1
|
Dvorakova K, Skarkova V, Vitovcova B, Soukup J, Vosmikova H, Pleskacova Z, Skarka A, Bartos MC, Krupa P, Kasparova P, Petera J, Rudolf E. Expression of STAT3 and hypoxia markers in long-term surviving malignant glioma patients. BMC Cancer 2024; 24:509. [PMID: 38654280 PMCID: PMC11036726 DOI: 10.1186/s12885-024-12221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Glioblastoma is a malignant and aggressive type of central nevous system malignancy characterized by many distinct biological features including extensive hypoxia. Hypoxia in glioblatoma associates with complex signaling patterns including activation of several pathways such as MAPK, PI3K-AKT/mTOR and IL-6/JAK/STAT3 with the master regulator HIF-1, which in turn drive particular tumor behaviors determining, in the end, treatment outcomes and patients fate. Thus, the present study was designed to investigate the expression of selected hypoxia related factors including STAT3 in a small set of long-term surviving glioma patients. METHODS The expression of selected hypoxia related factors including STAT3 was evaluated in a time series of formalin fixed paraffin embedded and cryopreserved glioma samples from repeatedly resected patients. In addition, comparative studies were also conducted on primary glioma cells derived from original patient samples, stabilized glioma cell lines and tumor-xenograft mice model. Obtained data were correlated with clinical findings too. RESULTS Glioblastoma samples of the analyzed patients displayed heterogeneity in the expression of hypoxia- related and EMT markers with most interesting trend being observed in pSTAT3. This heterogeneity was subsequently confirmed in other employed models (primocultures derived from glioblastoma tissue resections, cryopreserved tumor specimens, stabilized glioblastoma cell line in vitro and in vivo) and concerned, in particular, STAT3 expression which remained stable. In addition, subsequent studies on the role of STAT3 in the context of glioblastoma hypoxia demonstrated opposing effects of its deletion on cell viability as well as the expression of hypoxia and EMT markers. CONCLUSIONS Our results suport the importance of STAT3 expression and activity in the context of hypoxia in malignant glioblastoma long-term surviving glioma patients while emphasizing heterogeneity of biological outcomes in varying employed tumor models.
Collapse
Affiliation(s)
- Katerina Dvorakova
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Veronika Skarkova
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Barbora Vitovcova
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jiri Soukup
- The Fingerland Department of Pathology, Faculty of Medicine n Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Pathology, Military University Hospital Prague, Prague, Czech Republic
- Department of Pathology, First Faculty of Medicine, Charles University, General University Hospital in Prague, Prague, Czech Republic
| | - Hana Vosmikova
- The Fingerland Department of Pathology, Faculty of Medicine n Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Zuzana Pleskacova
- Department of Oncology and Radiotherapy, Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Adam Skarka
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Michael Christian Bartos
- Department of Neurosurgery, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Petr Krupa
- Department of Neurosurgery, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Petra Kasparova
- The Fingerland Department of Pathology, Faculty of Medicine n Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jiri Petera
- Department of Oncology and Radiotherapy, Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Emil Rudolf
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic.
| |
Collapse
|
2
|
Chaudhry S, Zurbriggen R, Preza M, Kämpfer T, Kaethner M, Memedovski R, Scorrano N, Hemphill A, Doggett JS, Lundström-Stadelmann B. Dual inhibition of the Echinococcus multilocularis energy metabolism. Front Vet Sci 2022; 9:981664. [PMID: 35990276 PMCID: PMC9388906 DOI: 10.3389/fvets.2022.981664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Alveolar echinococcosis is caused by the metacestode stage of the zoonotic parasite Echinococcus multilocularis. Current chemotherapeutic treatment options rely on benzimidazoles, which have limited curative capabilities and can cause severe side effects. Thus, novel treatment options are urgently needed. In search for novel targetable pathways we focused on the mitochondrial energy metabolism of E. multilocularis. The parasite relies hereby on two pathways: The classical oxidative phosphorylation including the electron transfer chain (ETC), and the anaerobic malate dismutation (MD). We screened 13 endochin-like quinolones (ELQs) in vitro for their activities against two isolates of E. multilocularis metacestodes and isolated germinal layer cells by the phosphoglucose isomerase (PGI) assay and the CellTiter Glo assay. For the five most active ELQs (ELQ-121, ELQ-136, ELQ-271, ELQ-400, and ELQ-437), EC50 values against metacestodes were assessed by PGI assay, and IC50 values against mammalian cells were measured by Alamar Blue assay. Further, the gene sequence of the proposed target, the mitochondrial cytochrome b, was analyzed. This allowed for a limited structure activity relationship study of ELQs against E. multilocularis, including analyses of the inhibition of the two functional sites of the cytochrome b. By applying the Seahorse XFp Extracellular Flux Analyzer, oxygen consumption assays showed that ELQ-400 inhibits the E. multilocularis cytochrome bc1 complex under normoxic conditions. When tested under anaerobic conditions, ELQ-400 was hardly active against E. multilocularis metacestodes. These results were confirmed by transmission electron microscopy. ELQ-400 treatment increased levels of parasite-released succinate, the final electron acceptor of the MD. This suggests that the parasite switched to MD for energy generation. Therefore, MD was inhibited with quinazoline, which did not induce damage to metacestodes under anaerobic conditions. However, it reduced the production of succinate compared to control treated parasites (i.e., inhibited the MD). The combination treatment with quinazoline strongly improved the activity of the bc1 inhibitor ELQ-400 against E. multilocularis metacestodes under anaerobic conditions. We conclude that simultaneous targeting of the ETC and the MD of E. multilocularis is a possible novel treatment approach for alveolar echinococcosis, and possibly also other foodborne diseases inflicted by platyhelminths, which cause substantial economic losses in livestock industry.
