1
|
Yao X, Chen Y, Chen K, Lin L, Zhong J, Shan C, Liu M, Chen X, Zhang Y, Li H. Prevention and control of schistosomiasis in the Philippines from a health education perspective. Front Public Health 2025; 13:1558564. [PMID: 40270756 PMCID: PMC12014558 DOI: 10.3389/fpubh.2025.1558564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
Schistosomiasis, second only to malaria, poses a significant threat to many regions worldwide, particularly tropical and subtropical areas. The Philippines, located in a tropical region, has long suffered from the serious public health hazards of schistosomiasis. We recognize that, besides direct snail control and mass drug administration, education plays a crucial role, either directly or indirectly, in the prevention and control of schistosomiasis. Therefore, this paper delves into the current status of schistosomiasis in the Philippines, the evolving strategies for prevention and control, and the significance of these efforts, with a particular focus on analyzing the impact, achievements, and challenges of educational interventions in schistosomiasis control. This detailed analysis aims to provide a comprehensive perspective on the overall progress and challenges of schistosomiasis prevention and control in the Philippines.
Collapse
Affiliation(s)
- Xiaodong Yao
- School of Marxism, Hangzhou Medical College, Hangzhou, China
| | - Yihan Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Lijun Lin
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jiangyue Zhong
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Chaojun Shan
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Mingcheng Liu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xintong Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yijie Zhang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
2
|
Horn M, Bieliková L, Vostoupalová A, Švéda J, Mareš M. An update on proteases and protease inhibitors from trematodes. ADVANCES IN PARASITOLOGY 2024; 126:97-176. [PMID: 39448195 DOI: 10.1016/bs.apar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Bieliková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Vostoupalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Švéda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Tallima H, Mahmoud SS. Mechanisms of Arachidonic Acid In Vitro Schistosomicidal Potential. ACS OMEGA 2024; 9:23316-23328. [PMID: 38854551 PMCID: PMC11154912 DOI: 10.1021/acsomega.3c09906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 06/11/2024]
Abstract
Arachidonic acid (ARA) was shown to possess safe and effective schistosomicidal impact on larval and adult Schistosoma mansoni and Schistosoma hematobium in vitro and in vivo in laboratory rodents and in children residing in low and high endemicity regions. We herein examine mechanisms underlying ARA schistosomicidal potential over two experiments, using in each pool a minimum of 50 adult male, female, or mixed-sex freshly recovered, ex vivo S. mansoni. Worms incubated in fetal calf serum-free medium were exposed to 0 or 10 mM ARA for 1 h at 37 °C and immediately processed for preparation of surface membrane and whole worm body homogenate extracts. Mixed-sex worms were additionally used for evaluating the impact of ARA exposure on the visualization of outer membrane cholesterol, sphingomyelin (SM), and ceramide in immunofluorescence assays. Following assessment of protein content, extracts of intact and ARA-treated worms were examined and compared for SM content, neutral sphingomyelinase activity, reactive oxygen species levels, and caspase 3/7 activity. Arachidonic acid principally led to perturbation of the organization, integrity, and SM content of the outer membrane of male and female worms and additionally impacted female parasites via stimulating neutral sphingomyelinase activity and oxidative stress. Arachidonic powerful action on female worms combined with its previously documented ovocidal activities supports its use as safe and effective therapy against schistosomiasis, provided implementation of the sorely needed and long waited-for chemical synthesis.
Collapse
Affiliation(s)
- Hatem Tallima
- Department
of Chemistry, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo 11835, Egypt
| | - Soheir S. Mahmoud
- Department
of Parasitology, Theodore Bilharz Research
Institute, Warrak El-Hadar, Imbaba,Giza 12411, Egypt
| |
Collapse
|
4
|
Sun C, Luo F, You Y, Gu M, Yang W, Yi C, Zhang W, Feng Z, Wang J, Hu W. MicroRNA-1 targets ribosomal protein genes to regulate the growth, development and reproduction of Schistosoma japonicum. Int J Parasitol 2023; 53:637-649. [PMID: 37355197 DOI: 10.1016/j.ijpara.2023.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 06/26/2023]
Abstract
Eggs laid by mature female schistosomes are primarily responsible for the pathogenesis of schistosomiasis and critical for transmission. Consequently, elucidating the mechanism of sexual maturation as well as egg production may lead to new strategies for the control of schistosomiasis. MicroRNAs (miRNAs) are involved in multiple biological processes including reproduction in many organisms, yet their roles have not been well characterized in schistosomes. Here, we investigated microRNA-1 (miR-1), which was downregulated gradually in both male and female Schistosoma japonicum after they reached sexually maturity. The expression of miR-1, as shown with quantitative reverse transcription PCR (qRT-PCR), was lower in the reproductive organs of adult females compared with the somatic tissues. Overexpression of miR-1 in adult worms destroyed the morphological architecture of reproductive organs and reduced the subsequent oviposition, which may be due to the activation of apoptosis pathways. Through in silico analysis, 34 potential target genes of miR-1 were identified, including five ribosomal protein genes, called rp-s13, rp-l7ae, rp-l14, rp-l11 and rp-s24e. In vitro dual-luciferase reporter gene assays and miRNA overexpression experiments further validated that these ribosomal protein genes were directly regulated by miR-1. In contrast to the gene expression of miR-1, qRT-PCR and in situ hybridization experiments demonstrated these ribosomal protein genes were enriched in the sexual organs of adult females. Using RNA interference to silence the ribosomal protein genes in different developmental stages in a mouse model system, we demonstrated that these miR-1 target genes not only participated in the reproductive development of S. japonicum, but also were required for the growth and survival of the parasite in the early developmental stages. Taken together, our data suggested that miR-1 may affect the growth, reproduction and oviposition of S. japonicum by targeting the ribosomal protein genes, which provides insights for exploration of new anti-schistosome strategies.
Collapse
Affiliation(s)
- Chengsong Sun
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China; Anhui Provincial Institute of Parasitic Diseases, No. 12560 Fanhua Avenue, Shushan District, Hefei 230601, Anhui Province, China
| | - Fang Luo
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Yanmin You
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Mengjie Gu
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Wenbin Yang
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Cun Yi
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Wei Zhang
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Zheng Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention and Fudan University, No.207 Ruijin Road II, Shanghai 200025, China
| | - Jipeng Wang
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China.
| | - Wei Hu
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China; National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention and Fudan University, No.207 Ruijin Road II, Shanghai 200025, China; College of Life Sciences, Inner Mongolia University, No. 235 Daxue West Road, Saihan District, Hohhot 010021, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
5
|
Neverov AM, Panchin AY, Mikhailov KV, Batueva MD, Aleoshin VV, Panchin YV. Apoptotic gene loss in Cnidaria is associated with transition to parasitism. Sci Rep 2023; 13:8015. [PMID: 37198195 PMCID: PMC10192318 DOI: 10.1038/s41598-023-34248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
The phylum Cnidaria consists of several morphologically diverse classes including Anthozoa, Cubozoa, Hydrozoa, Polypodiozoa, Scyphozoa, Staurozoa, and Myxozoa. Myxozoa comprises two subclasses of obligate parasites-Myxosporea and Malacosporea, which demonstrate various degrees of simplification. Myxosporea were previously reported to lack the majority of core protein domains of apoptotic proteins including caspases, Bcl-2, and APAF-1 homologs. Other sequenced Cnidaria, including the parasite Polypodium hydriforme from Polypodiozoa do not share this genetic feature. Whether this loss of core apoptotic proteins is unique to Myxosporea or also present in its sister subclass Malacosporea was not previously investigated. We show that the presence of core apoptotic proteins gradually diminishes from free-living Cnidaria to Polypodium to Malacosporea to Myxosporea. This observation does not favor the hypothesis of catastrophic simplification of Myxosporea at the genetic level, but rather supports a stepwise adaptation to parasitism that likely started from early parasitic ancestors that gave rise to Myxozoa.
