1
|
Campos TL, Korhonen PK, Young ND, Chang BC, Gasser RB. Inference of essential genes in Brugia malayi and Onchocerca volvulus by machine learning and the implications for discovering new interventions. Comput Struct Biotechnol J 2024; 23:3081-3089. [PMID: 39185442 PMCID: PMC11342751 DOI: 10.1016/j.csbj.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024] Open
Abstract
Detailed explorations of the model organisms Caenorhabditis elegans (elegant worm) and Drosophila melanogaster (vinegar fly) have substantially improved our knowledge and understanding of biological processes and pathways in metazoan organisms. Extensive functional genomic and multi-omic data sets have enabled the discovery and characterisation of 'essential' genes that are critical for the survival of these organisms. Recently, we showed that a machine learning (ML)-based pipeline could be utilised to predict essential genes in both C. elegans and D. melanogaster using features from DNA, RNA, protein and/or cellular data or associated information. As these distantly-related species are within the Ecdysozoa, we hypothesised that this approach could be suited for non-model organisms within the same group (phylum) of protostome animals. In the present investigation, we cross-predicted essential genes within the phylum Nematoda - between C. elegans and the parasitic filarial nematodes Brugia malayi and Onchocerca volvulus, and then ranked and prioritised these genes. Highly ranked genes were linked to key biological pathways or processes, such as ribosome biogenesis, translation and RNA processing, and were expressed at relatively high levels in the germline, gonad, hypodermis and/or nerves. The present in silico workflow is hoped to expedite the identification of drug targets in parasitic organisms for subsequent experimental validation in the laboratory.
Collapse
Affiliation(s)
- Túlio L. Campos
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
- Núcleo de Bioinformática, Instituto Aggeu Magalhães, Fiocruz., Av. Professor Moraes Rego, s/n, Cidade Universitária, Recife, PE CEP 50740–465, Brazil
| | - Pasi K. Korhonen
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D. Young
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C.H. Chang
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B. Gasser
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
2
|
Huggins LG, Atapattu U, Young ND, Traub RJ, Colella V. Development and validation of a long-read metabarcoding platform for the detection of filarial worm pathogens of animals and humans. BMC Microbiol 2024; 24:28. [PMID: 38245715 PMCID: PMC10799534 DOI: 10.1186/s12866-023-03159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Filarial worms are important vector-borne pathogens of a large range of animal hosts, including humans, and are responsible for numerous debilitating neglected tropical diseases such as, lymphatic filariasis caused by Wuchereria bancrofti and Brugia spp., as well as loiasis caused by Loa loa. Moreover, some emerging or difficult-to-eliminate filarioid pathogens are zoonotic using animals like canines as reservoir hosts, for example Dirofilaria sp. 'hongkongensis'. Diagnosis of filariasis through commonly available methods, like microscopy, can be challenging as microfilaremia may wane below the limit of detection. In contrast, conventional PCR methods are more sensitive and specific but may show limited ability to detect coinfections as well as emerging and/or novel pathogens. Use of deep-sequencing technologies obviate these challenges, providing sensitive detection of entire parasite communities, whilst also being better suited for the characterisation of rare or novel pathogens. Therefore, we developed a novel long-read metabarcoding assay for deep-sequencing the filarial nematode cytochrome c oxidase subunit I gene on Oxford Nanopore Technologies' (ONT) MinION™ sequencer. We assessed the overall performance of our assay using kappa statistics to compare it to commonly used diagnostic methods for filarial worm detection, such as conventional PCR (cPCR) with Sanger sequencing and the microscopy-based modified Knott's test (MKT). RESULTS We confirmed our metabarcoding assay can characterise filarial parasites from a diverse range of genera, including, Breinlia, Brugia, Cercopithifilaria, Dipetalonema, Dirofilaria, Onchocerca, Setaria, Stephanofilaria and Wuchereria. We demonstrated proof-of-concept for this assay by using blood samples from Sri Lankan dogs, whereby we identified infections with the filarioids Acanthocheilonema reconditum, Brugia sp. Sri Lanka genotype and zoonotic Dirofilaria sp. 'hongkongensis'. When compared to traditionally used diagnostics, such as the MKT and cPCR with Sanger sequencing, we identified an additional filarioid species and over 15% more mono- and coinfections. CONCLUSIONS Our developed metabarcoding assay may show broad applicability for the metabarcoding and diagnosis of the full spectrum of filarioids from a wide range of animal hosts, including mammals and vectors, whilst the utilisation of ONT' small and portable MinION™ means that such methods could be deployed for field use.
Collapse
Affiliation(s)
- Lucas G Huggins
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, VIC, 3050, Australia.
| | - Ushani Atapattu
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, VIC, 3050, Australia
| | - Neil D Young
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, VIC, 3050, Australia
| | - Rebecca J Traub
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, VIC, 3050, Australia
| | - Vito Colella
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, VIC, 3050, Australia
| |
Collapse
|
3
|
Roe CC, Urbanz J, Auten C, Verocai GG, Upshaw-Bia K, Holiday O, Hepp C, Sahl JW. LupiQuant: A real-time PCR based assay for determining host-to-parasite DNA ratios of Onchocerca lupi and host Canis lupus from onchocercosis samples. PLoS One 2022; 17:e0276916. [PMID: 36409718 PMCID: PMC9678315 DOI: 10.1371/journal.pone.0276916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/15/2022] [Indexed: 11/22/2022] Open
Abstract
Onchocerca lupi is a filarial nematode that causes ocular onchocercosis in canines globally including North America and areas of Europe, North Africa, and the Middle East. Reported incidence of this parasite in canines has continued to steadily escalate since the early 21st century and was more recently documented in humans. Whole genome sequencing (WGS) of this parasite can provide insight into gene content, provide novel surveillance targets, and elucidate the origin and range expansion. However, past attempts of whole genome sequencing of other Onchocerca species reported a substantial portion of their data unusable due to the variable over-abundance of host DNA in samples. Here, we have developed a method to determine the host-to-parasite DNA ratio using a quantitative PCR (qPCR) approach that relies on two standard plasmids each of which contains a single copy gene specific to the parasite genus Onchocerca (major body wall myosin gene, myosin) or a single copy gene specific to the canine host (polycystin-1 precursor, pkd1). These plasmid standards were used to determine the copy number of the myosin and pkd1 genes within a sample to calculate the ratio of parasite and host DNA. Furthermore, whole genome sequence (WGS) data for three O. lupi isolates were consistent with our host-to-parasite DNA ratio results. Our study demonstrates, despite unified DNA extraction methods, variable quantities of host DNA within any one sample which will likely affect downstream WGS applications. Our quantification assay of host-to-parasite genome copy number provides a robust and accurate method of assessing canine host DNA load in an O. lupi specimen that will allow informed sample selection for WGS. This study has also provided the first whole genome draft sequence for this species. This approach is also useful for future focused WGS studies of other parasites.
Collapse
Affiliation(s)
- Chandler C. Roe
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States of America
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States of America
- * E-mail:
| | - Jennifer Urbanz
- Eye Care for Animals, Scottsdale, AZ, United States of America
| | - Candace Auten
- Eye Care for Animals, Albuquerque, NM, United States of America
| | - Guilherme G. Verocai
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | - Kelly Upshaw-Bia
- Navajo Nation Veterinary Management Program, Window Rock, NM, United States of America
| | - Olivia Holiday
- Navajo Nation Veterinary Management Program, Window Rock, NM, United States of America
| | - Crystal Hepp
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States of America
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States of America
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, AZ, United States of America
| | - Jason W. Sahl
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States of America
| |
Collapse
|
4
|
Bhoj P, Togre N, Khatri V, Goswami K. Harnessing Immune Evasion Strategy of Lymphatic Filariae: A Therapeutic Approach against Inflammatory and Infective Pathology. Vaccines (Basel) 2022; 10:vaccines10081235. [PMID: 36016123 PMCID: PMC9415972 DOI: 10.3390/vaccines10081235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Human lymphatic filariae have evolved numerous immune evasion strategies to secure their long-term survival in a host. These strategies include regulation of pattern recognition receptors, mimicry with host glycans and immune molecules, manipulation of innate and adaptive immune cells, induction of apoptosis in effector immune cells, and neutralization of free radicals. This creates an anti-inflammatory and immunoregulatory milieu in the host: a modified Th2 immune response. Therefore, targeting filarial immunomodulators and manipulating the filariae-driven immune system against the filariae can be a potential therapeutic and prophylactic strategy. Filariae-derived immunosuppression can also be exploited to treat other inflammatory diseases and immunopathologic states of parasitic diseases, such as cerebral malaria, and to prevent leishmaniasis. This paper reviews immunomodulatory mechanisms acquired by these filariae for their own survival and their potential application in the development of novel therapeutic approaches against parasitic and inflammatory diseases. Insight into the intricate network of host immune-parasite interactions would aid in the development of effective immune-therapeutic options for both infectious and immune-pathological diseases.
