC8502833 DOI: 10.1016/j.ijppaw.2021.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
Raccoon dogs have successfully invaded Europe, including Denmark. Raccoon dogs are potential vectors and reservoir hosts of several zoonotic pathogens and thus have the potential for posing a threat to both human and animal health. This study includes analysis of four zoonotic parasites, 16 tick-borne pathogens and two pathogen groups from 292 raccoon dogs collected from January 2018 to December 2018. The raccoon dogs were received as a part of the Danish national wildlife surveillance program and were hunted, found dead or road killed. The raccoon dogs were screened for Alaria alata and Echinococcus multilocularis eggs in faeces by microscopy and PCR, respectively, Trichinella spp. larvae in muscles by digestion, antibodies against Toxoplasma gondii by ELISA and screening of ticks for pathogens by fluidigm real-time PCR. All raccoon dogs tested negative for E. multilocularis and Trichinella spp., while 32.9% excreted A. alata eggs and 42.7% were T. gondii sero-positive. Five tick-borne pathogens were identified in ticks collected from 15 raccoon dogs, namely Anaplasma phagocytophilum (20.0%), Babesia venatorum (6.7%), Borrelia miyamotoi (6.7%), Neoehrlichia mikurensis (6.7%) and Rickettsia helvetica (60.0%). We identified raccoon dogs from Denmark as an important reservoir of T. gondii and A. alata infection to other hosts, including humans, while raccoon dogs appear as a negligible reservoir of E. multilocularis and Trichinella spp. infections. Our results suggest that raccoon dogs may be a reservoir of A. phagocytophilum.
Collapse
Affiliation(s)
- Lene Jung Kjær
- Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Laura Mark Jensen
- Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Marian Chriél
- Centre for Diagnostics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - René Bødker
- Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Heidi Huus Petersen
- Centre for Diagnostics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Corresponding author. Tel.: +45 93 51 16 45.
| |
Collapse
|
4
|
Kjær LJ, Klitgaard K, Soleng A, Edgar KS, Lindstedt HEH, Paulsen KM, Andreassen ÅK, Korslund L, Kjelland V, Slettan A, Stuen S, Kjellander P, Christensson M, Teräväinen M, Baum A, Jensen LM, Bødker R. Spatial patterns of pathogen prevalence in questing Ixodes ricinus nymphs in southern Scandinavia, 2016. Sci Rep 2020; 10:19376. [PMID: 33168841 PMCID: PMC7652892 DOI: 10.1038/s41598-020-76334-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Tick-borne pathogens cause diseases in animals and humans, and tick-borne disease incidence is increasing in many parts of the world. There is a need to assess the distribution of tick-borne pathogens and identify potential risk areas. We collected 29,440 tick nymphs from 50 sites in Scandinavia from August to September, 2016. We tested ticks in a real-time PCR chip, screening for 19 vector-associated pathogens. We analysed spatial patterns, mapped the prevalence of each pathogen and used machine learning algorithms and environmental variables to develop predictive prevalence models. All 50 sites had a pool prevalence of at least 33% for one or more pathogens, the most prevalent being Borrelia afzelii, B. garinii, Rickettsia helvetica, Anaplasma phagocytophilum, and Neoehrlichia mikurensis. There were large differences in pathogen prevalence between sites, but we identified only limited geographical clustering. The prevalence models performed poorly, with only models for R. helvetica and N. mikurensis having moderate predictive power (normalized RMSE from 0.74-0.75, R2 from 0.43-0.48). The poor performance of the majority of our prevalence models suggest that the used environmental and climatic variables alone do not explain pathogen prevalence patterns in Scandinavia, although previously the same variables successfully predicted spatial patterns of ticks in the same area.
Collapse
Affiliation(s)
- Lene Jung Kjær
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Kirstine Klitgaard
- Department for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark, Lyngby, Denmark
| | - Arnulf Soleng
- Department of Pest Control, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | - Katrine M Paulsen
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Lars Korslund
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - Vivian Kjelland
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
- Research Unit, Sørlandet Hospital Health Enterprise, Kristiansand, Norway
| | - Audun Slettan
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - Snorre Stuen
- Department of Production Animal Clinical Sciences, Section of Small Ruminant Research, Norwegian University of Life Sciences, Sandnes, Norway
| | - Petter Kjellander
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | - Madeleine Christensson
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | - Malin Teräväinen
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | - Andreas Baum
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Laura Mark Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - René Bødker
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
5
|
Multiple infections in questing nymphs and adult female Ixodes ricinus ticks collected in a recreational forest in Denmark. Ticks Tick Borne Dis 2019; 10:1060-1065. [PMID: 31176664 DOI: 10.1016/j.ttbdis.2019.05.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 11/23/2022]
Abstract
During its lifecycle, the generalist Ixodes ricinus takes up three blood meals from a wide selection of vertebrate hosts, some of which are reservoirs for multiple vector-associated pathogens. Since I. ricinus also readily bites humans, pets, and livestock, these hosts are at risk of becoming infected with more than one tick-borne pathogen. Multiple tick-borne infections are a public health concern, since they may increase diversity and duration of symptoms and complicate differential diagnosis and therapy. We used an existing Fluidigm real-time PCR chip to identify the minimum risk of exposure to infected/co-infected ticks in Denmark. We screened 509 nymphs and 504 adult female I. ricinus ticks for 17 different vector-associated pathogenic agents. The questing ticks were collected by flagging during the same season in two consecutive years in Grib forest in the capital region of Copenhagen. Overall, 19.1% of the nymphs and 52.2% of the adult female ticks harbored at least one zoonotic pathogen. The main agents were Borrelia spp., Anaplasma phagocytophilum and Rickettsia helvetica, while Candidatus Neoehrlichia mikurensis and Babesia venatorum both were present in less than 1% of the ticks. In 3.5% of the nymphs and 12.3% of adults we found more than one tick-borne pathogen. Of these, 15% were potentially triple or quadruple infections. Whereas mixed infections with Borrelia were equally distributed among both life stages, the adult ticks hosted 84.5% of the co-infections with different species of tick-borne pathogens, chiefly involving Borrelia species in combination with either R. helvetica or A. phagocytophilum. Statistical analyses indicated non-random co-occurrence of Borrelia spielmanii/Borrelia garinii in both life stages and B. garinii/Borrelia afzelii and B. garinii/Borrelia valaisiana in the nymphs. Although the overall prevalence of ticks hosting more than one infection only constituted 7.9% at the particular site investigated in this study, our results still underline that co-infections should be considered in diagnosis and treatment of tick-borne diseases in northern Europe.