Collapse
Affiliation(s)
- Alexander M Neverov
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation, 119234.
| | - Alexander Y Panchin
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation, 127994
| | - Kirill V Mikhailov
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation, 127994
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, Russian Federation, 119991
| | - Marina D Batueva
- Institute of General and Experimental Biology Siberian Branch of Russian Academy of Sciences, Ulan-Ude, Russian Federation, 670047
| | - Vladimir V Aleoshin
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation, 127994
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, Russian Federation, 119991
| | - Yuri V Panchin
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation, 127994
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, Russian Federation, 119991
| |
Collapse
|
6
|
King M, Carson J, Stewart MT, Gobert GN. Revisiting the Schistosoma japonicum life cycle transcriptome for new insights into lung schistosomula development. Exp Parasitol 2021; 223:108080. [PMID: 33548219 DOI: 10.1016/j.exppara.2021.108080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 12/12/2022]
Abstract
Schistosome parasites are complex trematode blood flukes responsible for the disease schistosomiasis; a global health concern prevalent in many tropical and sub-tropical countries. While established transcriptomic databases are accessed ad hoc to facilitate studies characterising specific genes or gene families, a more comprehensive systematic updating of gene annotation and survey of the literature to aid in annotation and context is rarely addressed. We have reanalysed an online transcriptomic dataset originally published in 2009, where seven life cycle stages of Schistosoma japonicum were examined. Using the online pathway analysis tool Reactome, we have revisited key data from the original study. A key focus of this study was to improve the interpretation of the gene expression profile of the developmental lung-stage schistosomula, since it is one of the principle targets for worm elimination. Highly enriched transcripts, associated with lung schistosomula, were related to a number of important biological pathways including host immune evasion, energy metabolism and parasitic development. Revisiting large transcriptomic databases should be considered in the context of substantial new literature. This approach could aid in the improved understanding of the molecular basis of parasite biology. This may lead to the identification of new targets for diagnosis and therapies for schistosomes, and other helminths.
Collapse
Affiliation(s)
- Meághan King
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Jack Carson
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Michael T Stewart
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Geoffrey N Gobert
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK.
| |
Collapse
|
7
|
Cheng WJ, Gu MJ, Ye F, Zhang YD, Zhong QP, Dong HF, Liu R, Jiang H. Prohibitin 1 (PHB1) controls growth and development and regulates proliferation and apoptosis in Schistosoma japonicum. FASEB J 2020; 34:11030-11046. [PMID: 32627884 DOI: 10.1096/fj.201902787rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 01/22/2023]
Abstract
Schistosomiasis is a zoonotic parasitic disease caused by the trematode blood flukes of the genus Schistosoma. The prodigious egg output of females is the main cause of the disease in definitive hosts, while the female worm relies on continuous pairing with the male worm to fuel the growth and maturation of the reproductive organs and egg production. Prohibitin, which contains the functionally interdependent PHB1 and PHB2 subunits in human and some other species, has been proposed to participate in the cell proliferation and apoptosis regulation in mammals. However, little is known about the function of PHB homolog in the growth and reproductive development of schistosomes. Here, we reported the Phb1 gene that was structurally and evolutionarily conserved in Schistosoma japonicum when compared with that of other species from Caenorhabditis elegans to human. Real-time PCR detected that SjPhb1 was highly transcribed in the vitellaria of female worms. SjPhb1 knockdown achieved through the dsRNA-mediated RNAi in vivo resulted in retarded growth, decreased pairing, and fecundity in adult worms, as well as attenuated pathogenicity or virulence of worms to their hosts. Cell proliferation and apoptosis examination found decreased cell proliferation and increased cell apoptosis in SjPhb1 dsRNA-treated worms. Therefore, our study provides the first characterization of S. japonicum PHB1 and reveals its fundamental role in the regulation of growth and development of S. japonicum by specific dsRNA-mediated RNAi in vivo. Our findings prompt for a promising molecular of schistosomes that can be targeted to effectively retard the growth and development of the schistosomes.
Collapse
Affiliation(s)
- Wen-Jun Cheng
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Meng-Jie Gu
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Feng Ye
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Yao-Dan Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Qin-Ping Zhong
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Hui-Fen Dong
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Rong Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Hong Jiang
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
8
|
Habib MR, Ghoname SI, Ali RE, El-Karim RMG, Youssef AA, Croll RP, Miller MW. Biochemical and apoptotic changes in the nervous and ovotestis tissues of Biomphalaria alexandrina following infection with Schistosoma mansoni. Exp Parasitol 2020; 213:107887. [PMID: 32224062 DOI: 10.1016/j.exppara.2020.107887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 01/04/2020] [Accepted: 03/22/2020] [Indexed: 01/24/2023]
Abstract
Infection with trematodes produces physiological and behavioural changes in intermediate snail hosts. One response to infection is parasitic castration, in which energy required for reproduction of the host is thought to be redirected to promote development and multiplication of the parasite. This study investigated some reproductive and biochemical parameters in the nervous (CNS) and ovotestis (OT) tissues of Biomphalaria alexandrina during the course of Schistosoma mansoni infection. Antioxidant and oxidative stress parameters including catalase (CAT), nitric oxide (NO) and lipid peroxidation (MDA) were measured. Levels of steroid hormones, including testosterone, progesterone and estradiol, were also assessed. Finally, flow cytometry was used to compare measures of apoptosis between control snails and those shedding cercariae by examining mitochondrial membrane potential with the stain 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimi-dazolylcarbocyanine iodide (JC-1) and poly(ADP-ribose) polymerase (PARP). Infection with S. mansoni caused a 47.7% reduction in the net reproductive rate (Ro) of B. alexandrina. CAT activity was increased in the CNS at 21 days post infection (dpi) but by 28 dpi it was reduced below control values. Also, CAT activity increased significantly in the OT at 14, 21 and 28 dpi. In CNS tissues, NO levels were reduced at 7 dpi, increased at 14 and 21 dpi, and reduced again at 28 dpi. The overall level of lipid peroxidation gradually increased during the course of infection to reach its highest levels at 28 dpi. Steroid hormone measurements showed that concentrations of testosterone and estradiol were reduced in the CNS tissues at 28 dpi, while those of progesterone were slightly increased in the CNS and OT tissues. The percentage of cells that positively stained with JC-1was significantly increased in CNS and OT tissues of infected snails while the percentage of cells positively stained with PARP was decreased compared to controls. Together, these findings indicate that infection initiates diverse biochemical and hormonal changes leading to loss of cells responsible for egg laying and reproduction in B. alexandrina.