Collapse
Affiliation(s)
- Sheena Chaudhry
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Raphael Zurbriggen
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Matías Preza
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tobias Kämpfer
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Marc Kaethner
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Roman Memedovski
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nathalie Scorrano
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joseph Stone Doggett
- Department of Infectious Diseases and Pathobiology, Oregon Health and Science University, Portland, OR, United States
- Department of Infectious Diseases and Pathobiology, Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Britta Lundström-Stadelmann
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- *Correspondence: Britta Lundström-Stadelmann
| |
Collapse
|
3
|
Chen C, Ding Y, Liu H, Sun M, Wang H, Wu D. Flubendazole Plays an Important Anti-Tumor Role in Different Types of Cancers. Int J Mol Sci 2022; 23:ijms23010519. [PMID: 35008943 PMCID: PMC8745596 DOI: 10.3390/ijms23010519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 02/01/2023] Open
Abstract
Flubendazole, belonging to benzimidazole, is a broad-spectrum insect repellent and has been repurposed as a promising anticancer drug. In recent years, many studies have shown that flubendazole plays an anti-tumor role in different types of cancers, including breast cancer, melanoma, prostate cancer, colorectal cancer, and lung cancer. Although the anti-tumor mechanism of flubendazole has been studied, it has not been fully understood. In this review, we summarized the recent studies regarding the anti-tumor effects of flubendazole in different types of cancers and analyzed the related mechanisms, in order to provide the theoretical reference for further studies in the future.
Collapse
Affiliation(s)
- Chaoran Chen
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Jinming Avenue, Kaifeng 475004, China; (C.C.); (Y.D.)
| | - Yueming Ding
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Jinming Avenue, Kaifeng 475004, China; (C.C.); (Y.D.)
| | - Huiyang Liu
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| | - Mengyao Sun
- School of Clinical Medicine, Henan University, Kaifeng 475004, China;
| | - Honggang Wang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
- Correspondence: (H.W.); (D.W.)
| | - Dongdong Wu
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
- School of Stomatology, Henan University, Kaifeng 475004, China
- Correspondence: (H.W.); (D.W.)
| |
Collapse
|
4
|
Hu Y, Zhou W, Xue Z, Liu X, Feng Z, Zhang Y, Liu X, Li W, Zhang Q, Chen A, Huang B, Wang J. Thiabendazole Inhibits Glioblastoma Cell Proliferation and Invasion Targeting Mini-chromosome Maintenance Protein 2. J Pharmacol Exp Ther 2022; 380:63-75. [PMID: 34750208 DOI: 10.1124/jpet.121.000852] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/14/2021] [Indexed: 11/22/2022] Open
Abstract
Thiabendazole (TBZ), approved by the US Food and Drug Administration (FDA) for human oral use, elicits a potential anticancer activity on cancer cells in vitro and in animal models. Here, we evaluated the efficacy of TBZ in the treatment of human glioblastoma multiforme (GBM). TBZ reduced the viability of GBM cells (P3, U251, LN229, A172, and U118MG) relative to controls in a dose- and time-dependent manner. However, normal human astrocytes (NHA) exhibited a greater IC50 than tumor cell lines and were thus more resistant to its cytotoxic effects. 5-Ethynyl-2'-deoxyuridine (EdU)-positive cells and the number of colonies formed were decreased in TBZ-treated cells (at 150 μM, P < 0.05 and at 150 μM, P < 0.001, respectively). This decrease in proliferation was associated with a G2/M arrest as assessed with flow cytometry, and the downregulation of G2/M check point proteins. In addition, TBZ suppressed GBM cell invasion. Analysis of RNA sequencing data comparing TBZ-treated cells with controls yielded a group of differentially expressed genes, the functions of which were associated with the cell cycle and DNA replication. The most significantly downregulated gene in TBZ-treated cells was mini-chromosome maintenance protein 2 (MCM2). SiRNA knockdown of MCM2 inhibited proliferation, causing a G2/M arrest in GBM cell lines and suppressed invasion. Taken together, our results demonstrated that TBZ inhibited proliferation and invasion in GBM cells through targeting of MCM2. SIGNIFICANCE STATEMENT: TBZ inhibits the proliferation and invasion of glioblastoma cells by downregulating the expression of MCM2. These results support the repurposing of TBZ as a possible therapeutic drug in the treatment of GBM.
Collapse
Affiliation(s)
- Yaotian Hu
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Wenjing Zhou
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Zhiyi Xue
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Xuemeng Liu
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Zichao Feng
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Yulin Zhang
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Xiaofei Liu
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Wenjie Li
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Qing Zhang
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Anjing Chen
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Bin Huang
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Jian Wang
- Department of Neurosurgery (Y.H., W.Z., Z.X., X.L., Z.F., Y.Z., X.L, W.L., Q.Z., A.C., B.H., J.H.), Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China; and Department of Biomedicine (J.W.), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| |
Collapse
|
5
|
Loos JA, Coccimiglio M, Nicolao MC, Rodrigues CR, Cumino AC. Metformin improves the therapeutic efficacy of low-dose albendazole against experimental alveolar echinococcosis. Parasitology 2022; 149:138-144. [PMID: 35184788 PMCID: PMC11010535 DOI: 10.1017/s0031182021001633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/28/2021] [Accepted: 09/17/2021] [Indexed: 11/06/2022]
Abstract
Alveolar echinococcosis (AE) is a severe disease caused by Echinococcus multilocularis. Its chemotherapeutic treatment is based on benzimidazoles, which are rarely curative and cause several adverse effects. Therefore, it is necessary to develop alternative and safer chemotherapeutic strategies against AE. It has previously been shown that metformin (Met) exhibits considerable in vivo activity on an early-infection model of AE when administered at 50 mg kg−1 day−1 for 8 weeks. Here, the challenge is heightened by a 2-fold increase in parasite inoculum or by starting the treatment 6 weeks post-infection. In both cases, only the combination of Met (100 mg kg−1 day−1) together with a sub-optimal dose of albendazole (ABZ) (5 mg kg−1 day−1) led to a significant reduction in parasite weight compared to the untreated group. Coincidentally, drug combination showed the highest level of damage in E. multilocularis metacestodes. Likewise, Met alone or combined with ABZ led to a decrease in parasite glucose availability, which was evidenced as a lower intracystic glucose concentration. Therefore, the results demonstrate that combination therapy with Met and ABZ offers an alternative to improve the efficacy and reduce the toxicity of the high-dose ABZ monotherapy currently employed.