Collapse
|
6
|
Marchant A, Le Coupanec A, Joly C, Perthame E, Sertour N, Garnier M, Godard V, Ferquel E, Choumet V. Infection of Ixodes ricinus by Borrelia burgdorferi sensu lato in peri-urban forests of France. PLoS One 2017; 12:e0183543. [PMID: 28846709 PMCID: PMC5573218 DOI: 10.1371/journal.pone.0183543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022] Open
Abstract
Lyme borreliosis is the most common tick-borne disease in the northern hemisphere. In Europe, it is transmitted by Ixodes ticks that carry bacteria belonging to the Borrelia burgdorferi sensu lato complex. The objective of this work was to explore eco-epidemiological factors of Lyme borreliosis in peri-urban forests of France (Sénart, Notre-Dame and Rambouillet). We investigated whether the introduction of Tamias sibiricus in Sénart could alter the density of infected ticks. Moreover, the density and tick infection were investigated according to the tree species found in various patches of Sénart forest. For this purpose, ticks were sampled during 3 years. In the Sénart forest, the density of nymph and adult ticks showed no significant difference between 2008, 2009 and 2011. The nymph density varied significantly as a function of the month of collection. Regarding the nymphs, a higher rate of infection and infected density were found in 2009. Plots with chipmunks (C) presented a lower density of both nymphs and adult ticks than plots without chipmunks (NC) did. A higher rate of infection of nymphs with Borrelia was seen in C plots. The prevalence of the various species of Borrelia was also found to vary between C and NC plots with the year of the collect. The presence of chestnut trees positively influenced the density of both nymphs and adults. The infected nymph density showed a significant difference depending on the peri-urban forest studied, Sénart being higher than Rambouillet. The prevalence of Borrelia species also differed between the various forests studied. Concerning the putative role that Tamias sibiricus may play in the transmission of Borrelia, our results suggest that its presence is correlated with a higher rate of infection of questing ticks by Borrelia genospecies and if its population increases, it could play a significant role in the risk of transmission of Lyme borreliosis.
Collapse
Affiliation(s)
- Axelle Marchant
- Centre National de Référence des Borrelia, Institut Pasteur, Paris, France
| | - Alain Le Coupanec
- Centre National de Référence des Borrelia, Institut Pasteur, Paris, France
| | - Claire Joly
- Centre National de Référence des Borrelia, Institut Pasteur, Paris, France
| | - Emeline Perthame
- Institut Pasteur – Bioinformatics and Biostatistics Hub – C3BI, USR 3756 IP CNRS –Bioinformatique et Biostatistique, Paris, France
| | - Natacha Sertour
- Centre National de Référence des Borrelia, Institut Pasteur, Paris, France
| | - Martine Garnier
- Centre National de Référence des Borrelia, Institut Pasteur, Paris, France
| | - Vincent Godard
- CNRS-UMR7533/LADYSS, Université de Paris 8 - Saint-Denis, France
| | - Elisabeth Ferquel
- Centre National de Référence des Borrelia, Institut Pasteur, Paris, France
| | - Valerie Choumet
- Centre National de Référence des Borrelia, Institut Pasteur, Paris, France
- Unité Environnement et Risques Infectieux, Institut Pasteur, Paris, France
| |
Collapse
|
7
|
Approaches for Reverse Line Blot-Based Detection of Microbial Pathogens in Ixodes ricinus Ticks Collected in Austria and Impact of the Chosen Method. Appl Environ Microbiol 2017; 83:AEM.00489-17. [PMID: 28455331 DOI: 10.1128/aem.00489-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/20/2017] [Indexed: 01/24/2023] Open
Abstract
Ticks transmit a large number of pathogens capable of causing human disease. In this study, the PCR-reverse line blot (RLB) method was used to screen for pathogens in a total of 554 Ixodes ricinus ticks collected from all provinces of Austria. These pathogens belong to the genera Borrelia, Rickettsiae, Anaplasma/Ehrlichia (including "Candidatus Neoehrlichia"), Babesia, and Coxiella The pathogens with the highest detected prevalence were spirochetes of the Borrelia burgdorferisensu lato complex, in 142 ticks (25.6%). Borrelia afzelii (80/142) was the most frequently detected species, followed by Borrelia burgdorferisensu stricto (38/142) and Borrelia valaisiana (36/142). Borrelia garinii/Borrelia bavariensis, Borrelia lusitaniae, and Borrelia spielmanii were found in 28 ticks, 5 ticks, and 1 tick, respectively. Rickettsia spp. were detected in 93 ticks (16.8%): R. helvetica (39/93), R. raoultii (38/93), R. monacensis (2/93), and R. slovaca (1/93). Thirteen Rickettsia samples remain uncharacterized. "Candidatus Neoehrlichia mikurensis," Babesia spp. (B. venatorum, B. divergens, B. microti), and Anaplasma phagocytophilum were found in 4.5%, 2.7%, and 0.7%, respectively. Coxiella burnetii was not detected. Multiple microorganisms were detected in 40 ticks (7.2%), and the cooccurrence of Babesia spp. and "Candidatus Neoehrlichia mikurensis" showed a significant positive correlation. We also compared different PCR-RLBs for detection of Borrelia burgdorferisensu lato and Rickettsia spp. and showed that different detection approaches provide highly diverse results, indicating that analysis of environmental samples remains challenging.IMPORTANCE This study determined the wide spectrum of tick-borne bacterial and protozoal pathogens that can be encountered in Austria. Surveillance of (putative) pathogenic microorganisms occurring in the environment is of medical importance, especially when those agents can be transmitted by ticks and cause disease. The observation of significant coinfections of certain microorganisms in field-collected ticks is an initial step to an improved understanding of microbial interactions in ticks. In addition, we show that variations in molecular detection methods, such as in primer pairs and target genes, can considerably influence the final results. For instance, detection of certain genospecies of borreliae may be better or worse by one method or the other, a fact of great importance for future screening studies.