Collapse
Affiliation(s)
- Mohamed R Habib
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt.
| | - Samah I Ghoname
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt
| | - Rasha E Ali
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt
| | - Rasha M Gad El-Karim
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt
| | - Alaa A Youssef
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt
| | - Roger P Croll
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Mark W Miller
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico; Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Science Campus, San Juan, Puerto Rico
| |
Collapse
|
9
|
Yu X, Zhai Q, Fu Z, Hong Y, Liu J, Li H, Lu K, Zhu C, Lin J, Li G. Comparative analysis of microRNA expression profiles of adult Schistosoma japonicum isolated from water buffalo and yellow cattle. Parasit Vectors 2019; 12:196. [PMID: 31046821 PMCID: PMC6498558 DOI: 10.1186/s13071-019-3450-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/20/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Yellow cattle and water buffalo are important natural reservoir hosts and the main transmission sources of Schistosoma japonicum in endemic areas of China. The worms from the two hosts have marked differences in general worm morphology and ultrastructure, gene transcription and protein expression profiles. RESULTS To investigate microRNAs (miRNAs) involved in the regulation of schistosome development and survival, we compared miRNA expression profiles of adult schistosomes derived from yellow cattle and water buffalo by using high-throughput sequencing with Illumina Hiseq Xten. Schistosoma japonicum from water buffalo and yellow cattle yielded 63.78 million and 63.21 million reads, respectively, of which nearly 50% and 49% could be mapped to selected miRNAs in miRbase. A total of 206 miRNAs were identified, namely 79 previously annotated miRNAs of S. japonicum and 127 miRNAs that matched with the S. japonicum genome and were highly similar to the annotated miRNAs from other organisms. Among the 79 miRNAs, five (sja-miR-124-3p, sja-miR-219-5p, sja-miR-2e-3p, sja-miR-7-3p and sja-miR-3490) were significantly upregulated in the schistosomes from water buffalo compared with those from yellow cattle. A total of 268 potential target genes were predicted for these five differentially expressed miRNAs. Eleven differentially expressed targets were confirmed by qRT-PCR among 15 tested targets, one of which was further validated through dual-luciferase reporter assay. Among the 127 'possible' S. japonicum miRNAs, ten were significantly differentially expressed in the schistosomes from these two hosts. CONCLUSIONS These results highlight the important roles of miRNAs in regulating the development and survival of schistosomes in water buffalo and yellow cattle and facilitate understanding of the miRNA regulatory mechanisms in schistosomes derived from different susceptible hosts.
Collapse
Affiliation(s)
- Xingang Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Qi Zhai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Zhiqiang Fu
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Yang Hong
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Jinming Liu
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Hao Li
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Ke Lu
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Chuangang Zhu
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Jiaojiao Lin
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Guoqing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
10
|
Almeer RS, El-Khadragy MF, Abdelhabib S, Abdel Moneim AE. Ziziphus spina-christi leaf extract ameliorates schistosomiasis liver granuloma, fibrosis, and oxidative stress through downregulation of fibrinogenic signaling in mice. PLoS One 2018; 13:e0204923. [PMID: 30273397 PMCID: PMC6166951 DOI: 10.1371/journal.pone.0204923] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/16/2018] [Indexed: 01/22/2023] Open
Abstract
Schistosomiasis is a widespread parasitic infection that affects humans, as well as wild and domestic animals. It ranks second after malaria, with a significant health and socio-economic impact in the developing countries. The objective of this study was to assess the anti-schistosomal impact of Ziziphus spina-christi leaf extract (ZLE) on Schistosoma mansoni-induced liver fibrosis in CD-1 Swiss male albino mice. S. mansoni infection was achieved by dipping of mouse tails in schistosomal cercariae. ZLE treatment was initiated at 46 days post-infection by administering a dose of the extract on a daily basis for 10 consecutive days. S. mansoni infection resulted in liver granuloma and fibrosis, with a drastic elevation in liver function factors, nitric oxide, and lipid peroxidation, which were associated with a reduction in glutathione content and substantial inhibition of antioxidant enzyme activities compared to those of the control. Induction of hepatic granuloma, oxidative stress, and fibrosis in the liver was controlled by ZLE administration, which also produced inhibition of matrix metalloproteinase-9, alpha-smooth muscle actin, transforming growth factor-β, and tissue inhibitors of metalloproteinases expressions. In addition, the S. mansoni-infected group exhibited an increase in Bax and caspase-3 levels and a decrease in Bcl-2 level. However, treatment with ZLE mainly mitigated apoptosis in the liver. Thus, the findings of this study revealed that Ziziphus spina-christi had anti-apoptotic, anti-fibrotic, antioxidant, and protective effects on S. mansoni-induced liver wounds. The benefits of Ziziphus spina-christi extract on S. mansoni were partly partially mediated by enhancing anti-fibrinogenic and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways.
Collapse
Affiliation(s)
- Rafa S. Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manal F. El-Khadragy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Semlali Abdelhabib
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed E. Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
11
|
Liu J, Giri BR, Chen Y, Luo R, Xia T, Grevelding CG, Cheng G. Schistosoma japonicum IAP and Teg20 safeguard tegumental integrity by inhibiting cellular apoptosis. PLoS Negl Trop Dis 2018; 12:e0006654. [PMID: 30044778 PMCID: PMC6078320 DOI: 10.1371/journal.pntd.0006654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/06/2018] [Accepted: 06/29/2018] [Indexed: 11/18/2022] Open
Abstract
Schistosomes are causative agents of human schistosomiasis, which is endemic in tropical and subtropical areas of the world. Adult schistosomes can survive in their final hosts for several decades, and they have evolved various strategies to overcome the host immune response. Consequently, understanding the mechanisms that regulate parasitic cell survival will open avenues for developing novel strategies against schistosomiasis. Our previous study suggested that an inhibitor of apoptosis protein in Schistosoma japonicum (SjIAP) may play important roles in parasitic survival and development. Here, we demonstrated that SjIAP can negatively regulate cellular apoptosis in S. japonicum by suppressing caspase activity. Immunohistochemistry analysis indicated that SjIAP ubiquitously expressed within the worm body including the tegument. Silencing of SjIAP expression via small interfering RNA led to destruction of the tegument integrity in schistosomes. We further used co-immunoprecipitation to identify interaction partners of SjIAP and revealed the tegument protein SjTeg-20 as a putative interacting partner of SjIAP. The interaction between SjIAP and SjTeg-20 was confirmed by a yeast two-hybrid (Y2H) assay. Moreover, results of a TUNEL assay, RNA interference, scanning and transmission electron microscopy, caspase assays, transcript profiling, and protein localization of both interacting molecules provided first evidence for an essential role of SjIAP and SjTeg-20 to maintain the structural integrity of the tegument by negatively regulating apoptosis. Taken together, our findings suggest that the cooperative activities of SjIAP and SjTeg-20 belong to the strategic inventory of S. japonicum ensuring survival in the hostile environment within the vasculature of the final host. Schistosomiasis is a worldwide public health concern particularly in developing countries. The causative agents, schistosomes, can survive within the vascular system of their final hosts for several decades despite facing the host’s immune response. Therefore, elucidating the mechanism of cell survival will contribute to the understanding of host-parasite interaction and may lead to the identification of suitable targets for developing novel strategies against schistosomiasis. Inhibitor of apoptosis proteins are highly conserved proteins functioning as endogenous inhibitors of apoptotic cell death. Here, we demonstrated that an inhibitor of apoptosis protein of Schistosoma japonicum (SjIAP) governs the integrity of the tegument of schistosomes by inhibiting cellular apoptosis of the parasite. Further studies revealed that SjTeg-20, an S. japonicum tegumental protein, cooperates with SjIAP to inhibit apoptosis in schistosomes. Our findings provide new insights into the role of SjIAP and SjTeg-20 in maintaining the integrity of the worm tegument by negatively regulating apoptosis.