Collapse
Affiliation(s)
- Julia A. Loos
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, (7600) Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Magalí Coccimiglio
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, (7600) Mar del Plata, Argentina
| | - María Celeste Nicolao
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, (7600) Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Christian Rodriguez Rodrigues
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, (7600) Mar del Plata, Argentina
| | - Andrea C. Cumino
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, (7600) Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, (7600) Mar del Plata, Argentina
| |
Collapse
|
6
|
In Vivo Treatment with the Combination of Nitazoxanide and Flubendazole Induces Gluconeogenesis and Protein Catabolism in Taenia crassiceps cysticerci. Acta Parasitol 2021; 66:98-103. [PMID: 32761323 DOI: 10.1007/s11686-020-00263-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Cysticercosis is the presence of Taenia solium larvae in humans or swines tissues. It is a public health problem related to bad hygienic habits and consumption of infected pork. T. crassiceps is a widely used cysticercosis experimental model. The combination of two effective drugs such as nitazoxanide (NTZ) and flubendazole (FBZ) may potentialize their effect. The aim of this study was to use biochemical analysis to determine the metabolic impact of the combination of NTZ and FBZ on cysticerci inoculated intraperitoneally in mice. METHODS Balb/c mice intraperitoneally infected with T. crassiceps cysticerci received a single oral dose NTZ/FBZ (50 mg/kg). 24 h after the treatment the cysticerci were removed, frozen and analyzed by high performance liquid chromatography regarding the detection of the following metabolic pathways: glycolysis, gluconeogenesis, homolactic fermentation, tricarboxylic acid cycle, proteins catabolism and fatty acids oxidation. RESULTS The treatment with the drugs combination induced a statistically significant increase in gluconeogenesis and in protein catabolism when compared to the control groups. CONCLUSION The drugs combination is potentialized and capable of causing greater metabolic stress than the separate treatment with NTZ or FBZ, showing its potential for an alternative cysticercosis treatment.
Collapse
|
7
|
Nath J, Paul R, Ghosh SK, Paul J, Singha B, Debnath N. Drug repurposing and relabeling for cancer therapy: Emerging benzimidazole antihelminthics with potent anticancer effects. Life Sci 2020; 258:118189. [DOI: 10.1016/j.lfs.2020.118189] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 02/08/2023]
|
8
|
Vitovcova B, Skarkova V, Rudolf K, Rudolf E. Biology of Glioblastoma Multiforme-Exploration of Mitotic Catastrophe as a Potential Treatment Modality. Int J Mol Sci 2020; 21:ijms21155324. [PMID: 32727112 PMCID: PMC7432846 DOI: 10.3390/ijms21155324] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma multiforme (GBM) represents approximately 60% of all brain tumors in adults. This malignancy shows a high biological and genetic heterogeneity associated with exceptional aggressiveness, leading to a poor survival of patients. This review provides a summary of the basic biology of GBM cells with emphasis on cell cycle and cytoskeletal apparatus of these cells, in particular microtubules. Their involvement in the important oncosuppressive process called mitotic catastrophe will next be discussed along with select examples of microtubule-targeting agents, which are currently explored in this respect such as benzimidazole carbamate compounds. Select microtubule-targeting agents, in particular benzimidazole carbamates, induce G2/M cell cycle arrest and mitotic catastrophe in tumor cells including GBM, resulting in phenotypically variable cell fates such as mitotic death or mitotic slippage with subsequent cell demise or permanent arrest leading to senescence. Their effect is coupled with low toxicity in normal cells and not developed chemoresistance. Given the lack of efficient cytostatics or modern molecular target-specific compounds in the treatment of GBM, drugs inducing mitotic catastrophe might offer a new, efficient alternative to the existing clinical management of this at present incurable malignancy.
Collapse
|
9
|
Echinococcus granulosus: Insights into the protoscolex F-actin cytoskeleton. Acta Trop 2019; 199:105122. [PMID: 31398313 DOI: 10.1016/j.actatropica.2019.105122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 01/01/2023]
Abstract
Echinococcus granulosus is a cestode parasite whose cytoskeleton plasticity allows it to enter and develop inside its hosts, completing thus its life cycle. We focused our attention on F-actin organization and distribution in E. granulosus protoscoleces (PSC) in order to contribute to the knowledge of the parasite cytoskeleton. In particular, we addressed some aspects of F-actin rearrangements in PSC at different stages of the evagination/invagination process. The use of light microscopy allowed us to identify different PSC structures and phalloidin staining displayed a parasite's highly organized F-actin cytoskeleton. Suckers exhibit an important musculature composed of a set of radial fibers. At the rostellum, the F-actin filaments are arranged in a bulbar shape with perforations that appear to be the attachment places for the hooks. Also, "circular" structures of F-actin were identified, which remind the flame cells. Furthermore, parasite F-actin filaments, unevenly distributed, seem to have remained substantially unchanged during the evagination/invagination process. Finally, we showed that the scolex of an evaginated E. granulosus PSC reinvaginates in vitro without any treatment.
Collapse
|
10
|
Mortezaei S, Afgar A, Mohammadi MA, Mousavi SM, Sadeghi B, Harandi MF. The effect of albendazole sulfoxide on the expression of miR-61 and let-7 in different in vitro developmental stages of Echinococcus granulosus. Acta Trop 2019; 195:97-102. [PMID: 31051116 DOI: 10.1016/j.actatropica.2019.04.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/16/2019] [Accepted: 04/29/2019] [Indexed: 12/30/2022]
Abstract
Albendazole, as the main anti-echinococcal benzimidazole, has demonstrated safe and effective therapeutic outcomes in the treatment of echinococcosis. The emergence of resistance or reduced response to albendazole sulfoxide (ABZ_SOX) and other benzimidazoles have been demonstrated in several parasitic helminths of medical and veterinary importance. As the genetic makeup and miRNA profile of helminths affects their response to albendazole sulfoxide, the present study was conducted to investigate the expression of miRNAs in different developmental stages of Echinococcus granulosus exposed to albendazole sulfoxide in vitro. Different developmental stages of the helminth were obtained from in vitro cultured E. granulosus in monophasic and diphasic media. In both ABZ-SOX-treated and control parasites miRNAs were extracted from microcysts, intact protoscoleces and strobilated worms with one and three segments. Expression of two miRNAs, let-7 and miR-61 was evaluated using RT-qPCR for each stage. Results of the present study revealed significant differential expression of both let-7 and miR-61 at different drug concentrations. A significant difference of let-7 expression was observed between the strobilated and metacestode stages of E. granulosus exposed to ABZ-SOX. In the treated protoscoleces, let-7 expression was significantly reduced in the presence of ABZ-SOX at 1000 μg/ml concentration. In contrast higher expression levels were documented in the segmented worms. In the microcysts exposed to different drug concentrations a significant decline of miR-61 expression was demonstrated. Also, a significant increase in expression of miR-61 was observed in one proglottid worms as well as the protoscoleces. Under high drug concentration or long-term exposure of the protoscoleces to ABZ-SOX significantly higher miR-61 expression was observed compared to the controls. Our findings suggested that under in vitro benzimidazole exposure the expression of two E. granulosus miRNAs were significantly affected in the microcyst stage. This study presents the first evidence of the nature of benzimidazole effects on miRNA expression in platyhelminths.