Collapse
|
8
|
Waindok P, Schicht S, Fingerle V, Strube C. Lyme borreliae prevalence and genospecies distribution in ticks removed from humans. Ticks Tick Borne Dis 2017; 8:709-714. [PMID: 28528880 DOI: 10.1016/j.ttbdis.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/01/2017] [Accepted: 05/08/2017] [Indexed: 11/17/2022]
Abstract
Lyme borreliosis (LB) is the most important human tick-borne disease, but Borrelia genospecies cause different clinical manifestations. Ticks of the genus Ixodes removed from humans between 2006 and 2012 were analysed for Borrelia burgdorferi sensu lato (sl) infections. The majority of ticks originated from the Greater Hanover region in Northern Germany. The engorgement status varied over the entire spectrum from unengorged (no evidence of started blood feeding) to fully engorged. In the present study, prevalence data for B. burgdorferi sl 2011 and 2012 were obtained by quantitative real-time PCR and compared to those from a former study including years 2006-2010 (Strube et al., 2011) to evaluate B. burgdorferi sl infections in ticks affecting humans over a 7-year period. In 2011, 34.2% (70/205) of adult ticks, 22.2% (94/423) of nymphs, 8.3% of larvae (1/12) as well 3 of 6 not differentiated ticks were Borrelia positive. In 2012, 31.8% (41/129) of adult ticks, 20.4% of nymphs (69/337) as well as 1 of 4 of the not differentiated ticks were determined positive. Total Borrelia infection rates decreased significantly from 23.1% in 2006 to 17.1% in 2010, followed by a significant increase to 26.0% in 2011 and 23.4% in 2012. Furthermore, B. burgdorferi sl genospecies distribution in 2006-2012 was determined in the present study by applying Reverse Line Blot technique. Borrelia genospecies differentiation was successful in 641 (67.3%) out of 953 positive tick samples. The most frequently occurring genospecies was B. afzelii (40.5% of infected ticks), followed by B. garinii/B. bavariensis (12.4%). Amongst the 641 ticks analysed for their genospecies, 74 (11.5%) carried more than one genospecies, of which 69 (10.7%) were double-infected and five (0.8%) were triple-infected. Comparison of genospecies distribution in ticks removed from humans with those from questing ticks flagged in the same geographical area revealed that ticks removed from humans were significantly more frequently infected with B. afzelii (p=0.0004), but significantly less infected with B. burgdorferi sensu stricto (p=0.0001).
Collapse
Affiliation(s)
- Patrick Waindok
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany.
| | - Sabine Schicht
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany.
| | - Volker Fingerle
- German National Reference Centre for Borrelia, Veterinaerstraße 2, 85764 Oberschleissheim, Germany.
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany.
| |
Collapse
|
9
|
Raileanu C, Moutailler S, Pavel I, Porea D, Mihalca AD, Savuta G, Vayssier-Taussat M. Borrelia Diversity and Co-infection with Other Tick Borne Pathogens in Ticks. Front Cell Infect Microbiol 2017; 7:36. [PMID: 28261565 PMCID: PMC5306127 DOI: 10.3389/fcimb.2017.00036] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/31/2017] [Indexed: 12/26/2022] Open
Abstract
Identifying Borrelia burgdorferi as the causative agent of Lyme disease in 1981 was a watershed moment in understanding the major impact that tick-borne zoonoses can have on public health worldwide, particularly in Europe and the USA. The medical importance of tick-borne diseases has long since been acknowledged, yet little is known regarding the occurrence of emerging tick-borne pathogens such as Borrelia spp., Anaplasma phagocytophilum, Rickettsia spp., Bartonella spp., “Candidatus Neoehrlichia mikurensis”, and tick-borne encephalitis virus in questing ticks in Romania, a gateway into Europe. The objective of our study was to identify the infection and co-infection rates of different Borrelia genospecies along with other tick-borne pathogens in questing ticks collected from three geographically distinct areas in eastern Romania. We collected 557 questing adult and nymph ticks of three different species (534 Ixodes ricinus, 19 Haemaphysalis punctata, and 4 Dermacentor reticulatus) from three areas in Romania. We analyzed ticks individually for the presence of eight different Borrelia genospecies with high-throughput real-time PCR. Ticks with Borrelia were then tested for possible co-infections with A. phagocytophilum, Rickettsia spp., Bartonella spp., “Candidatus Neoehrlichia mikurensis”, and tick-borne encephalitis virus. Borrelia spp. was detected in I. ricinus ticks from all sampling areas, with global prevalence rates of 25.8%. All eight Borrelia genospecies were detected in I. ricinus ticks: Borrelia garinii (14.8%), B. afzelii (8.8%), B. valaisiana (5.1%), B. lusitaniae (4.9%), B. miyamotoi (0.9%), B. burgdorferi s.s (0.4%), and B. bissettii (0.2%). Regarding pathogen co-infection 64.5% of infected I. ricinus were positive for more than one pathogen. Associations between different Borrelia genospecies were detected in 9.7% of ticks, and 6.9% of I. ricinus ticks tested positive for co-infection of Borrelia spp. with other tick-borne pathogens. The most common association was between B. garinii and B. afzelii (4.3%), followed by B. garinii and B. lusitaniae (3.0%). The most frequent dual co-infections were between Borrelia spp. and Rickettsia spp., (1.3%), and between Borrelia spp. and “Candidatus Neoehrlichia mikurensis” (1.3%). The diversity of tick-borne pathogens detected in this study and the frequency of co-infections should influence all infection risk evaluations following a tick bite.