Collapse
Affiliation(s)
- Juntao Liu
- Department of Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, China
| | - Bikash R. Giri
- Department of Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, China
| | - Yongjun Chen
- Department of Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, China
| | - Rong Luo
- Department of Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, China
| | - Tianqi Xia
- Department of Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, China
| | | | - Guofeng Cheng
- Department of Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, China
- * E-mail: ,
| |
Collapse
|
12
|
Hanna VS, Gawish A, Abou El-Dahab M, Tallima H, El Ridi R. Is arachidonic acid an endoschistosomicide? J Adv Res 2018; 11:81-89. [PMID: 30034878 PMCID: PMC6052652 DOI: 10.1016/j.jare.2018.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 02/01/2023] Open
Abstract
Schistosoma mansoni and Schistosoma haematobium are intravascular, parasitic flatworms that infect >250 million people in 70 developing countries, yet not all people of the same community and household are afflicted. Regarding laboratory rodents, mice but not rats are susceptible to infection with S. mansoni and hamsters but not mice are entirely permissive to infection with S. haematobium. A recent Brazilian publication has demonstrated that resistance of the water-rat, Nectomys squamipes to S. mansoni infection might be ascribed to stores of arachidonic acid (ARA)-rich lipids in liver. Several reports have previously shown that ARA is a safe and effective schistosomicide in vitro, and in vivo in mice, hamsters and in children. Schistosoma haematobium appeared more sensitive than S. mansoni to ARA in in vitro and in vivo experiments. Accordingly, it was proposed that ARA increased levels might be predominantly responsible for natural attrition of S. mansoni and S. haematobium in resistant experimental rodents. Therefore, the levels of ARA in serum, lung, and liver of rats (resistant) and mice (susceptible) at 1, 2, 3, 4 and 6 weeks after infection with S. mansoni cercariae and between mice (semi-permissive) and hamster (susceptible) at 1, 2, 3, 4, and 12 weeks after infection with S. haematobium cercariae were compared and contrasted. Neutral triglycerides and ARA levels were assessed in serum using commercially available assays and in liver and lung sections by transmission electron microscopy, Oil Red O staining, and specific anti-ARA antibody-based immunohistochemistry assays. Significant (P < .05), consistent, and reproducible correlation was recorded between ARA content in serum, lung, and liver and rodent resistance to schistosome infection, thereby implicating ARA as an endoschistosomicide.
Collapse
Affiliation(s)
| | - Azza Gawish
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Hatem Tallima
- Chemistry Department, School of Science and Engineering, American University in Cairo, Cairo, Egypt
- Corresponding author.
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
13
|
Wang T, Zhao M, Liang D, Bose U, Kaur S, McManus DP, Cummins SF. Changes in the neuropeptide content of Biomphalaria ganglia nervous system following Schistosoma infection. Parasit Vectors 2017; 10:275. [PMID: 28578678 PMCID: PMC5455113 DOI: 10.1186/s13071-017-2218-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/24/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molluscs, including snails, are prone to parasite infection, which can lead to massive physiological and behavioural changes, yet many of the molecular components involved remain unresolved. Central to this point is the neural system that in snails consists of several ganglia that regulate the animals' physiology and behaviour patterns. The availability of a genomic resource for the freshwater snail Biomphalaria glabrata provides a mean towards the high throughput analysis of changes in the central nervous system (CNS) following infection with Schistosoma miracidia. RESULTS In this study, we performed a proteomic analysis of the B. glabrata CNS at pre-patent infection, providing a list of proteins that were further used within a protein-protein interaction (PPI) framework against S. mansoni proteins. A hub with most connections for both non-infected and infected Biomphalaria includes leucine aminopeptidase 2 (LAP2), which interacts with numerous miracidia proteins that together belong to the immunoglobulin family of cell adhesion related molecules. We additionally reveal the presence of at least 165 neuropeptides derived from the precursors of buccalin, enterin, FMRF, FVRI, pedal peptide 1, 2, 3 and 4, RYamide, RFamide, pleurin and others. Many of these were present at significantly reduced levels in the snail's CNS post-infection, such as the egg laying hormone, a neuropeptide required to initiate egg laying in gastropod molluscs. CONCLUSIONS Our analysis demonstrates that LAP2 may be a key component that regulates parasite infection physiology, as well as establishing that parasite-induced reproductive castration may be facilitated by significant reductions in reproduction-associated neuropeptides. This work helps in our understanding of molluscan neuropeptides and further stimulates advances in parasite-host interactions.
Collapse
Affiliation(s)
- Tianfang Wang
- Genecology Research Centre, Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore DC, Queensland 4558 Australia
| | - Min Zhao
- Genecology Research Centre, Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore DC, Queensland 4558 Australia
| | - Di Liang
- Genecology Research Centre, Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore DC, Queensland 4558 Australia
| | - Utpal Bose
- Genecology Research Centre, Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore DC, Queensland 4558 Australia
| | - Satwant Kaur
- Institute of Environment, Health and Societies, Brunel University London, Kingston Lane, London, UB8 3PH UK
| | - Donald P. McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006 Australia
| | - Scott F. Cummins
- Genecology Research Centre, Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore DC, Queensland 4558 Australia
| |
Collapse
|
14
|
Ranasinghe SL, McManus DP. Protease Inhibitors of Parasitic Flukes: Emerging Roles in Parasite Survival and Immune Defence. Trends Parasitol 2017; 33:400-413. [PMID: 28089171 DOI: 10.1016/j.pt.2016.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022]
Abstract
Protease inhibitors play crucial roles in parasite development and survival, counteracting the potentially damaging immune responses of their vertebrate hosts. However, limited information is currently available on protease inhibitors from schistosomes and food-borne trematodes. Future characterization of these molecules is important not only to expand knowledge on parasitic fluke biology but also to determine whether they represent novel vaccine and/or drug targets. Moreover, protease inhibitors from flukes may represent lead compounds for the development of a new range of therapeutic agents against inflammatory disorders and cancer. This review discusses already identified protease inhibitors of fluke origin, emphasizing their biological function and their possible future development as new intervention targets.