Collapse
|
11
|
Loos JA, Nicolao MC, Cumino AC. Metformin promotes autophagy in Echinococcus granulosus larval stage. Mol Biochem Parasitol 2018; 224:61-70. [PMID: 30017657 DOI: 10.1016/j.molbiopara.2018.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/21/2018] [Accepted: 07/09/2018] [Indexed: 01/01/2023]
Abstract
Cystic echinococcosis is a neglected parasitic disease caused by the larval stage of Echinococcus granulosus for which an effective treatment is not yet available. Since autophagy constitutes a homeostatic mechanism during stress, either inhibition or activation of its activity might be detrimental for survival of the parasite. Amongst the critical molecules that regulate autophagy, TOR, AMPK and sirtuins are the best characterized ones. Previously, we have identified the autophagic machinery, the occurrence of TORC1-controlled events, and the correlation between autophagy and the activation of the unfolded protein response in E. granulosus larval stage. In addition, we have demonstrated that the parasite is susceptible to metformin (Met), a drug that indirectly activates Eg-AMPK and induces energy stress. In this work, we demonstrate that Met induces autophagy in the E. granulosus larval stage. Electron microscopy analysis revealed the presence of autophagic structures in Met-treated protoscoleces. In accordance with these findings, the autophagic marker Eg-Atg8 as well as the transcriptional expression of Eg-atg6, Eg-atg8, Eg-atg12 and Eg-atg16 genes were significantly up-regulated in Met-treated parasites. The induction of the autophagic process was concomitant with Eg-foxO over-expression and its nuclear localization, which could be correlated with the transcriptional regulation of this pathway. On the other hand, the expression of Eg-AKT and Eg-Sirts suggests a possible participation of these conserved proteins in the regulation of Eg-FoxO. Therefore, through pharmacological activation of the AMPK-FoxO signaling pathway, Met could play a role in the death of the parasite contributing to the demonstrated anti-echinococcal effects of this drug. The understanding of the regulatory mechanisms of this pathway in E. granulosus represents a solid basis for choosing appropriate targets for new chemotherapeutic agents.
Collapse
Affiliation(s)
- Julia A Loos
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Celeste Nicolao
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Andrea C Cumino
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, 7600, Mar del Plata, Argentina.
| |
Collapse
|
12
|
Truong M, Monahan LG, Carter DA, Charles IG. Repurposing drugs to fast-track therapeutic agents for the treatment of cryptococcosis. PeerJ 2018; 6:e4761. [PMID: 29740519 PMCID: PMC5937474 DOI: 10.7717/peerj.4761] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/21/2018] [Indexed: 12/21/2022] Open
Abstract
Many infectious diseases disproportionately affect people in the developing world. Cryptococcal meningitis is one of the most common mycoses in HIV-AIDS patients, with the highest burden of disease in sub-Saharan Africa. Current best treatment regimens still result in unacceptably high mortality rates, and more effective antifungal agents are needed urgently. Drug development is hampered by the difficulty of developing effective antifungal agents that are not also toxic to human cells, and by a reluctance among pharmaceutical companies to invest in drugs that cannot guarantee a high financial return. Drug repurposing, where existing drugs are screened for alternative activities, is becoming an attractive approach in antimicrobial discovery programs, and various compound libraries are now commercially available. As these drugs have already undergone extensive optimisation and passed regulatory hurdles this can fast-track their progress to market for new uses. This study screened the Screen-Well Enzo library of 640 compounds for candidates that phenotypically inhibited the growth of Cryptococcus deuterogattii. The anthelminthic agent flubendazole, and L-type calcium channel blockers nifedipine, nisoldipine and felodipine, appeared particularly promising and were tested in additional strains and species. Flubendazole was very active against all pathogenic Cryptococcus species, with minimum inhibitory concentrations of 0.039-0.156 μg/mL, and was equally effective against isolates that were resistant to fluconazole. While nifedipine, nisoldipine and felodipine all inhibited Cryptococcus, nisoldipine was also effective against Candida, Saccharomyces and Aspergillus. This study validates repurposing as a rapid approach for finding new agents to treat neglected infectious diseases.