Collapse
Affiliation(s)
- Cristian Raileanu
- INRA, UMR Bipar, INRA, Anses, ENVAMaisons-Alfort, France; Department of Public Health, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary MedicineIaşi, Romania
| | | | - Ionuţ Pavel
- Department of Public Health, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Iaşi, Romania
| | - Daniela Porea
- Department of Public Health, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Iaşi, Romania
| | - Andrei D Mihalca
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Romania
| | - Gheorghe Savuta
- Department of Public Health, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Iaşi, Romania
| | | |
Collapse
|
10
|
Sytykiewicz H, Karbowiak G, Chorostowska-Wynimko J, Szpechciński A, Supergan-Marwicz M, Horbowicz M, Szwed M, Czerniewicz P, Sprawka I. Coexistence of Borrelia burgdorferi s.l. genospecies within Ixodes ricinus ticks from central and eastern Poland. Acta Parasitol 2015; 60:654-61. [PMID: 26408587 DOI: 10.1515/ap-2015-0093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 05/13/2015] [Indexed: 11/15/2022]
Abstract
The purpose of the study was to assess the prevalence and coinfection rates of Borrelia burgdorferi sensu lato genotypes in Ixodes ricinus (L.) ticks sampled from diverse localities in central and eastern regions of Poland. In years 2009-2011, questing nymphs and adults of I. ricinus were collected using a flagging method at 18 localities representing distinct ecosystem types: urban green areas, suburban forests and rural woodlands. Molecular detection of B. burgdorferi s.l. genospecies was based on amplification of a fla gene using nested PCR technique, subsequent PCR-RFLP analysis and bidirectional sequencing. It was revealed that 45 samples (2.1%) harboured two different B. burgdorferi s.l. genospecies, whereas triple infections with various spirochetes was found in 11 (0.5%) individuals. Generally, the highest average coinfection rates were evidenced in arachnids gathered at rural woodlands, intermediate at suburban forests, while the lowest were recorded at urban green areas. Overall, single spirochete infections were noted in 16.3% (n = 352/2,153) ticks. Importantly, it is the first report evidencing the occurrence of Borrelia miyamotoi (0.3%, n = 7/2153) in I. ricinus populations within central Poland. Circumstantial variability of B. burgdorferi s.l. genospecies in the common tick individuals sampled at various habitat types in central and eastern Poland was displayed. The coexistence of two or three different spirochete genospecies in single adult ticks, as well as the presence of B. miyamotoi were demonstrated. Therefore, further studies uncovering the co-circulation of the tested bacteria and other human pathogens in I. ricinus ticks are required.
Collapse
|
11
|
Melaun C, Zotzmann S, Santaella VG, Werblow A, Zumkowski-Xylander H, Kraiczy P, Klimpel S. Occurrence of Borrelia burgdorferi s.l. in different genera of mosquitoes (Culicidae) in Central Europe. Ticks Tick Borne Dis 2015; 7:256-63. [PMID: 26631488 DOI: 10.1016/j.ttbdis.2015.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 11/29/2022]
Abstract
Lyme disease or Lyme borreliosis is a vector-borne infectious disease caused by spirochetes of the Borrelia burgdorferi sensu lato complex. Some stages of the borrelial transmission cycle in ticks (transstadial, feeding and co-feeding) can potentially occur also in insects, particularly in mosquitoes. In the present study, adult as well as larval mosquitoes were collected at 42 different geographical locations throughout Germany. This is the first study, in which German mosquitoes were analyzed for the presence of Borrelia spp. Targeting two specific borrelial genes, flaB and ospA encoding for the subunit B of flagellin and the outer surface protein A, the results show that DNA of Borrelia afzelii, Borrelia bavariensis and Borrelia garinii could be detected in ten Culicidae species comprising four distinct genera (Aedes, Culiseta, Culex, and Ochlerotatus). Positive samples also include adult specimens raised in the laboratory from wild-caught larvae indicating that transstadial and/or transovarial transmission might occur within a given mosquito population.
Collapse
Affiliation(s)
- Christian Melaun
- Goethe-University, Institute for Ecology, Evolution and Diversity, Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Sina Zotzmann
- Goethe-University, Institute for Ecology, Evolution and Diversity, Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Vanesa Garcia Santaella
- Goethe-University, Institute for Ecology, Evolution and Diversity, Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Antje Werblow
- Goethe-University, Institute for Ecology, Evolution and Diversity, Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | | | - Peter Kraiczy
- University Hospital of Frankfurt, Institute of Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| | - Sven Klimpel
- Goethe-University, Institute for Ecology, Evolution and Diversity, Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Study of a Cohort of 1,886 Persons To Determine Changes in Antibody Reactivity to Borrelia burgdorferi 3 Months after a Tick Bite. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:823-7. [PMID: 25994550 DOI: 10.1128/cvi.00026-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/06/2015] [Indexed: 11/20/2022]
Abstract
Lyme borreliosis is a tick-borne disease caused by the bacterium Borrelia burgdorferi. The most frequent clinical manifestation is a rash called erythema migrans. Changes in antibody reactivity to B. burgdorferi 3 months after a tick bite are measured using enzyme-linked immunosorbent assays (ELISAs). One assay is based on native purified flagellum antigen (IgG), and the other assay is based on a recombinant antigen called C6 (IgG or IgM). Paired samples were taken at the time of a tick bite and 3 months later from 1,886 persons in Sweden and the Åland Islands, Finland. The seroconversion or relative change is defined by dividing the measurement units from the second sample by those from the first sample. The threshold for the minimum level of significant change was defined at the 2.5% level to represent the random error level. The thresholds were a 2.7-fold rise for the flagellar IgG assay and a 1.8-fold rise for the C6 assay. Of 1,886 persons, 102/101 (5.4%) had a significant rise in antibody reactivity in the flagellar assay or the C6 assay. Among 40 cases with a diagnosis of Lyme borreliosis, the sensitivities corresponding to a rise in antibodies were 33% and 50% for the flagellar antigen and the C6 antigen, respectively. Graphical methods to display the antibody response and to choose thresholds for a rise in relative antibody reactivity are shown and discussed. In conclusion, 5.4% of people with tick bites showed a rise in Borrelia-specific antibodies above the 2.5% threshold in either ELISA but only 40 (2.1%) developed clinical Lyme borreliosis.