Collapse
|
15
|
Cai P, Liu S, Piao X, Hou N, You H, McManus DP, Chen Q. A next-generation microarray further reveals stage-enriched gene expression pattern in the blood fluke Schistosoma japonicum. Parasit Vectors 2017; 10:19. [PMID: 28069074 PMCID: PMC5223471 DOI: 10.1186/s13071-016-1947-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/21/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Schistosomiasis is caused by infection with blood flukes of the genus Schistosoma, and ranks, in terms of disability-adjusted life years (DALYs), as the third most important neglected tropical disease. Schistosomes have several discrete life stages involving dramatic morphological changes during their development, which require subtle gene expression modulations to complete the complex life-cycle. RESULTS In the current study, we employed a second generation schistosome DNA chip printed with the most comprehensive probe array for studying the Schistosoma japonicum transcriptome, to explore stage-associated gene expression in different developmental phases of S. japonicum. A total of 328, 95, 268 and 532 mRNA transcripts were enriched in cercariae, hepatic schistosomula, adult worms and eggs, respectively. In general, genes associated with transcriptional regulation, cell signalling and motor activity were readily expressed in cercariae; the expression of genes involved in neuronal activities, apoptosis and renewal was modestly upregulated in hepatic schistosomula; transcripts involved in egg production, nutrition metabolism and glycosylation were enriched in adult worms; while genes involved in cell division, microtubule-associated mobility, and host-parasite interplay were relatively highly expressed in eggs. CONCLUSIONS The study further highlights the expressional features of stage-associated genes in schistosomes with high accuracy. The results provide a better perspective of the biological characteristics among different developmental stages, which may open new avenues for identification of novel vaccine candidates and the development of novel control interventions against schistosomiasis.
Collapse
Affiliation(s)
- Pengfei Cai
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China. .,Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia.
| | - Shuai Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xianyu Piao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Nan Hou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Hong You
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia.
| | - Qijun Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China. .,Key Laboratory of Zoonosis, Shenyang Agriculture University, Shenyang, People's Republic of China.
| |
Collapse
|
16
|
de Paula Aguiar D, Brunetto Moreira Moscardini M, Rezende Morais E, Graciano de Paula R, Ferreira PM, Afonso A, Belo S, Tomie Ouchida A, Curti C, Cunha WR, Rodrigues V, Magalhães LG. Curcumin Generates Oxidative Stress and Induces Apoptosis in Adult Schistosoma mansoni Worms. PLoS One 2016; 11:e0167135. [PMID: 27875592 PMCID: PMC5119855 DOI: 10.1371/journal.pone.0167135] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022] Open
Abstract
Inducing apoptosis is an interesting therapeutic approach to develop drugs that act against helminthic parasites. Researchers have investigated how curcumin (CUR), a biologically active compound extracted from rhizomes of Curcuma longa, affects Schistosoma mansoni and several cancer cell lines. This study evaluates how CUR influences the induction of apoptosis and oxidative stress in couples of adult S. mansoni worms. CUR decreased the viability of adult worms and killed them. The tegument of the parasite suffered morphological changes, the mitochondria underwent alterations, and chromatin condensed. Different apoptotic parameters were determined in an attempt to understand how CUR affected adult S. mansoni worms. CUR induced DNA damage and fragmentation and increased the expression of SmCASP3/7 transcripts and the activity of Caspase 3 in female and male worms. However, CUR did not intensify the activity of Caspase 8 in female or male worms. Evaluation of the superoxide anion and different antioxidant enzymes helped to explore the mechanism of parasite death further. The level of superoxide anion and the activity of Superoxide Dismutase (SOD) increased, whereas the activity of Glutathione-S-Transferase (GST), Glutathione reductase (GR), and Glutathione peroxidase (GPX) decreased, which culminated in the oxidation of proteins in adult female and male worms incubated with CUR. In conclusion, CUR generated oxidative stress followed by apoptotic-like-events in both adult female and male S. mansoni worms, ultimately killing them.
Collapse
Affiliation(s)
- Daniela de Paula Aguiar
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | | | - Enyara Rezende Morais
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Patos de Minas, Brazil
| | | | - Pedro Manuel Ferreira
- Global Health and Tropical Medicine, GHTM, UEI Medical Parasitology, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - Ana Afonso
- Global Health and Tropical Medicine, GHTM, UEI Medical Parasitology, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, Brazil
- Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Silvana Belo
- Global Health and Tropical Medicine, GHTM, UEI Medical Parasitology, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - Amanda Tomie Ouchida
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Curti
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Wilson Roberto Cunha
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Vanderlei Rodrigues
- Departamento de Bioquímica e Imunologia, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lizandra Guidi Magalhães
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
- * E-mail:
| |
Collapse
|
17
|
Hsp70 May Be a Molecular Regulator of Schistosome Host Invasion. PLoS Negl Trop Dis 2016; 10:e0004986. [PMID: 27611863 PMCID: PMC5017621 DOI: 10.1371/journal.pntd.0004986] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 08/18/2016] [Indexed: 01/01/2023] Open
Abstract
Schistosomiasis is a debilitating disease that affects over 240 million people worldwide and is considered the most important neglected tropical disease following malaria. Free-swimming freshwater cercariae, one of the six morphologically distinct schistosome life stages, infect humans by directly penetrating through the skin. Cercariae identify and seek the host by sensing chemicals released from human skin. When they reach the host, they burrow into the skin with the help of proteases and other contents released from their acetabular glands and transform into schistosomula, the subsequent larval worm stage upon skin infection. Relative to host invasion, studies have primarily focused on the nature of the acetabular gland secretions, immune response of the host upon exposure to cercariae, and cercaria-schistosomulum transformation methods. However, the molecular signaling pathways involved from host-seeking through the decision to penetrate skin are not well understood. We recently observed that heat shock factor 1 (Hsf1) is localized to the acetabular glands of infectious schistosome cercariae, prompting us to investigate a potential role for heat shock proteins (HSPs) in cercarial invasion. In this study, we report that cercarial invasion behavior, similar to the behavior of cercariae exposed to human skin lipid, is regulated through an Hsp70-dependent process, which we show by using chemical agents that target Hsp70. The observation that biologically active protein activity modulators can elicit a direct and clear behavioral change in parasitic schistosome larvae is itself interesting and has not been previously observed. This finding suggests a novel role for Hsp70 to act as a switch in the cercaria-schistosomulum transformation, and it allows us to begin elucidating the pathways associated with cercarial host invasion. In addition, because the Hsp70 protein and its structure/function is highly conserved, the model that Hsp70 acts as a behavior transitional switch could be relevant to other parasites that also undergo an invasion process and can apply more broadly to other organisms during morphological transitions. Finally, it points to a new function for HSPs in parasite/host interactions. Parasitic schistosome worms cause morbid disease in over 240 million individuals worldwide. Acute infections with these worms can lead to Katayama fever, while chronic infections can lead to portal hypertension, enlarged abdomen, and liver damage. The infective larval stage, called cercariae, are free-swimming and can detect, seek, and penetrate human skin to enter the human host circulatory system, eventually developing into egg-laying adult worms that cause schistosomiasis. Molecular pathways associated with the initial cercarial invasion of the host, however, are largely unknown, especially with respect to the parasite-specific signals involved in host detection and subsequent decision to invade. Here, we describe a role for Hsp70 in cercarial invasion behavior. To date, only generic stimulation with skin lipid, linoleic acid or L-arginine are known to induce cercarial invasion behavior; thus, we can begin an initial investigation of molecular requirements for host invasion and environment transition for schistosomes and possibly other parasitic organisms.