Collapse
Affiliation(s)
| | - Namdev Togre
- Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA
- Correspondence: (N.T.); (K.G.)
| | | | - Kalyan Goswami
- All India Institute of Medical Sciences, Saguna, Kalyani 741245, India
- Correspondence: (N.T.); (K.G.)
| |
Collapse
|
5
|
Bma-LAD-2, an Intestinal Cell Adhesion Protein, as a Potential Therapeutic Target for Lymphatic Filariasis. mBio 2022; 13:e0374221. [PMID: 35475643 PMCID: PMC9239158 DOI: 10.1128/mbio.03742-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Lymphatic filariasis is a debilitating disease that afflicts over 70 million people worldwide. It is caused by the parasitic nematodes Wuchereria bancrofti, Brugia malayi, and Brugia timori. Despite substantial success, efforts to eliminate LF will likely require more time and resources than predicted. Identifying new drug and vaccine targets in adult filariae could help elimination efforts. This study’s aim was to evaluate intestinal proteins in adult Brugia malayi worms as possible therapeutic targets. Using short interfering RNA (siRNA), we successfully targeted four candidate gene transcripts: Bma-Serpin, Bma-ShTK, Bma-Reprolysin, and Bma-LAD-2. Of those, Bma-LAD-2, an immunoglobulin superfamily cell adhesion molecule (IgSF CAM), was determined to be essential for adult worm survival. We observed a 70.42% knockdown in Bma-LAD-2 transcript levels 1 day post-siRNA incubation and an 87.02% reduction in protein expression 2 days post-siRNA incubation. This inhibition of Bma-LAD-2 expression resulted in an 80% decrease in worm motility over 6 days, a 93.43% reduction in microfilaria release (Mf) by day 6 post-siRNA incubation, and a dramatic decrease in (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Transmission electron microscopy revealed the loss of microvilli and unraveling of mitochondrial cristae in the intestinal epithelium of Bma-LAD-2 siRNA-treated worms. Strikingly, Bma-LAD-2 siRNA-treated worms exhibited an almost complete loss of pseudocoelomic fluid. A luciferase immunoprecipitation system assay did not detect anti-Bma-LAD-2 IgE in the serum of 30 LF patients, indicating that LF exposure does not result in IgE sensitization to this antigen. These results indicate that Bma-LAD-2 is an essential protein for adult Brugia malayi and may be an effective therapeutic target.
Collapse
|
6
|
Chevignon G, Foray V, Pérez-Jiménez MM, Libro S, Chung M, Foster JM, Landmann F. Dual RNAseq analyses at soma and germline levels reveal evolutionary innovations in the elephantiasis-agent Brugia malayi, and adaptation of its Wolbachia endosymbionts. PLoS Negl Trop Dis 2021; 15:e0008935. [PMID: 33406151 PMCID: PMC7787461 DOI: 10.1371/journal.pntd.0008935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/31/2020] [Indexed: 12/23/2022] Open
Abstract
Brugia malayi is a human filarial nematode responsible for elephantiasis, a debilitating condition that is part of a broader spectrum of diseases called filariasis, including lymphatic filariasis and river blindness. Almost all filarial nematode species infecting humans live in mutualism with Wolbachia endosymbionts, present in somatic hypodermal tissues but also in the female germline which ensures their vertical transmission to the nematode progeny. These α-proteobacteria potentially provision their host with essential metabolites and protect the parasite against the vertebrate immune response. In the absence of Wolbachia wBm, B. malayi females become sterile, and the filarial nematode lifespan is greatly reduced. In order to better comprehend this symbiosis, we investigated the adaptation of wBm to the host nematode soma and germline, and we characterized these cellular environments to highlight their specificities. Dual RNAseq experiments were performed at the tissue-specific and ovarian developmental stage levels, reaching the resolution of the germline mitotic proliferation and meiotic differentiation stages. We found that most wBm genes, including putative effectors, are not differentially regulated between infected tissues. However, two wBm genes involved in stress responses are upregulated in the hypodermal chords compared to the germline, indicating that this somatic tissue represents a harsh environment to which wBm have adapted. A comparison of the B. malayi and C. elegans germline transcriptomes reveals a poor conservation of genes involved in the production of oocytes, with the filarial germline proliferative zone relying on a majority of genes absent from C. elegans. The first orthology map of the B. malayi genome presented here, together with tissue-specific expression enrichment analyses, indicate that the early steps of oogenesis are a developmental process involving genes specific to filarial nematodes, that likely result from evolutionary innovations supporting the filarial parasitic lifestyle.
Collapse
Affiliation(s)
- Germain Chevignon
- CRBM, University of Montpellier, CNRS, Montpellier, France
- Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer, La Tremblade, France
| | - Vincent Foray
- CRBM, University of Montpellier, CNRS, Montpellier, France
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université de Tours, Tours, France
| | - Mercedes Maria Pérez-Jiménez
- CRBM, University of Montpellier, CNRS, Montpellier, France
- Centro Andaluz de Biología del Desarrollo (CABD)–Universidad Pablo de Olavide (UPO), Departamento de Biología Molecular e Ingeniería Bioquímica, UPO/CSIC/JA, Sevilla, Spain
| | - Silvia Libro
- Division of Protein Expression & Modification, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Matthew Chung
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jeremy M. Foster
- Division of Protein Expression & Modification, New England Biolabs, Ipswich, Massachusetts, United States of America
| | | |
Collapse
|
7
|
Rebello KM, Borges JN, Teixeira A, Perales J, Santos CP. Proteomic analysis of Ascocotyle longa (Trematoda: Heterophyidae) metacercariae. Mol Biochem Parasitol 2020; 239:111311. [PMID: 32745491 DOI: 10.1016/j.molbiopara.2020.111311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022]
Abstract
Ascocotyle longa is parasitic trematode with wide distribution throughout America, Europe, Africa, and Middle East. Despite the fact that this fish-borne pathogen has been considered an agent of human heterophyiasis in Brazil, the molecules involved in the host-parasite interaction remain unknown. The present study reports the proteome profile of A. longa metacercariae collected from the fish Mugil liza from Brazil. This infective stage for humans, mammals and birds was analyzed using nLC-MS/MS approach. We identified a large repertoire of proteins, which are mainly involved in energy metabolism and cell structure. Peptidases and immunogenic proteins were also identified, which might play roles in host-parasite interface. Our data provided unprecedented insights into the biology of A. longa and represent a first step to understand the natural host-parasite interaction. Moreover, as the first proteome characterized in this trematode, it will provide an important resource for future studies.