Collapse
|
13
|
James MC, Gilbert L, Bowman AS, Forbes KJ. The Heterogeneity, Distribution, and Environmental Associations of Borrelia burgdorferi Sensu Lato, the Agent of Lyme Borreliosis, in Scotland. Front Public Health 2014; 2:129. [PMID: 25221774 PMCID: PMC4147938 DOI: 10.3389/fpubh.2014.00129] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/13/2014] [Indexed: 11/13/2022] Open
Abstract
Lyme borreliosis is an emerging infectious human disease caused by the Borrelia burgdorferi sensu lato complex of bacteria with reported cases increasing in many areas of Europe and North America. To understand the drivers of disease risk and the distribution of symptoms, which may improve mitigation and diagnostics, here we characterize the genetics, distribution, and environmental associations of B. burgdorferi s.l. genospecies across Scotland. In Scotland, reported Lyme borreliosis cases have increased almost 10-fold since 2000 but the distribution of B. burgdorferi s.l. is so far unstudied. Using a large survey of over 2200 Ixodes ricinus tick samples collected from birds, mammals, and vegetation across 25 sites we identified four genospecies: Borrelia afzelii (48%), Borrelia garinii (36%), Borrelia valaisiana (8%), and B. burgdorferi sensu stricto (7%), and one mixed genospecies infection. Surprisingly, 90% of the sequence types were novel and, importantly, up to 14% of samples were mixed intra-genospecies co-infections, suggesting tick co-feeding, feeding on multiple hosts, or multiple infections in hosts. B. garinii (hosted by birds) was considerably more genetically diverse than B. afzelii (hosted by small mammals), as predicted since there are more species of birds than small mammals and birds can import strains from mainland Europe. Higher proportions of samples contained B. garinii and B. valaisiana in the west, while B. afzelii and B. garinii were significantly more associated with mixed/deciduous than with coniferous woodlands. This may relate to the abundance of transmission hosts in different regions and habitats. These data on the genetic heterogeneity within and between Borrelia genospecies are a first step to understand pathogen spread and could help explain the distribution of patient symptoms, which may aid local diagnosis. Understanding the environmental associations of the pathogens is critical for rational policy making for disease risk mitigation and land management.
Collapse
Affiliation(s)
- Marianne C James
- Institute of Biological and Environmental Sciences, University of Aberdeen , Aberdeen , UK ; Division of Applied Medicine, University of Aberdeen , Aberdeen , UK
| | | | - Alan S Bowman
- Institute of Biological and Environmental Sciences, University of Aberdeen , Aberdeen , UK
| | - Ken J Forbes
- Division of Applied Medicine, University of Aberdeen , Aberdeen , UK
| |
Collapse
|
14
|
Michelet L, Delannoy S, Devillers E, Umhang G, Aspan A, Juremalm M, Chirico J, van der Wal FJ, Sprong H, Boye Pihl TP, Klitgaard K, Bødker R, Fach P, Moutailler S. High-throughput screening of tick-borne pathogens in Europe. Front Cell Infect Microbiol 2014; 4:103. [PMID: 25120960 PMCID: PMC4114295 DOI: 10.3389/fcimb.2014.00103] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/10/2014] [Indexed: 12/02/2022] Open
Abstract
Due to increased travel, climatic, and environmental changes, the incidence of tick-borne disease in both humans and animals is increasing throughout Europe. Therefore, extended surveillance tools are desirable. To accurately screen tick-borne pathogens (TBPs), a large scale epidemiological study was conducted on 7050 Ixodes ricinus nymphs collected from France, Denmark, and the Netherlands using a powerful new high-throughput approach. This advanced methodology permitted the simultaneous detection of 25 bacterial, and 12 parasitic species (including; Borrelia, Anaplasma, Ehrlichia, Rickettsia, Bartonella, Candidatus Neoehrlichia, Coxiella, Francisella, Babesia, and Theileria genus) across 94 samples. We successfully determined the prevalence of expected (Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Rickettsia helvetica, Candidatus Neoehrlichia mikurensis, Babesia divergens, Babesia venatorum), unexpected (Borrelia miyamotoi), and rare (Bartonella henselae) pathogens in the three European countries. Moreover we detected Borrelia spielmanii, Borrelia miyamotoi, Babesia divergens, and Babesia venatorum for the first time in Danish ticks. This surveillance method represents a major improvement in epidemiological studies, able to facilitate comprehensive testing of TBPs, and which can also be customized to monitor emerging diseases.