Collapse
|
18
|
Comparison of apoptosis between adult worms of Schistosoma japonicum from susceptible (BALB/c mice) and less-susceptible (Wistar rats) hosts. Gene 2016; 592:71-77. [PMID: 27461946 DOI: 10.1016/j.gene.2016.07.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/17/2016] [Accepted: 07/22/2016] [Indexed: 11/24/2022]
Abstract
Schistosomiasis remains a serious public health concern in China. BALB/c mice are susceptible to Schistosoma japonicum infection, whereas the Wistar rats are less susceptible. Apoptosis phenomenon was observed in 42d adult worms of S. japonicum from both rats and mice at the morphologic, DNA, cellular, and gene levels by transmission electron microscopy (TEM), fluorometric terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) analysis, fluorescein isothiocyanate-annexin-V/propidium iodide staining flow cytometry (FCM) analysis, and real-time PCR. The results showed that the apoptotic state in worms from two different susceptible hosts was diverse. Several classical hallmarks of apoptosis, including cell shrinkage, chromatin condensation and lunate marginalization, splitting of the nucleoli, nuclear shrinkage and apoptotic body formation were observed by TEM. TUNEL analysis showed that there were much more apoptosis spots in adult worms from rats than those from mice. Statistical analysis revealed that the degree of apoptosis and percentage of necrotic cells in adult worms from Wistar rats were significantly greater (P<0.01) than those from BALB/c mice by flow cytometry. A total of 15 apoptosis-associated genes including the major components of an intrinsic cell-death pathway were identified from S. japonicum in this study, suggested that a similar apoptosis pathway might occur in S. japonicum. Real-time PCR analyses revealed that the expression levels of most of the tested apoptosis-associated genes, except CASP7, were significantly higher or at the similar level in adult worms from Wistar rats, as compared to those from BALB/c mice. The results obtained in this study collectively demonstrated that differential development of adult S. japonicum in less-susceptible rats and susceptible mice was significantly associated with apoptosis in the worm, and provided valuable information to guide further investigations of the mechanisms governing apoptosis and host interactions in schistosome infection.
Collapse
|
19
|
Cai P, Liu S, Piao X, Hou N, Gobert GN, McManus DP, Chen Q. Comprehensive Transcriptome Analysis of Sex-Biased Expressed Genes Reveals Discrete Biological and Physiological Features of Male and Female Schistosoma japonicum. PLoS Negl Trop Dis 2016; 10:e0004684. [PMID: 27128440 PMCID: PMC4851400 DOI: 10.1371/journal.pntd.0004684] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/12/2016] [Indexed: 12/23/2022] Open
Abstract
Schistosomiasis is a chronic and debilitating disease caused by blood flukes (digenetic trematodes) of the genus Schistosoma. Schistosomes are sexually dimorphic and exhibit dramatic morphological changes during a complex lifecycle which requires subtle gene regulatory mechanisms to fulfil these complex biological processes. In the current study, a 41,982 features custom DNA microarray, which represents the most comprehensive probe coverage for any schistosome transcriptome study, was designed based on public domain and local databases to explore differential gene expression in S. japonicum. We found that approximately 1/10 of the total annotated genes in the S. japonicum genome are differentially expressed between adult males and females. In general, genes associated with the cytoskeleton, and motor and neuronal activities were readily expressed in male adult worms, whereas genes involved in amino acid metabolism, nucleotide biosynthesis, gluconeogenesis, glycosylation, cell cycle processes, DNA synthesis and genome fidelity and stability were enriched in females. Further, miRNAs target sites within these gene sets were predicted, which provides a scenario whereby the miRNAs potentially regulate these sex-biased expressed genes. The study significantly expands the expressional and regulatory characteristics of gender-biased expressed genes in schistosomes with high accuracy. The data provide a better appreciation of the biological and physiological features of male and female schistosome parasites, which may lead to novel vaccine targets and the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Pengfei Cai
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Shuai Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Xianyu Piao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Nan Hou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Geoffrey N. Gobert
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Donald P. McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Qijun Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of Zoonosis, Shenyang Agriculture University, Shenyang, P.R. China
| |
Collapse
|
20
|
Han H, Peng J, Hong Y, Fu Z, Lu K, Li H, Zhu C, Zhao Q, Lin J. Comparative analysis of microRNA in schistosomula isolated from non-permissive host and susceptible host. Mol Biochem Parasitol 2016; 204:81-88. [PMID: 26844643 DOI: 10.1016/j.molbiopara.2015.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 01/27/2023]
Abstract
The reed vole Microtus fortis is the only known mammal in which the schistosome is naturally prevented from maturing and schistosome infection does not cause significant pathogenesis. However, the mechanism behind this phenomenon remains unknown. In the present study, Solexa deep sequencing technology was used to carry out high-throughput sequencing and comparative analysis of microRNA (miRNA) between small RNA libraries isolated from 10 days oldschistosomula of M. fortis and BALB/c mice.In total, 10d schistosomula from M. fortis and BALB/c mice yielded 13.37 and 10.84 million reads, respectively, and nearly 39% and 40% of reads could be mapped to selected miRNAs in miRbase. Based on a bioinformatic analysis, we found that most of the miRNAs identified in Schistosoma japonicum were detected in our study. Further analysis revealed that 24 miRNAs were differentially expressed between the schistosomula from the two rodents, of which 21 were down-regulated and three were up-regulated in schistosomula from M. fortis. Also, six novel miRNAs were predicted and identified in this study. Target genes were mapped and filtered by correlating them with differentially expressed genes obtained from S. japonicum oligonucleotide microarray analyses performed in previous studies. miRNAs such as miR-10-3p, miR-10-5p, and miR-2b-5p may affect the growth, differentiation, and metabolism of worms via regulation of the expression of target genes such as enolase, aquaporin, TGF-beta-inducible nuclear protein, and paramyosin. Gene Ontology analysis of the predicted target genes of these six differentially expressed miRNAs revealed that some important biological pathways, such as metabolic processes,glycolysis, and catalytic activity, were involved. The results of this study highlight the function of miRNAs in the development and survival of the schistosome, and provide valuable information to increase our understanding of the regulatory function of miRNAs in schistosome development and host-parasite interactions in a differentially susceptible host environment.
Collapse
Affiliation(s)
- Hongxiao Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China; Minhang Animal Disease Control Center, Shanghai 201109, China.
| | - Jinbiao Peng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China.
| | - Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China.
| | - Zhiqiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China.
| | - Ke Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China.
| | - Hao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China.
| | - Chuangang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China.
| | - Qiuhua Zhao
- Minhang Animal Disease Control Center, Shanghai 201109, China.