Collapse
Affiliation(s)
- Megan Truong
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Leigh G Monahan
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Dee A Carter
- School of Life and Environmental Sciences and the Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Ian G Charles
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia.,Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
13
|
Progress in the pharmacological treatment of human cystic and alveolar echinococcosis: Compounds and therapeutic targets. PLoS Negl Trop Dis 2018; 12:e0006422. [PMID: 29677189 PMCID: PMC5931691 DOI: 10.1371/journal.pntd.0006422] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/02/2018] [Accepted: 03/31/2018] [Indexed: 02/06/2023] Open
Abstract
Human cystic and alveolar echinococcosis are helmintic zoonotic diseases caused by infections with the larval stages of the cestode parasites Echinococcus granulosus and E. multilocularis, respectively. Both diseases are progressive and chronic, and often fatal if left unattended for E. multilocularis. As a treatment approach, chemotherapy against these orphan and neglected diseases has been available for more than 40 years. However, drug options were limited to the benzimidazoles albendazole and mebendazole, the only chemical compounds currently licensed for treatment in humans. To compensate this therapeutic shortfall, new treatment alternatives are urgently needed, including the identification, development, and assessment of novel compound classes and drug targets. Here is presented a thorough overview of the range of compounds that have been tested against E. granulosus and E. multilocularis in recent years, including in vitro and in vivo data on their mode of action, dosage, administration regimen, therapeutic outcomes, and associated clinical symptoms. Drugs covered included albendazole, mebendazole, and other members of the benzimidazole family and their derivatives, including improved formulations and combined therapies with other biocidal agents. Chemically synthetized molecules previously known to be effective against other infectious and non-infectious conditions such as anti-virals, antibiotics, anti-parasites, anti-mycotics, and anti-neoplastics are addressed. In view of their increasing relevance, natural occurring compounds derived from plant and fungal extracts are also discussed. Special attention has been paid to the recent application of genomic science on drug discovery and clinical medicine, particularly through the identification of small inhibitor molecules tackling key metabolic enzymes or signalling pathways. Human cystic and alveolar echinococcosis (CE and AE), caused by the larval stages of the helminths Echinococcus granulosus and E. multilocularis, respectively, are progressive and chronic diseases affecting more than 1 million people worldwide. Both are considered orphan and neglected diseases by the World Health Organization. As a treatment approach, chemotherapy is limited to the use of benzimidazoles, drugs that stop parasite growth but do not kill the parasite. To compensate this therapeutic shortfall, new treatment alternatives are urgently needed. Here, we present the state-of-the-art regarding the alternative compounds and new formulations of benzimidazoles assayed against these diseases until now. Some of these new and modified compounds, either alone or in combination, could represent a step forward in the treatment of CE and AE. Unfortunately, few compounds have reached clinical trials stage in humans and, when assayed, the design of these studies has not allowed evidence-based conclusions. Thus, there is still an urgent need for defining new compounds or improved formulations of those already assayed, and also for a careful design of clinical protocols that could lead to the draw of a broad international consensus on the use of a defined drug, or a combination of drugs, for the effective treatment of CE and AE.
Collapse
|
14
|
Čáňová K, Rozkydalová L, Vokurková D, Rudolf E. Flubendazole induces mitotic catastrophe and apoptosis in melanoma cells. Toxicol In Vitro 2017; 46:313-322. [PMID: 29107018 DOI: 10.1016/j.tiv.2017.10.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 01/04/2023]
Abstract
Flubendazole (FLU) is a widely used anthelmintic drug belonging to benzimidazole group. Recently, several studies have been published demonstrating its potential to inhibit growth of various tumor cells including those derived from colorectal cancer, breast cancer or leukemia via several mechanisms. In the present study we have investigated cytotoxic effects of FLU on malignant melanoma using A-375, BOWES and RPMI-7951 cell lines representing diverse melanoma molecular types. In all three cell lines, FLU inhibited cell growth and proliferation and disrupted microtubule structure and function which was accompanied by dramatic changes in cellular morphology. In addition, FLU-treated cells accumulated at the G2/M phase of cell cycle and displayed the features of mitotic catastrophe characterized by formation of giant cells with multiple nuclei, abnormal spindles and subsequent apoptotic demise. Although this endpoint was observed in all treated melanoma lines, our analyses showed different activated biochemical signaling in particular cells, thus suggesting a promising treatment potential of FLU in malignant melanoma warranting its further testing.
Collapse
Affiliation(s)
- K Čáňová
- Department of Medical Biology and Genetics, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| | - L Rozkydalová
- Department of Pharmacology, Charles University, Faculty of Pharmacy in Hradec Králové, Czech Republic
| | - D Vokurková
- Department of Clinical Immunology and Allergology, University Hospital in Hradec Králové, Czech Republic
| | - E Rudolf
- Department of Medical Biology and Genetics, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic.
| |
Collapse
|
15
|
Bortezomib initiates endoplasmic reticulum stress, elicits autophagy and death in Echinococcus granulosus larval stage. PLoS One 2017; 12:e0181528. [PMID: 28817601 PMCID: PMC5560652 DOI: 10.1371/journal.pone.0181528] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
Cystic echinococcosis (CE) is a worldwide distributed helminthic zoonosis caused by Echinococcus granulosus. Benzimidazole derivatives are currently the only drugs for chemotherapeutic treatment of CE. However, their low efficacy and the adverse effects encourage the search for new therapeutic targets. We evaluated the in vitro efficacy of Bortezomib (Bz), a proteasome inhibitor, in the larval stage of the parasite. After 96 h, Bz showed potent deleterious effects at a concentration of 5 μM and 0.5 μM in protoscoleces and metacestodes, respectively (P < 0.05). After 48 h of exposure to this drug, it was triggered a mRNA overexpression of chaperones (Eg-grp78 and Eg-calnexin) and of Eg-ire2/Eg-xbp1 (the conserved UPR pathway branch) in protoscoleces. No changes were detected in the transcriptional expression of chaperones in Bz-treated metacestodes, thus allowing ER stress to be evident and viability to highly decrease in comparison with protoscoleces. We also found that Bz treatment activated the autophagic process in both larval forms. These facts were evidenced by the increase in the amount of transcripts of the autophagy related genes (Eg-atg6, Eg-atg8, Eg-atg12, Eg-atg16) together with the increase in Eg-Atg8-II detected by western blot and by in toto immunofluorescence labeling. It was further confirmed by direct observation of autophagic structures by electronic microscopy. Finally, in order to determine the impact of autophagy induction on Echinococcus cell viability, we evaluated the efficacy of Bz in combination with rapamycin and a synergistic cytotoxic effect on protoscolex viability was observed when both drugs were used together. In conclusion, our findings demonstrated that Bz induced endoplasmic reticulum stress, autophagy and subsequent death allowing to identify unstudied parasite-host pathways that could provide a new insight for control of parasitic diseases.