Collapse
Affiliation(s)
| | - Sabine Delannoy
- IdentyPath Platform, Food Safety Laboratory, ANSES Maisons-Alfort, France
| | - Elodie Devillers
- UMR BIPAR, Animal Health Laboratory, ANSES Maisons-Alfort, France
| | - Gérald Umhang
- Nancy Laboratory for Rabies and Wildlife, Wildlife EcoEPIdemiology and Surveillance Unit, ANSES Malzéville, France
| | - Anna Aspan
- Department of Bacteriology, National Veterinary Institute (SVA) Uppsala, Sweden
| | - Mikael Juremalm
- Department of Virology, Immunobiology and Parasitology, National Veterinary Institute (SVA) Uppsala, Sweden
| | - Jan Chirico
- Department of Virology, Immunobiology and Parasitology, National Veterinary Institute (SVA) Uppsala, Sweden
| | - Fimme J van der Wal
- Department of Infection Biology, Central Veterinary Institute, Wageningen UR Lelystad, Netherlands
| | - Hein Sprong
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment (RIVM) Bilthoven, Netherlands
| | | | | | - Rene Bødker
- National Veterinary Institute, DTU Copenhagen, Denmark
| | - Patrick Fach
- IdentyPath Platform, Food Safety Laboratory, ANSES Maisons-Alfort, France
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, ANSES Maisons-Alfort, France
| |
Collapse
|
15
|
Rudenko N, Golovchenko M, Belfiore NM, Grubhoffer L, Oliver JH. Divergence of Borrelia burgdorferi sensu lato spirochetes could be driven by the host: diversity of Borrelia strains isolated from ticks feeding on a single bird. Parasit Vectors 2014; 7:4. [PMID: 24383476 PMCID: PMC3892016 DOI: 10.1186/1756-3305-7-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/18/2013] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The controversy surrounding the potential impact of birds in spirochete transmission dynamics and their capacity to serve as a reservoir has existed for a long time. The majority of analyzed bird species are able to infect larval ticks with Borrelia. Dispersal of infected ticks due to bird migration is a key to the establishment of new foci of Lyme borreliosis. The dynamics of infection in birds supports the mixing of different species, the horizontal exchange of genetic information, and appearance of recombinant genotypes. METHODS Four Borrelia burgdorferi sensu lato strains were cultured from Ixodes minor larvae and four strains were isolated from Ixodes minor nymphs collected from a single Carolina Wren (Thryothorus ludovicianus). A multilocus sequence analysis that included 16S rRNA, a 5S-23S intergenic spacer region, a 16S-23S internal transcribed spacer, flagellin, p66, and ospC separated 8 strains into 3 distinct groups. Additional multilocus sequence typing of 8 housekeeping genes, clpA, clpX, nifS, pepX, pyrG, recG, rplB, and uvrA was used to resolve the taxonomic status of bird-associated strains. RESULTS Results of analysis of 14 genes confirmed that the level of divergence among strains is significantly higher than what would be expected for strains within a single species. The presence of cross-species recombination was revealed: Borrelia burgdorferi sensu stricto housekeeping gene nifS was incorporated into homologous locus of strain, previously assigned to B. americana. CONCLUSIONS Genetically diverse Borrelia strains are often found within the same tick or same vertebrate host, presenting a wide opportunity for genetic exchange. We report the cross-species recombination that led to incorporation of a housekeeping gene from the B. burgdorferi sensu stricto strain into a homologous locus of another bird-associated strain. Our results support the hypothesis that recombination maintains a majority of sequence polymorphism within Borrelia populations because of the re-assortment of pre-existing sequence variants. Even if our findings of broad genetic diversity among 8 strains cultured from ticks that fed on a single bird could be the exception rather than the rule, they support the theory that the diversity and evolution of LB spirochetes is driven mainly by the host.
Collapse
Affiliation(s)
- Nataliia Rudenko
- Biology Centre AS CR, Institute of Parasitology, České Budějovice, 37005, Czech Republic.
| | | | | | | | | |
Collapse
|
16
|
Schwarz A, Hönig V, Vavrušková Z, Grubhoffer L, Balczun C, Albring A, Schaub GA. Abundance of Ixodes ricinus and prevalence of Borrelia burgdorferi s.l. in the nature reserve Siebengebirge, Germany, in comparison to three former studies from 1978 onwards. Parasit Vectors 2012; 5:268. [PMID: 23171708 PMCID: PMC3523962 DOI: 10.1186/1756-3305-5-268] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 11/04/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During the last decades, population densities of Ixodes ricinus and prevalences of Borrelia burgdorferi s.l. have increased in different regions in Europe. In the present study, we determined tick abundance and the prevalence of different Borrelia genospecies in ticks from three sites in the Siebengebirge, Germany, which were already examined in the years 1987, 1989, 2001 and 2003. Data from all investigations were compared. METHODS In 2007 and 2008, host-seeking I. ricinus were collected by monthly blanket dragging at three distinct vegetation sites in the Siebengebirge, a nature reserve and a well visited local recreation area near Bonn, Germany. In both years, 702 ticks were tested for B. burgdorferi s.l. DNA by nested PCR, and 249 tick samples positive for Borrelia were further genotyped by reverse line blotting. RESULTS A total of 1046 and 1591 I. ricinus were collected in 2007 and 2008, respectively. In comparison to previous studies at these sites, the densities at all sites increased from 1987/89 and/or from 2003 until 2008. Tick densities and Borrelia prevalences in 2007 and 2008, respectively, were not correlated for all sites and both years. Overall, Borrelia prevalence of all ticks decreased significantly from 2007 (19.5%) to 2008 (16.5%), thus reaching the same level as in 2001 two times higher than in 1987/89 (7.6%). Since 2001, single infections with a Borrelia genospecies predominated in all collections, but the number of multiple infections increased, and in 2007, for the first time, triple Borrelia infections occurred. Prevalences of Borrelia genospecies differed considerably between the three sites, but B. garinii or B. afzelii were always the most dominant genospecies. B. lusitaniae was detected for the first time in the Siebengebirge, also in co-infections with B. garinii or B. valaisiana. CONCLUSIONS Over the last two centuries tick densities have changed in the Siebengebirge at sites that remained unchanged by human activity since they belong to a nature reserve. Abiotic and biotic conditions most likely favored the host-seeking activity of I. ricinus and the increase of multiple Borrelia infections in ticks. These changes have led to a potential higher risk of humans and animals to be infected with Lyme borreliosis.