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
21
|
Breugelmans B, Ansell BRE, Young ND, Amani P, Stroehlein AJ, Sternberg PW, Jex AR, Boag PR, Hofmann A, Gasser RB. Flatworms have lost the right open reading frame kinase 3 gene during evolution. Sci Rep 2015; 5:9417. [PMID: 25976756 PMCID: PMC4894443 DOI: 10.1038/srep09417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/26/2015] [Indexed: 01/08/2023] Open
Abstract
All multicellular organisms studied to date have three right open reading frame kinase genes (designated riok-1, riok-2 and riok-3). Current evidence indicates that riok-1 and riok-2 have essential roles in ribosome biosynthesis, and that the riok-3 gene assists this process. In the present study, we conducted a detailed bioinformatic analysis of the riok gene family in 25 parasitic flatworms (platyhelminths) for which extensive genomic and transcriptomic data sets are available. We found that none of the flatworms studied have a riok-3 gene, which is unprecedented for multicellular organisms. We propose that, unlike in other eukaryotes, the loss of RIOK-3 from flatworms does not result in an evolutionary disadvantage due to the unique biology and physiology of this phylum. We show that the loss of RIOK-3 coincides with a loss of particular proteins associated with essential cellular pathways linked to cell growth and apoptosis. These findings indicate multiple, key regulatory functions of RIOK-3 in other metazoan species. Taking advantage of a known partial crystal structure of human RIOK-1, molecular modelling revealed variability in nucleotide binding sites between flatworm and human RIOK proteins.
Collapse
Affiliation(s)
- Bert Breugelmans
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Brendan R E Ansell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Parisa Amani
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Australia
| | - Andreas J Stroehlein
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul W Sternberg
- HHMI, Division of Biology, California Institute of Technology, Pasadena, California, USA
| | - Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter R Boag
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Andreas Hofmann
- 1] Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia [2] Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
22
|
Comparative characterization of microRNAs in Schistosoma japonicum schistosomula from Wistar rats and BALB/c mice. Parasitol Res 2015; 114:2639-47. [PMID: 25895062 DOI: 10.1007/s00436-015-4468-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/03/2015] [Indexed: 12/21/2022]
Abstract
More than 40 kinds of mammals in China are known to be naturally infected with Schistosoma japonicum (S. japonicum) (Peng et al. Parasitol Res 106:967-76, 2010). Compared with permissive BALB/c mice, rats are less susceptible to S. japonicum infection and are considered to provide an unsuitable microenvironment for parasite growth and development. MicroRNAs (miRNAs), via the regulation of gene expression at the transcriptional and post-transcriptional levels, may be responsible for developmental differences between schistosomula in these two rodent hosts. Solexa deep-sequencing technology was used to identify differentially expressed miRNAs from schistosomula isolated from Wistar rats and BALB/c mice 10 days post-infection. The deep-sequencing analysis revealed that nearly 40 % of raw reads (10.37 and 10.84 million reads in schistosomula isolated from Wistar rats and BALB/c mice, respectively) can be mapped to selected mirs in miRBase or in species-specific genomes. Further analysis revealed that several miRNAs were differentially expressed in schistosomula isolated from these two rodents; 18 were downregulated (by <2-fold) and 23 were up-regulated (>2-fold) (expression levels in rats compare with those in mice). Additionally, three novel miRNAs were primarily predicted and identified. Among the 41 differentially expressed miRNAs, 4 miRNAs had been identified with specific functions in schistosome development or host-parasite interaction, such as sexual maturation (sja-miR-1, sja-miR-7-5p), embryo development (sja-miR-36-3p) in schistosome, and pathogenesis of schistosomiasis (sja-bantam). Then, the target genes were mapped, filtered, and correlated with a set of genes that were differentially expressed genes in schistosomula isolated from mice and rats, which we identified in a S. japonicum oligonucleotide microarray analysis in a previous study. Gene Ontology (GO) analysis of the predicted target genes of 13 differentially expressed miRNAs revealed that they were involved in some important biological pathways, such as metabolic processes, the regulation of protein catabolic processes, catalytic activity, oxidoreductase activity, and hydrolase activity. The study presented here includes the first identification of differentially expressed miRNAs between schistosomula in mice or rats. Therefore, we hypothesized that the differentially expressed miRNAs may affect the development, growth, and maturation of the schistosome in its life cycle. Our analysis suggested that some differentially expressed miRNAs may impact the survival and development of the parasite within a host. This study increases our understanding of schistosome development and host-parasite interactions.
Collapse
|
23
|
Repurposing apoptosis-inducing cancer drugs to treat schistosomiasis. Future Med Chem 2015; 7:707-11. [DOI: 10.4155/fmc.14.164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
|
25
|
Bao L, Zhao J, Dai X, Wang Y, Ma R, Su Y, Cui H, Niu J, Bai S, Xiao Z, Yuan H, Yang Z, Li C, Cheng R, Ren X. Correlation between miR-23a and onset of hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2014; 38:318-30. [PMID: 24417970 DOI: 10.1016/j.clinre.2013.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 10/28/2013] [Accepted: 12/10/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS To clarify the role of miR-23a in the onset and development of hepatocarcinoma on the cellular, genetic and molecular levels. PATIENTS AND METHODS Seventy-eight patients were included after hepatectomy. Relationships between the clinical pathological factors of tumor and paracancerous tissues were analyzed. Risk factors of overall and recurrence-free survival rates were subject to multi-variable analysis. Tissues were sequenced by digital miRNA expression profiling, and new miRNA was subject to target gene prediction. RESULTS miR-23a expression was correlated with the stage of the TNM Classification of Malignant Tumours most significantly, followed by tumor size (P=0.041 and 0.047). High miR-23a, vascular invasion, tumor size≥7cm, tumor capsule and late pathological stage were the risk factors of overall survival rate, and those of recurrence-free survival rate also included alpha-fetoprotein level≥200μg/L and multiple tumors. Compared with normal hepatic cell line L-02, the miR-23a expression levels in tumor cell lines SMMC-7721 and HepG2 were up-regulated and down-regulated respectively. Transfecting miR-23a inhibitor suppressed cell growth. Apoptotic rates of the control and those transfected with inhibitor-NC and miR-23a inhibitor for 48h were similar. CONCLUSION High miR-23a expression is the independent prognostic factor of overall and recurrence-free survival rates, and miR-23a may be involved in the onset of hepatocarcinoma as an oncogene.