Collapse
Affiliation(s)
- Karina M Rebello
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | - Juliana N Borges
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - André Teixeira
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jonas Perales
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Cláudia P Santos
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Fauver JR, Martin J, Weil GJ, Mitreva M, Fischer PU. De novo Assembly of the Brugia malayi Genome Using Long Reads from a Single MinION Flowcell. Sci Rep 2019; 9:19521. [PMID: 31863009 PMCID: PMC6925183 DOI: 10.1038/s41598-019-55908-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/28/2019] [Indexed: 11/15/2022] Open
Abstract
Filarial nematode infections cause a substantial global disease burden. Genomic studies of filarial worms can improve our understanding of their biology and epidemiology. However, genomic information from field isolates is limited and available reference genomes are often discontinuous. Single molecule sequencing technologies can reduce the cost of genome sequencing and long reads produced from these devices can improve the contiguity and completeness of genome assemblies. In addition, these new technologies can make generation and analysis of large numbers of field isolates feasible. In this study, we assessed the performance of the Oxford Nanopore Technologies MinION for sequencing and assembling the genome of Brugia malayi, a human parasite widely used in filariasis research. Using data from a single MinION flowcell, a 90.3 Mb nuclear genome was assembled into 202 contigs with an N50 of 2.4 Mb. This assembly covered 96.9% of the well-defined B. malayi reference genome with 99.2% identity. The complete mitochondrial genome was obtained with individual reads and the nearly complete genome of the endosymbiotic bacteria Wolbachia was assembled alongside the nuclear genome. Long-read data from the MinION produced an assembly that approached the quality of a well-established reference genome using comparably fewer resources.
Collapse
Affiliation(s)
- Joseph R Fauver
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States.
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States.
| | - John Martin
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States
| | - Gary J Weil
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States
| | - Peter U Fischer
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
9
|
Shepherd C, Wangchuk P, Loukas A. Of dogs and hookworms: man's best friend and his parasites as a model for translational biomedical research. Parasit Vectors 2018; 11:59. [PMID: 29370855 PMCID: PMC5785905 DOI: 10.1186/s13071-018-2621-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023] Open
Abstract
We present evidence that the dog hookworm (Ancylostoma caninum) is underutilised in the study of host-parasite interactions, particularly as a proxy for the human-hookworm relationship. The inability to passage hookworms through all life stages in vitro means that adult stage hookworms have to be harvested from the gut of their definitive hosts for ex vivo research. This makes study of the human-hookworm interface difficult for technical and ethical reasons. The historical association of humans, dogs and hookworms presents a unique triad of positive evolutionary pressure to drive the A. caninum-canine interaction to reflect that of the human-hookworm relationship. Here we discuss A. caninum as a proxy for human hookworm infection and situate this hookworm model within the current research agenda, including the various 'omics' applications and the search for next generation biologics to treat a plethora of human diseases. Historically, the dog hookworm has been well described on a physiological and biochemical level, with an increasing understanding of its role as a human zoonosis. With its similarity to human hookworm, the recent publications of hookworm genomes and other omics databases, as well as the ready availability of these parasites for ex vivo culture, the dog hookworm presents itself as a valuable tool for discovery and translational research.
Collapse
Affiliation(s)
- Catherine Shepherd
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| | - Phurpa Wangchuk
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| |
Collapse
|
10
|
Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant-parasitic nematodes. PLoS Genet 2017; 13:e1006777. [PMID: 28594822 PMCID: PMC5465968 DOI: 10.1371/journal.pgen.1006777] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/24/2017] [Indexed: 11/19/2022] Open
Abstract
Root-knot nematodes (genus Meloidogyne) exhibit a diversity of reproductive modes ranging from obligatory sexual to fully asexual reproduction. Intriguingly, the most widespread and devastating species to global agriculture are those that reproduce asexually, without meiosis. To disentangle this surprising parasitic success despite the absence of sex and genetic exchanges, we have sequenced and assembled the genomes of three obligatory ameiotic and asexual Meloidogyne. We have compared them to those of relatives able to perform meiosis and sexual reproduction. We show that the genomes of ameiotic asexual Meloidogyne are large, polyploid and made of duplicated regions with a high within-species average nucleotide divergence of ~8%. Phylogenomic analysis of the genes present in these duplicated regions suggests that they originated from multiple hybridization events and are thus homoeologs. We found that up to 22% of homoeologous gene pairs were under positive selection and these genes covered a wide spectrum of predicted functional categories. To biologically assess functional divergence, we compared expression patterns of homoeologous gene pairs across developmental life stages using an RNAseq approach in the most economically important asexually-reproducing nematode. We showed that >60% of homoeologous gene pairs display diverged expression patterns. These results suggest a substantial functional impact of the genome structure. Contrasting with high within-species nuclear genome divergence, mitochondrial genome divergence between the three ameiotic asexuals was very low, signifying that these putative hybrids share a recent common maternal ancestor. Transposable elements (TE) cover a ~1.7 times higher proportion of the genomes of the ameiotic asexual Meloidogyne compared to the sexual relative and might also participate in their plasticity. The intriguing parasitic success of asexually-reproducing Meloidogyne species could be partly explained by their TE-rich composite genomes, resulting from allopolyploidization events, and promoting plasticity and functional divergence between gene copies in the absence of sex and meiosis.
Collapse
|
11
|
Affiliation(s)
- Sara Lustigman
- Molecular Parasitology, New York Blood Center, New York, NY, United States of America
- * E-mail:
| | - Alexandra Grote
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, United States of America
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, United States of America
- College of Global Public Health, New York University, New York, NY, United States of America
| |
Collapse
|
12
|
O'Neill M, Ballesteros C, Tritten L, Burkman E, Zaky WI, Xia J, Moorhead A, Williams SA, Geary TG. Profiling the macrofilaricidal effects of flubendazole on adult female Brugia malayi using RNAseq. Int J Parasitol Drugs Drug Resist 2016; 6:288-296. [PMID: 27733308 PMCID: PMC5196492 DOI: 10.1016/j.ijpddr.2016.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 11/30/2022]
Abstract
The use of microfilaricidal drugs for the control of onchocerciasis and lymphatic filariasis (LF) necessitates prolonged yearly dosing. Prospects for elimination or eradication of these diseases would be enhanced by the availability of a macrofilaricidal drug. Flubendazole (FLBZ), a benzimidazole anthelmintic, is an appealing candidate. FLBZ has demonstrated potent macrofilaricidal effects in a number of experimental rodent models and in one human trial. Unfortunately, FLBZ was deemed unsatisfactory for use in mass drug administration campaigns due to its limited oral bioavailability. A new formulation that enables sufficient bioavailability following oral administration could render FLBZ an effective treatment for onchocerciasis and LF. Identification of drug-derived effects is important in ascertaining a dosage regimen which is predicted to be lethal to the parasite in situ. In previous histological studies, exposure to FLBZ induced damage to tissues required for reproduction and survival at pharmacologically relevant concentrations. However, more precise and quantitative indices of drug effects are needed. This study assessed drug effects using a transcriptomic approach to confirm effects observed histologically and to identify genes which were differentially expressed in treated adult female Brugia malayi. Comparative analysis across different concentrations (1 μM and 5 μM) and durations (48 and 120 h) provided an overview of the processes which are affected by FLBZ exposure. Genes with dysregulated expression were consistent with the reproductive effects observed via histology in our previous studies. This study revealed transcriptional changes in genes involved in embryo development. Additionally, significant downregulation was observed in genes encoding cuticle components, which may reflect changes in developing embryos, the adult worm cuticle or both. These data support the hypothesis that FLBZ acts predominantly on rapidly dividing cells, and provides a basis for selecting molecular markers of drug-induced damage which may be of use in predicting efficacious FLBZ regimens.