Collapse
|
16
|
Čáňová K, Rozkydalová L, Rudolf E. Anthelmintic Flubendazole and Its Potential Use in Anticancer Therapy. ACTA MEDICA (HRADEC KRÁLOVÉ) 2017; 60:5-11. [DOI: 10.14712/18059694.2017.44] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Flubendazole is a widely used anthelmintic drug belonging to benzimidazole group. The molecular mechanism of action of flubendazole is based on its specific binding to tubulin, which results in disruption of microtubule structure and function, and in the interference with the microtubule-mediated transport of secretory vesicles in absorptive tissues of helminths. The microtubule-disrupting properties of benzimidazole derivatives raised recently interest in these compounds as possible anti-cancer agents. In this minireview flubendazole effects towards selected human malignant cells including myeloma, leukemia, neuroblastoma, breast cancer, colorectal cancer and melanoma are discussed along with basic data on its pharmacokinetics, metabolism and toxicity.
Collapse
|
17
|
Loos JA, Cumino AC. In Vitro Anti-Echinococcal and Metabolic Effects of Metformin Involve Activation of AMP-Activated Protein Kinase in Larval Stages of Echinococcus granulosus. PLoS One 2015; 10:e0126009. [PMID: 25965910 PMCID: PMC4429119 DOI: 10.1371/journal.pone.0126009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 03/27/2015] [Indexed: 11/22/2022] Open
Abstract
Metformin (Met) is a biguanide anti-hyperglycemic agent, which also exerts antiproliferative effects on cancer cells. This drug inhibits the complex I of the mitochondrial electron transport chain inducing a fall in the cell energy charge and leading 5'-AMP-activated protein kinase (AMPK) activation. AMPK is a highly conserved heterotrimeric complex that coordinates metabolic and growth pathways in order to maintain energy homeostasis and cell survival, mainly under nutritional stress conditions, in a Liver Kinase B1 (LKB1)-dependent manner. This work describes for the first time, the in vitro anti-echinococcal effect of Met on Echinococcus granulosus larval stages, as well as the molecular characterization of AMPK (Eg-AMPK) in this parasite of clinical importance. The drug exerted a dose-dependent effect on the viability of both larval stages. Based on this, we proceeded with the identification of the genes encoding for the different subunits of Eg-AMPK. We cloned one gene coding for the catalytic subunit (Eg-ampkɑ) and two genes coding for the regulatory subunits (Eg-ampkβ and Eg-ampkγ), all of them constitutively transcribed in E. granulosus protoscoleces and metacestodes. Their deduced amino acid sequences show all the conserved functional domains, including key amino acids involved in catalytic activity and protein-protein interactions. In protoscoleces, the drug induced the activation of AMPK (Eg-AMPKɑ-P176), possibly as a consequence of cellular energy charge depletion evidenced by assays with the fluorescent indicator JC-1. Met also led to carbohydrate starvation, it increased glucogenolysis and homolactic fermentation, and decreased transcription of intermediary metabolism genes. By in toto immunolocalization assays, we detected Eg-AMPKɑ-P176 expression, both in the nucleus and the cytoplasm of cells as in the larval tegument, the posterior bladder and the calcareous corpuscles of control and Met-treated protoscoleces. Interestingly, expression of Eg-AMPKɑ was observed in the developmental structures during the de-differentiation process from protoscoleces to microcysts. Therefore, the Eg-AMPK expression during the asexual development of E. granulosus, as well as the in vitro synergic therapeutic effects observed in presence of Met plus albendazole sulfoxide (ABZSO), suggest the importance of carrying out chemoprophylactic and clinical efficacy studies combining Met with conventional anti-echinococcal agents to test the potential use of this drug in hydatidosis therapy.
Collapse
Affiliation(s)
- Julia A. Loos
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, (7600), Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
| | - Andrea C. Cumino
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, (7600), Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, (7600), Mar del Plata, Argentina
- * E-mail:
| |
Collapse
|
18
|
Wagil M, Białk-Bielińska A, Puckowski A, Wychodnik K, Maszkowska J, Mulkiewicz E, Kumirska J, Stepnowski P, Stolte S. Toxicity of anthelmintic drugs (fenbendazole and flubendazole) to aquatic organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2566-73. [PMID: 25189803 PMCID: PMC4315879 DOI: 10.1007/s11356-014-3497-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 08/20/2014] [Indexed: 05/06/2023]
Abstract
Flubendazole (FLU) and fenbendazole (FEN) belong to benzimidazoles-pharmaceuticals widely used in veterinary and human medicine for the treatment of intestinal parasites as well as for the treatment of systemic worm infections. In recent years, usage of these drugs increased, which resulted in a larger contamination of the environment and possible negative effects on biota. Hence, in our research, we investigated an aquatic ecotoxicity of these pharmaceuticals towards: marine bacteria (Vibrio fischeri), green algae (Scenedesmus vacuolatus), duckweed (Lemna minor) and crustacean (Daphnia magna). Ecotoxicity tests were combined with chemical analysis in order to investigate the actual exposure concentration of the compounds used in the experiment as well as to stability and adsorption studies. As a result, study evaluating sensitivity of different aquatic organisms to these compounds and new ecotoxicological data is presented. The strongest negative impact of FLU and FEN was observed to D. magna.
Collapse
Affiliation(s)
- Marta Wagil
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Alan Puckowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Katarzyna Wychodnik
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Maszkowska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Jolanta Kumirska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Stefan Stolte
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
- UFT Center for Environmental Research and Sustainable Technology, University of Bremen, Leobener Straße, D-28359 Bremen, Germany
| |
Collapse
|
19
|
Nicolao MC, Denegri GM, Cárcamo JG, Cumino AC. P-glycoprotein expression and pharmacological modulation in larval stages of Echinococcus granulosus. Parasitol Int 2014; 63:1-8. [DOI: 10.1016/j.parint.2013.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 09/03/2013] [Accepted: 09/27/2013] [Indexed: 11/27/2022]
|
20
|
Petrigh R, Fugassa M. DNA extraction and a cost-effective detection method for Echinococcus granulosus protoscoleces. Vet Parasitol 2013; 198:410-3. [DOI: 10.1016/j.vetpar.2013.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 09/02/2013] [Accepted: 09/12/2013] [Indexed: 10/26/2022]
|
21
|
Yu CG, Singh R, Crowdus C, Raza K, Kincer J, Geddes JW. Fenbendazole improves pathological and functional recovery following traumatic spinal cord injury. Neuroscience 2013; 256:163-9. [PMID: 24183965 DOI: 10.1016/j.neuroscience.2013.10.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 01/16/2023]
Abstract
During a study of spinal cord injury (SCI), mice in our colony were treated with the anthelmintic fenbendazole to treat pinworms detected in other mice not involved in the study. As this was not part of the original experimental design, we subsequently compared pathological and functional outcomes of SCI in female C57BL/6 mice who received fenbendazole (150 ppm, 8 mg/kg body weight/day) for 4 weeks prior to moderate contusive SCI (50 kdyn force) as compared to mice on the same diet without added fenbendazole. The fenbendazole-treated mice exhibited improved locomotor function, determined using the Basso mouse scale, as well as improved tissue sparing following contusive SCI. Fenbendazole may exert protective effects through multiple possible mechanisms, one of which is inhibition of the proliferation of B lymphocytes, thereby reducing antibody responses. Autoantibodies produced following SCI contribute to the axon damage and locomotor deficits. Fenbendazole pretreatment reduced the injury-induced CD45R-positive B cell signal intensity and IgG immunoreactivity at the lesion epicenter 6 weeks after contusive SCI in mice, consistent with a possible effect on the immune response to the injury. Fenbendazole and related benzimadole antihelmintics are FDA approved, exhibit minimal toxicity, and represent a novel group of potential therapeutics targeting secondary mechanisms following SCI.