Collapse
Affiliation(s)
- Alexandra Schwarz
- Institute of Parasitology, Biology Centre, Academy of Sciences of Czech Republic, České Budĕjovice, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
17
|
Exploring gaps in our knowledge on Lyme borreliosis spirochaetes--updates on complex heterogeneity, ecology, and pathogenicity. Ticks Tick Borne Dis 2012; 4:11-25. [PMID: 23246041 DOI: 10.1016/j.ttbdis.2012.06.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/11/2012] [Accepted: 06/15/2012] [Indexed: 11/20/2022]
Abstract
The Lyme borreliosis complex is a heterogeneous group of tick-borne spirochaetes of the genus Borrelia (Spirochaetales: Spirochaetaceae) that are distributed all over the temperate zone of the northern hemisphere. Due to the usage of new methods for phylogenetic analysis, this group has expanded rapidly during the past 5 years. Along with this development, the number of Borrelia spp. regarded as pathogenic to humans also increased. Distribution areas as well as host and vector ranges of Lyme borreliosis agents turned out to be much wider than previously thought. Furthermore, there is evidence that ticks, reservoir hosts, and patients can be coinfected with multiple Borrelia spp. or other tick-borne pathogens, which indicates a need to establish new and well-defined diagnostic and therapeutic standards for Lyme borreliosis. This review gives a broad overview on the occurrence of Lyme borreliosis spirochaetes worldwide with particular emphasis on their vectors and vertebrate hosts as well as their pathogenic potential and resultant problems in diagnosis and treatment. Against the background that many issues regarding distribution, species identity, ecology, pathogenicity, and coinfections are still unsolved, the purpose of this article is to reveal directions for future research on the Lyme borreliosis complex.
Collapse
|
18
|
Mannelli A, Bertolotti L, Gern L, Gray J. Ecology ofBorrelia burgdorferi sensu latoin Europe: transmission dynamics in multi-host systems, influence of molecular processes and effects of climate change. FEMS Microbiol Rev 2012; 36:837-61. [DOI: 10.1111/j.1574-6976.2011.00312.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 09/28/2011] [Accepted: 10/18/2011] [Indexed: 11/30/2022] Open
|
19
|
Hasle G, Bjune GA, Midthjell L, Røed KH, Leinaas HP. Transport of Ixodes ricinus infected with Borrelia species to Norway by northward-migrating passerine birds. Ticks Tick Borne Dis 2011; 2:37-43. [DOI: 10.1016/j.ttbdis.2010.10.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 10/15/2010] [Accepted: 10/19/2010] [Indexed: 11/26/2022]
|
20
|
Gassner F, van Vliet AJH, Burgers SLGE, Jacobs F, Verbaarschot P, Hovius EKE, Mulder S, Verhulst NO, van Overbeek LS, Takken W. Geographic and temporal variations in population dynamics of Ixodes ricinus and associated Borrelia infections in The Netherlands. Vector Borne Zoonotic Dis 2010; 11:523-32. [PMID: 21083369 DOI: 10.1089/vbz.2010.0026] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In a countrywide investigation of the ecological factors that contribute to Lyme borreliosis risk, a longitudinal study on population dynamics of the sheep tick Ixodes ricinus and their infections with Borrelia burgdorferi sensu lato (s.l.) was undertaken at 24 sites in The Netherlands from July 2006 to December 2007. Study sites were mature forests, dune vegetations, or new forests on land reclaimed from the sea. Ticks were sampled monthly and nymphal ticks were investigated for the presence of Borrelia spp. I. ricinus was the only tick species found. Ticks were found in all sites, but with significant spatial and temporal variations in density between sites. Peak densities were found in July and August, with lowest tick numbers collected in December and January. In some sites, questing activities of I. ricinus nymphs and adults were observed in the winter months. Mean monthly Borrelia infections in nymphs varied from 0% to 29.0% (range: 0%-60%), and several sites had significantly higher mean nymphal Borrelia infections than others. Four genospecies of Borrelia burgdorferi s.l. were found, with B. afzelii being dominant at most sites. Borrelia infection rates in nymphal ticks collected in July, September, and November 2006 were significantly higher (23.7%, p<0.01) than those in the corresponding months of 2007 (9.9%). The diversity in Borrelia genospecies between sites was significantly different (p<0.001). Habitat structure (tree cover) was an effective discriminant parameter in the determination of Borrelia infection risk, as measured by the proportion of nymphal ticks infected with B. burgdorferi s.l. Thickness of the litter layer and moss cover were positively related to nymphal and adult tick densities. The study shows that Borrelia-infected ticks are present in many forest and dune areas in The Netherlands and suggests that in such biotopes, which are used for a wide variety of recreational activities, the infection risk is high.
Collapse
Affiliation(s)
- Fedor Gassner
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Prevalence and diversity of Borrelia species in ticks that have bitten humans in Sweden. J Clin Microbiol 2010; 48:4169-76. [PMID: 20844223 DOI: 10.1128/jcm.01061-10] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Borrelia are among the most common infectious agents causing tick-borne disease in humans worldwide. Here, we developed a Light Upon eXtension (LUX) real-time PCR assay that can detect and quantify Borrelia species in ticks that have fed on humans, and we applied the assay to 399 such ticks. Borrelia PCR-positive ticks were identified to species level by sequencing the products of conventional PCR performed using Borrelia group-specific primers. There was a 19% prevalence of Borrelia spp. in the detached ticks, and the number of spirochetes per Borrelia PCR-positive tick ranged from 2.0 × 10(2) to 4.9 × 10(5), with a median of 7.8 × 10(3) spirochetes. Adult ticks had a significantly larger number of spirochetes, with a median of 8.4 × 10(3) compared to the median of nymphs of 4.4 × 10(3). [corrected] Adult ticks also exhibited a higher prevalence of Borrelia (33%) than nymphs (14%). Among the identified species, Borrelia afzelii was found to predominate (61%) and was followed by B. garinii (23%), B. valaisiana (13%), B. burgdorferi sensu stricto (1%), B. lusitaniae (1%), and B. miyamotoi-like (1%). Also, 3% of the ticks were coinfected with multiple strains of B. afzelii. Notably, this is the first report of B. lusitaniae being detected in ticks in Sweden. Our LUX real-time PCR assay proved to be more sensitive than a corresponding TaqMan assay. In conclusion, the novel LUX real-time PCR method is a rapid and sensitive tool for detection and quantification of Borrelia spp. in ticks.