Collapse
Affiliation(s)
- Maeghan O'Neill
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Cristina Ballesteros
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Lucienne Tritten
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Erica Burkman
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA; Filariasis Research Reagent Resource Center, Smith College, Northampton, MA 01063, USA
| | - Weam I Zaky
- Filariasis Research Reagent Resource Center, Smith College, Northampton, MA 01063, USA; Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Jianguo Xia
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada; Department of Animal Science, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Andrew Moorhead
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA; Filariasis Research Reagent Resource Center, Smith College, Northampton, MA 01063, USA
| | - Steven A Williams
- Filariasis Research Reagent Resource Center, Smith College, Northampton, MA 01063, USA; Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Timothy G Geary
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
13
|
Polymorphism in ion channel genes of Dirofilaria immitis: Relevant knowledge for future anthelmintic drug design. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:343-355. [PMID: 27682347 PMCID: PMC5196487 DOI: 10.1016/j.ijpddr.2016.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/22/2016] [Indexed: 11/24/2022]
Abstract
Dirofilaria immitis, a filarial parasite, causes cardiopulmonary dirofilariasis in dogs, cats and wild canids. The macrocyclic lactone (ML) class of drugs has been used to prevent heartworm infection. There is confirmed ML resistance in D. immitis and thus there is an urgent need to find new anthelmintics that could prevent and/or control the disease. Targeting ion channels of D. immitis for drug design has obvious advantages. These channels, present in the nematode nervous system, control movement, feeding, mating and respond to environmental cues which are necessary for survival of the parasite. Any new drug that targets these ion channels is likely to have a motility phenotype and should act to clear the worms from the host. Many of the successful anthelmintics in the past have targeted these ion channels and receptors. Knowledge about genetic variability of the ion channel and receptor genes should be useful information for drug design as receptor polymorphism may affect responses to a drug. Such information may also be useful for anticipation of possible resistance development. A total of 224 ion channel genes/subunits have been identified in the genome of D. immitis. Whole genome sequencing data of parasites from eight different geographical locations, four from ML-susceptible populations and the other four from ML-loss of efficacy (LOE) populations, were used for polymorphism analysis. We identified 1762 single nucleotide polymorphic (SNP) sites (1508 intronic and 126 exonic) in these 224 ion channel genes/subunits with an overall polymorphic rate of 0.18%. Of the SNPs found in the exon regions, 129 of them caused a non-synonymous type of polymorphism. Fourteen of the exonic SNPs caused a change in predicted secondary structure. A few of the SNPs identified may have an effect on gene expression, function of the protein and resistance selection processes. In the Dirofilaria immitis genome, 126 ion channel genes were identified. Within 126 ion channel genes, 1762 polymorphic loci were identified. Fourteen exonic SNPs caused a change in predicted secondary structure. SNPs may effect gene expression, protein function or resistance selection. D. immitis populations have low genetic variability among ion channel genes.
Collapse
|
14
|
Small ST, Reimer LJ, Tisch DJ, King CL, Christensen BM, Siba PM, Kazura JW, Serre D, Zimmerman PA. Population genomics of the filarial nematode parasite Wuchereria bancrofti from mosquitoes. Mol Ecol 2016; 25:1465-77. [PMID: 26850696 PMCID: PMC4808423 DOI: 10.1111/mec.13574] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 01/19/2016] [Accepted: 01/26/2016] [Indexed: 02/01/2023]
Abstract
Wuchereria bancrofti is a parasitic nematode and the primary cause of lymphatic filariasis--a disease specific to humans. W. bancrofti currently infects over 90 million people throughout the tropics and has been acknowledged by the world health organization as a vulnerable parasite. Current research has focused primarily on the clinical manifestations of disease and little is known about the evolutionary history of W. bancrofti. To improve upon knowledge of the evolutionary history of W. bancrofti, we whole genome sequenced 13 W. bancrofti larvae. We circumvent many of the difficulties of multiple infections by sampling larvae directly from mosquitoes that were experimentally inoculated with infected blood. To begin, we used whole genome data to reconstruct the historical population size. Our results support a history of fluctuating population sizes that can be correlated with human migration and fluctuating mosquito abundances. Next, we reconstructed the putative pedigree of W. bancrofti worms within an infection using the kinship coefficient. We deduced that there are full-sib and half-sib relationships residing within the same larval cohort. Through combined analysis of the mitochondrial and nuclear genomes we concluded that this is likely a results of polyandrous mating, the first time reported for W. bancrofti. Lastly, we scanned the genomes for signatures of natural selection. Annotation of putative selected regions identified proteins that may have aided in a parasitic life style or may have evolved to protect against current drug treatments. We discuss our results in the greater context of understanding the biology of an animal with a unique life history and ecology.
Collapse
|
15
|
Bourguinat C, Lee ACY, Lizundia R, Blagburn BL, Liotta JL, Kraus MS, Keller K, Epe C, Letourneau L, Kleinman CL, Paterson T, Gomez EC, Montoya-Alonso JA, Smith H, Bhan A, Peregrine AS, Carmichael J, Drake J, Schenker R, Kaminsky R, Bowman DD, Geary TG, Prichard RK. Macrocyclic lactone resistance in Dirofilaria immitis: Failure of heartworm preventives and investigation of genetic markers for resistance. Vet Parasitol 2015; 210:167-78. [PMID: 25936435 DOI: 10.1016/j.vetpar.2015.04.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/29/2015] [Accepted: 04/01/2015] [Indexed: 12/18/2022]
Abstract
Macrocyclic lactone (ML) endectocides are used as chemoprophylaxis for heartworm infection (Dirofilaria immitis) in dogs and cats. Claims of loss of efficacy (LOE) of ML heartworm preventives have become common in some locations in the USA. We directly tested whether resistance to MLs exists in LOE isolates of D. immitis and identified genetic markers that are correlated with, and therefore can predict ML resistance. ML controlled studies showed that LOE strains of D. immitis established infections in dogs despite chemoprophylaxis with oral ivermectin or injectable moxidectin. A whole genome approach was used to search for loci associated with the resistance phenotype. Many loci showed highly significant differences between pools of susceptible and LOE D. immitis. Based on 186 potential marker loci, Sequenom(®) SNP frequency analyses were conducted on 663 individual parasites (adult worms and microfilariae) which were phenotypically characterized as susceptible (SUS), confirmed ML treatment survivors/resistant (RES), or suspected resistant/loss of efficacy (LOE) parasites. There was a subset of SNP loci which appears to be promising markers for predicting ML resistance, including SNPs in some genes that have been associated with ML resistance in other parasites. These data provide unequivocal proof of ML resistance in D. immitis and identify genetic markers that could be used to monitor for ML resistance in heartworms.