Collapse
Affiliation(s)
- C G Yu
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| | - R Singh
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| | - C Crowdus
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| | - K Raza
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| | - J Kincer
- Division of Laboratory Animal Resources, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| | - J W Geddes
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
22
|
Proline modulates the effect of bisphosphonate on calcium levels and adenosine triphosphate production in cell lines derived from bovine Echinococcus granulosus protoscoleces. J Helminthol 2013; 88:459-67. [PMID: 23742745 DOI: 10.1017/s0022149x13000436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bisphosphonates have been proposed as pharmacological agents against parasite and cancer cell growth. The effect of these compounds on helminthic cell viability and acellular compartment morphology, however, has not yet been studied. The effects of different types of bisphosphonates, namely etidronate (EHDP), pamidronate (APD), alendronate (ABP), ibandronate (IB) and olpadronate (OPD), and their interaction with amiloride, 1,25-dihydroxycholecalciferol (D3) and proline were evaluated on a cell line derived from bovine Echinococcus granulousus protoscoleces (EGPE) that forms cystic colonies in agarose. The EGPE cell line allowed testing the effect of bisphosphonates alone and in association with other compounds that could modulate calcium apposition/deposition, and were useful in measuring the impact of these compounds on cell growth, cystic colony formation and calcium storage. Decreased cell growth and cystic colony formation were found with EHDP, IB and OPD, and increased calcium storage with EHDP only. Calcium storage in EGPE cells appeared to be sensitive to the effect of amiloride, D3 and proline. Proline decreased calcium storage and increased colony formation. Changes in calcium storage may be associated with degenerative changes of the cysts, as shown in the in vitro colony model and linked to an adenosine triphosphate (ATP) decrease. In conclusion, bisphosphonates could be suitable tempering drugs to treat cestode infections.
Collapse
|
23
|
Ghinet A, Tourteau A, Rigo B, Stocker V, Leman M, Farce A, Dubois J, Gautret P. Synthesis and biological evaluation of fluoro analogues of antimitotic phenstatin. Bioorg Med Chem 2013; 21:2932-40. [DOI: 10.1016/j.bmc.2013.03.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/24/2013] [Accepted: 03/26/2013] [Indexed: 01/10/2023]
|
24
|
Abstract
The external location of the zebrafish lateral line makes it a powerful model for studying mechanosensory hair cell regeneration. We have developed a chemical screen to identify FDA-approved drugs and biologically active compounds that modulate hair cell regeneration in zebrafish. Of the 1680 compounds evaluated, we identified two enhancers and six inhibitors of regeneration. The two enhancers, dexamethasone and prednisolone, are synthetic glucocorticoids that potentiated hair cell numbers during regeneration and also induced hair cell addition in the absence of damage. BrdU analysis confirmed that the extra hair cells arose from mitotic activity. We found that dexamethasone and prednisolone, like other glucocorticoids, suppress zebrafish caudal fin regeneration, indicating that hair cell regeneration occurs by a distinctly different process. Further analyses of the regeneration inhibitors revealed that two of the six, flubendazole and topotecan, significantly suppress hair cell regeneration by preventing proliferation of hair cell precursors. Flubendazole halted support cell division in M-phase, possibly by interfering with normal microtubule activity. Topotecan, a topoisomerase inhibitor, killed both hair cells and proliferating hair cell precursors. A third inhibitor, fulvestrant, moderately delayed hair cell regeneration by reducing support cell proliferation. Our observation that hair cells do not regenerate when support cell proliferation is impeded confirms previous observations that cell division is the primary route for hair cell regeneration after neomycin treatment in zebrafish.
Collapse
|
25
|
Reimschuessel R, Gieseker C, Poynton S. In vitro effect of seven antiparasitics on Acolpenteron ureteroecetes (Dactylogyridae) from largemouth bass Micropterus salmoides (Centrarchidae). DISEASES OF AQUATIC ORGANISMS 2011; 94:59-72. [PMID: 21553568 DOI: 10.3354/dao02303] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Few drugs are approved by the United States Food and Drug Administration for treating parasite infections in minor species such as fish, due in part to the high cost of developing such drugs and to a relatively small market share for drug sponsors. Because in vivo effectiveness trials for antiparasitic drugs are costly, time consuming, and use many animals, a systematic in vitro screening approach to describe parasite motility could help find promising drug candidates. We evaluated the effects of 7 antiparasitics on the activity and survival of the endoparasitic monogenean Acolpenteron ureteroecetes (Dactylogyridae) collected from the posterior kidneys of juvenile largemouth bass Micropterus salmoides (Lacepede, 1802) (Centrarchidae) held in the laboratory. Tests were conducted in 12 well tissue culture plates; each well had 3 parasites, and we tested 3 concentrations and 1 control for each of the 7 antiparasitics. The parasites were observed immediately after adding the drug, at 1 to 3 h, and 17 to 26 h, and video recordings were made. Drug effects were recorded by documenting morbidity (reduced movement, tremors, contracted body, abnormal morphology) and mortality. A. ureteroecetes was strongly affected by the quinoline praziquantel, the imidazothiazide levamisole, and the organophosphates dichlorvos and trichlorfon. The parasites were moderately affected by the macrocyclic lactones ivermectin and emamectin, and generally unaffected by the benzimidazole mebendazole. Our study demonstrates the utility of characterizing in vitro responses with video microscopy to document responses of fish parasites for initial screens of drug effects on a fish monogenean.