Collapse
Affiliation(s)
- Lidao Bao
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, 010059 Hohhot, PR China.
| | - Jianfen Zhao
- Department of Health Care for Cadres, Binzhou People's Hospital, 256610 Binzhou, PR China
| | - Xiaoxia Dai
- Department of Respiratory Medicine, Binzhou People's Hospital, 256610 Binzhou, PR China
| | - Yi Wang
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, 010059 Hohhot, PR China
| | - Ruilian Ma
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, 010059 Hohhot, PR China
| | - Yila Su
- Molecular Biotechnology Center of Inner Mongolia Medical University, 010059 Hohhot, PR China
| | - Hongwei Cui
- Molecular Biotechnology Center of Inner Mongolia Medical University, 010059 Hohhot, PR China
| | - Jianxiang Niu
- Department of Hepatobiliary Surgery, Inner Mongolia Medical University, 010059 Hohhot, PR China
| | - Shiming Bai
- Kitami Institute of Technology, 090-8507 Kitami, Japan
| | - Zhiying Xiao
- College of Chemistry and Chemical Engineering, Inner Mongolia University for Nationalities, 028043 Tongliao, PR China
| | - Hongwei Yuan
- Department of Pathology, Inner Mongolia Medical University, 010059 Hohhot, PR China
| | - Zhou Yang
- Department of Imaging, Affiliated Hospital of Inner Mongolia Medical University, 010059 Hohhot, PR China
| | - Changqing Li
- Department of Geriatrics, Affiliated Hospital of Inner Mongolia Medical University, 010059 Hohhot, PR China
| | - Rui Cheng
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, 010059 Hohhot, PR China
| | - Xianhua Ren
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, 010059 Hohhot, PR China.
| |
Collapse
|
26
|
Liang S, Varrecchia M, Ishida K, Jolly ER. Evaluation of schistosome promoter expression for transgenesis and genetic analysis. PLoS One 2014; 9:e98302. [PMID: 24858918 PMCID: PMC4032330 DOI: 10.1371/journal.pone.0098302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 04/30/2014] [Indexed: 01/23/2023] Open
Abstract
Schistosome worms of the genus Schistosoma are the causative agents of schistosomiasis, a devastating parasitic disease affecting more than 240 million people worldwide. Schistosomes have complex life cycles, and have been challenging to manipulate genetically due to the dearth of molecular tools. Although the use of gene overexpression, gene knockouts or knockdowns are straight-forward genetic tools applied in many model systems, gene misexpression and genetic manipulation of schistosome genes in vivo has been exceptionally challenging, and plasmid based transfection inducing gene expression is limited. We recently reported the use of polyethyleneimine (PEI) as a simple and effective method for schistosome transfection and gene expression. Here, we use PEI-mediated schistosome plasmid transgenesis to define and compare gene expression profiles from endogenous and nonendogenous promoters in the schistosomula stage of schistosomes that are potentially useful to misexpress (underexpress or overexpress) gene product levels. In addition, we overexpress schistosome genes in vivo using a strong promoter and show plasmid-based misregulation of genes in schistosomes, producing a clear and distinct phenotype--death. These data focus on the schistosomula stage, but they foreshadow strong potential for genetic characterization of schistosome molecular pathways, and potential for use in overexpression screens and drug resistance studies in schistosomes using plasmid-based gene expression.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Melissa Varrecchia
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kenji Ishida
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Emmitt R. Jolly
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
27
|
Deng Z, Zhou JJ, Sun SY, Zhao X, Sun Y, Pu XP. Procaterol but not dexamethasone protects 16HBE cells from H₂O₂-induced oxidative stress. J Pharmacol Sci 2014; 125:39-50. [PMID: 24739282 DOI: 10.1254/jphs.13206fp] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Oxidative stress is an important pathophysiological factor of asthma and chronic obstructive pulmonary disease (COPD). We hypothesized that procaterol and dexamethasone might treat inflammation through inhibiting oxidative stress in vitro. This study evaluated procaterol and dexamethasone in the hydrogen peroxide (H2O2)-induced immortal human bronchial epithelial cell model of oxidative stress and investigated the underlying mechanisms. Results showed that exposure to 125 μM H2O2 for 2 h led to a 50% reduction in the cell viability, significantly increased the percentage of apoptosis, and elevated levels of malondialdehyde and reactive oxygen species. Pretreatment with procaterol (25 - 200 nM) could reduce these effects in a dose-dependent manner. In contrast, pretreatment with dexamethasone (100 nM, 1000 nM) was inefficient. Pretreatment with procaterol plus dexamethasone (100 nM procaterol + 1000 nM dexamethasone) was effective, but the combined effect was not more effective than the sole pretreatment with 100 nM procaterol. The nuclear factor kappa-B (NF-κB) pathway was involved in the pathogenic mechanisms of H2O2. Procaterol may indirectly inhibit H2O2-induced activation of the NF-κB pathway due to its capability of antioxidation. Glucocorticoids may be not recommended to treat asthma or COPD complicated with severe oxidative stress.
Collapse
Affiliation(s)
- Zheng Deng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, China
| | | | | | | | | | | |
Collapse
|
28
|
Apoptosis in schistosomes: toward novel targets for the treatment of schistosomiasis. Trends Parasitol 2014; 30:75-84. [DOI: 10.1016/j.pt.2013.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/29/2013] [Accepted: 12/06/2013] [Indexed: 12/25/2022]
|
29
|
Rojo-Arreola L, Long T, Asarnow D, Suzuki BM, Singh R, Caffrey CR. Chemical and genetic validation of the statin drug target to treat the helminth disease, schistosomiasis. PLoS One 2014; 9:e87594. [PMID: 24489942 PMCID: PMC3906178 DOI: 10.1371/journal.pone.0087594] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/21/2013] [Indexed: 12/26/2022] Open
Abstract
The mevalonate pathway is essential in eukaryotes and responsible for a diversity of fundamental synthetic activities. 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is the rate-limiting enzyme in the pathway and is targeted by the ubiquitous statin drugs to treat hypercholesterolemia. Independent reports have indicated the cidal effects of statins against the flatworm parasite, S. mansoni, and the possibility that SmHMGR is a useful drug target to develop new statin-based anti-schistosome therapies. For six commercially available statins, we demonstrate concentration- and time-dependent killing of immature (somule) and adult S. mansoni in vitro at sub-micromolar and micromolar concentrations, respectively. Cidal activity trends with statin lipophilicity whereby simvastatin and pravastatin are the most and least active, respectively. Worm death is preventable by excess mevalonate, the product of HMGR. Statin activity against somules was quantified both manually and automatically using a new, machine learning-based automated algorithm with congruent results. In addition, to chemical targeting, RNA interference (RNAi) of HMGR also kills somules in vitro and, again, lethality is blocked by excess mevalonate. Further, RNAi of HMGR of somules in vitro subsequently limits parasite survival in a mouse model of infection by up to 80%. Parasite death, either via statins or specific RNAi of HMGR, is associated with activation of apoptotic caspase activity. Together, our genetic and chemical data confirm that S. mansoni HMGR is an essential gene and the relevant target of statin drugs. We discuss our findings in context of a potential drug development program and the desired product profile for a new schistosomiasis drug.
Collapse
Affiliation(s)
- Liliana Rojo-Arreola
- Center for Discovery and Innovation in Parasitic Diseases, Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Thavy Long
- Center for Discovery and Innovation in Parasitic Diseases, Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Dan Asarnow
- Department of Computer Science, San Francisco State University, San Francisco, California, United States of America
| | - Brian M. Suzuki
- Center for Discovery and Innovation in Parasitic Diseases, Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Rahul Singh
- Center for Discovery and Innovation in Parasitic Diseases, Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
- Department of Computer Science, San Francisco State University, San Francisco, California, United States of America
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|