Collapse
Affiliation(s)
- Catherine Bourguinat
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Alice C Y Lee
- College of Veterinary Medicine, Cornell University, 602 Tower Rd, Ithaca, NY 14853, USA
| | - Regina Lizundia
- Novartis Animal Health, Route de la Petite Glâne, St-Aubin 1566, Switzerland
| | - Byron L Blagburn
- College of Veterinary Medicine, Auburn University, 1500 Wire Road, Auburn, AL 36849, USA
| | - Janice L Liotta
- College of Veterinary Medicine, Cornell University, 602 Tower Rd, Ithaca, NY 14853, USA
| | - Marc S Kraus
- College of Veterinary Medicine, Cornell University, 602 Tower Rd, Ithaca, NY 14853, USA
| | - Kathy Keller
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Christian Epe
- Novartis Animal Health, Route de la Petite Glâne, St-Aubin 1566, Switzerland
| | - Louis Letourneau
- McGill University and Génome Québec Innovation Centre, 740, Dr. Penfield Avenue, QC H3A 0G1, Canada
| | - Claudia L Kleinman
- Lady Davis Institute for Medical Research and Department of Human Genetics, McGill University, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC H3 T 1E2, Canada
| | - Tara Paterson
- School of Veterinary Medicine, St. George's University, True Blue, St. George's, Grenada
| | - Elena Carreton Gomez
- Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Calle Juan de Quesada, 30, 35001 Las Palmas de Gran Canaria, Spain
| | - José Alberto Montoya-Alonso
- Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Calle Juan de Quesada, 30, 35001 Las Palmas de Gran Canaria, Spain
| | - Hubert Smith
- Haywood Animal Hospital, 2538 N Washington Avenue, Brownsville, TN 38012, USA
| | - Aron Bhan
- Main West Animal Hospital, 1 Broadway, Welland, ON L3 C 5L2, Canada
| | - Andrew S Peregrine
- Ontario Veterinary College, University of Guelph, Gordon Street, Guelph, ON N1G 2W1, Canada
| | - James Carmichael
- Novartis Animal Health, 3200 Northline Avenue, Greensboro, NC 27408, USA
| | - Jason Drake
- Novartis Animal Health, 3200 Northline Avenue, Greensboro, NC 27408, USA
| | - Rudolf Schenker
- Novartis Animal Health, Route de la Petite Glâne, St-Aubin 1566, Switzerland
| | - Ronald Kaminsky
- Novartis Animal Health, Route de la Petite Glâne, St-Aubin 1566, Switzerland
| | - Dwight D Bowman
- College of Veterinary Medicine, Cornell University, 602 Tower Rd, Ithaca, NY 14853, USA
| | - Timothy G Geary
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Roger K Prichard
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
16
|
Castagnone-Sereno P, Danchin EGJ. Parasitic success without sex – the nematode experience. J Evol Biol 2015; 27:1323-33. [PMID: 25105196 DOI: 10.1111/jeb.12337] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Asexual reproduction is usually considered as an evolutionary dead end, and difficulties for asexual lineages to adapt to a fluctuating environment are anticipated due to the lack of sufficient genetic plasticity. Yet, unlike their sexual congeners, mitotic parthenogenetic root-knot nematode species, Meloidogyne spp., are remarkably widespread and polyphagous, with the ability to parasitize most flowering plants. Although this may reflect in part the short-term stability of agricultural environments, the extreme parasitic success of these clonal species points them as an outstanding evolutionary paradox regarding current theories on the benefits of sex. The discovery that most of the genome of the clonal species M. incognita is composed of pairs of homologous but divergent segments that have presumably been evolving independently in the absence of sexual recombination has shed new light on this evolutionary paradox. Together with recent studies on other biological systems, including the closely related sexual species M. hapla and the ancient asexual bdelloid rotifers, this observation suggests that functional innovation could emerge from such a peculiar genome architecture, which may in turn account for the extreme adaptive capacities of these asexual parasites. Additionally, the higher proportion of transposable elements in M. incognita compared to M. hapla and other nematodes may also be responsible in part for genome plasticity in the absence of sexual reproduction. We foresee that ongoing sequencing efforts should lead soon to a genomic framework involving genetically diverse Meloidogyne species with various different reproductive modes. This will undoubtedly promote the entire genus as a unique and valuable model system to help deciphering the evolution of asexual reproduction in eukaryotes.
Collapse
|
17
|
The revolution of whole genome sequencing to study parasites. Mol Biochem Parasitol 2014; 195:77-81. [PMID: 25111965 DOI: 10.1016/j.molbiopara.2014.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 12/14/2022]
Abstract
Genome sequencing has revolutionized the way in which we approach biological research from fundamental molecular biology to ecology and epidemiology. In the last 10 years the field of genomics has changed enormously as technology has improved and the tools for genomic sequencing have moved out of a few dedicated centers and now can be performed on bench-top instruments. In this review we will cover some of the key discoveries that were catalyzed by some of the first genome projects and discuss how this field is developing, what the new challenges are and how this may impact on research in the near future.
Collapse
|
18
|
McNulty SN, Fischer K, Curtis KC, Weil GJ, Brattig NW, Fischer PU. Localization of Wolbachia-like gene transcripts and peptides in adult Onchocerca flexuosa worms indicates tissue specific expression. Parasit Vectors 2013; 6:2. [PMID: 23281896 PMCID: PMC3549793 DOI: 10.1186/1756-3305-6-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/20/2012] [Indexed: 01/08/2023] Open
Abstract
Background Most filarial species in the genus Onchocerca depend on Wolbachia endobacteria to successfully carry out their life cycle. O. flexuosa is a Wolbachia-free species, but its genome contains Wolbachia-like sequences presumably obtained from Wolbachia via horizontal gene transfer. Proteogenomic studies have shown that many of these Wolbachia-like sequences are expressed in adult worms. Methods Six Wolbachia-like sequences in O. flexuosa were chosen for further study based on their sequence conservation with Wolbachia genes, length of predicted open reading frames, and expression at the RNA and/or protein levels. In situ hybridization and immunohistochemical labeling were used to localize Wolbachia-like transcripts and peptides in adult worm tissues. Results RNA probes representing three of the six target sequences produced hybridization signals in worm tissues. These probes bound to transcripts in the intestine and lateral chords of both sexes, in the hypodermis, median chords and uteri in females, and in sperm precursor cells in males. Antibodies raised to three peptides corresponding to these transcripts bound to specific bands in a soluble extract of adult O. flexuosa by Western blot that were not labeled by control antibodies in pre-immune serum. Two of the three antibodies produced labeling patterns in adult worm sections that were similar to those of the RNA probes, while the third produced a different pattern. Conclusions A subset of the Wolbachia-like sequences present in the genome of the Wolbachia-free filarial species O. flexuosa are transcribed in tissues where Wolbachia reside in infected filarial species. Some of the peptides and/or proteins derived from these transcripts appear to be concentrated in the same tissues while others may be exported to other regions of the worm. These results suggest that horizontally transferred Wolbachia genes and gene products may replicate important Wolbachia functions in uninfected filarial worms.
Collapse
Affiliation(s)
- Samantha N McNulty
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
19
|
McNulty SN, Mitreva M, Weil GJ, Fischer PU. Inter and intra-specific diversity of parasites that cause lymphatic filariasis. INFECTION GENETICS AND EVOLUTION 2012. [PMID: 23201850 DOI: 10.1016/j.meegid.2012.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lymphatic filariasis is caused by three closely related nematode parasites: Wuchereria bancrofti, Brugia malayi and Brugia timori. These species have many ecological variants that differ in several aspects of their biology such as mosquito vector species, host range, periodicity, and morphology. Although the genome of B. malayi (the first genome sequenced from a parasitic nematode) has been available for more than five years, very little is known about genetic variability among the lymphatic dwelling filariae. The genetic diversity among these worms is not only interesting from a biological perspective, but it may have important practical implications for the Global Program to Eliminate Lymphatic Filariasis, as the parasites may respond differently to diagnostic tests and/or medical interventions. Therefore, better information on their genetic variability is urgently needed. With improved methods for nucleic acid extraction and recent advances in sequencing chemistry and instrumentation, this gap can be filled relatively inexpensively. Improved information on filarial genetic diversity may increase the chances of success for lymphatic filariasis elimination programs.
Collapse
Affiliation(s)
- Samantha N McNulty
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | | | | | | |
Collapse
|
20
|
Soudi M, Zamocky M, Jakopitsch C, Furtmüller PG, Obinger C. Molecular evolution, structure, and function of peroxidasins. Chem Biodivers 2012; 9:1776-93. [PMID: 22976969 PMCID: PMC3533774 DOI: 10.1002/cbdv.201100438] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Indexed: 12/02/2022]
Abstract
Peroxidasins represent the subfamily 2 of the peroxidase-cyclooxygenase superfamily and are closely related to chordata peroxidases (subfamily 1) and peroxinectins (subfamily 3). They are multidomain proteins containing a heme peroxidase domain with high homology to human lactoperoxidase that mediates one- and two-electron oxidation reactions. Additional domains of the secreted and glycosylated metalloproteins are type C-like immunoglobulin domains, typical leucine-rich repeats, as well as a von Willebrand factor C module. These are typical motifs of extracellular proteins that mediate protein-protein interactions. We have reconstructed the phylogeny of this new family of oxidoreductases and show the presence of four invertebrate clades as well as one vertebrate clade that includes also two different human representatives. The variability of domain assembly in the various clades was analyzed, as was the occurrence of relevant catalytic residues in the peroxidase domain based on the knowledge of catalysis of the mammalian homologues. Finally, the few reports on expression, localization, enzymatic activity, and physiological roles in the model organisms Drosophila melanogaster, Caenorhabditis elegans, and Homo sapiens are critically reviewed. Roles attributed to peroxidasins include antimicrobial defense, extracellular matrix formation, and consolidation at various developmental stages. Many research questions need to be solved in future, including detailed biochemical/physical studies and elucidation of the three dimensional structure of a model peroxidasin as well as the relation and interplay of the domains and the in vivo functions in various organisms including man.