Collapse
Affiliation(s)
- Renate Reimschuessel
- US Food and Drug Administration, Center for Veterinary Medicine, Office of Research, 8401 Muirkirk Road, Laurel, Maryland 20708, USA
| | | | | |
Collapse
|
26
|
Duan LP, Xue J, Xu LL, Zhang HB. Synthesis 1-acyl-3-(2'-aminophenyl) thioureas as anti-intestinal nematode prodrugs. Molecules 2010; 15:6941-7. [PMID: 20938404 PMCID: PMC6259247 DOI: 10.3390/molecules15106941] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/06/2010] [Accepted: 09/25/2010] [Indexed: 11/26/2022] Open
Abstract
A series of 1-acyl-3-(2'-aminophenyl) thiourea derivatives were designed and synthesized. The structures of all the newly synthesized compounds were identified by IR, elemental analysis, ¹H-NMR and ¹³C-NMR. Their anti-intestinal nematode activities against Nippostrongylus brazilliensis were evaluated in rats by an oral route. Among these compounds, at concentrations of 10 mg/kg of rat, compound (1-(2'-furanyl)acyl-3- (2'-aminophenyl) thiourea) produced the highest activity with 89.4% deparasitization. The present work suggests that 1-acyl-3-(2'-aminophenyl) thiourea derivatives may become useful lead compounds for anti-intestinal nematode treatment.
Collapse
Affiliation(s)
| | | | | | - Hao-Bing Zhang
- National Institute for Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China
| |
Collapse
|
27
|
Albani CM, Elissondo MC, Cumino AC, Chisari A, Denegri GM. Primary cell culture of Echinococcus granulosus developed from the cystic germinal layer: Biological and functional characterization. Int J Parasitol 2010; 40:1269-75. [DOI: 10.1016/j.ijpara.2010.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
|
28
|
The antihelmintic flubendazole inhibits microtubule function through a mechanism distinct from Vinca alkaloids and displays preclinical activity in leukemia and myeloma. Blood 2010; 115:4824-33. [DOI: 10.1182/blood-2009-09-243055] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
On-patent and off-patent drugs with previously unrecognized anticancer activity could be rapidly repurposed for this new indication given their prior toxicity testing. To identify such compounds, we conducted chemical screens and identified the antihelmintic flubendazole. Flubendazole induced cell death in leukemia and myeloma cell lines and primary patient samples at nanomolar concentrations. Moreover, it delayed tumor growth in leukemia and myeloma xenografts without evidence of toxicity. Mechanistically, flubendazole inhibited tubulin polymerization by binding tubulin at a site distinct from vinblastine. In addition, cells resistant to vinblastine because of overexpression of P-glycoprotein remained fully sensitive to flubendazole, indicating that flubendazole can overcome some forms of vinblastine resistance. Given the different mechanisms of action, we evaluated the combination of flubendazole and vinblastine in vitro and in vivo. Flubendazole synergized with vinblastine to reduce the viability of OCI-AML2 cells. In addition, combinations of flubendazole with vinblastine or vincristine in a leukemia xenograft model delayed tumor growth more than either drug alone. Therefore, flubendazole is a novel microtubule inhibitor that displays preclinical activity in leukemia and myeloma.
Collapse
|
29
|
McManus DP. Echinococcosis with Particular Reference to Southeast Asia. ADVANCES IN PARASITOLOGY 2010; 72:267-303. [DOI: 10.1016/s0065-308x(10)72010-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Cumino AC, Lamenza P, Denegri GM. Identification of functional FKB protein in Echinococcus granulosus: its involvement in the protoscolicidal action of rapamycin derivates and in calcium homeostasis. Int J Parasitol 2009; 40:651-61. [PMID: 20005877 DOI: 10.1016/j.ijpara.2009.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 10/30/2009] [Accepted: 11/02/2009] [Indexed: 11/25/2022]
Abstract
FK506 (tacrolimus) and polyketide macrolides such as rapamycin and its derivates bind to FK506-binding proteins (FKBPs). These proteins display a peptidyl-prolyl rotamase function that is believed to catalyze protein folding and they are well-validated anti-proliferative drug targets in certain pathogenic microorganisms, and their functions have been characterized in parasitic protozoa. However, much less is known in helminths and trials with rapalogs on cestoda have not yet been reported. Due to a growing need for new treatment options for human cystic echinococcosis, the in vitro efficacy of rapalogs in Echinococcus granulosus was investigated. We determined the effect of ramapycin, FK506 and everolimus against this cestode, demonstrating their protoscolicidal ability. Also, we observed synergic scolicidal actions during combined therapy with rapalogs plus cyclosporine A, proposing dual administration of drugs to improve pharmacological effects in vivo. We have identified an E. granulosus (Eg)-fkb1 gene that encodes Eg-FKBP, an archetypal protein of the FKBP family, which includes all residues implicated in the binding of pharmacological ligands, in the enzymatic activity and in interactions with possible target proteins. Levels of Eg-fkb1 mRNA are over-expressed by acid but not rapalog treatment. We also described the presence of receptor-operated calcium channels in the larval stage, suggesting that exogenous ligands may dissociate the interaction of Eg-FKBP from these intracellular channels, enhancing the activity of the Ca(2+) release and interfering with their normal regulatory functions. As rapamycin sensitivity is the major criterion used to detect targets of rapamycin kinase, we identified and analyzed in silico critical residues of putative homologs in the Echinococcus genome. These preliminary results will allow us to continue subsequent studies that could reveal the precise intracellular functions of Eg-FKBP, providing greater knowledge for further identification of downstream target proteins, a promising target for chemotherapy of cystic echinococcosis.
Collapse
Affiliation(s)
- Andrea C Cumino
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, (7600) Mar del Plata, Argentina.
| | | | | |
Collapse
|