Collapse
|
22
|
Kantsø B, Bo Svendsen C, Moestrup Jensen P, Vennestrøm J, Krogfelt KA. Seasonal and habitat variation in the prevalence of Rickettsia helvetica in Ixodes ricinus ticks from Denmark. Ticks Tick Borne Dis 2010; 1:101-3. [DOI: 10.1016/j.ttbdis.2010.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/13/2010] [Accepted: 01/13/2010] [Indexed: 11/25/2022]
|
23
|
Kjelland V, Stuen S, Skarpaas T, Slettan A. Prevalence and genotypes of Borrelia burgdorferi sensu lato infection in Ixodes ricinus ticks in southern Norway. ACTA ACUST UNITED AC 2010; 42:579-85. [DOI: 10.3109/00365541003716526] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Hansen MGB, Christoffersen M, Thuesen LR, Petersen MR, Bojesen AM. Seroprevalence of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in Danish horses. Acta Vet Scand 2010; 52:3. [PMID: 20082693 PMCID: PMC2818635 DOI: 10.1186/1751-0147-52-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 01/18/2010] [Indexed: 11/10/2022] Open
Abstract
Background Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum are able to infect horses. However, the extend to which Danish horses are infected and seroconvert due to these two bacteria is unknown. The aim of the present study was to evaluate the seroprevalence of B. burgdorferi sensu lato and A. phagocytophilum in Danish horses. Methods A total of 390 blood samples collected from all major regions of Denmark and with a geographical distribution corresponding to the density of the Danish horse population were analyzed. All samples were examined for the presence of antibodies against B. burgdorferi sensu lato and A. phagocytophilum by the use of the SNAP®4DX ® ELISA test. Results Overall, 29.0% of the horses were seropositive for B. burgdorferi sensu lato whereas 22.3% were seropositive for A. phagocytophilum. Conclusions Antibodies against B burgdorferi sensu lato and A. phagocytophilum are commonly found among Danish horses thus showing that Danish horses are frequently infected by these organisms.
Collapse
|
25
|
Barbour AG, Bunikis J, Travinsky B, Hoen AG, Diuk-Wasser MA, Fish D, Tsao JI. Niche partitioning of Borrelia burgdorferi and Borrelia miyamotoi in the same tick vector and mammalian reservoir species. Am J Trop Med Hyg 2010; 81:1120-31. [PMID: 19996447 DOI: 10.4269/ajtmh.2009.09-0208] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The Lyme borreliosis agent Borrelia burgdorferi and the relapsing fever group species Borrelia miyamotoi co-occur in the United States. We used species-specific, quantitative polymerase chain reaction to study both species in the blood and skin of Peromyscus leucopus mice and host-seeking Ixodes scapularis nymphs at a Connecticut site. Bacteremias with B. burgdorferi or B. miyamotoi were most prevalent during periods of greatest activity for nymphs or larvae, respectively. Whereas B. burgdorferi was 30-fold more frequent than B. miyamotoi in skin biopsies and mice had higher densities of B. burgdorferi densities in the skin than in the blood, B. miyamotoi densities were higher in blood than skin. In a survey of host-seeking nymphs in 11 northern states, infection prevalences for B. burgdorferi and B. miyamotoi averaged approximately 0.20 and approximately 0.02, respectively. Co-infections of P. leucopus or I. scapularis with both B. burgdorferi and B. miyamotoi were neither more nor less common than random expectations.
Collapse
Affiliation(s)
- Alan G Barbour
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California 92697-4028, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Destruction of spirochete Borrelia burgdorferi round-body propagules (RBs) by the antibiotic tigecycline. Proc Natl Acad Sci U S A 2009; 106:18656-61. [PMID: 19843691 DOI: 10.1073/pnas.0908236106] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Persistence of tissue spirochetes of Borrelia burgdorferi as helices and round bodies (RBs) explains many erythema-Lyme disease symptoms. Spirochete RBs (reproductive propagules also called coccoid bodies, globular bodies, spherical bodies, granules, cysts, L-forms, sphaeroplasts, or vesicles) are induced by environmental conditions unfavorable for growth. Viable, they grow, move and reversibly convert into motile helices. Reversible pleiomorphy was recorded in at least six spirochete genera (>12 species). Penicillin solution is one unfavorable condition that induces RBs. This antibiotic that inhibits bacterial cell wall synthesis cures neither the second "Great Imitator" (Lyme borreliosis) nor the first: syphilis. Molecular-microscopic techniques, in principle, can detect in animals (insects, ticks, and mammals, including patients) helices and RBs of live spirochetes. Genome sequences of B. burgdorferi and Treponema pallidum spirochetes show absence of >75% of genes in comparison with their free-living relatives. Irreversible integration of spirochetes at behavioral, metabolic, gene product and genetic levels into animal tissue has been documented. Irreversible integration of spirochetes may severely impair immunological response such that they persist undetected in tissue. We report in vitro inhibition and destruction of B. burgdorferi (helices, RBs = "cysts") by the antibiotic Tigecycline (TG; Wyeth), a glycylcycline protein-synthesis inhibitor (of both 30S and 70S ribosome subunits). Studies of the pleiomorphic life history stages in response to TG of both B. burgdorferi and Treponema pallidum in vivo and in vitro are strongly encouraged.
Collapse
|