Collapse
Affiliation(s)
- Monika Soudi
- Department of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology at BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna
| | | | | | | | | |
Collapse
|
21
|
Olson PD, Zarowiecki M, Kiss F, Brehm K. Cestode genomics - progress and prospects for advancing basic and applied aspects of flatworm biology. Parasite Immunol 2012; 34:130-50. [PMID: 21793855 DOI: 10.1111/j.1365-3024.2011.01319.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Characterization of the first tapeworm genome, Echinococcus multilocularis, is now nearly complete, and genome assemblies of E. granulosus, Taenia solium and Hymenolepis microstoma are in advanced draft versions. These initiatives herald the beginning of a genomic era in cestodology and underpin a diverse set of research agendas targeting both basic and applied aspects of tapeworm biology. We discuss the progress in the genomics of these species, provide insights into the presence and composition of immunologically relevant gene families, including the antigen B- and EG95/45W families, and discuss chemogenomic approaches toward the development of novel chemotherapeutics against cestode diseases. In addition, we discuss the evolution of tapeworm parasites and introduce the research programmes linked to genome initiatives that are aimed at understanding signalling systems involved in basic host-parasite interactions and morphogenesis.
Collapse
Affiliation(s)
- P D Olson
- Department of Zoology, The Natural History Museum, London, UK
| | | | | | | |
Collapse
|
22
|
Winter AD, Weir W, Hunt M, Berriman M, Gilleard JS, Devaney E, Britton C. Diversity in parasitic nematode genomes: the microRNAs of Brugia pahangi and Haemonchus contortus are largely novel. BMC Genomics 2012; 13:4. [PMID: 22216965 PMCID: PMC3282659 DOI: 10.1186/1471-2164-13-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/04/2012] [Indexed: 12/29/2022] Open
Abstract
Background MicroRNAs (miRNAs) play key roles in regulating post-transcriptional gene expression and are essential for development in the free-living nematode Caenorhabditis elegans and in higher organisms. Whether microRNAs are involved in regulating developmental programs of parasitic nematodes is currently unknown. Here we describe the the miRNA repertoire of two important parasitic nematodes as an essential first step in addressing this question. Results The small RNAs from larval and adult stages of two parasitic species, Brugia pahangi and Haemonchus contortus, were identified using deep-sequencing and bioinformatic approaches. Comparative analysis to known miRNA sequences reveals that the majority of these miRNAs are novel. Some novel miRNAs are abundantly expressed and display developmental regulation, suggesting important functional roles. Despite the lack of conservation in the miRNA repertoire, genomic positioning of certain miRNAs within or close to specific coding genes is remarkably conserved across diverse species, indicating selection for these associations. Endogenous small-interfering RNAs and Piwi-interacting (pi)RNAs, which regulate gene and transposon expression, were also identified. piRNAs are expressed in adult stage H. contortus, supporting a conserved role in germline maintenance in some parasitic nematodes. Conclusions This in-depth comparative analysis of nematode miRNAs reveals the high level of divergence across species and identifies novel sequences potentially involved in development. Expression of novel miRNAs may reflect adaptations to different environments and lifestyles. Our findings provide a detailed foundation for further study of the evolution and function of miRNAs within nematodes and for identifying potential targets for intervention.
Collapse
Affiliation(s)
- Alan D Winter
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences; University of Glasgow, Garscube Estate, Bearsden Road, Glasgow, G61 1QH, UK.
| | | | | | | | | | | | | |
Collapse
|
23
|
Moss DM, Priest JW, Boyd A, Weinkopff T, Kucerova Z, Beach MJ, Lammie PJ. Multiplex bead assay for serum samples from children in Haiti enrolled in a drug study for the treatment of lymphatic filariasis. Am J Trop Med Hyg 2011; 85:229-37. [PMID: 21813840 DOI: 10.4269/ajtmh.2011.11-0029] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A multiplex bead assay (MBA) was used to analyze serum samples collected longitudinally from children enrolled in a drug trial for treatment of filariasis in Leogane, Haiti. Recombinant antigens Bm14 and Bm33 from Brugia malayi, third polar tube protein (PTP3) from Encephalitozoon cuniculi, and merozoite surface protein-1(19) (MSP-1(19)) from Plasmodium falciparum were coupled to carboxylated polystyrene microspheres. IgG responses to PTP3 and MSP-1(19) were not affected by albendazole (ALB), diethylcarbamazine (DEC), or combination of diethylcarbamazine and albendazole (DEC/ALB). However, IgG and IgG4 responses to Bm14 and Bm33 were significantly decreased (P < 0.001) by DEC and DEC/ALB treatment. Antibody responses to Bm14 and Bm33 decreased after DEC treatment (but not placebo) among children who were negative for microfilaremia and antigenemia at baseline, suggesting that these children harbored early stages of infection. The MBA is an excellent serologic technique for multiple antigens that offers substantial advantages over single-antigen based enzyme-linked immunosorbent assay in mass drug administration studies for monitoring changes in antibody levels.
Collapse
Affiliation(s)
- Delynn M Moss
- National Center for Zoonotic, Vector-borne, and Enteric Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Transcription factors (TFs) are essential for the regulation of gene expression and often form emergent complexes to perform vital roles in cellular processes. In this paper, we focus on the parallel Max and Mlx networks of TFs because of their critical involvement in cell cycle regulation, proliferation, growth, metabolism, and apoptosis. A basic-helix-loop-helix-zipper (bHLHZ) domain mediates the competitive protein dimerization and DNA binding among Max and Mlx network members to form a complex system of cell regulation. To understand the importance of these network interactions, we identified the bHLHZ domain of Max and Mlx network proteins across the animal kingdom and carried out several multivariate statistical analyses. The presence and conservation of Max and Mlx network proteins in animal lineages stemming from the divergence of Metazoa indicate that these networks have ancient and essential functions. Phylogenetic analysis of the bHLHZ domain identified clear relationships among protein families with distinct points of radiation and divergence. Multivariate discriminant analysis further isolated specific amino acid changes within the bHLHZ domain that classify proteins, families, and network configurations. These analyses on Max and Mlx network members provide a model for characterizing the evolution of TFs involved in essential networks.
Collapse
Affiliation(s)
- Lisa G McFerrin
- Bioinformatics Research Center, North Carolina State University, USA.
| | | |
Collapse
|
25
|
Kissinger JC, DeBarry J. Genome cartography: charting the apicomplexan genome. Trends Parasitol 2011; 27:345-54. [PMID: 21764378 PMCID: PMC3160794 DOI: 10.1016/j.pt.2011.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/18/2011] [Accepted: 03/21/2011] [Indexed: 11/18/2022]
Abstract
Genes reside in particular genomic contexts that can be mapped at many levels. Historically, 'genetic maps' were used primarily to locate genes. Recent technological advances in the determination of genome sequences have made the analysis and comparison of whole genomes possible and increasingly tractable. What do we see if we shift our focus from gene content (the 'inventory' of genes contained within a genome) to the composition and organization of a genome? This review examines what has been learned about the evolution of the apicomplexan genome as well as the significance and impact of genomic location on our understanding of the eukaryotic genome and parasite biology.
Collapse
Affiliation(s)
- Jessica C Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, USA.
| | | |
Collapse
|
26
|
Functional Diversity of the Schistosoma mansoni Tyrosine Kinases. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:603290. [PMID: 21776387 PMCID: PMC3135232 DOI: 10.1155/2011/603290] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/15/2011] [Accepted: 03/15/2011] [Indexed: 01/07/2023]
Abstract
Schistosoma mansoni, one of the causative agents of schistosomiasis, has a complex life cycle infecting over 200 million people worldwide. Such a successful and prolific parasite life cycle has been shown to be dependent on the adaptive interaction between the parasite and hosts. Tyrosine kinases (TKs) play a key role in signaling pathways as demonstrated by a large body of experimental work in eukaryotes. Furthermore, comparative genomics have allowed the identification of TK homologs and provided insights into the functional role of TKs in several biological systems. Finally, TK structural biology has provided a rational basis for obtaining selective inhibitors directed to the treatment of human diseases. This paper covers the important aspects of the phospho-tyrosine signaling network in S. mansoni, Caenorhabditis elegans, and humans, the main process of functional diversification of TKs, that is, protein-domain shuffling, and also discusses TKs as targets for the development of new anti-schistosome drugs.
Collapse
|
27
|
Taylor CM, Fischer K, Abubucker S, Wang Z, Martin J, Jiang D, Magliano M, Rosso MN, Li BW, Fischer PU, Mitreva M. Targeting protein-protein interactions for parasite control. PLoS One 2011; 6:e18381. [PMID: 21556146 PMCID: PMC3083401 DOI: 10.1371/journal.pone.0018381] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/28/2011] [Indexed: 01/24/2023] Open
Abstract
Finding new drug targets for pathogenic infections would be of great utility for humanity, as there is a large need to develop new drugs to fight infections due to the developing resistance and side effects of current treatments. Current drug targets for pathogen infections involve only a single protein. However, proteins rarely act in isolation, and the majority of biological processes occur via interactions with other proteins, so protein-protein interactions (PPIs) offer a realm of unexplored potential drug targets and are thought to be the next-generation of drug targets. Parasitic worms were chosen for this study because they have deleterious effects on human health, livestock, and plants, costing society billions of dollars annually and many sequenced genomes are available. In this study, we present a computational approach that utilizes whole genomes of 6 parasitic and 1 free-living worm species and 2 hosts. The species were placed in orthologous groups, then binned in species-specific orthologous groups. Proteins that are essential and conserved among species that span a phyla are of greatest value, as they provide foundations for developing broad-control strategies. Two PPI databases were used to find PPIs within the species specific bins. PPIs with unique helminth proteins and helminth proteins with unique features relative to the host, such as indels, were prioritized as drug targets. The PPIs were scored based on RNAi phenotype and homology to the PDB (Protein DataBank). EST data for the various life stages, GO annotation, and druggability were also taken into consideration. Several PPIs emerged from this study as potential drug targets. A few interactions were supported by co-localization of expression in M. incognita (plant parasite) and B. malayi (H. sapiens parasite), which have extremely different modes of parasitism. As more genomes of pathogens are sequenced and PPI databases expanded, this methodology will become increasingly applicable.
Collapse
Affiliation(s)
- Christina M. Taylor
- Department of Genetics, The Genome Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kerstin Fischer
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sahar Abubucker
- Department of Genetics, The Genome Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zhengyuan Wang
- Department of Genetics, The Genome Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John Martin
- Department of Genetics, The Genome Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daojun Jiang
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Marc Magliano
- INRA 1301, CNRS 6243, UNSA, Interactions Biotiques et Santé Végétale, Sophia-Antipolis, France
| | - Marie-Noëlle Rosso
- INRA 1301, CNRS 6243, UNSA, Interactions Biotiques et Santé Végétale, Sophia-Antipolis, France
| | - Ben-Wen Li
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Peter U. Fischer
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Makedonka Mitreva
- Department of Genetics, The Genome Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
28
|
Hulme SE, Whitesides GM. Die Chemie und der Wurm: Caenorhabditis elegans als Plattform für das Zusammenführen von chemischer und biologischer Forschung. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201005461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Hulme SE, Whitesides GM. Chemistry and the Worm: Caenorhabditis elegans as a Platform for Integrating Chemical and Biological Research. Angew Chem Int Ed Engl 2011; 50:4774-807. [DOI: 10.1002/anie.201005461] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Indexed: 12/15/2022]
|
30
|
Tompkins JB, Stitt LE, Morrissette AM, Ardelli BF. The role of Brugia malayi ATP-binding cassette (ABC) transporters in potentiating drug sensitivity. Parasitol Res 2011; 109:1311-22. [PMID: 21494842 DOI: 10.1007/s00436-011-2378-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 04/04/2011] [Indexed: 10/18/2022]
Abstract
ATP binding cassette (ABC) systems are a diverse group of proteins that have been identified in every organism, from bacteria to humans. Analysis of nematode genomes indicates that the number and arrangement of ABC systems are similar to other organisms, with the majority being ABC transporters. There are few functional studies of ABC transporters in parasitic nematodes; most reports have been on their identification or use as genetic markers to monitor drug resistance. In eukaryotes, some ABC transporters function in tissue defense by actively removing drugs, thus preventing their accumulation. The overexpression of ABC transporters that function as efflux pumps, such as P-glycoprotein (PGP) and the multidrug resistance associated protein (MRP) are known to confer resistance. Drug sensitivity can be restored by administration of PGP interfering or MDR reversal agents. The objective of this study was to determine if ABC systems in filarioid nematodes function similarly to those of other organisms. The relative expression of 33 ABC systems identified in Brugia malayi was quantified following exogenous exposure to the commonly used drug ivermectin (IVM). Following exposure of adults and microfilariae to IVM, there was a significant increase in the transcriptional profiles of a number of ABC systems, mostly within the PGP and MRP subgroups. Coadministration of PGP-interfering and MDR-reversal agents with IVM potentiated sensitivity to the drug in adults and microfilariae. The results suggest that B. malayi ABC transporters function similarly to those in other organisms and are a factor in determining drug sensitivity.
Collapse
Affiliation(s)
- Jeffrey B Tompkins
- Department of Biology, Brandon University, Brodie Science Building, 270-18th Street, Brandon, MB, Canada
| | | | | | | |
Collapse
|
31
|
Mahmoud A, Zerhouni E. Neglected tropical diseases: moving beyond mass drug treatment to understanding the science. Health Aff (Millwood) 2011; 28:1726-33. [PMID: 19887413 DOI: 10.1377/hlthaff.28.6.1726] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Neglected tropical diseases (NTDs) represent a major health burden in many developing countries. To date, global efforts to control thirteen parasitic and bacterial infections that affect more than 1.4 billion people have relied on mass drug administration. This singular approach should now be expanded to a more comprehensive suite of tools including coordinated community-based programs, vector control, local training, education, and environmental change. In addition, an intensive basic research agenda is urgently needed to develop effective diagnostic, preventive, and therapeutic interventions to stay one step ahead of the evolutionary adaptation tactics of disease-causing microbes and parasites.
Collapse
Affiliation(s)
- Adel Mahmoud
- Department of Molecular Biology and Woodrow Wilson School, Princeton University
| | | |
Collapse
|
32
|
Kent BN, Salichos L, Gibbons JG, Rokas A, Newton ILG, Clark ME, Bordenstein SR. Complete bacteriophage transfer in a bacterial endosymbiont (Wolbachia) determined by targeted genome capture. Genome Biol Evol 2011; 3:209-18. [PMID: 21292630 PMCID: PMC3068000 DOI: 10.1093/gbe/evr007] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacteriophage flux can cause the majority of genetic diversity in free-living bacteria. This tenet of bacterial genome evolution generally does not extend to obligate intracellular bacteria owing to their reduced contact with other microbes and a predominance of gene deletion over gene transfer. However, recent studies suggest intracellular coinfections in the same host can facilitate exchange of mobile elements between obligate intracellular bacteria—a means by which these bacteria can partially mitigate the reductive forces of the intracellular lifestyle. To test whether bacteriophages transfer as single genes or larger regions between coinfections, we sequenced the genome of the obligate intracellular Wolbachia strain wVitB from the parasitic wasp Nasonia vitripennis and compared it against the prophage sequences of the divergent wVitA coinfection. We applied, for the first time, a targeted sequence capture array to specifically trap the symbiont's DNA from a heterogeneous mixture of eukaryotic, bacterial, and viral DNA. The tiled array successfully captured the genome with 98.3% efficiency. Examination of the genome sequence revealed the largest transfer of bacteriophage and flanking genes (52.2 kb) to date between two obligate intracellular coinfections. The mobile element transfer occurred in the recent evolutionary past based on the 99.9% average nucleotide identity of the phage sequences between the two strains. In addition to discovering an evolutionary recent and large-scale horizontal phage transfer between coinfecting obligate intracellular bacteria, we demonstrate that “targeted genome capture” can enrich target DNA to alleviate the problem of isolating symbiotic microbes that are difficult to culture or purify from the conglomerate of organisms inside eukaryotes.
Collapse
Affiliation(s)
- Bethany N Kent
- Department of Biological Sciences, Vanderbilt University, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
McNulty SN, Foster JM, Mitreva M, Dunning Hotopp JC, Martin J, Fischer K, Wu B, Davis PJ, Kumar S, Brattig NW, Slatko BE, Weil GJ, Fischer PU. Endosymbiont DNA in endobacteria-free filarial nematodes indicates ancient horizontal genetic transfer. PLoS One 2010; 5:e11029. [PMID: 20543958 PMCID: PMC2882956 DOI: 10.1371/journal.pone.0011029] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 05/19/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Wolbachia are among the most abundant symbiotic microbes on earth; they are present in about 66% of all insect species, some spiders, mites and crustaceans, and most filarial nematode species. Infected filarial nematodes, including many pathogens of medical and veterinary importance, depend on Wolbachia for proper development and survival. The mechanisms behind this interdependence are not understood. Interestingly, a minority of filarial species examined to date are naturally Wolbachia-free. METHODOLOGY/PRINCIPAL FINDINGS We used 454 pyrosequencing to survey the genomes of two distantly related Wolbachia-free filarial species, Acanthocheilonema viteae and Onchocerca flexuosa. This screen identified 49 Wolbachia-like DNA sequences in A. viteae and 114 in O. flexuosa. qRT-PCR reactions detected expression of 30 Wolbachia-like sequences in A. viteae and 56 in O. flexuosa. Approximately half of these appear to be transcribed from pseudogenes. In situ hybridization showed that two of these pseudogene transcripts were specifically expressed in developing embryos and testes of both species. CONCLUSIONS/SIGNIFICANCE These results strongly suggest that the last common ancestor of extant filarial nematodes was infected with Wolbachia and that this former endosymbiont contributed to their genome evolution. Horizontally transferred Wolbachia DNA may explain the ability of some filarial species to live and reproduce without the endosymbiont while other species cannot.
Collapse
Affiliation(s)
- Samantha N. McNulty
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jeremy M. Foster
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Makedonka Mitreva
- The Genome Center, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - John Martin
- The Genome Center, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kerstin Fischer
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bo Wu
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Paul J. Davis
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Sanjay Kumar
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | | | - Barton E. Slatko
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Gary J. Weil
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Peter U. Fischer
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
34
|
Abstract
SUMMARYABC systems are one of the largest described protein superfamilies. These systems have a domain organization that may contain 1 or more transmembrane domains (ABC_TM1F) and 1 or 2 ATP-binding domains (ABC_2). The functions (e.g., import, export and DNA repair) of these proteins distinguish the 3 classes of ABC systems. Mining and PCR-based cloning were used to identify 33 putative ABC systems from theBrugia malayigenome. There were 31 class 2 genes, commonly called ABC transporters, and 2 class 3 genes. The ABC transporters were divided into subfamilies. Three belonged to subfamily A, 16 to subfamily B, 5 to subfamily C, 1 to subfamily E and 3 to subfamilies F and G, respectively. None were placed in subfamilies D and H. Similar to other ABC systems, the ABC_2 domain ofB. malayigenes was conserved and contained the Walker A and B motifs, the signature sequence/linker region and the switch region with the conserved histidine. The ABC_TM1F domain was less conserved. The relative abundance of ABC systems was quantified using real-time reverse transcription PCR and was significantly higher in female adults ofB. malayithan in males and microfilaria, particularly those in subfamilies B and C, which are associated with drug resistance.
Collapse
|
35
|
Abstract
Filariasis is caused by thread-like nematode worms, classified according to their presence in the vertebrate host. The cutaneous group includes Onchocerca volvulus, Loa loa and Mansonella streptocerca; the lymphatic group includes Wuchereria bancrofti, Brugia malayi and Brugia timori and the body cavity group includes Mansonella perstans and Mansonella ozzardi. Lymphatic filariasis, a mosquito-borne disease, is one of the most prevalent diseases in tropical and subtropical countries and is accompanied by a number of pathological conditions. In recent years, there has been rapid progress in filariasis research, which has provided new insights into the pathogenesis of filarial disease, diagnosis, chemotherapy, the host–parasite relationship and the genomics of the parasite. Together, these insights are assisting the identification of novel drug targets and the discovery of antifilarial agents and candidate vaccine molecules. This review discusses the antifilarial activity of various chemical entities, the merits and demerits of antifilarial drugs currently in use, their mechanisms of action, in addition to antifilarial drug targets and their validation.
Collapse
|
36
|
Park JO, Pan J, Möhrlen F, Schupp MO, Johnsen R, Baillie DL, Zapf R, Moerman DG, Hutter H. Characterization of the astacin family of metalloproteases in C. elegans. BMC DEVELOPMENTAL BIOLOGY 2010; 10:14. [PMID: 20109220 PMCID: PMC2824743 DOI: 10.1186/1471-213x-10-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 01/28/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Astacins are a large family of zinc metalloproteases found in bacteria and animals. They have diverse roles ranging from digestion of food to processing of extracellular matrix components. The C. elegans genome contains an unusually large number of astacins, of which the majority have not been functionally characterized yet. RESULTS We analyzed the expression pattern of previously uncharacterized members of the astacin family to try and obtain clues to potential functions. Prominent sites of expression for many members of this family are the hypodermis, the alimentary system and several specialized cells including sensory sheath and sockets cells, which are located at openings in the body wall. We isolated mutants affecting representative members of the various subfamilies. Mutants in nas-5, nas-21 and nas-39 (the BMP-1/Tolloid homologue) are viable and have no apparent phenotypic defects. Mutants in nas-6 and nas-6; nas-7 double mutants are slow growing and have defects in the grinder of the pharynx, a cuticular structure important for food processing. CONCLUSIONS Expression data and phenotypic characterization of selected family members suggest a diversity of functions for members of the astacin family in nematodes. In part this might be due to extracellular structures unique to nematodes.
Collapse
Affiliation(s)
- Ja-On Park
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tompkins JB, Stitt LE, Ardelli BF. Brugia malayi: in vitro effects of ivermectin and moxidectin on adults and microfilariae. Exp Parasitol 2009; 124:394-402. [PMID: 20034492 DOI: 10.1016/j.exppara.2009.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 12/02/2009] [Accepted: 12/12/2009] [Indexed: 11/17/2022]
Abstract
The effect of ivermectin and moxidectin on the motility of Brugia malayi adults and microfilariae and on the fertility of B. malayi females was examined. Motility was reduced in adults after exposure to both drugs and worms were non-motile and dead within eight days. The motility of microfilariae was significantly reduced at all drug concentrations and ceased at concentrations of 2500 and 5000mug/mL. The motility of microfilariae released by females was reduced after exposure to both drugs, however ivermectin had a greater effect at concentrations between 170 and 5000mug/mL. Both drugs reduced the number of microfilariae released by females and within four days their release was inhibited. The presence of the bacterial endosymbiont Wolbachia was examined in adults and microfilariae after exposure to increasing concentrations of ivermectin and moxidectin. A decrease in wsp expression was correlated with increasing drug concentration.
Collapse
Affiliation(s)
- J B Tompkins
- Department of Biology, Brandon University, Brandon, Man. R7A 6A9, Canada
| | | | | |
Collapse
|